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POINTWISE ESTIMATES FOR THE WEIGHTED
BERGMAN PROJECTION KERNEL IN C71, USING A
WEIGHTED L2 ESTIMATE FOR THE 9 EQUATION

by Henrik DELIN

1. Introduction.

Let fl, C C71 be a pseudoconvex domain, and (p be a plurisubharmonic
function in ^2. Consider the space L2^) := L2(fl,,e~vdX) of square
integrable functions on ̂  with the measure e'^dA, where d\ is the Lebesgue
measure. The subspace H^(fl.) of holomorphic functions is then a closed
subset ofL^(^). We define the orthogonal projection and the corresponding
integral kernel in the following way.

DEFINITION 1. — The Berg-man projection operator Sy is the
orthogonal projection

S^ : L2^) -. H2^).

The Bergman integral kernel, Sy ( • , • ) , of this bounded operator is defined
by the relation that, for v e L2^),

S^v)(z) = y^CMOe-^^C).

As a reference for the basic properties of the (unweighted) Bergman
kernel see e.g. the paper by Bergman [1].

Key words: Bergman kernel - Weighted L2 estimates - <9 equation - ̂ -Neumann problem
— Kahler metric.
Math. classification: 32H10 - 32F20.
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In Theorem 2, we will give the main result in this paper, which is
a growth estimate of Sy{z^) in the whole of C71 when \z — C,\ —> oo.
Previously, Hormander [10] has given estimates for S y ( z ^ z ) for points on
the diagonal of Q. x ^, close to the boundary in strictly pseudoconvex
domains. In 1991, Christ [4] proved pointwise estimates of various weighted
kernels in C1. One of the kernels was the Bergman projection kernel 5^(-, -).
The function (^ was supposed to belong to a certain class of subharmonic
functions in C1, satisfying some extra conditions on the measure A(^.
Theorem 2 of this paper is a partial generalisation of Christ's result on
5^(', •) to several variables.

The unweighted kernel was studied by Kerzman [II], published 1972.
He proved differentiability at the boundary in smooth, strictly pseudocon-
vex, bounded domains in C2. In his proof, he used the (9-Neumann solution
operator to construct the Bergman kernel. We will essentially use the same
idea, in the following way. The kernel may be written as a projection onto
H^(Q.) of a given C^-function v supported around ^. We may then write

v= S^v+u= S('^)+u,

where u is orthogonal to 6^, i.e., u is the L^-minimal, or canonical,
solution to 9u = Qv. We use the solution to the 9-Neumann problem to
obtain ZA, or at least a weighted estimate of u. This weighted estimate for
the canonical solution to the 9 equation is stated in Theorem 1.

The technique by Kerzman was also used by McNeal [13], who
extended Kerzman's results by giving estimates for the Bergman kernel
and its derivatives in domains of finite type in C2. Nagel, Rosay, Stein and
Wainger [15] also studied domains of finite type in C2 proving estimates
similar to the ones of McNeal. We will not study this type of regularity of
the kernel, though. The presence of the weight e~<p makes regularity results
much more complicated.

As mentioned, the proof of Theorem 2 is based on Theorem 1, a
weighted L2 estimate for solutions to the 9 equation. There exists several
variants of weighted L2 estimates of Hormander type for the 9 equation.
In Donnelly-Fefferman [7], there can be found related ideas concerning the
condition on the weight, though not used in the same way as in this paper.
Ohsawa-Takegoshi [16] used ideas which are similar to ours, and the paper
by Diederich and Ohsawa [6] include a result on the existence of solutions
that satisfy a similar weighted L2 estimate. Related papers, which also
prove existence of solutions satisfying weighted estimates are McNeal [14]
and Diederich-Herbort [5].
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In [2], Berndtsson gave a proof of a weighted estimate for the L'2-
minimal, canonical, solution, with a weight w. Unfortunately for us, it
imposes a condition on 99w, which does not fit the purposes of this paper.
To prove Theorem 2, we would like w to depend on a certain distance
function, and then a condition on the norm of dw is more suitable. To that
end, we will prove the following result.

