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COMBINATORICS AND TOPOLOGY -
FRANCOIS JAEGEITS WORK IN KNOT THEORY

by Louis H. KAUFFMAN

To the memory of Francois Jaeger

1. Introduction.

Francois Jaeger found a number of beautiful connections between
combinatorics and the topology of knots and links, culminating in an
intricate relationship between link invariants and the Bose-Mesner algebra
of association schemes. We give an elementary introduction to this
connection.

We begin by first recalling the construction of the bracket polynomial
(a state summation model for the Jones polynomial). With this example of
a combinatorial state model in hand, we then devote a section to Jaeger's
discovery of a combinatorial state model for the Homfly polynomial. The
next section shows how the bracket polynomial can be translated into a
(so-called) spin model in terms of the checkerboard graph of a knot or
link. This gives an introduction to spin models and the opportunity to
explain Jaeger's discovery of the connection of spin models with association
schemes.
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2. Recalling the bracket polynomial.

We must first recall that the theory of knots and links is the study of
smooth (infinitely differentiable) or piecewise linear embeddings of circles
and collections of circles into Euclidean three dimensional space R3. Knots
are embeddings of single circles and links are embeddings of multiplicities
of circles. The number of circles is called the number of components of the
link. Two knots or links are said to be ambient isotopic if there is a smooth
(or piecewise linear) family of embeddings parametrized on the unit interval
that starts with one link and ends up with the other. The problem in knot
theory is to determine when two embeddings are ambient isotopic.

A knot is said to be knotted if it is not ambient isotopic to a planar
embedding of a circle. A link is said to be linked if it is not ambient isotopic
to a disjoint embedding of circles in the plane. Thus all knots are links, but
not conversely.

The plane is a key figure in this theory because it is always possible
to project a knot or link from three-space to the plane (or to the surface
of a two dimensional sphere about the origin) so that the curve (s) in space
become curve(s) on the plane with finitely many transverse self-intersections
as shown in Figure 1.

x
(a) crossings (b) diagram (c) shadow graph

Figure 1. Crossings and diagrams

A projection to the plane can be arranged for any link so that the only
multiple points are double points corresponding to transverse interesections
of the curves in the projection. The curve(s) formed by the projection of
the knot or link can be then be construed as a 4-regular (four local edges
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per vertex) plane multigraph (a multigraph can have a multiplicity of edges
between two of its vertices). The vertices of this multigraph correspond to
the places where the projection of the link has double points in the plane.
This combinatorial structure can be used to encode all the information one
needs about the knot or link for topological purposes. In particular it is
customary as in Figure 1 (a) to use a convention of labelling the 4-regular
graph at its vertices to indicate how the corresponding curves in space cross
over one another. This convention for a crossing is indicated in Figure 1 (b).
Thus we see that the overcrossing line is shown as continuous while the
undercrossing line is shown with deletion just before it would meet the
overcrossing line and continuing just afterwards. A knot or link diagram
of this type can be used as weaving instructions to make a corresponding
embedding into three-space. See Figure 1 (b) for an illustration of the trefoil
knot T in this mode and for its shadow graph.

An edge in a graph G either joins two distinct vertices in G or, if the
edge is a loop, it joins a vertex to itself. Let the boundary of an edge e
be the multi-set of those vertices, with the case of a loop giving a set of
multiplicity two. Let 9e denote the boundary of e. If C is a set of edges
in G let 9C denote the union (with multiplicities) of the boundaries of the
edges in C. A set C is said to be a (mod-2) cycle if every member of 9C
has even multiplicity.

In a 4-regular plane multigraph M, we say that a subset C of the
edges of M is a through cycle (denoted t-cycle) if every vertex in the set 9C
is shared by exactly two edges in (7, and these edges are not adjacent in the
cyclic order of edges around the vertex denned by the planar embedding
of M. In other words, a through cycle corresponds to the projection of one
of the components of a link that projects to M. Thus a graph M with only
one t-cycle is the projection of a knot, while a graph M with ji t-cycles is
the projection of a link with p, components.

In the 1920s Reidemeister [1] discovered a set of moves on knot and
link diagrams that capture ambient isotopy in combinatorial form. His
moves are illustrated in Figure 2.

