
ANNALES DE L’INSTITUT FOURIER

ROBERT BROOKS
Non-Sunada graphs
Annales de l’institut Fourier, tome 49, no 2 (1999), p. 707-725
<http://www.numdam.org/item?id=AIF_1999__49_2_707_0>

© Annales de l’institut Fourier, 1999, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1999__49_2_707_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
49, 2 (1999), 707-725

NON-SUNADA GRAPHS

by Robert BROOKS^)

In memory of Hubert Pesce

In [Su], Sunada presented a method for constructing pairs of non-
isometric manifolds {Mi, Ms} such that the eigenvalues of the Laplace
operator satisfy

A,(Mi) = \i{M^) for all z.

His method was based on interpreting the isospectrality condition in terms
of finite group theory: if G is a finite group acting freely on a manifold M°,
with Mi and M^ quotients of M° by subgroups H^ and H^ respectively,
then Mi and M^ will be isospectral if the induced representations of
the trivial representation ind^(l) and ind^(l) are equivalent as G-
representations, where "1" denotes the trivial representation.

In [Pe2], Hubert Pesce raised the question of whether there might
be a converse to the Sunada Theorem. It was known that in general two
isospectral manifolds need not arise from the Sunada construction, and
today one knows that there exist isospectral manifolds which even have
different local geometry, see [GGSWW]. However, he was able to prove a
"generic" converse to the Sunada Theorem, in the event that one knows
that the manifolds have a common finite covering:

^ Partially supported by grants from the Israel Academy of Sciences, the Fund for
the Promotion of Research at the Technion, the C. Wellner Fund, and the NSF-CNRS
program "Inverse Problems in Spectral Geometry."
-Keywords: fc-regular graph — Laplacian — Isospectrality.
Math. classification: 58G99.



708 NON-SUNADA GRAPHS

THEOREM 0.1 (see [Pe2]). — Let G be a finite group acting freely on
a manifold M, and let M° denote the metrics on M invariant under G.
Let S° denote the set of metrics m in M° with the following property:
ifFi and T^ are two subgroups ofG such that the quotients (ri\M,m)
and (r2\M,m) are isospectral, then ind^(l) and ind^(l) are equivalent
G-representations. Then S0 is open and dense in M.°.

See [Pel], [Pe3] for a detailed description, together with extensions to
more general situations.

If FI and Fa are two graphs, then one may define a Laplacian on
them, and ask whether they are isospectral. There are many constructions
of isospectral graphs which appear to have little to do with the Sunada
construction, see [CDGT] for a survey. However, if we impose the condition
that FI and Fz be ^-regular, which is a natural condition to impose from
the point of view of geometry, then most of these constructions do not
apply. An exception to this is the construction of Seidel switching [CDGT],
which we will review in §3 below.

It is therefore meaningful to investigate the extent to which there is a
converse to Sunada's Theorem in the context of fc-regular graphs. We will
find that the situation is somewhat delicate.

We first observe that any two fc-regular graphs have a common finite
covering, by the Leighton Theorem [Le], [AG]. Then the groups G',J/i,
and H^ which were introduced by assumption in Pesce's Theorem 0.1 are
available for free in the setting of fc-regular graphs.

We then provide a converse to the Sunada Theorem for graphs of the
following form:

DEFINITION 0.1. — Let G be a group of automorphisms of a graph r,
and H\ and H^ two subgroups of G which act freely on r. For all paths
7 in r, Jet 6^(7) be the set ofg in G such that g(^) descends to a closed
path on T / H i , 2 = 1,2. The quadruple (r, G,H\,H^) satisfies the Sunada
condition up to length n if, for all paths 7 of length < n,

#(Gi(7))=#(G2(7)).

We will then show in §2 below that

THEOREM 0.2. — Let FI and T^ be isospectral k-regular graphs. Then,
for each n, there exists a graph r^, a group G^ of graph automorphisms
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of r^\ and two subgroups H^ and H^ of G^ which act freely on F^,
such that

(i) Fi = YW/H^ and I^ = Y ^ / H ^ ;

(ii) (r^.G^.H^.H^) satisfies the Sunada condition up to length n.