THEOREM 1. — Assume that f is a closed (0, l)-form on a pseu-
doconvex domain f^ C C71 and that (p is strictly plurisubharmonic and C2

there. Let w be a weight function on fl. satisfying \9w\^Q < ew for some
e C (0, \/2). Then the L2, (^2) -minimal solution to 9u = f satisfies

(l•l) /J '̂̂ ^Wnl̂ ^-

Here, | • \i99y denotes the norm in the Kahler metric with Kahler
form i99(p. Generally, we will let uj denote a Kahler form, and then apply
our results to the particular metric with form

( j j = i99(p.

Theorem 1 strengthens the mentioned estimate of Diederich and
Ohsawa somewhat. The main differences are, that their estimate is not
given for the I^-minimal solution, and it also assumes the manifold is
complete. The Z^-minimality of u is necessary for the way we use it to
estimate the Bergman kernel.

Before stating the main theorem, we need some more notation. In
order to replace the Kahler form uj by something simpler to handle, we let
^z be a constant (1, l)-form that dominates uj close to z in the following
way.

Given uj and a point z G C^, let /^ :== ^)(z) to be any constant
hermitian (1, l)-form, such that

(1-2) ^>a;(C)forC€B^, l ) ,
i.e., it majorises uj in the unit ball in the Kahler metric with metric form
given by /^. If the inequality in (1.2) holds in (the larger set) B^(z, 1), then
certainly (1.2) holds, so there are no problems finding such a /^ if <jj is,
say, continuous. A linear change of coordinates, that makes /z become the
Euclidean metric, will make uj become bounded by the Euclidean metric.
That is, Ct; < /? on the Euclidean unit ball, where

(1-3) i3^y^dzk^dzk
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is the K abler form for the Euclidean metric.

Now, the eigenvalues of uj with respect to p. can be defined as follows.
If uj and jji are seen as matrices through some basis, the eigenvalues of uj
with respect to /^, denoted by A^(c^|/A), are the solutions to

det(A^ - a;) = 0.

Since this equation is invariant under both left and right multiplication
by nonsingular matrices, this definition is independent on the choice of
coordinate representation for uj and //. The minimal eigenvalue can also be
given by

Amin(^l^) = min u^(v,v).
v:^(v,v)=l

The relative determinant is

det(a;|^=nA,(a;|^).

When given with respect to the Euclidean metric, we omit this notation,
writing del (a;).

For further notational convenience, let

<^(C) ''= . inf AminMOI/^c)
C€B^(C,1)

be the minimal eigenvalue of uj with respect to a^ that occurs in the given
ball around ^. Observe that by (1.2), c^^(C) < I? but it can also be a lot
smaller. Finally, let po/(^ C) denote the distance between z and C, measured
in the uj metric.

Now, we may state the following theorem.

THEOREM 2. — Let ip be a strictly plurisubharmonic C2 function
on C71. Let ^z satisfy (1.2), with uj = iQ9y, and assume that 0 < £ < \/2.
Then the weighted Bergman kernel satisfies the estimate

(1.4) |^,C)|2 < 7^——————det^^det^)^)^^-^^^,(^-^(^(O
where the constant C only depends on the dimension n.

Remark. — Note that actually, iS^',-) is conjugate symmetric in
the two variables. Hence, in the denominator, one could replace Co;,^(C) by
Co;,^(^) (or the larger one of these). I don't know if this factor is really
necessary, or what would be the optimal factor in general. In some way, it
measures how far uj is from being constant around a point.
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As long as uj does not vary too much inside B^(z^ 1), staying uniformly
equivalent to /^ for every z, we could replace /^ and /^ in (1.4) by uj{z)
and o;(C), respectively. This would also imply that Amin(^|/^) is bounded
from below by some constant. Under this (rather vague) condition on a;,
we would obtain the more desirable estimate

|^,C)|2 < -^——det(^(^))det(^(C))e^)^«)-£^(^0,
(v2 - e)2

where now C also depends on the uniformity of uj.

In^the case of one complex variable, and under the extra condition
that i90(p is a doubling measure, it is possible to make a slight improvement
of Theorem 2. We will discuss this in Section 6.

