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NORM ESTIMATES FOR UNITARIZABLE
HIGHEST WEIGHT MODULES

by Bernhard KROTZ

Introduction.

A simple non-compact Lie algebra Q over the real numbers admits a
non-trivial unitarizable highest weight module if and only if it is hermitian^
i.e., 3(^) -^ {0} for t C g a maximal compactly embedded subalgebra.

Assume now that Q is hermitian. Then every Cartan subalgebra t of
Ms a Cartan subalgebra of g and we have t = to © 3 OB), where to is a
Cartan subalgebra of ^. Let A be the root system of gc with respect to
tc. Let Xo € a(^) be such that Spec(ad(Xo)) = {-z,0,z} and let A4- be
a positive system such that the positive non-compact roots are given by
A^: = {a € A: a(zXo} = 1}. Then for every A € zt* there exists a unique
irreducible highest weight module L(A) with respect to A+ and highest
weight A. If A^ denotes the positive compact roots and A is dominant
integral with respect to A^, then the module L(A) is the unique irreducible
quotient of the generalized Verma module

N(\)=U(Qc) 0 F(A),
U(q)

where q is the parabolic subalgebra of Qc corresponding to A^ U Ay^ and
F(X) is the irreducible ftc-module with highest weight A. By the work of
Jakobsen (cf. [Jak83]) and Enright, Howe and Wallach (cf. [EHW83]) we

Keywords: Highest weight module - Unitary representation - Semisimple Lie group -
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Math. classification: 22E45 - 22E46.
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nowadays know exactly which L(A) are unitarizable (see also [EJ90] for a
different approach).

Let C € u{^Y be such that C(zXo) = 1. For A° € ̂  dominant integral
with respect to A^ and z € R we set A^: = A° + z^ and

/(A°): = {z C R: I/(A^) is unitarizable}.
For each z € l(\°) we denote by ( • , - ) ^ the Shapovalov form on Tv(A^) ,
which is a certain contravariant hermitian form on A^(A^).

If we identify TV(A^) with N(X°) as {^-modules, then our first result
(cf. Theorem 2.7) says that for z , z ' € l(\°) with 2: < 2/ we have
(z», v)z' < (v, v}z for all v € 7V(A°). We also obtain estimates in the converse
direction on the various irreducible 6c-types (cf. Theorem 2.8).

In Section 3 we apply the obtained inequalities to representation
theory. Let G denote a simply connected Lie group corresponding to Q.
If L(A) is unitarizable we denote by H\ the globalization of L(A) in the
F(A)-valued holomorphic functions on G / K . Then, if we identify F(X^)
with -F(A°) and normalize the inner products on CH\^)zei(\°) so tnat

they coincide on F(X°), we obtain contractive inclusions H\ , —^ H\^ for
z < z ' . Further we use the inequalities of Section 2 to characterize the
hyperfunction vectors of H\ (cf. Theorem 3.9).

Finally we apply our results to spherical highest weight representa-
tions. Let r be an involutive automorphism of G and H the corresponding
fixed point group. We assume that the symmetric space G / H is compactly
causal (cf. [Hi6l96]). Let \:H —> C denote a continuous character of H.
Then for L(A) = N(X) it turns out that H\ is (H, ̂ -spherical if and only
if F(A) is (H D K,\ |^nx)-spherical (cf. Theorem 3.14). We also give an
example that this becomes false if L(A) ^ N{X) (cf. Remark 3.15).

1. Generalities on highest weight modules.

Hermitian Lie algebras.

Let Q be a simple real Lie algebra and ^ C Q a maximal compactly
embedded subalgebra. We call Q hermitian if 3(6) 7^ {O}. We collect some
basic facts concerning hermitian Lie algebras (cf. [Hel78], Ch. VIII).

The center of 6 is one-dimensional, i.e., 3(6) = RXo for some 0 ^
XQ € 6. We can normalize XQ such that Spec(Xo) = {—z,0 ,z} . 1^'urttier,
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every Cartan subalgebra t of Ms a Cartan subalgebra of Q. Note that
3(^) C t. Let Qc be the complexification of Q and A the root system of Qc
with respect to ic-

A root a € A is called compact if a(Xo) = 0 and non-compact
otherwise. We denote by A^;, resp. Ayi, the collection of compact, resp.
non-compact roots. We fix a positive system A~^ C A such that

A;f: = A^ n A4- = {a e A^: a(zXo) = 1}.

We set p^: = [X e sc^ [^o,-^] = ~^X} and note that

flc =P+ ® ^ c ® P ~ .
As Spec(Xo) = {-%,0,%} and Xo € ^QB) it follows that [^c^] c P^
^^P-] C Cc, ^^p^ = {0} and [p-,p-] = {0}.

Highest weight modules algebraically.

In this subsection we collect some basic facts concerning highest
weight modules from an abstract algebraic point of view. As reference for
the forthcoming facts may serve [EHW83] or [Ne99], Ch. IX.

Let n^~ denote the sum of all positive root spaces and n~ defined
accordingly. Then b = n^" x t<c is a Borel subalgebra of Qc- For A € %t* let
C\ be the one-dimensional b-module, where X e t<c acts by A(X) and the
elements of the nilradical n"1' of b act trivially. Associated to A we define
the Verma module

M(A):==^(flc) ^ CA
U{b)

and note that M(A) is a highest weight module for gc with highest weight
A with respect to A"1".

Let X \—> X denote the conjugation in Qc with respect to the real
form 0. Then the map X ̂  X*: = —X extends to an involutive antilinear
antiautomorphism ofU(Qc) which we denote by the same symbol.