As a simple consequence, we have

COROLLARY 0.1. — Two k-regular graphs are isospectral if and
only if, for some (equivalently, any) n > #(Fi), there is a quadruple
(p(n)^(n)^(n)^n)^ satisfying (i) and (ii) above.

Corollary 0.1 thus gives a necessary and sufficient characterization
of isospectral graphs in terms of a "Sunada-like" condition. It remains,
however, to ask whether we can replace this "Sunada-like" condition with
the Sunada condition itself. To that end, we proceed in §3 and §4 below
to present examples of pairs of graphs which are isospectral, but do not
arise from the Sunada construction in a strong sense denned below. We
leave open the question of whether they arise from a weaker Sunada
construction. These examples are constructed from fairly straightforward
examples of Seidel switching.

Acknowledgements. — Our thinking on these questions was very
heavily influenced by the papers of Hubert Pesce [Pel], [Pe2], [Pe3] on the
analogous question in the Riemannian case. Indeed, as a member of the
jury at Hubert's habilitation, we raised the issue of whether there were
graph-theoretic analogues of his results.

We were shocked to hear of his untimely death so soon afterwards.
We will greatly miss his influence on these and many other questions in the
future.

We would also like to thank Alex Lubotzky for many helpful
conversations, and in particular for pointing us in a number of the directions
pursued in this paper, and Shahar Mozes for many helpful conversations.
We would also like to thank Greg Quenell for his helpful remarks on an
earlier version of this paper.

1. The Sunada condition.

Let G be a finite group, and H\,H^ two subgroups of G. Then the
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triple (G, JTi, H^) is said to satisfy the Sunada condition if, for all g e G,

#(b/]n^i)=#([^]n^),
where [g] denote the conjugacy class of g in G.

There are a number of equivalent formulations of the Sunada
condition. It is equivalent to the condition that

ind^(l)=ind^(l).

as G-representations.

Now let FI and T^ be two ^-regular graphs. According to the Leighton
Theorem (c/. [Le], see also [AG] for the Aj-regular case, and [Br] for a
discussion oriented towards present purposes), there is a common finite
covering r of I\ and T^. We may pick r to carry a group of graph
automorphisms G, such that

Fi = r/^i and F2 = T / H ^

DEFINITION 1.1. — Fi and r2 are weakly Sunada equivalent if there
is a graph F, a group of graph automorphisms GofF , and subgroups H^
and H'z which act freely on T such that

ri=r/^i, r^=r/H^
and the triple (G,H\,H^) satisfies the Sunada condition.

An important special case of this the following: if G is a group, with a
choice of symmetric set of generators {^ i , . . . ,^}, the Cay ley graph F(G)
is the graph whose vertices are the elements of G, with two vertices joined
by an edge if they differ by left-multiplication by some Qi. Note that G
acts on F(G) on the right by graph automorphisms. G also acts on the
vertices of F(G) on the left, but this is not in general an action via graph
automorphisms. For H a subgroup of G, the Schreier graph F ( G / H ) is
defined by

r(G/H)=(T{G))/H.

DEFINITION 1.2. — FI and T^ are strongly Sunada equivalent if there
is a triple of groups (G.Jfi ,^2) satisfying the Sunada condition such that

Fi = r(G/^i) and F2 = r(G/^).

The Sunada Theorem for graphs then says:
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THEOREM 1.1. — Suppose that Fi and I^ are weakly Sunada
equivalent. Then Fi and F^ are isospectral.

Proof. — We begin by the observation that two ^-regular graphs Fi
and F2 are isospectral if, for all n, the number of closed paths of length n on
FI is equal to the number of closed paths of length n on I^. It is standard
that if this condition is verified for all n <, max(#(ri), ̂ (I^)), then it is
verified for all n.