Finally, I want to thank Prof. Bo Berndtsson for giving me the idea
of this problem, and for valuable support and inspiration during the time
I have been working on it.

2. Notation and preliminaries.

As seen in Section 1, the results in this paper will concern domains
in C71. Since the estimate (1.4) involves the distance function with respect
to the metric given by iOQ^p, it turns out to be natural to look at C^ with
a Kahler metric, and obtain results in that context. For the proof, we shall
use the usual L2 techniques for the 9 equation, and the generalisation of
these techniques to Kahler manifolds. I do not know how to obtain the
desired estimate using these methods with respect only to the Euclidean
metric, but there would certainly be some additional problems to overcome.

By ('i')^,^ we denote the scalar product on forms with values in
the trivial line bundle with metric uj on the base manifold, and metric
e~^ on the fibres, i.e., (•, -)^ = (•, ̂ e-^. The subscript -e will mean the
Euclidean metric in C71.

Let L^(f^,dA) denote the L2 space with scalar product

f ('^}^d\= /{..^e-^dA,
Jfl JQ

and let L^{fl.,uj,dV) denote the L2 space with scalar product

I{'^)^dV= ( (...^e-^y.
J^i J^i
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(We include u in the notation L^(fl,uj,dV) to indicate the dependence on
uj for forms of degree greater that 0.) We will use dV to denote the volume
form induced by the metric given by a;, i.e.,

dV = Lon-.
n\

We denote balls with radius R and centre x in the metric uj by B^(x, R).

Interior multiplication of differential forms will be denoted by j, and
is defined by

(7-ja,^)=(a,7A/3)

for forms a, f3 and 7 of matching degrees. This is a pointwise operation on
forms and of course independent of the fibre metric e"^. Let A^^ be the
space of alternating (p, g)-exterior products. Then we define the operator

A = c^j : A^ -^ A^-1'9-1)

which takes (jo, ̂ -products to (p - 1, q - l)-products.

For holomorphic line bundles, one cannot define the operators Q and d,
since they are not preserved under holomorphic change of frames. Instead,
the differential operator one should use is the connection on the cotangent
bundle.

The connection on differential forms may then be written as a sum of
a (0,1) part and a (1,0) part. Not going into detail here, we note that for
the trivial line bundle with e~^ as the fibre metric, these parts of different
bidegree turn out to be as follows. The (0,1) part is just 9, which is well
defined on holomorphic bundles. Its formal adjoint in L2^, cj, dV) will here
be denoted by Q^ i.e., for smooth, compactly supported forms a and /?,

f{9a^)^dV= [(a^9^)^dV.

The (1,0) part turns out to depend on the fibre metric, or (/?, and will be
denoted by 9y. Locally, or in our trivial case, we may write it as

9y = e^Qe-^ =9- <9<^A,

where 9 is the (1,0) part we get when (p = 0. We denote the corresponding
adjoint in L^(^,o;, dV) by 9*, since it turns out not to depend on the fibre
metric given by y?.

Let 9* denote the adjoint of 9 for (p = 0. One can show with a short
integration by parts argument that

y = e^ye-^ = y + a^j.
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We define the complex "Box Laplacian" as

D / /:=^+^.

The following commutator identity will also be useful. We may write

(2.1) 9*=-z[9,A].

A proof of this formula can be found e.g. in Wells [20], in chapter V,
section 3.

We will also have use for the Hodge * operator. The complex linear
* operator that takes (p, g)-forms to (n — g, n — p)-forms is defined by the
relation

(a^)dV =aA :^<

for every a and $ with the same degree.

Generally, in the sequel, $ will be an (n, l)-form, and 7 will be an
(n - l,0)-form. Usually their relation will be that

7=<

For the bidegrees we are interested in, we will make use of the
following simple facts about the * operator and A. For an (n, 0)-form a,
the * operator is just multiplication by a scalar, since * : A^'0) —^ A^'0),
and A^'°^ is a one dimensional space. For an orthonormal basis {Oi} of
(1,0)-forms in the metric uj, let 0 := 0^ A • • • On. Then

^{-^^^r^e A 6 = dV == {(9,0)^dV == 6 A *0.