A hermitian form (•, •) on a ^c-module V is called contravariant if

(VX G5c)(V^w G V) (X.v.w) = {v,X\w).

Contravariant forms on M(A) are unique up to real scalar multiples
whenever they exist. Their construction is described as follows. According



1244 BERNHARD KROTZ

to the Poincare-Birkhoff-Witt-Theorem, the universal enveloping algebra
of Qc decomposes as

^(Sc) = ̂ (ic) © (n-^(sc) +^(0c)n+).
We denote by P:U(Qc) —> ^(k;) the projection onto the first component.
We extend A:t<c —>• C to an algebra homomorphism A:<?(tc) —> C. The
Shapovalov form on M(A) is defined by

<X(g)i ,y0i)A:=A(P(y*x))
for all X,y € ^(flc)- It is easy to see that { ' - > ' ) \ is contravariant. Its
radical is the unique maximal submodule of M(A) and the corresponding
irreducible quotient is denoted by L(X). In particular, the Shapovalov form
factors to a contravariant form on L(X) which we also denote by (•, ' ) \ . We
call L(\) unitarizable if (•, '}\ is positive definite.

For every root a 6 A we denote by a e ii the corresponding coroot^
i.e., a € [fl^Sc^] suc^ ^nat Q/(Qi) = ^'

LEMMA 1.1. — Let A e i€. IfL(X) is unitarizable, then

(i) The highest weight A is dominant integral with respect to A^,
i.e., A(d) € No Aoids for all a e Aj^.

(ii) We have A(d) < 0 for all a € A^. D

Remark 1.2. — (a) If a simple non-compact Lie algebra admits a
non-trivial unitarizable highest weight module, then it has to be hermitian.
Moreover, up to sign, the positive system in question has to be as above.

(b) The conditions under (ii) in Lemma 1.1 do not characterize
unitarizable highest weight modules. One has to impose further conditions
on A to guarantee unitarizability which will be explained in the next
subsection. D

Abstract classification of unitarizable highest weight modules.

Let A € zt* be dominant integral with respect to A^" and write F(\)
for the corresponding irreducible fee-module. Let q = p"^ ̂  fee and turn F{\)
into a q-module by letting p4" act trivially. We define the generalized Verma
module associated to A by

N(\)=U(Qc) ^ ^(A).
U{q)
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Note that the generalized Verma module is a quotient of the Verma module
M(A) and hence a highest weight module with respect to A"1' and highest
weight A. Thus L(A) is a quotient of N(X) and the Shapovalov form on
M(A) defines a contravariant form on N{\) which is also denoted by (•, ')\.

We set to:= span{zd:a € A^} and note that t = to 0 a(^). Let
C ^ U^y be defined by <(iXo) = 1 and note that <(d) > 0 for all a e A^.
For A° € zt^ be dominant integral with respect to A^ and z € C we set

\, = A° + <

Further we define
\o\ ._Z(A°): = {2; e R: L(A^) is unitarizable}.

THEOREM 1.3 (Enright-Howe-Wallach, Jakobsen). — Let A° € zt$
be dominant integral with respect to Aj^. Then the following assertions
hold:

(i) There exists real numbers A(A°) < 0 and C(X°) > 0 such that

l(\°) = {z e R: z < A(A°)}U{^,..., ̂ n},

where ZQ = A(A°) and ^+1 - ̂  = C'(A°) for aii 0 ̂  z < n - 1.

(ii) For z € ^(A°) we have L(A^) ̂  7V(A^) if and only ifz < A(A°).

(iii) For z C ^(A°) the parameter \z belongs to the relative holomorphic
discrete series if and only if z < (A° +/?,/?) < 0 with (3 the unique simple
non-compact root. Further we have (A° + p^ff) < A(A°).

Proof. — [EHW83], Th. 2.4. D

Two lemmas of Parthasarathy.

The main tool in the classification of unitarizable highest weight
modules are two lemmas of Parthasarathy which we cite now and use later
on.

If V is a tc-module, then we denote by P{V) the set of tc-weights of
V. For each /^ e P(V) we write V^ for the corresponding weight space. For
every a e A^ let Xa G flg be such that ^(X^, X^) = -1, where K denotes
the Cartan-Killing form on flc-
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LEMMA 1.4 (Parthasarathy). — Let ^ e P(N(\)) and v e N(\Y
be a primitive element with respect to A^. Then we have

(||/.+p||2-[[A+p||2)^^=2 ̂  {X^X^v)^
aeA^

Proof.— [EHW83], Lemma 3.6 or [Ne99], Lemma IX.5.3. D

LEMMA 1.5 (Parthasarathy). — If L(\) is unitarizable, then every
^ C P(L(A))\{A} which is primitive for A^ satisfies the inequality

|^+p[[>| |A+p| | .

Proof. — [EHW83], Prop. 3.9 or [Ne99], Th. IX.5.4. D

2. The inequality for unitary highest weight modules.

Let z G ^(A°). The action map ^(p~) 0 F{\z) —> N(X^) gives rise to
an isomorphism of tc K P~ -modules

7V(A,)^<S(p-)0F(A,),

where the action of ^c tx p" on <S(p~) 0 F(X) is given by

(VX € ^c) .̂(p 0 v)'' = [^p] 0 v 4-p 0 X.'y
(vy e p~) y.(p 0 v): = Yp 0 -y

for all p C <S(p~) and v C F(A).

LEMMA 2.1. — For all z E C the module N(\z) is isomorphic to
N{\°) ast^K p~-module.

Proof. — As F(A^) = F(A°) 0 C^, the module F(A^) is isomorphic
to F{\°) as a ^-module. From that the assertion follows. D

Realization in holomorphic functions.