These moves indicate local changes that can be performed on the link
diagram. Thus in the first move one locates a region with one edge and one
vertex and eliminates it or creates it by performing the move in reverse.
In the second move one creates or destroys a two-sided region. In the third
move one changes the configuration of a three-sided region. In each case
the crossings at the boundary of the region are as indicated in Figure 2.
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Figure 2. Reidemeister moves

Two knots or links in three-space are ambient isotopic if and only if
diagrams for them can be obtained one from the other by a sequence of
Reidemeister moves. Consequently, it is a good strategy to find functions
of the diagrams and to attempt to adjust these functions so that they
are invariant under the moves. A function -F defined on diagrams so that
F(K) = F ( K ' ) whenever K and K ' differ by a Reidemeister move is called
an invariant of knots and links. Certainly, if F(K) is not equal to F{L)
then it follows (by Reidemeister's theorem) that Jfand L are not related
by a sequence of the Reidemeister moves, and hence that K and L are not
ambient isotopic.

We now give an example of the construction of such a function.
We shall first define a function [K] on knot and link diagrams such that
[K] is well-defined on diagrams and it is a polynomial in the commuting
variables A, B and d. Then we shall see how to specialize A, B and d so
that [K] is invariant under the Reidemeister moves. See [22], [23].

To define [K] we need the concept of a state of the link diagram K.
A state S is obtained by smoothing each crossing of the diagram K. In
smoothing, a crossing is replaced by two parallel arcs and the new diagram
loses this vertex, but gains a label of either A or B depending on the
sense of the smoothing relative to the crossing. Each crossing has possible
two smoothings, as shown in Figure 3. The conventions for smoothing
and labelling are illustrated in this figure. Since there are two choices for
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smoothing each crossing, there will be 271 states for a diagram with n
crossings. Each state is a labelled configuration of disjoint loops in the
plane. Let ||5'|| denote the number of loops in the state and [K\S\ denote
the product of the labels. Note that [^|5'] is a product of A's and B's,
commuting variables. Now define [K\ to be the sum over all the states of
the products [K\S]d^:

[K]=^[K\S]d^.
s

This defines the three-variable bracket polynomial.

A \B

||5||=2, [K\S]=A3

Figure 3. Smoothings and states

The following lemma shows how to recursively compute the bracket
polynomial.

LEMMA 1. — Let K be a given link diagram and let Kf and K " denote
two smoothings of K at a given crossing ofK. Let K1 be the smoothing with
label A and K" be the smoothing with label B. Interpret [ K ' } and [K"} to
be the bracket polynomials of the links obtained from these smoothings by
removing the labels A and B. Then

[^A^+B^].

(Figure 4 illustrates this relation.) Let 0 denote the unknotted circle and
let OK denote any link diagram obtained from K by taking a disjoint union
with a circle in the complement of the diagram. Then

[OK] = d[K].

Proof. — These properties follow directly from the state summation
definition of the bracket polynomial. D
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Figure 4. Bracket identity

A diagram J^ is said to be oriented if there is a chosen direction for
each of its components. We assign a sign to each oriented crossing by the
convention that a crossing is positive when a counterclockwise rotation of
the overcrossing line makes it coincide with the undercrossing line. See
Figure 5 where we also illustrate the two types of "curls". A curl is a local
appearance of a single-edge region in the diagram. Either assignment of
orientation to the component supporting a curl yields the same sign at
the curl's crossing. Thus we can designate curls as positive or negative.
Let K{-{-) denote a diagram with a positive curl, and let K denote the
corresponding diagram with the curl removed (by a Reidemeister move of
type I ) . Similarly let K{—) denote a diagram with a negative curl.

/\

X : W ^

= ( A ^ 4 - B ) [ \ / [

^

M

<^

, ̂  ^-,

=A

\. ^+1 x

^h

-1

•-K(-)

1^]

Figure 5. Crossing signs and curls
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LEMMA 2.

[K(+)] = (Ad + B)[K] and [K(-)] = (A + Bd)[K].