Conjugating, we see that

(2.2) ^e=in(-l)r^-lle.
This must then hold for any (n, 0)-form. Furthermore, if 7 is an (n - 1,0)-
form, then

(2.3) *7=r-i(-l)^r^A7.

This is seen in a similar way as for (n, 0)-forms by looking at the elements
of an orthonormal basis, this time for (n - 1,0)-forms. If {Oj} is as before,
then

0, := (-l)^-1^ A ... ̂ _i A ^+1 A ... 6^

is an orthonormal basis for (n - l,0)-forms. Now,

in{-l)IL^e A 0 = dV = {0j,0j)^dV = 0j A *^.
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Since 0 = Oj f\ 0j = (—l)""1^ A 0j, one can conclude that

*ej=-in(-l)rtil'•s•110j/\0

^"^(-l^^A^A^.
k

.n-1/=^-1(_1)——2—^A^-.

The last inequality follows from the fact that we may write u) = ̂  ̂  A 6k -
This proves (2.3) for basis elements, and the rest follows from linearity.

The adjoint formulation of (2.3) is that if $ is an (n, l)-form, then

(2.4) ^^^(-l)1^^

or

(2.5) A^-^-l)^^.

This follows from (2.3) by

(a, ̂ }^dV = a A ̂  = a A z71-^-!)11-2?-^ A *^

= ̂ Aa^-^-l)2^^^ ̂ ^(-^"^A^y.

3. Some weighted L2 identities.

In order to prove Theorem 1, we start by obtaining a weighted
L2 identity for (n, l)-forms satisfying the boundary conditions of the 9-
Neumann problem. When the problem is formulated on a Kahler manifold,
the right choice is using (n, l)-forms instead of (0, l)-forms. The identity
obtained differs from what could be considered standard L2 identities
through the presence of the additional weight w.

By using some ideas from Siu [18], we first prove an identity for
[n — l,0)-forms, given in Lemma 1. (Siu calls the method he uses the
99-Bochner-Kodaira technique). Then, using the * operator, which is an
isometry between (n, l)-forms and (n — l,0)-forms, we obtain the desired
identity given in Proposition 1. One should note that it is also possible
to prove Propostion 1 more directly using the Bochner-Kodaira-Nakano
identity. This argument can be found in Siu [19], in a proof of the Ohsawa-
Takegoshi extension theorem.

One major difference between the identity for (n— 1,0)-forms and the
one for (n, l)-forms is that in terms of the (n— 1,0)-form 7, this formulation
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is not dependent on any metric for the underlying manifold. In particular, it
uses no Kahler assumption. Here, we have chosen to formulate the boundary
term in a way that involves the metric, though it actually does not depend
on it. That fact can be seen from the proof. The reason for the formulation
given, is that it makes it easier to determine the sign of that term.

LEMMA 1. — Let (p and w be sufficiently smooth real valued
functions. Let 7 be an (n — 1,0)-form denned in a neighbourhood of a
smooth bounded set G = {z : v(z) < 0}. Here, v is a denning function
of G, with dv 7^ 0 on 9G. Assume further that 7 satisfies the boundary
condition Qv A 7 == 0 on QG. Then

(3.1) 2 Re / ^99^7 /\^e~tfiw
JG

= [ %n99^A7A7e -</5w+(--l)n / VQ^ /\~9^e~(pw
JG JG

+ (-I)71"1 / VQ^ A Q^e-^w + / ^9w A 3(7 A 76-^)
JG JG

+ I ^n*(99^A7A7)e-^wd 's-.
JOG 1^1

Proof. — This follows from the following direct computations of the
differential forms and using Stokes theorem. We have, using the notation
9y = e^oe'^ from Section 2, that

(3.2) 99(7 A 70-^)

= 9(97 A 76-^ + (-l)71"^ A 9^e-^)

= (9^97 A 7 + (-1)^7 A 9"7 + (-l)^^ A 9^
+7A99y,7)e-^.