Let G denote a connected Lie group with Lie algebra Q sitting in its
universal complexification Gc' We write K for the analytic subgroup of G
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corresponding to ^ and set P±: = exp(p±) C GC. In the following we refer
to [Sa80] or [Ne99], Ch. XII for a detailed discussion of the facts mentioned
below.

The mapping

P+ x Kc x P~ -. Gc, (p+. ̂ P-) ̂  P-^kp-
is biholomorphic onto its open image P^KcP~. We write

C: P^ x Kc x P- -^ P4- and K: P~^~ x Kc x P~ -^ Kc
for the associated holomorphic projections.

We have G C P-^-KcP-. Further V: = logC(G) C p+ is a bounded
symmetric domain and the map

G/K-^V, gK^\og(:(g)

is an analytic isomorphism, called the Harish Chandra realization of G / K .
For g € G and z e V we set g.z = \og(^(gz) € P.

We define the cocycle

J: G x V -> Kc, (g, z) ̂  ^{g exp(z))
and set

K-D'.V xV -^ Kc, (z,w) ̂  ^(exp(-w)exp(^))-1.

Let G and Kc denote the universal coverings of (?, resp. KC. Then
the maps J, Ky lift uniquely to mappings

J ' . G x V ^ K c and K^VxD-.Kc
with J(l,0) = 1 and ^p(0,0) = 1 (cf. [Ne99], Lemma XII.1.7).

For A C zt* dominant integral with respect to A^ we write (a\, F(\))
for the corresponding representation of Kc. We set J\:= a\ o J and
Kx:=axoK^.

Let Hol(P,F(A)) denote the space of F(A)-valued functions on P.
We equip this space with the topology of compact convergence turning
it into a Frechet space. In view of [Ne99], Prop. XII. 1.8, the prescription
G x Hol(P,F(A)) ̂  Hol(P,F(A)), (^,/) ̂  TT^)./, where

(2.1) ^x(9).f)(z):=Jx(g-\z)-l.f(g-l.z)^

defines a smooth representation of G. The corresponding derived represen-
tation of the subalgebra ^c x p"*" is given by

(VX e tc) (X.f)(z) = da^X).f(z) + df{z)([z, X})
(VW e p+) (W.f)(z) = df(z)(-W)
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forall/eHol(P,F(A)).

We write PoHp"1")^!7^) for the holomorphic F(A)-valued polynomials
on P"1". By taking restrictions, we also consider Po^p^^i^A) as a subspace
of Hol(P, F(A)). Note that L(A) is a locally finite U(^c ix p^-module.

LEMMA 2.2. — IfpF^\y.L(\) —)• F(A) denotes the orthogonal pro-
jection along the sum of all other tc-types, then the mapping

L(\) -^ Pol(p+,F(A)), v ̂  (z ̂  pF^(exp(z)-\v))

defines a Qc-^uivariant embedding.

Proof. — This follows from [Ne94a], Prop. V.13. D

To distinguish L(A) from its realization in Po^p^ (g) F{\) we denote
the latter by L(A)hoi-

LEMMA 2.3. — For each z € C, the module Z/(A^)hoi is ^ K p4'-
isomorphic to a submodule ofPoHp'^) 0 F(A°).

Proof. — This follows from Lemma 2.2 and the fact that Pol(p+) (g)
F(A^) is isomorphic to Pol(p+) (g) F(A°) as ̂  K p+-module.

Duality.

LEMMA 2.4. — For each A € %t* which is dominant integral with
respect to A^" the following assertions hold:

(i) The prescription
7V(A) x (Po^^A)) ^C, (p0^,/) ̂  (^P*./(0))

defines a non-degenerate sesquilinear contravariant pairing.

(ii) The Qc-module L(A)hoi is the unique minimal submodule of
Po^p4") (g) F(A) and the pairing in (i) gives rise to a contravariant pairing

<. , . ) :L(A)xL(A)hoi^C.

Proof. — This follows from [Ne94a], V.12-V.14. D

Remark 2.5. — The point is that the pairing <•, •): N(\z) x (Po^p'^")
(g)F(A^)) —^ C respects identifications, i.e., if we identify N(\z) with N(X°)
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as ̂  'X p~-module and Po^p-^) 0F(A^) with Pol(p+) (g)F(A°)) as ̂  P"^-
module, then (•, •) is independent of z. D

LEMMA 2.6. — Let z, z ' e l(X°) with z < z ' .

(i) As ̂  xi ^--modules L{\^) is a quotient of L{\^}.

(ii) As ̂  xi y^-modules L(A^)hoi is a submodule ofL(A^)hoi.

Proof. — (i) Note that both L(X^) and L(A^) are, as ^ K P~-
modules, quotients of N{\°). If 1^ and J^/ denote the corresponding
submodules of N(\°), then the arguments in the proof of [EHW83],
Prop. 3.15, imply that Iz C 1^. From that the assertion follows.

(ii) This follows from (i) by the use of duality (cf. Lemma 2.4(ii) and
Remark 2.5). Q

For every n e No denote by Po^p4'^ the space of homogeneous
polynomials of degree n. Then we have

00

Po^) 0 F(A) = ^Pol(p4-)71 0 F(A)
n=0

inducing a grading of Pol(p+) (g) F(A). Note that L(A)hoi is a graded
submodule of Pol(p+) (g) F(A).

THEOREM 2.7 (Inequality for unitary highest weight modules).
Let A° € %t$ be dominant integral with respect to A^". Let z , z / e l(\°)
be such that z <^ z ' and set A: = \z, A': = A^.