Proof. — See Figure 5. D

LEMMA 3. — Let K ( I I ) denote a diagram containing a two sided
region that is capable of simplification under the type II move. Let K
denote the result of doing the type I I simplification and let K^ denote the
opposite smoothing to this type II site, as shown in Figure 6. Then

[K(II)} = AB[K} + (ABd + A2 + B2)^*].

Proof. — See Figure 6. D

==AB 0 +AA +BB +AB

AB ^ ( I + (ABd+A2 +^)[ v-^

Figure 6. Bracket identity relative to move II

It follows from this lemma that the bracket polynomial will
be invariant under the second Reidemeister move if B = A~1 and
d = —(A2 + A~2). In fact, with these conditions it then follows easily
that [K] is invariant under the third Reidemeister move as well. See
Figure 7 for an illustration of this. Note that with these assumptions

and

Thus

Ad + B = A(-A2 - A-2) + A-1 = -A3

A+Bd=-A-3.

[AT(+)] = (Ad + B)[K] = -A^K] and

[K(-)]=(A+Bd)[K}=-A-3[K].
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Let regular isotopy denote the equivalence relation on diagrams generated by
the second and third Reidemeister moves, plus planar isotopy of diagrams.
Then [K] is an invariant of regular isotopy.

+A-1K ^=A \^^/

+A-1 /

Figure 7. Move I I I invariance

With B = A~1 and d = —(A2 + A~2) it is convenient to define

{K) = [K}/d
so that (0) == 1. This is the usual topological bracket polynomial.

Let the writhe w(K) of an oriented link K be the sum of the signs of
its crossings. We normalise the bracket to the polynomial

fK(A)=(-A3)-WW{K)
where (K) is computed by forgetting the orientation assigned to K. The
polynomial f^ is an invariant of ambient isotopy. It gives a model for the
original Jones polynomial y/<(t) by the substitution

VK(t) = /K^-174).

By now there are many other invariants of knots and links beyond the
classical Alexander-Conway polynomial, but the Jones polynomial and the
bracket polynomial are important for the initial relationship with purely
combinatorial state sums, graph polynomials and statistical mechanics.
Furthermore the following conjecture remains outstanding:

CONJECTURE 4. — For a link K of one component, V^^t) == 1 implies
that K is unknotted.

This conjecture is closely related to the fact that the spanning tree
expansion of the bracket polynomial has no cancellation among its terms
for K an alternating diagram. See [26], [27].
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3. Jaeger's state model for the Homfly polynomial.

The Homfly polynomial [20] is a common generalization of the
Jones polynomial and the classical Alexander-Conway polynomial. For
the purposes of this section we take the following axiomatic definition
of the Homfly polynomial Pj<(^,a) in terms of the framing polynomial
HK(Z,O):

0) HK^Z.O) assigns to each oriented link diagram a Laurent
polynomial in the commuting variables z and a. If two diagrams are
regularly isotopic (see the previous section for the definition of regular
isotopy) then they receive the same ^-polynomial.

1) Ho = 1.

2) HK+ - HK_ == zHKo whenever JC+, K-, KQ form a triple of
diagrams that differ only at one site, with K+ having a positive crossing at
that site, K- a negative crossing and KQ the oriented smoothing of that
crossing.

3) HK{+) = aHK and HK{-) = a"1^. Recall from the previous
section that K(+) and K{~) denote diagrams with a positive or negative
curl, with ^denoting the result of removing this curl by a typeJ Reide-
meister move.

4) PK{Z,O) = a-WWHK(z,a) where w{K) denotes the writhe of K
as defined at the end of the last section, and HK^Z, a) is described above.

The ^-polynomial is a framed version of the Alexander-Conway
polynomial. It has the same "skein identity"

HK^ - HK. = ZHK,

as Alexander-Conway, but the extra variable a keeps track of the framings of
the diagrams via the curl identities in 3) above. The Homfly polynomial PK
is an invariant of ambient isotopy. It is not hard to see that our axioms
imply that

HOK = ^HK

where

6=(a-a~l)z-1^-1
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This is the "loop value" for the Homfly polynomial.