Since
9 ,̂97 = -99<^7 + 99^ A 7,

we obtain that the first term on the right hand side of (3.2) equals

(3.3) 9y,97 A 7 = -99y,7 A 7 + 99y? A 7 A 7.

Writing 7 A 99 ,̂7 = (-l)71"1^^ A 7, we can see that after multiplication
by z71, the last term of (3.2) becomes the conjugate of the first term of (3.3).
Thus (3.2) yields

(3.4) ^99(7 A 76"^) = (-2 Re ̂ 99^7 A 7 + fooy A 7 A 7

+ (-^97 A 9^ + (-l)71-1^7^ A ̂ )e-^.
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Now, we may multiply (3.4) with a weight function w and integrate. Using
Stokes formula, the left hand side yields

(3.5) / w^OQ^^e-^) = f ^9(7 A 76-^)- / inQw^Q^ A7e-^).
JG JOG JG

From the boundary condition

(3.6) Qv A 7 = 0 for points on 9G,

it follows that for any (0, n)-form a, 7 A a vanishes as a differential form
on the submanifold QG. If not, we would have dv A 7 A a = 9^ A 7 A a
nonzero at the boundary of G, and this is not the case by (3.6). Hence, we
may write the boundary integral in (3.5) as

(3.7) I in9^^^e-^w= [ ^7 A 7 + (-l)"-^ A^)we-^
JQG JQG

= I in9^^^'we~tp.
JOG

Now, to rewrite this boundary integral in a way which is more usable
to us when determining the sign, we do the following. First, we note that
(3.6) gives that Qv A 7 = vA for some (n, 0)-form A which is bounded on
G. Then we see that

Q{0v A 7 A -ye^) = Q(yA A ^e"^) = Qv A A A ^e"^ + vQ{A A -ye-^).

This vanishes for points on QG, the second term since y vanishes at the
boundary, and the first term since Qv A 7 = 0 on 9G by (3.6). Hence on
9G,

0 = Q{Qv A 7 A T^e"^)

= <9<9i/ A 7 A 76-^ -Qv f\Q^f\ 76-^ + (-1)71^ A 7 A 9^6-^

= -<9<9i/ A 7 A 76"^ - <9^ A ^7 A 7e~^,

i.e.,

(3.8) QQv A 7 A ^ye"^ = -<9^ A 97 A 76-^ on 9G.

Using the following formula; if (3 is a form of degree 2n - 1, then

[ (3= I *(^A/?)-^,
^G JQG \d^\

we obtain that the boundary integral of (3.5) may be written as

/ inQ^^^e~(pw= I f1* (Qv A 9^ A ̂ e-^w-^
JQG JOG \dv\

==- / 1 zn*(9^A7A7)e-y?w-ds-.
^G M
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This proves the lemma. D

Next, we translate (3.1) into an identity for (n, l)-forms using the *
operator defined by a Kahler metric.

PROPOSITION 1. — Let ^ be an (n, l)-form on a smooth, bounded,
open set G = {z : y{z} < 0} in a Kahler manifold. Here, v is a denning
function of G, with dv ^- 0 on 9G. Assume ^ satisfy 9v^ = 0 at the
boundary, and that (p and w are sufficiently smooth real valued functions.
Then
(3.9) 2Ref(99^^e-^wdV

= ( i{99^/\K^^^wdV^ ho^e-^wdV

+ / \9^t e-^wdV - { \9^ e-^wdV

+ ( (z{9w A A^, 9:0, + i(Qw A 9A^ $),) e-^dV

+ / {i99^^\^}^wd£

JQG 1^1

Proof. — This is basically just a reformulation of Lemma 1 in terms
of $, where 7 = *^, and keeping track of the signs. The major difference
is the introduction of a Kahler metric, which will help us get control of
the term 9^ A (9-7. Multiplying the entire identity (3.1) with the factor
( - l ) 7 1 " ^ - ! ) 2 = -(- i ) 2 1 - 2^^ ^e sign of each term will be the same
as the corresponding one in (3.9).

To start with the boundary condition, assume that <9^_i$ == 0 on 9G.
Then we see that for any (n, 0)-form a,

0 = (a, 9v^}^ = {9v A a, ̂  = Qv A a A *^ = Qv A a A 7,
so the boundary condition of Lemma 1 is satisfied.