(i) If we identify L(A')hoi as a ^ ix p+ submodule of L(A)hoi (cf.
Lemma 2.3, Lemma 2.6(ii)) and normalize the Shapovalov forms (•, -)\ and
(•, ' ) \ ' so that they coincide on F(\°), then we have

(W € L(A')hol) ^^ )A<(^^Y.

(ii) If we identify N(\) and A^(A') with N(\°) as ̂  ix P~ modules
(cf. Lemma 11.1) and normalize the Shapovalov forms (•, '} \ , (•, -}^ so that
they coincide on F(A°), then we have

(We7v(A°)) ^,^Y^(^^A.

Proof. — (i) We may identify L(A')hoi and L(A)hoi with a ̂  x P"^-
submodule of PoHp-^) 0 F(A).
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We proceed by induction on the degree of the grading of -L(A')hoi.
For n = 0 we have I/(A')0 = F(A) and the assertion follows from the
normalization of the contravariant forms. Let n € No and assume that the

n

assertion is true for all elements in ^ftl^V)-7. Let v C L{X/)n^l. In view
j==o

of Schur's Lemma, we may assume that v is a tc-weight vector which is
primitive for A^. Let /., resp. //, be the corresponding weight of v in -L(A),
resp. ^(A'). Then Lemma 1.4 shows that

(2.2) (ll^+^-IIA+pll2^);^ ̂  <X^,X^
a(EA;t

(2.3) (||^+p||2_||Y+pf)^^,,=2 ̂  (X^,X^)Y.
aeA^

By induction we know that the right hand side of (2.2) is smaller than the
right hand side of (2.3). Thus

(2.4) (V + p||2 - ||A' + p||2)^ v}^ ^ (H/. + p||2 - ||A + p||2)^, v)^.

Now A' = A + wC, and ^! = ̂  + w^ for w = z ' — z > 0, and so

(2.5) V + p||2 - HA' + p||2 = H/. + p||2 - ||A + p||2 + 2w(/. - A, C).

As A - /. € No[A^] (cf. [Ne99], Ch. IX) and w ^ 0, it follows that
w{^ — A, C,} < 0 and so

(2.6) II/. + p||2 - ||A + p||2 > V + p||2 - ||A' + p||2.

In view of the Parthasarathy inequality (cf. Lemma 1.5), we have
\\fi' + p||2 - HA' + p||2 > 0. Therefore the induction step follows from (2.4)
and (2.6).

(ii) We denote by L(\yj)^, w € ^(A°), the flc-module of all U(^c)-
finite vectors in the algebraic antidual of L(\yj)^o\' Then the contravariant
pairing I/(A^) x L(A^)hoi —)> C (cf- Lemma 2.4(ii)) defines an isomorphism
of flc-1110^11^8

(^:L(A^) ^L(A^)^, v^{v,').

The contravariant form (•, '}\^ induces via (p a contravariant form ((•, '})\^
on ^(A-u;)^. Since (p respects identifications (cf. Remark 2.5), we only have
to show that the forms ( { • , -))\^ are decreasing. This is now seen as follows.

Denote by ( ' I ' )A^ the normalized contravariant form on I/(A^)hoi-
Then the map

^(Aw)hol —^ ^(Aw^oP v 1-> (v\')>w
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is a gc-equivariant isomorphism. By the unicity of contravariant forms, the
pullback of «•,•)) \^ under this map coincides with (- l-)^- In particular,
we obtain for all u e L(\)^ that

(2^) ^/({u^u)}^= sup |̂ )|.
^6l-(Aw)hol
M^A^-l

Now (•|-)^ are increasing by (i), and so (2.7) implies that ( { • , -))^ satisfy
the reverse monotonicity as (-l-)^, i.e., they are monotonically decreasing.
This completes the proof of (ii). D

We conclude this section with an estimate in the other direction on
each level of the grading of L(A)hoi which we need later on.

THEOREM 2.8. — Let \° € zto be dominant integral with respect
to A^. Let z, z ' e 1{X°) be such that z ' ^ z and set X: = X^ A': = X^. If we
identify L(A')hoi with a ̂  K y^-submodule ofL(A)hoi and normalize the
Shapovalov forms { ' , ' ) \ and { ' , ' } \ ' so that they coincide on F(A°), then
there exists constants C, N > 0 such that

(Vn e No)(V^ € L(X')^) {v,v}^ < C(l + n)N{v^)^

Proof. — We will show that there exists constants ci,C2 > 0 such
that

(2.8) (Vn € N)(V^ e L(A')Coi) ^^)v <. ci(f[ (l + C2))^^)A
j=i •7

holds. In view of Lemma 2.9(i) below, the theorem then follows.

First we claim that there exists an N 6 N and positive constants c, c'
such that

(2.9) cn^ll^+p^-IIY+pll^c'n2

for all A^-primitive weights fi' in L(Xf)^ with n > N. In fact, by [Ne99],
Ch. IX, we can write // as

(2.10) / /=A' - ̂  n^a with n = ̂  n^
Q'CA.S: aeA,i-

and n^ € No. Thus we get for large n
11/^+Pll2 - IIA' + p\\2 = ||//||2 + 2{/./, p) + ||p||2 - HA' + p||2

^c'/(||^||2+2(/./,p))

<c"( ̂  nan/3|(a,/?}|+2 ̂  n,|{a,p - A')] + IIA'H2) < c'n2

aeA,t QCA^
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for some constants c',c" > 0. Similarly we obtain an ineqality in the
converse direction, proving (2.9).