After the discovery of the bracket state model there came a large
number of models for new link invariants that were based on this idea of
using the diagram of the link as a basis for forming a state summation. The
key to this prolixity of models is the use of ideas from statistical mechanics
where more general vertex weights prevail and one designates states by
assigning "colors" to the edges or to the faces of the link diagram in such a
way that a local assignment of colors at vertex gives rise to a specific vertex
weight. Nevertheless, even at this level of generality there did not seem to
be a state summation for the full two variable Homfly polynomial. It was
in this context that Jaeger found a state summation model for the whole
Homfly polynomial [5]. We will describe that model.

In Jaeger's state sum for the Homfly polynomial the states of a
diagram K are defined by first replacing each crossing of the diagram
by either a flat crossing or a smoothing (See Figure 8) to form the state
diagram So.

Figure 8. State diagrams for Jaeger's state sum

We then take a series of walks on the ^-cycles (See Section 2 for the
definition of a t-cycle) of this 4-regular plane graph So. The initial location
for the walk is chosen by a template where the template is a labelling of
the edges of K from any subset of the positive integers. The edge with the
least template label is the starting point for the first walk. One then takes
the walk on the <-cycle determined by this starting point. (Note that in
an oriented diagram, the ^-cycle and direction of the walk is completely
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determined by the choice of initial edge.) The next walk begins on the edge
with least unused label. The process continues in this way until walks have
been taken on all the t-cycles in the state diagram S. Each walk creates
labels on the sites of the state diagram So. If a walk passes through a
smoothing for the first time, we mark the leg of the smoothing where the
first passage occurs with a dot as shown in Figure 9. If the walk passes
through a flat crossing for the first time, we draw this passage as an overpass
on the state diagram 60.

X-X v

Figure 9. States arise from walks on state diagrams

Once the walks have all been performed, the state diagram has a
labelling at each crossing that indicates the first passage in the walks made
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on it. At this point the state diagram SQ has become a state S for the state
summation. The vertex weights for the state summation are then obtained
from the labels on S by the following prescription:

1) At a smoothing in S\ if the crossing in K is positive and the first
passage is along the bottom of the smoothing (See Figure 9) then the weight
is z.

2) At a smoothing in S, if the crossing in K is negative and the first
passage is along the top of the smoothing (See Figure 9) then the weight
is —z.

3) At a crossing in S, if the crossing is positive then the weight is a.

4) At a crossing in 6', if the crossing is negative then the weight is a"1.

The product of these weights is denoted by {K 15').

Let ||6'|| denote the number of ^-cycles in 6'. Then Jaeger's state sum
formula for the ff-polynomial is simply

HK(z.a)=^(K\S)6^-1

s
where 6 = (a — a~l)z~l is the loop value as discussed above. After the
normalization this gives a model for the Homfly polynomial. The same
method applies to the Kauffman polynomial [27].

Jaeger's proof of the validity of this state sum can be simplified by
recognising its relationship with the recursive process inherent in the skein
identity for the ^-polynomial. In [25] I show that the states in this model
are in one to one correspondence with the diagrams that. occur at the
bottom of the tree generated in a skein calculation. Thus the model follows
directly from this form of calculation. Nevertheless it is quite interesting to
have a direct formula of this kind for the Homfly polynomial. I believe that
there is much more that can be done with Jaeger's state model and that
the corresponding polynomials defined for 4-regular plane graphs will be of
interest to combinatorialists.

4. Medial graphs and graphical Reidemeister moves.

Recall that a signed graph is a graph with labels of 4-1 or —1 on
each edge. To each knot or link diagram K there is an associated signed
graph G(K). We recall the construction of G(K) below and also how the
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Reidemeister moves on the knot and link diagrams translate to moves on
the graphs.

First of all, it is always possible to color the regions of a knot or link
diagram with two colors so that adjacent regions receive opposite colors.
This two-color theorem for link diagrams follows directly from the Jordan
curve theorem in the plane. (Smooth the crossings of the link diagram in
such a way so that there is only one curve in the resulting state. Color the
the inside of this curve black and the outside white. Take the corresponding
coloring that is induced on the regions of the original link diagram. This is
the desired coloring.) I shall refer to the two coloring of the regions of link
diagram with the outer region colored white as the checkerboard coloring of
the diagram.