If 7 is a closed path on Fi, we may lift it in #(ffi) ways to a not
necessarily closed path on F. Conversely, a path on F arises as a lift of a
closed path on Fi if and only if its endpoints differ by an element of H^.

Now let 7 be a path of length n in F. We would like to count the
number A^i (7) of closed paths on I\ which lift to a translate ^(7) of 7,
and similarly for Ny^ (7).

We will begin by counting

^1(7) = #{g ^ G:g(^) descends to a closed path in Fi).

Denote by XQ and x\ the endpoints of 7. Ifa;i is not equal to g{xo) for
any g e G, then clearly Ly^ (7) and hence Np^ (7) are both 0.

If a;i == g(xo), then the translate ^(7) will descend to a closed path
in FI provided that

hg(xo) = g(x^) = ggo{xo)

for some h € H^. If we denote by S = S(xo) the stabilizer of XQ in G, then
this will occur provided

9{gos)g~1 e^i.

Thus,

^r,(7) = ̂ #(<7: g(gos)g-1 € H,).
ses

On the other hand,

#(g'' 9{gos)g~1 e H^) = Co^gos) # ([gos] n ̂ i),

where Cc{gos) denotes the centralizer of gos in G.
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To obtain 7Vri(7), we must divide by #(Jfi), and must also take into
account that two distinct translates ^1(7) and (72(7) may descend to the
same closed path in Fi which start at different points along the path. To
count this last, let g\ (7) be a translate of 7 which descends to a closed path
on FI , and let g\ (7) be the full inverse image in F of the path to which g^ (7)
descends in Fi. Let

^i(7)) = #{9 C G: g sends g^) to itself} [ lengthy) 1 ^
Llength(^i(7))J

where the term in brackets is to correct for those elements of H\ which fix 7,
which we have already taken into account. Clearly, F(g\(^y) is independent
of^i. Then

„ . .^CG(gos)#([gos]r}H,)
^ FQ7i7)#(^i)

Since #([gos] H H^) = #([gos] H ̂ 2), we see that for all 7

M^(7)=AU7).

To complete the proof, we partition the set of paths of length n into
equivalence classes under the action of G, and pick one representative from
each equivalence class. Summing over all the representatives gives that the
number of closed paths of length n is the same for Fi and F^.

This completes the proof of the theorem. D

We remark that we could have proved this theorem in a somewhat
dual manner. We could divide out the graph F by the action of G to obtain
an "orbifold graph" F/G. We could then count orbifold lifts of closed
orbifold paths of F / G to closed paths on Fi and T^. The Sunada condition
would then insure that this count would be the same for the two graphs.
Indeed, this would be the same calculation carried out above.

The problem with this approach is in making precise the notion of
"orbifold graph." Our approach in this paper will be to avoid entering into
the technicalities of "orbifold graphs," and in each instance replace the
argument with an argument involving graphs with a non-free group action.
Nonetheless, "orbifold graphs" form an important part of our thinking on
these questions, and we will make use of this line of thought for motivational
purposes.
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It is not difficult to give a characterization of those graphs which are
strongly Sunada equivalent. To state it, we recall the notion of a coloring
of a graph, which is the assignment to each edge of either an ordered color
and a direction or an unordered color, in such a way that each vertex has
precisely one incoming and one outgoing edge of each ordered color, and
one edge of each unordered color. See [Br] for a discussion.

Cayley graphs may be characterized as colored graphs admitting a
vertex-transitive group of fixed-point-free color-preserving graph automor-
phisms. In general, a colored graph may be described as a covering graph
of the one-point "orbifold" colored graph, where each unordered edge cor-
responds to an "orbifold edge," and one sees easily that Schreier graphs
inherit colorings from the corresponding Cayley graphs. Indeed, given a
colored graph, it is not difficult to write it as F ( G / H ) for some G and H,
showing that Schreier graphs and colored graphs are essentially the same
thing.