Let w = z ' - z. If // is a A^-primitive weight of L{\1)^ and ^ is the
corresponding weight of L(X)^ then (2.5) and (2.10) imply that

l l^+Pf-llA+pll2 _ 2w{/.-A,C)
ll^+pP-llA'+pll2 ||^+p[[2_||Y+p||2

2W71
=1+

l l ^ + P l P - l l A ' + p l l 2 '
Thus if n > AT, then (2.9) implies that

( 2 1 1 ) ll^+Pr-llA+pll2 2w
v ' / l l ^+plP-HA'+plP-^cn '

2w / yi
Let C2:= — and choose ci > 0 such that (v,v)^ < ci( Y[ (l +

C2^ c J=l

—),)(^^)A for all ^ e L^X'Y and 1 ̂  n < N .
j

To prove (2.8) we proceed now by induction on n - N. If n - N < 0,
then the assertion is clear by the choice of ci. Assume now that the asertion

n
is true for all elements in Q) I/(A')^ for some n € N with n - N ^ 0. Let

j=0

v € I^A')71"^1. W.l.o.g. we may assume that v is a tc-weight vector which
is primitive for A^. Let p,, resp. ^\ denote the corresponding weight of v
in L(A), resp. L(A'). Then it follows from (2.2), (2.3) and induction that

<^> î̂ ;i::̂ c.(n(î ))<..».
Now the induction step follows from (2.11), proving (2.8) and hence the
theorem. Q

LEMMA 2.9. — Let c > 0.

(i) For all n € N we have

n( i+9<^( i+<.j=i
(ii) For allt > 0 there exists a constant C >0 such that

^"iKi^)^j=i
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holds for all n e N.

Proof. — (i) In view of 1 + ^/ < e^ for all y > 0, we have

n(i+j)^s;.,«.
J=l J

n i /-n+l 3^
Now E - ^ 1 + / - cte = 1 + log(n + 1) implies that

j'=i 3 J i ^

ft (1 + ^) < e^10^1)) = e^l + <,

as was to be shown.

(ii) This is immediate from (i). D

3. The characterization of hyperfunction vectors.

Globalization as holomorphic functions.

We identify for all z € l(\°) the module L(A^)hoi with a ^ ix p^-
submodule of Po^p"^ (g) F(A°). Let WA, denote the Hilbert completion of
L{\z)ho\ in Hol(P, F(\°)). Recall that the representation of Qc on L(A^)hoi
integrates to a unitary representation (TT^ , WA, ) of the simply connected
group G, which is given by (2.1) (cf. [Ne94a], Lemma VI. 14). Note that U\
is a reproducing kernel Hilbert space with reproducing kernel Kx defined
in Section 2.

THEOREM 3.1. — If one normalizes the G-invariant inner products
on CH\^)^\O) such that they coincide on the constant functions, then the
following assertions hold:

(i) For z < z', z < A(A°) and X: = \^ A': = X^ we have U\' C U\
and the inclusion mapping

T\,\':H\' —> H\

is contractive.

(ii) Iff e (Pol(p4-) 0F(A°))\L(AA(A"))hob then we have

J^o/^^-00'
z<A(\0)
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Proof. — (i) This is immediate from Theorem 2.7(ii).

(ii) W.l.o.g we may assume that / belongs to an irreducible K-
subspace which does not belong to ^(AA(A°))hoi- Let A == \z for some
z < A(A°) and note that L(A)hoi == Po^) 0 F{\) (cf. Theorem 1.3(ii)).
Then N{\) and Po^p'^") 0 F(\) are ^c-isomorphic and we denote by / the
corresponding element in N(\). Then Theorem 2.7(i) implies that

jm^(/-,/^=o.
z<A(\°)

As by (2.7) in Po^p"^ (g) F{\°) the reverse statement must hold, the
assertion follows. D

Hyperfunction vectors.

DEFINITION 3.2. — Let G be a Lie group, U a Hilbert space and
(7r,7-() a unitary representation of G.

(a) An element v € H is called a smooth vector if the orbit map
G —> 7i, g i—^ 7r(g).v is smooth. We denote the space of all smooth vectors
by H°° and equip it with the locally convex topology induced by the
family of seminorms {pu}ueu{Qc)^ where pu{v)'.= \\d7r(U).v\\. Note that
this topology is complete, i.e., H°° is a Frechet space. The strong antidual
ofTY00 is denoted by/H~oo and its elements are called distribution vectors.

(b) (cf. [KN097], App.) We say that v C H is an analytic vector if
the corresponding orbit map is analytic and write H^ for the collection of
all analytic vectors.

If v € 7^, then there exists an open connected 0-neighborhood
U C gc and a holomorphic map ^v,u'-U —> H with 7v,£/(0) = v and
7-y,£/(^0 = 7r(expX).i; for X € UC[Q. Let Hu c 'H denote the subspace of all
elements v for which 7-y u exists. Then we have a natural linear embedding

f]u'Mu -> Hol(L )̂, v ̂  7^,[/.

Thus we may think of 1~tu as a subspace of Hol(L^ 7^) and thus 7^ = (J 7~iu
u

as a subspace of E: = [j Hol(E/, H). We endow the space Hol(£7, H) with the
u

topology of uniform convergence on compact subsets of U and put on E the
natural inductive limit topology. We equip T-i^ with the subspace topology
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of E. We write U~^ for the strong antidual of U^. The elements of U~^
are called hyperfunction vectors.

Note that there is a natural chain of continuous inclusions

(3.1) W C H00 C H C 7T00 C U-^.

The corresponding representation of G on these spaces is denoted by
(Tr^^UTr^T^etc. D

LEMMA 3.3. — Let XQ e 3(C) such that A^ = {a e A: a(zXo) = 1}.
Then the following assertions hold:

(i) For allt > 0 we have

exp^(-^Xo).PCP.