The graph G(K) is directly associated with the checkerboard coloring
of K. The vertices of G(K) are in one to one correspondence with the black
regions of the coloring. There is an edge between two vertices whenever a
crossing is shared by the corresponding regions. The sign of this edge is +1
when the overcrossing line can be rotated counterclockwise through the
shaded region to coincide with the undercrossing line. See Figure 10.

G(K)

Figure 10. The checkerboard graph G(K) of a link diagram K

The translation of the Reidemeister moves to graphical moves is shown
in Figure 11. These graphical Reidemeister moves allow the generalization
of knot theory to arbitrary graphs. (Planar graphs correspond to classical
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knots and links by inverting the construction of G(K). For non-planar
graphs this theory needs further exploration.)

>•———• -- >•

KD - >•

4-

XX- >• •<
+

>•—•—•< ^ >•<

Figure 11. Graphical Reidemeister moves

Note the analogy of the graphical moves with series-parallel and star-
triangle moves on electrical circuits. In fact [28] we can interpret the +1
or -1 on an edge of the graph G{K) as a conductance (negative conductance
can be treated in an algebraically consistent way for circuits containing
only conductors). Then the two versions of the second Reidemeister move
and the third Reidemeister move are correct replacements for conductance
in a circuit. We obtain invariants of knots and links by measuring the
conductances of their corresponding graphs between two chosen points on
the graph. The resulting conductance is an invariant of motions of the link
that do not pass strands across the regions corresponding to the chosen
points on the graph. Many knots and links (for example alternating links)
exhibit non-zero conductance simply because all the conductances have the
same sign.
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5. Graphical reformulation of the bracket polynomial
as a spin model.

We begin by considering states S of a link diagram K where these
states are the states described in Section 2. Thus S is obtained from K by
choosing a smoothing for each crossing of K. It is then clear that a state S
of the link diagram K corresponds to labelling edges of the graph G(K)
internal (i) or external (e) as shown in Figure 12. An edge is internal if the
local smoothing in S corresponding to that edge joins shaded regions in the
checkerboard coloring of the diagram K. We let I ( S ) denote the number of
internal edges for the state 5, and E(S) the number of external edges for
the state S.

internal external

Figure 12. Internal and external edges

As before, we let ||5'|| denote the number of components in the
state 5'. We now define |6'| to be the number of shaded components in the
checkerboard coloring of S. It is a direct consequence of the remarks above
that 151 is the number of components of

G{K) — {interiors of external edges}.
We let N = 7V(JC)denote the number of vertices of G(K).

PROPOSITION 5. — Using the terminology established above, if S is a
state of the link diagram K, then

\\S\\=2\S\^I(S)-N(K).
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Proof. — See [23]. We omit the proof here. D

See Figure 13 for an example illustrating this proposition.

Let K be a link diagram. An internal edge in a state S will be said to
be of type

• + if the vertex weight is A (see section 2) and
• — if the vertex weight is B.

An external edge in a state S will be said to be of type + if the vertex
weight is B and type - if the vertex weight is A. Let J± = I^(S) denote the
number of internal edges in a state S of type dr. Let E± = E^{S) denote
the number of external edges in a state S of type ±.

||5||-2, |5|=1, J(5)=3, N =3 , \\S\\ = 2\S\ + I ( S ) - N

Figure 13. Illustrating boundary and region count

PROPOSITION 6. — With the terminology of the previous paragraph
the {three variable) bracket polynomial of a link diagram K can be expressed
by the formula

[K\ = d-^W ^(Ad)J+(5d)J-B^A£;-(d2)151.
s

Proof. — One has
[K}=Y^AI^E-BI-^d^

s
= \^AI+~}~E-BI-+E+d2{S^I{s)~N(K>)

s
= d-^W ^(Ad)J+(Bd)J-B^A£S

s
since I ( S ) = 7+ + J_. This completes the proof. D
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A little thought now shows that this reformulation of the bracket
state sum in terms of the signed graph can be expressed by the formulas

[G | +] = Ad[G'} + B[G"}^ [G \ -] = Bd[G'} + A[G"],

ipUG}=d2[G^

where [G|=b] denotes G with a selected signed edge with sign =L, G' denotes
the signed graph obtained from G by contracting the special edge and G"
denotes the signed graph obtained from G by deleting the special edge.
See Figure 14 for a diagrammatic notation for this recursion.

