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1. A positional game.

An interesting positional game can be described as follows: two
players, called respectively Red and Blue, play alternately by coloring
with their color an edge in a graph G. The first one who achieves a
monochromatic odd cycle wins and his opponent loses; if no monochromatic
odd cycle is obtained, it is a draw. It would be interesting to know for which
graphs one of the players can win.

A non-constructive proof for the existence of a winning strategy is:

THEOREM 1. — If the players Red and Blue play the game with a
graph G of chromatic number > 4, there exists a winning strategy for the
first player.

Proof. — Assume that Red is the first player and has no winning
strategy with a graph G; we shall show that this leads to a contradiction.

Clearly, for his opponent, no strategy a is winning, because otherwise
Red could win by using the same strategy a (determined for a fictitious
game where Blue starts, his first move being an arbitrary chosen edge),
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which is a contradiction. Thus both Red and Blue can guarantee a draw.
At the end of the game, all the edges of G have been colored; the red edges
define a partial graph GR with no odd cycles and the blue edges define
a partial graph GB with no odd cycles. Since the graph Gp, is bipartite,
its vertices can be colored with only two colors, say a and a', so that no
two adjacent vertices have the same color; also, the vertices of GB can
be colored with two colors /3 and ft' so that no two adjacent vertices of
GB have the same color. If we assign to each vertex a label (a,/?), (a,/?'),
(a',/3) or (a',/?'), corresponding to the pair of colors used for this vertex
in GR and in GB, no two adjacent vertices of G have the same label. This
implies that the graph G is 4-colorable. A contradiction.

For 4-colorable graphs, and in particular for planar graphs, no simple
structural property has been found so far to see that the game is unfair.

2. The Konig property.

Given a simple graph G = (X, E), the edge-transversal number Te(G)
is the least number of edges to remove from G in order to destroy all the
odd cycles. The edge-packing number Ve(G) is the maximum number of
paiwise edge-disjoint odd cycles; if G has no odd cycles, we put ^e(G) = 0.

Clearly, we have always Tg(G) >, Ve(G), and if for some graph G
this inequality holds with equality, it is easier to check that some edge-
transversal is minimum (or that some edge-packing is maximum). It would
be interesting to determine the graphs for which the values of these two
coefficients can be obtained in polynomial time (see [2], [9] for some related
results where the words "edge" and "vertex" are interchanged).

When these two coefficients are equal, we say that we have the Konig
property (for the odd cycles).

We do not always have this Konig property, even for planar graphs; for
instance, the complete graph K^ is planar, but Te{K^) = 2 and Ve{K^) = 1.
However we have proved in [3] that for all the planar graphs having a fixed
edge-packing number, their edge-transversal numbers are bounded.

Graphs for which each pair of odd cycles has at least one vertex in
common and yet the number of vertices needed to hit them all is large,
have been considered by Lovasz [7]. Similarly, we have considered in [3] a
family of graphs G for which ^e(G) = 1 and their edge-transversal numbers
can be arbitrarily large.
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We do not know any simple characterization for the graphs whose
odd cycles satisfy the Konig property, but we have:

THEOREM 2. — Let G be a graph such that Te(G?/) = ^e(G') for
every partial graph G' of G. Then its chromatic number is < 4.

Proof. — Catlin [4] proved that every graph with chromatic number
^ 4 contains a subdivision of the complete graph K^ such that each triangle
of K^ is subdivided to form an odd cycle (see [10] and [11]). If the graph G
was not 3-colorable, then a partial graph G' would be a subdivision of K^ of
the type described above. However Te(G') = 2 is different from i^e(G') = 1.
A contradiction.

Similar results can also be obtained by using some basic results of
Hypergraph Theory. Let HG be the hypergraph whose vertices are the
edges of G and whose edges are the elementary odd cycles of G. So, using
usual notations r and v for the two main coefficients of a hypergraph (see
for instance [1]), we can write Tg(G) = r{Hc) and Ve(G) = i/{Hc)'

Every hypergraph H satisfies r(H) > v{H). If r(H) == v(H), the
hypergraph H is said to have the Konig property. A hypergraph H has
the Helly property if every family of pairwise intersecting edges has a
non-empty intersection. For a hypergraph H with the Helly property, the
most usual way to prove that H satisfies the Konig property is to show
that the line-graph (or "intersection graph") L{H) is a perfect graph;
but unfortunately, as we have seen above, the hypergraph HG does not
necessarly satisfy the Helly property.

The property of G described in the statement of Theorem 2 implies
that HG is a normal hypergraph (Lovasz [6]). Fournier and Las Vergnas [5]
have shown that the vertex-set of a normal hypergraph can be split into
two classes, the "red" vertices and the "blue" vertices, so that no edge of
the hypergraph is monochromatic. This shows that this graph G can be
split into two partial graphs which are bipartite. This result is implied by
Theorem 2. However, perhaps this alternative approach, via Hypergraph
Theory, can shed some light on the problem.
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