(ii) Let A = A° + zC, for some z eC and set II4': = {u eC:Reu> 0}.
Then the prescription

(7A^)./)H = euzf(exp^(-iuXo)w)

defines a semigroup homomorphism ̂ I^ —> B(Hol(P,F(A))), u i-̂
7A(^) which satisfies 7r\{exp(xXo)) = 7A(-^) for aJJ x C R.

(iii) JfL(A)hoi is unitarizable and (-TTA, 7^^) ^ the corresponding global-
ization in the holomorphic functions on V, then 7^(II+) leaves H\ invariant
and all operators ̂ \(u), u € int II4", are injective contractive trace class op-
erators.

Proof. — (i) This follows from [Hi6l96], Th. 5.4.20.

(ii) In view of (i), the map 7^ is well defined. It remains to show that
^\(-ix) = 7r\(exp(xXo)). In fact we have for all / e Hol(P, F(A)), w e T>
and x e R

(7TA(exp(a:Xo))./)(w) == JA(exp(-rrXo),w)-l./(exp(-.rXo).w)
= aA(exp(rrXo))./(exp(-a;Xo).w)
= e-^zxf(exp(-xXo).w) = 7A(-^),

concluding the proof of (ii).

(iii) This follows from [Ne94b], Th. 3.8. D

Even though in general the topology on the spaces of analytic and
hyperfunction vectors is hard to get a hand on, one has a quite good picture
for unitary highest weight representations.
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LEMMA 3.4. — Suppose that L(\) is unitarizable and let (7T\,7i\)
be the corresponding globalization as a space of holomorphic functions. For
all t > 0 we set H\: = ̂ \(t).H\ C T^ (cf. Lemma 3.3).

(i) The space of analytic vectors of (TT^, 7{\) is given by

^-u^-
t>0

Further the topology on 7i^ is the finest locally convex topology on T~i^
making for allt > 0 the maps H\ —> 7-^, / »-> ^f\(t).f continuous.

(ii) We equip H\ with a Hilbert space structure by {^^{t)^^ ^y\(t).v)\^
: = {v^v)\ and write || • \\\^ for the corresponding norm on H\. Then

(a) For 0 < s < t the inclusion mapping

^:(^J|.||^)-(^J|-||A,.)

is contractive and of trace class.

(b) The topology on H\ induced from H^ is coarser than the topology
induced from || • \\\^'

(c) The space H^ is the inductive limit of the Hilbert spaces (7-^, (•, •);<,<)?
t > 0, i.e.,

H^ = lim^.
t—»0

Proof. — (i) [KN097], Prop. A5.

(ii)(a) Note that for all t > 0 the mapping it: H\ —> H^ v i-̂  ^\(t).v is
an isometric isomorphism. In particular we obtain a commutative diagram

H\ ——^——— Hi
T. T.tt

u> ——^—— n>
where is,t(v) = ̂ \(t — s).v. In view of Lemma 3.3(iii), this proves (a).

(b) The Hilbert space topology on H\ is the finest locally convex
topology on 7^ which makes the map z<: "H\ —> 'H\ continuous. In view of
(i), this proves (b).

(c) This follows from (i) and (a). D

LEMMA 3.5. — Let (TT\,H\) be a unitary highest weight represen-
tation of G and K^ the corresponding reproducing kernel. For all z C T>
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and v € F(A) the prescription K^(w): == K^^w, z).v defines an element of
T-i^ and the mapping

J^Ur - Hol(P,F(A)), {r^)(z^v} = y{K^)

defines a G-equivariant realization of the hyperfunction vectors as holo-
morphic functions.

Proof. — [KN097], Sect. 6. D

In the sequel we will be concerned with range and continuity proper-
ties of the map r\. In view of Lemma 3.5, we may consider H^ from now
on as a subspace of Hol(P, F(A)).

PROPOSITION 3.6. — For all t > 0 let
^ -^(tr\^x) = {/ € Hol(P,F(A)):7A(^./ 6 Hx}.

equip H^ with the Hilbert space structure {v,v)\^'-= {^\{t)-v^x(t)-v)\
and write || • HA,-* for the corresponding norm on H^.

(i) Every element f C H^ defines via f(^j^(t).v):== {^\(t).f, v)\ a
continuous antilinear functional on 7Y^. Moreover, the prescription f ^—> f
defines an isomorphism between T-i^ and the strong antidual ofH\.

(ii) For 0 < s < t the inclusion mapping
^(^rji'ik-)-(^AMi-iiA,-t)

is contractive and of trace class.

(iii) We have ^r-rw
t>0

and the topology on Ti.^ is the one induced from the seminorms
([[ - ||,\,-0t>o- Moreover H^ is a nuclear Frechet space.

(iv) The space H^ is reflexive.

Proof. — (i) Let (H^ denote the strong antidual of H\. We claim
that the mapping

^••H^^CH^, f^f
is isometric. In fact we have

||/||= sup |/(v)|= sup |/(7A(t).w)[
ve-H* «"eWA

IMÎ AI "TO"^1

- SUp |(7A(t).y»A| = ||/|[A,-t,
weM^

II<»HA=I



1258 BERNHARD KROTZ

proving our claim. It follows from the Hahn-Banach Theorem that im ̂  is
dense. Thus ̂  is in fact an isomorphism.

(ii) In view of (i), we may identify %^ with the antiadjoint of z^. Now
the assertion follows from the fact that antiadjoints of trace class operators
are of trace class.

(iii) Since the topological antidual of an inductive limit of locally
convex spaces is the corresponding projective limit of the antiduals (cf.
[K569], p. 290), the first assertion follows.