D^t^O = Ad [>•<] + B >• •<

D^-^ = Bd M + A [>• •<

Figure 14. Graphical recursion

We now further translate this graphical bracket state sum into a spin
model (a generalization of the Potts model in statistical mechanics) on
G(K). In the course of this translation we shall see the full definition of
the spin model emerge consistently with its description in [21]. We shall
henceforth refer to G{K) by the letter G alone.

First choose a "spin" set {1 ,2 ,3 , . . . , n} for some positive integer n.
Assign spins from the set {1 ,2 ,3 , . . . , n} to the vertices of G. Assign weights
w±(a,/3) to each edge of G that is labelled with the spins a and f3 at its
ends. See Figure 15. The weights are in an appropriate commutative ring,
often the complex numbers.

±
•———
a p

—^ o;±(a,/?)- t^±(/3,a)

Figure 15. Edge spins and vertex weights
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Now form the partition function

Z^^-^fjw^a,/?).
o" edges

Here a denotes a spin assignment to the vertices of G.

It is then easy to see that with d = ^/n and w±(a, /?) defined as shown
below, that

ZG(K) = [K]

for the three variable bracket polynomial [A'](A, B, d).

(Ad+B ifa=/3, (A+Bd ifo-=/?,
^•^{w^^B ifa^/3, ^'^-{A ifa^/3.

In the topological case, we have B = A~1 and d = ̂ /n == —A2 — A~2. Thus,
for a given choice of n, the A is a specific complex number. The weights are
then given by the formulas:

, ,3. f -A3 if a = (3, , ^ f -A-3 if a = /3,
^^tA-1 ifa/0\ --(^^-{^ if^?:

Since the bracket polynomial in the topological case is invariant
under the second and third Reidemeister moves, it follows that ZQ will
be invariant under the graphical counterparts to the second and third
Reidemeister moves. These invariances lead in turn to a set of conditions
on the vertex weights in the spin model. This is illustrated in Figure 16 and
the corresponding equations are given in the text below. The behaviour
under type I moves is illustrated in Figure 16.

These behaviours lead to equations 1.1 and 1.2. Equation 0 just
expresses the symmetry of this model (an assumption that can be dropped.)

0) w±(a,/3)=w±(/?,a).

1.1) The value a is independent of the choice of a:

w+(a,a) = a, w+(a,a) = a~1.

1.2) ^^w-^(a^x) = da""1, ^^w_(a,rc) == da.
x x
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I D^CiC) ^ (>• ^+(^^)=a a;-(a,Q)=a-1

a

>•———• -- >• ^>±(a^)=da^
X x

+

11 IX^^<^ F^ •<! ^(a,/^-(a,/?)=l
^ - / 3

i _
!>•——•——^ "- >•<] ^^+(a,X)^_(X,/3)=d2^

Q X ^ x

JJJ '^/•^ ^——^ ^^(a,X)^_(/?,X)^_^,X)v
=^+(a,/?)cj4.(a,7)^-(/3,7)

Figure 16. Vertex weights and Reidemeister moves

2.1) w+(a,/?)w-(a^)=l.

2.2) ^w+(a,a;)w-(.r,/?) = n ,̂
re

where ^/3 denotes the Kronecker delta that is equal to one when a and /?
are equal and is equal to zero when they are unequal.

3) ^w^(a,x)w-((^,x)w-(/y,x) = Vnw+(a,/3)w^,a)w-(f3^).
x

Each of these conditions can be expressed more concisely in matrix
algebra as follows:

0) W± = W^

where Mt denotes the transpose of the matrix M and (W^)ap = w±(a,/3).

1.1) JoTV+==aJ and IoW-=a~1!.
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Here M o N is the Hadamard product of the matrices M and N given by
the formula

(MoAO^=M^M,.

1.2) Jiy+ = da-^J and JTV- = daJ

where J is an n x n matrix all of whose entries are equal to 1. Note that J
is the identity matrix for the Hadamard product.

2.1) W+oW-=J.