The graphs Fi and T^ are then strongly Sunada equivalent if they
admit colorings such that, for any pattern of colors, the number of closed
paths of a given pattern on Fi is the same as the number of closed paths of
a given coloring on Fa. This can be seen by counting lifts of paths (all such
paths are closed) in the corresponding one-point "orbifold graph" to closed
paths in Fi and 1^2 respectively.

Alternatively, given colorings of I\ and Fz, the corresponding
coverings exhibit the fundamental groups of Fi and Fa as finite-index
subgroups of the "orbifold fundamental group" of the one-point "orbifold
graph." The graph F then is the covering of this "orbifold graph"
corresponding to the largest normal subgroup contained in the intersection
of the image of the fundamental group of I\ and the fundamental group
ofF2.

We remark that there is a similar characterization of weakly Sunada
equivalent graphs. Namely, we may think of a non-free action of G as
providing us with equivalence classes of colorings on the graph. Then
two graphs are weakly Sunada equivalent if, for some equivalence class of
colorings, the set of closed paths with a given equivalence class of patterns
is the same for the two graphs. We leave the details of this to the interested
reader.
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2. A converse to the Sunada theorem.

In this section, we will prove

THEOREM 2.1. — Let FI and F^ be isospectral graphs. Then, for
any n, there exist a graph F^, a group G^ of graph automorphisms
of 1 )̂, and two subgroups H^ and H^ ofG^ which act freely on F^,
such that

(i) Fi = r^)/Jfi and T-^ = T ^ / H ^ .

(ii) (r^G^J^.J^) satisfies the Sunada condition up to length n.

The strategy of the proof may be explained simply, as follows: suppose
that we could find a common covering F^ of Fi and F^ and a group of
graph automorphisms G^ of F^ with the property that, for any k < n,
all the lifts of all closed paths of length k of Fi and T^ are orbit equivalent
under G^. Then the isospectrality condition forces the Sunada condition
up to length n, since for each k there is only one G^ -orbit to consider.

We could consider by way of example the following pair of graphs,
see figures 1 and 2 below, which are known to be strongly Sunada
equivalent (see [BPP]). With the coloring shown, they are not in fact
pattern equivalent, for the simple reason that we made a bad choice of
what coloring to give the closed loops. We may think of this as saying that
the covering of the one-point graph corresponding to the coloring sent the
closed loops to the "wrong" closed loops. However, if we divide out by the
automorphism of the one-point graph which interchanges the loops, then
this difficulty disappears, and the graphs become Sunada equivalent up to
length 1.

Figure 1. The first graph

We will show essentially that one may continue this argument
inductively, by considering automorphisms which identify paths of longer
length.
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We now proceed with the proof.

We will need some results from [LMZ] concerning fc-regular graphs
and automorphisms of trees. To state them, recall that if F is a colored
graph, we may identify its universal covering with a colored fc-tree, with
the fundamental group TT = ^(r) acting on the tree as color-preserving
transformations.

IfTT is any cocompact group acting as color-preserving transformations
on the A:-tree, we may associate to TT its commensurator group C(7r), given by

(7(7r) = ^g c Aut(Tfc): g^g~1 n TT is of finite index in TT and g7rg~1}.

It is easily seen that C(7r) is independent of TT up to conjugacy, and
will be denoted simply by C.

We then have

PROPOSITION (see [LMZ], Prop. 2.9). — Let x and y be non-trivial
elements ofpr. Then the following are equivalent:

(a) x and y are conjugate in Aut(Tk).

(b) ^r(^) == ^T(y)^ where ^r(^) denotes the translation length along the
axis of z.

(c) x and y are conjugate in C.

The proof in [LMZ] shows more: if we let (f) denote the element
in C given in (c), then (f) and TT generate a group which contains TT as a
(non-normal) subgroup of finite index.

We now apply these considerations to the graph r which covers I\
and T-2. After passing to a double covering if necessary, we may assume
that r carries a coloring.