As a projective limit of Hilbert spaces is complete, it follows that
U~^ is complete. Further the countable family (|| • ||^ ̂ _ i )neN suffices to
define the topology, and so U~^ is a Frechet space. Finally it follows from
(ii) that U~^ is nuclear.

(iv) By (iii) we know that U~^ is a nuclear Frechet space. Since
nuclear Frechet spaces are Montel spaces (cf. [Tr67], p. 520, Cor. 3)
and Montel spaces are reflexive (cf. [Tr67], p. 376, Cor.), the assertion
follows. Q

LEMMA 3.7. — Let L(A)hoi denote the closure of L(A)hoi in the
Frechet space Hol(P,F(A)) and let rx'M^ -^ Hol(P,F(A)) be the real-
ization map from Lemma 3.5. Then

(i) The map r\ is continuous.

(ii) We have imr\ C L(A)hoi.

Proof. — (i) We identify U~^ with a subspace of Hol(P,F(A)).
Recall from Proposition 3.6(iii) that U~^ is a Frechet space and that
fn -^ f in H^ if and only if ^W./n -> ^\(t).f in U^ for all t > 0.
Since the Hilbert space topology on U\ is finer than the topology of
compact convergence, we conclude in particular that ^\(t).fn —> ^\(t}.f
in Hol(P,F(A)). But in view of the concrete formula for 7^ (cf. Lemma
3.3), it follows that fn —> f in Hol(P,F(A)), as was to be shown.

(ii) Since L(A)hoi is dense in H\, it follows from (3.1), the reflexivity of
U~^ (cf. Proposition 3.6(iv)) and the Hahn-Banach Theorem that L(A)hoi
is even dense in H~^'. This proves (ii). D

LEMMA 3.8. — Let z € l{\°) and set A = X^. If A^ belongs to
the relative holomorphic discrete series, then the mapping r\:H.^ —^
Hol(P,.F(A)) is an isomorphism of Frechet spaces.
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Proof. — Recall that the bracket on H\ is up to scalar multiple given
by

(/,/)A = / {K\z^r^f{z)^{z)) d^{z\
J-D

where /^p denotes a G-invariant positive measure on V (cf. [Ne94a],
Sect. VIII]). In view of Theorem 1.3(ii),(iii), we have L(A)hoi = Po^) 0
F{X) and so

Hx={fe Hol(P, F(A)): (/, f)^ < oo}.

As all constant functions belong to H\, we see in particular that the Banach
space Hol(P,F(A))b of all bounded holomorphic functions is contained in
H\. In fact, if || • ||oo denotes the sup-norm on Hol(P,F(A))b, then there
exists a constant C > 0 such that

(3.2) (V/ e Hol(P, F(A)),) 11/11;, < GH/lloo.

In view of Proposition 3.6(iii), a holomorphic function / belongs to H\
if and only if ^x^.f € H\ for all t > 0. Since P C p4- is bounded and
exp(-^Xo).P C V for all t > 0 (cf. Lemma 3.3(i)), we conclude that

7A(^).Hol(P,F(A)) C Hol(P,F(A))5 C ̂ .

In particular r\ is a bijection.

In view of Lemma 3.7, the map r\ is continuous. As both Hol(P, F(A))
and H^ are Frechet spaces (cf. Proposition 3.6(iii)), the Open Mapping
Theorem implies that r\ is an isomorphism. This proves the lemma. D

THEOREM 3.9 (Characterization of hyperfunction vectors). — Sup-
pose that L(\) is unitarizable and let /H\ be the associated globalization
as a space of holomorphic functions with reproducing kernel Kx. JfL(A)hoi
denotes the closure ofL(A)hoi in the Frechet space Hol(P,F(A)), then the
mapping

^^r-^Wh^ (rxW(z)^}=v{K^)

is a G-equivariant isomorphism of nuclear Frechet spaces.

Proof. — In view of Lemma 3.7 and the Open Mapping Theorem,
we only have to show that r\ is onto.

Let A = \z for some z e l(\°) and let A':= A^/ with z ' < z
belong to the holomorphic discrete series. Now let / € I/(A)hoi- In view
of Proposition 3.6(iii), we have to show that ^\(t).f e U\ holds for all
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oo
t > 0. Let / = ^ fn be the expansion in homogeneous polynomials. Then

n=o
7x(t)'fn = e^e-^fn holds for all n e No by Lemma 3.3(ii). Since z > z ' ,
Theorem 2.8 implies that

00 00

^xW.f^W.f)^ = ̂ <7AW./n,-7A(f)./n)A = ̂ e^e-24" (/„,/„);,
n==0 n=0

= e^22-2') E^^vd)./ '̂̂ )./^
n=0 " "

^Ce^-^f^e-^l+n)1^^^.!^^).^},,
n=0

for some positive constants C^N > 0. Thus Lemma 2.9(ii) implies that
there exists a positive constant c > 0 such that

<7AW./,7^)./)A <. c<7v(|)./,7Y(|)./)v

holds for all t > 0. By Lemma 3.8, the right hand side is finite for all t > 0,
proving the theorem. D

COROLLARY 3.10. — Ifz< A(\o) and X = \z, then the mapping

r^.U^ -. Hol(P,F(A)), {r^)(z)^v} = ̂ \)

is a G-equivariant isomorphism of nuclear Frechet spaces.