2.2) TV+W- = d2!.

3) W-V(a^) = dw+(a,7)V(a,7).

Here V(a, 7) is the column vector with entries

V(a,7)a; = w+(a,a:)w-(.z:,7).

This matrix reformulation of the necessary properties of the spin
model is very suggestive. It suggests that an appropriate context for
studying spin models would be in a matrix algebra that is closed under
ordinary matrix product and under the Hadamard product. In fact
Jaeger discovered that the right context is the Bose-Mesner algebra of
an association scheme, as we shall see in the next section.

6. Association schemes and Bose-Mesner algebra.

An association scheme consists in a set X and a collection of relations
RQ, R^, ..., Rn on X with

1) Ro=^(X)={(x,x)\xeX}.

2) Ro U Ai U ... U Rn = X x X.

3) Ri nRj =(f) when i ̂  j .
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4) For all z, R\ = Rk for some k. Here Rt denotes the transpose of the
relation R: xRty if and only if yRx.

5) If (x, y) e Rk, let p^ denote the number of z such that (x, z) e Rz
and (z, ?/) 6 -Rj. It is given that p^ is independent of the choice of x and ^/.

Association schemes arise in many combinatorial contexts [30]. There
is a natural matrix algebra that describes any given association scheme.
This is called the Bose-Mesner algebra and it is constructed as follows:

Let Ai be the adjacency matrix of the relation Ri. That is, (A^)^
equals 1 if (x^ y ) € Ri and is 0 otherwise. Then

1) AiA^^.Afc
fc=0

2) Ai o Aj = 6ijAi

3) ibAi=J
i=l

where J is the matrix all of whose entries of ones.

These statements in matrix algebra encapsulate the properties of an
association scheme.

Now note that the weight matrices for the spin model corresponding
to the bracket polynomial are given by the formulas

W ^ = { A d + B ) I + B ( J - I ) ,

W- = (Bd+A)J+A(J - J ) .

Here I and J are n x n matrices for the spin models with d = ̂ fn.
The specialization d = —(A2 + A"2), B = A~1 gives the topological model
satisfying the corresponding spin model equations for the second and third
Reidemeister moves. However the decomposition of the general weight
matrix into combinations of I and J — I corresponds directly to the bracket
expansion into two smoothings and to the contraction deletion formula that
we gave for the graphical version of this model.

This example shows that the weight matrices for the spin model
of the bracket polynomial are expressed as linear combinations of the
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basis matrices for the simplest Bose-Mesner algebra. These matrices
correspond directly to the relations "same" and "different" that underlie
the combinatorics of this model. In fact we have shown this result for the
full bracket polynomial whence for a version of the Tutte polynomial for
signed graphs [26]. State summations for more complex relations will be
captured by other Bose-Mesner algebras.

It was with this idea in hand that Jaeger went searching for other
link invariants that could be modelled using the Bose-Mesner algebra of an
association scheme. To this end one can set

lV+=^^Afc, W,=^x^Ak
fc=0 k=0

and it follows that

TV+ o W_ = J

since the equations A, oAj = 6ijAi and ̂  A, == J hold in the Bose-Mesner
algebra. l==l

The other relations for a topological spin model are harder to come
by and this is the beginning of a long and complex story. Rather than
tell it here we refer the reader to Jaeger's excellent papers and to other
papers that grew out of his work. In particular, Jaeger [18] eventually
proved that any spin model naturally gives rise to a Bose-Mesner algebra
for an association scheme such that the weight matrices are elements of this
algebra. Another proof of this result was recently given by Nomura [32].

We finish by indicating Jaeger's most striking result on spin
models [10]. He began his study by going to the first step beyond the
Bose-Mesner algebra generated by I and J - I . In this step one takes a
new matrix with entries zero or one, A, such that the generators of the
Bose-Mesner algebra are J, A and B = J — I — A (so that I + A + B = J).
Letting G be the graph whose adjacency matrix is A (i.e. the vertices
of G are in one-to-one correspondence with the spin set for the model
and two vertices i and j are connected by an edge in G exactly when the
matrix entry A^ is equal to one). Then it follows from the axioms of the
Bose-Mesner algebra that

A2 + OLA - A)A 4- (^ - k)I = fjij

and G is a strongly regular graph of type (n, A:, A, p,) where
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1) n is the number of vertices in G,

2) each vertex in G has exactly k neighbors,

3) two vertices joined by an edge in G have exactly A neighbors,

4) two distinct vertices not joined by an edge in G have exactly p,
neighbors.