Figure 2. The second graph
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If 71 and 72 are closed paths of the same length in Fi and I^
respectively, we may lift them to closed paths in F, which may multiply
their lengths. They will then correspond to elements x\ and x^ of TT, such
that, for some m and n, x^ and x7^ have the same translation length.

It follows from Proposition 2.1 that we may adjoin to TT an element
^71,72 which conjugates x^ to x^.

We continue in this way with all pairs of closed paths of the same
length < n in Fi and Fa, to obtain a subgroup Q^ of Aut(rfc) which
contains TT as a subgroup of finite index.

We would like to obtain from this a subgroup TT' of finite index in TT,
such that TT' is a normal subgroup of Q^. But this is easily done: if TT has
index k in ̂ n\ then we may set TT' to be the intersection of all subgroups
of Q^ of index fc. This subgroup is clearly normal in (7^, and is contained
in TT as a subgroup of finite index.

We may now choose F^ to be T^/Tr', G^ the finite group G^/TT^
and H^ the subgroups of G^ such that I\ = F ^ / H , .

This concludes the proof of the theorem. D

3. Seidel switching.

In this section, we describe a method, called Seidel switching [CDGT],
which produces pairs of isospectral ^-regular graphs. In the next section,
we will give evidence that the pairs of graphs constructed this way do not
arise from the Sunada construction.

For evidence of a different type, see [BGG], where Seidel switching is
used to construct quite large families of mutually isospectral sets of graphs.
See also [Qu] for interesting explicit constructions with Seidel switching.

The main construction is the following: let Fi and Fa be two graphs
with the following properties:

(a) They have the same even number V of vertices.

(b) They are both ^-regular, for the same value of k.

Let P be a collection of order pairs of vertices (v\,vi} with v\ a vertex
in FI and v^ a vertex in I^, with the following properties:

(i) For all v\ € Fi, the collection of v^ such that (fi,^) ^ P hBS
cardinality ^V.
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(ii) For all v^ e Fa, the collection of v\ € Fi such that (^1,^2) e P has
cardinality -V.

We now construct graphs Ai and Aa as follows:

(i) The set of vertices of both Ai and As is the disjoint union of the set
of vertices in Fi and the set of vertices of Fa.

(ii) If i;i and v^ are two vertices which either both lie in Fi or both lie
in Fa, then the set of edges joining them in Ai (resp. As) is the set of edges
joining them in the union of Fi and Fa.

(iii) Suppose v\ € Fi and v^ C Fs. Then there is an edge joining v\ to v^
in Ai if and only if (z?i, v^) C P.

(iv) Suppose v\ € Fi and v^ e Fs. Then there is an edge joining v\ to v^
in Aa if and only if (i?i, v^) ^ P.

In other words, Aa is constructed from Ai by switching connections
between Fi and I^ into non-connections, and vice versa.

The somewhat confusing conditions of the construction are illustrated
in Figure 3 below, where Fi is the 2-regular graph consisting of a circle of
length 3 and a circle of length 1, while Fs is a circle of length 2 and two
circles of length 1. The set P is shown in the drawing as well.

Figure 3. Seidel switching: the graphs Fi and F^

The resulting graphs Ai and Aa are shown in Figures 4 and 5 below.

It is not difficult to see that the graphs Ai and Aa are both ^'-regular,
where k' = k -\- ^ V. We now claim:

THEOREM 3.1 (see [CDGT]). — The graphs Ai and As so constructed
are isospectral.
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Figure 4. Seidel switching: the graph Ai

Figure 5. Seidel switching: the graph As

Proof. — The proof of this theorem is well-known, but is simple and
elegant enough to present here.

Let 7 be a closed path in Ai (resp. As). We pick some vertex VQ of
7 as the starting vertex, and number all the edges ei of 7 in the order in
which they occur as the path 7 is traversed.

Let type, (7) denote the set of closed paths 7' with edges e\ on A,
with the following properties:

(i) Ife, e r i , then^=e , .