Proof. — This follows from Theorem 1.3(ii) and Theorem 3.9. D

Remark 3.11 (Characterization of distribution vectors). — The char-
acterization of distribution vectors of a unitary highest weight representa-
tion (TT\,H\) has recently been obtained by J.-L. Clerc (cf. [C198]; see also
[ChFa98] for the scalar case). In the realization of (TI-A, H\) in Hol(P, F(X))
the distribution vectors are those functions in H\ of moderate growth on
V. Clerc has obtained his result with a similar strategy: First prove the
statement for the relative discrete series and then use our Theorem 2.8 for
making a shifting process to obtain the characterization for all parameters.

But also in other aspects the characterization of hyperfunction and
distribution vectors are similar. To describe 7^ one needs only one op-
erator, namely id7r\{Xo) (cf. Lemma 3.4(i)). For the smooth vectors one
has

H^° = H P(id^(Xo)71),
n€N
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where D(ld/^'\(XQ)n) denotes the domain of definition of the unbounded
selfadjoint operator id^Xo)" (cf. [Ne97]). D

Applications to spherical representations.

DEFINITION 3.12. — Let G be a Lie group and H C G a closed
subgroup. We write X(Jf) for the group of all continuous characters
\:H -^C* ofH.

For a unitary representation (TT,?^) of G and \ C X(ff), we write
(H-^)^^ for the set of all those elements v € U~^ satisfying 'K~^{K)M =
\(h)M for all h € H. The unitary representation (7r,7<) is called (H^\)-
spherical if there exists a cyclic vector v € (M"^)^'^. Note that for G
semisimple and \ = 1 one has (H-^^ = (^-oo)Wx) by [BrDe92],
Theoreme 1, so that our definition of spherical representation coincides
with the usual one. D

DEFINITION 3.13. — Let Q be a hermitian Lie algebra and T:Q —> g
an involution on it. The +1 eigenspace of r is denoted by (}, the —1
eigenspace by q. Note that Q = ^ + q. Further let 0 be a Cartan involution
commuting with r and Q = t (D p the corresponding Cartan decomposition.
The hermitian symmetric Lie algebra (fl, r) is called compactly causal if
3W C q (cf. [Hi6l96]).

If G denotes a simply connnected Lie group associated to 5, then we
set H = (exp^(())), K = exp^(C) and HK: = H H K. D

THEOREM 3.14. — Let (^r) be a compactly causal symmetric Lie
algebra and \ C X(Jf) a continuous character of H. If z < A(A°), then
(TTA,,^) is (H,x)-sphericalifand onlyifF(X^) is (^,:Y|^)-spAericaJ.

Proof. — It follows from [KN097], Prop. VI.5, that F(A^) is ( H K , X I
HK )-spherical whenever H\^ is (H^ ^-spherical.

Conversely, we have a linear bijection

F(\^{HK^H^ -.Hol^^A^)/^

(cf. [KN097], Th. 2.11). Thus if F(A^) is (T^xl^)-8?116™^ we nnd a

non-zero (^,^)-fixed holomorphic function / on P. Since z < A(A°), we
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have U~^ == Hol(P,F(A^)) by Corollary 3.10. Thus / € U~^', proving the
converse. D

Remark 3.15. — In general it is not true that H\ is (H^ ^-spherical
if the minimal K-type F(X) is (7f^,^|j^)-spherical.

Let G: = Sp(n, R) be the universal covering group of Sp(n, R) and
0 = 5p(n,R) the corresponding Lie algebra. Let In,n''= diag(J^,-J^) e
0((2n,R). The prescription

T-.Q—^Q, X \-^ In,nXIn,n

defines an involution on g turning (5, r) into a compactly causal symmetric
Lie algebra. We have H = ̂  ^ GL(n,R)+ (cf. [KN098], Lemma 2.1) and
we identify from now on H with GL(n, R)^.

Let \ = 1 and (/J^\,^^\) be the even metapletic representation of
G modelled on the L2^) -completion of the span of the even Hermite
polymomials, i.e., the space of even functions in L^R71). The action of
H = GL(n,M)+ is given by

(3.3) {7rx{h).f){x) = (det/i)-^-1.^)

for all h € H, f C H\ and x G W1. Note that F(A) = C{e-7r<a;'a;>} is
one-dimensional. Since HK = SO(n,R), it follows from (3.3) that F(\) is
^K-spherical. We assert that (7^\,/H\) is H -spherical if and only if n == 1.

By [BrDe92], Theoreme 1, we know that (7^)^ = (^^°0)^. In view
of [Fo89], Ch. IV, we know that U^00 is the closure of U\ in the tempered
distributions, i.e., H^00 <—^ S'^). Thus we are searching for Jf-invariant
tempered distributions.

Let v € S^V)11. Since v is Jf-fixed, it is fixed under HK =
S0(n) which in view of (3.3) means that v is rotation invariant. Further
considering the action of Z(H) ̂  R4', we deduce that v is homogeneous of
A ndegree - .

If n = 1, then H = Z(H) = R^~ and v(x) = \x\^ defines a non-zero
H -fixed element of U~^'.

If n >, 2, there exists up to normalization only one rotation invariant
77

distribution which is homogeneous of degree — — , namely v(x) = r"!,
2i

where r = ^/x\ + ... + x^ (cf. Lemma 3.16 below). But since n > 2, this
distribution cannot be H -invariant. This proves our assertion. D
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LEMMA 3.16. — Let n € N. Then for each p, e C the space of
fji-homogeneous 0(n^)-invariant distributions on W1 is one-dimensional.
Moreover, ifn>2 we may replace 0(n, R) by S0(n, R).

Proof. — The first assertion is [HoTa92], Ch. IV, Prop. 3.1.2. Further
the arguments in [HoTa92], Sect. IV.3, show that this remains true for
0(n,R) replaced by SO(n,M), provided n ̂  2. D
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