(These properties constitute the definition of strong regularity of G.)

One wants to build a spin model with such a Bose-Mesner algebra
using weight matrices of the form

W+ == rl + sA + t(J - I - A),

W- = r~1! + s~^A + t~\J - I - A).

Jaeger discovered [FJ9] that such a spin model exists for

(n,A;,A,/A) =(100,22,0,6)

with G the Higman-Sims graph, a strongly regular graph of 100 vertices
whose group (the Higman-Sims group) of automorphisms is one of the
important simple finite groups. Jaeger's model gives a specialization
of the Kauffman polynomial at a root of unity [24]. This remarkable
example remains a puzzle to this day. One suspects that Jaeger's
Higman-Sims example is the tip of an iceberg of yet to be discovered
new mathematics interrelating combinatorics, statistical mechanics, group
theory and topology.

7. A Graphical approach to Bose-Mesner algebra.

This last section is really a remark to the effect that a "quantum
network" generalization of the electrical circuit analogy for series and
parallel graphs leads naturally to a combination of ordinary and Hadamard
matrix multiplication and to most of the properties of a Bose-Mesner
algebra. By a quantum network I mean a graph that has been equipped
with generalized matrices (tensors) at its nodes so that a coloring of the
edges from an appropriate index set yields vertex weights for each node and
a partition function that is the sum of the products of these vertex weights
as the edges receive all possible colors. Such a partition function generalizes
the spin model and will be referred to as the amplitude of the network.
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In the electrical case and in the graphical version of the bracket
polynomial we have the analogs of the open and closed switches in the form
of edges that correspond to contraction (closed switch) and deletion (open
switch). The identity matrix I corresponds to the closed switch. I shall give
an interpretation where the matrix J (a square matrix all of whose entries
are equal to one) corresponds to the open switch.

First note the symbolism in Figure 17. Working first with the electrical
analogy, we see that a series connection of an input-output circuit A with
the closed switch yields A, so that the closed switch is the identity for a
series connection. On the other hand a parallel connection with the open
switch shows that the open switch is the identity for parallel connection.

= ^

= ^

Figure 17. Open and closed switches

Going to the quantum network, we replace the input-output network
with a matrix or tensor A^ where i and j denote the possible states or
colorings on the input and output lines. Each choice of such colors yields a
specific amplitude for A. The identity for series connection is obviously the
identity matrix ^ in the form of the Kronecker delta. We need to define
a parallel connection of tensors A and B (A^ and Bp. View Figure 18. In
this figure we have assigned special trivalent vertices Epq and Ey so that

(Ao5)}=^A?A^

represents the parallel connection of A and B. We define

E^=6^ and E^ = 6^
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so that the triple vertices demand that all their legs have identical labels.

^A^=(AB)}

Matrix Product

A}BJ=(AoB)^

Hadamard Product

A
P <i

%

r sv = Er

Figure 18. Parallel and series connections in a quantum network

It is then easy to see that A o B as defined above is exactly the
Hadamard product of matrices and so the quantum analog of a parallel
connection .is Hadamard multiplication, with J as the identity. At this
point it is clear that an algebra of matrices closed under both ordinary and
Hadamard product would be appropriate for studying quantum networks
with both series and parallel connections. The Bose-Mesner algebra with
its particularly simple closure under the Hadamard product is one example
of such an algebra.

8. Notes about the references.

In the bibliography to this paper the following references are a list of
Francois Jaeger's papers that related directly to knot theory: [2], [3], [4],
[5], [6], [7], [8], [9], [10], [II], [12], [13], [14], [15], [16], [17], [18], [19].
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The papers [29], [30], [31], [32], [33] are survey or research papers
related to spin models and association schemes. This bibliography is by
no means complete in terms of literature of authors other than Francois
Jaeger. The subject is an area of active research.
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