(ii) Ife, eFs, thene^ e F^

(m) If a i Fi or Ps, then e' ^ Fi or FS.

The theorem will follow if we can show that type^ 7 == type^), since
it will then follow that, for any n, the number of paths of length n in Ai is
equal to the number of paths of length n in As.

The assertion that type^) = types (7) will follow from the following
assertion: given two vertices (possibly the same) v^ and v^ in Fi, and given
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a number i (possibly 0), let R denote the set of paths in Fs of length £
which begin at a vertex w such that (^i,w) € P, and let B denote the set
of paths of length i beginning at a point w such that (^i, w) ^ P. Similarly,
let G (resp. Y) denote the set of paths of length £ in F^ which end at a
point w such that {v^^w) C P (resp. (v^^w) ^ P). Then

CLAIM. — One has #(R H G) = #(B H Y).

Proof. — We have

#(P)=#(.RnG)+#(.Rny),

while

#(y)=#(J?ny)+#(^ny).

On the other hand,

OT=#(y) - (^#( r2 ) )^ . (A; - i /-i

from the /c-regularity of F-^ and the condition on P.

This completes the proof of Theorem 3.1. D

4. The graphs Ai and A2.

In this section, we will show:

THEOREM 4.1. — The graphs Ai and Aa are not strongly Sunada
equivalent.

The strategy of the proof is as follows: we will show that there is
no coloring of the graphs Ai and Aa with the property that the number
of closed loops of a given pattern is the same for both graphs. We will
establish this by an enumeration of the various possibilities.

To aid in the argument, we present a numbering of the vertices in
Figures 6 and 7 below. We will label an edge joining vertices v\ and z^ by
6(^1,^2).
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Figure 6. The graph Ai with vertices labelled

6 , 7.

Figure 7. The graph A^ with vertices labelled

Since the graphs are 4-regular, there are three possible types of
colorings to consider:

Case (a): There are four unoriented colors.

Case (b): There is one oriented color (Red) and two unoriented colors
(Green and Yellow).

Case (c): There are two oriented colors, Red and Green.

We may rule out case (a) immediately, since there are closed loops of
length one on both graphs. If case (a) applied, then the two ends of such a
loop would have to be given different colors, a contradiction.

We now consider case (b).

By the remarks above, all closed loops must be given the oriented
color R.

We may now complete the coloring of the graph A2, up to a small
amount of ambiguity, as follows: e(6,7) must be either G or Y. By symmetry,
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the choice doesn't matter, so we can choose G. Then e(7,8) and e(4,6)
must be V, and e(5,8) must be G. Hence e(4,7) and e(5,7) must be jR,
with undetermined orientation.

It follows that e(4,5) must be R, since 4 already has a Y and 5 already
has a G.

We then have that e(2,4) is G and e(3,5) is V, from which it follows
that both edges e(2,3) are J?, with opposite orientation. Hence e(l, 2) is V,
and e( 1,3) is G.

Note that the directions of the R's at the vertices 4,5, and 7 must
be chosen so that going from 4 to 5 to 7 to 4 will always either agree or
disagree with the direction or disagree, and the two choices correspond too
changing G to Y and Y to G, and flipping the graph.

We show in Figure 8 below the resulting coloring of the graph Aa.

Figure 8. Case (b): The graph ̂

The coloring of the graph Ai is not so completely determined, but we
may choose e(2,3) to be G, from which it follows that e(l,2) and e(3,5)
are V, and so e(l,4) is G and e(4,5) is R (with some direction). These
colorings are given in Figure 9 below.

We now note that at this stage we already get a contradiction, because
Ai has at least one closed path of the form R^GR + G, where "+" denotes
crossing in the positive direction, which starts at vertex 2, whereas A 2 has
no closed paths of this form for either choices of orientation for R in the
triangle at points 4,5, and 7.

This concludes case (b).

We now consider case (c).
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Figure 9. Case (b): The graph Ai

By considering the vertices 1,2, and 3 of graph Ai, we see that all the
closed loops must be given the same color R. Hence the same must be true
for the three closed loops of A2.

We now have two possiblities for completing the coloring of As,
neglecting directions:

Case (c2a): e(4,5) is G. In this case, one of the two e(2,3)'s is G, and
the other is R. The remaining edges may be described
as: e(l,2), e(l,3), e(4,6), e(6,7), e(5,8), and e(7,8) are
G. The remaining edges are R.

Case (c2b): e(4,5) is R. Then both edges e(2,3) are R, and the G
edges are: e(l,2), e(l,3), e(2,4), e(3,5), e(4,6), e(6,7),
e(5,8),ande(7,8).

We now turn to the various possibilities for Ai. We first observe that
in none of the colorings of As is there no closed path of length 2 consisting
just of G paths. Hence one of the edges e(6, 7) must be R. We now have the
following possibilities:

Case (cla): e(4,5) is G. In this case, the remaining e(6,7) must be
G, and the remaining G edges are e(l,2), e(2,3), e(l,4),
e(3,5),e(6,8),ande(7,8).

Case (clb): e(4, 5) is R and both e(6, 7)'s are R. Then the G edges
are: e(l,2), e(2,3), e(l,4), e(3,5), e(4,6), e(6,7), e(6,8),
and e(7,8).

Case (cic): e(4,5) is R^ one of the two e(6,7)'s is G, and e(4,6) is R.
Then the remaining G edges are: e(l,2), e(2,3), e(l,4),
e(3,5),e(4,8),e(5,7),ande(6,8).
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Case (eld): The mirror image of Case (cic).

Let us show that possibilities (cic) and (eld) cannot obtain. In each
of these possibilities, there is a closed path of length 8 in the G's, and no
smaller closed path in the (7's, and three loops of length 1 in the Rs, and
one loop of length 5 in the R's. On the other hand, in Case (c2a) we have
three loops of length 1 and one loop of length 5 in the Rs, and one loop of
length 3 and one loop of length 5 in G, while in Case (c2b) we have three
loops of length 1, one loop of length 2, and one of length 3 in the Rs, and
one loop of length 8 in the G's.

So neither (cic) or (eld) match either of the possibilities (c2a) or (c2b).

We now consider case (cla). Since it has no loops of length 8 in
the (7's, it cannot match case (c2b). It remains to show that it does not
match case (c2a).

Counting closed loops of the form G^G^R± or G'G"^, we see that
on (cla) there are exactly two such paths, beginning at vertices 6 and 7
respectively. On the other hand, in case (c2a) there are six such loops,
starting at vertices 2,3,4,5, and two paths starting at 7. Hence these two
colorings cannot correspond.

It remains to consider case (clb), which can only correspond to
case (c2b), by consideration of closed loops all of one color. We recognize
the colorings arising from the Seidel construction, if we assign all the edges
lying in Fi and Fs the color R, and all the edges going from Fi to I"2
the color G. It follows that the assignment of directions of the R edges is
essentially unique, but that there are two choices of directions for the G
edges. It also follows from the Seidel construction that if one neglects the
direction of the G's in counting patterns, the counts of the various patterns
will always work out the same for the two graphs. In other words, the only
obstacle to these graphs being strongly Sunada equivalent is that, in the
process of taking out and replacing sections as in the proof of Theorem 3.1,
occasionally a G^~ will be replaced by a G~ in a way that is hard to control.

Let us show that this indeed does happen. Consider the pictures 10
and 11 below.

We consider the word R}~G+R~G~. Notice that the number of
times this closes up does not depend on an orientation of the G's, since
changing G^ to G~ just rotates the word.

We notice that in the graph (c2b), this never closes, while in the
graph (clb), it closes four times, at the vertices 2,3,4, and 6.



NON-SUNADA GRAPHS

Fi'g-ure 10. Case (c2b): The graph ̂

Figure 11. Case (clb): The graph Ai

This contradiction completes the proof of the theorem. D
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