Now, the integrand in the left hand side in (3.9) yields, by (2.2),
{QQ^^dv = {9(- *^ *$UUy = -9(*^*o A*$

^-(-i)1^^^/^.
For the right hand side, we have the following for each term. The first
integrand is by (2.5),

i{8oy A A^.O^dV == iOoy A -i71-1^-!)2^ *$ A *$

= -(-l)Iil^inQ9(p A 7 A 7.
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For the second term we can write,, again using (2.2), and the fact that
** = (-1)71,

(^^0<.^=*^^A^^^=^n(-l)2-(-l)^^A^

The third and fourth term of (3.9) cannot be dealt with in quite the same
way, since they depend on the metric being Kahler. By writing the terms
in normal coordinates, we will obtain that together they correspond to the
(?7 A <97 term of (3.1). Since the terms involved consist of only first order
derivatives of the forms, the following approach is valid when the metric is
Kahler. Let z be normal coordinates at a point ZQ in G (which implies that
|d2^;|^ = 1 and constitutes an orthonormal basis at the point. (This is in
contrast to the ordinary coordinates z in C71, where, with our conventions,
|cbfc|g == y^)- Then, we write

$ = ̂ ^kdz /\dzk.

One immediately obtains that, at ZQ,

^=^=i-(-l)1^^^^

and differentiating, which is possible in normal coordinates we have, still
at 2:0,

9j A c?7 = ^i Qi^kdZz A dzk A ̂  8^kdzi A dzk

=^)^-^Q^-g^dz^dz

= f| E l9^ - 9k^ 2 - E l̂ l2) dz A dz

^l^-l^l!)^^-
Since \9^\ = ^9^\ = |<9*^|, we can conclude that

-(-l)^r^^A^= (\9^ - \O^JdV = (|9*^ - \9^JdV.

This gives the identity for the third and fourth term, at the arbitrary
point ZQ .

Further, the two terms arising from differentiation of the weight
function w are, again by (2.5),

i(9w A A^, 9^)^dV = ̂ (-l)"^ (9w A *^, ̂ 9^)^dV

= ( — 1 ) 2 ^ Q w A 7 A **<9<^7

= (-l)^-!)21-^^^ A 7 A 9^
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and

i(9w/\9A^^)^dV

= -^(-l)^12 (9w A Q^^^dV = -^n(-l)"•i^ll9w A 07 A 7.

These two are exactly what one gets from the last term in (3.1).

And finally we turn to the the boundary integral. It is similar to the
first term, giving

i{99v A A^ ̂  = ̂ {i{99y A A^ ^}^dV) = -{-l)1'1^^ *(<9<9z/ A 7 A 7).

This finishes the proof. D

4. Proof of the weighted L2 estimate.

Now we are in a position to prove a weighted L2 estimate for the
minimal solution to the 9 problem with a suitable weight.

LEMMA 2. — Assume that f is a closed (n, l)-form on a pseu-
doconvex domain f2 C C^. Let w be a weight function on fl. satisfying
I^^L < ^^5 for some 0 < e < \/2- Let further ^p be a strictly plurisub-
harmonic C2 function on fl. and u be the L2^, uj^ dV)-minimal solution to
9u = /. Then

(4.1) f < e-^wdV < ^ f |/|2, e-^wdV^

where the metric is given by uj = i99(p.

Theorem 1 is now an easy consequence of Lemma 2.

Proof of Theorem 1. — Apply Lemma 2 to / = fdz^ where / is a
closed (0, l)-form, and get the L^(f2,C(;,dy)-minimal solution u = udz to
9u = f. Then 9u = /, and we observe that by (2.2),

\u\^ dV = ̂ {-^"^•u A ~u = ̂ (-l)^112 |u|2 dz A dz = \u\2 2nd\

and similarly that

\f\ldV = \f\2, (dz,dz)^dV = \f\^ Td\.

Hence, the function u is the L^^.dA^minimal solution to 9u = f
for (0, l)-forms, and the desired inequality for u and / follows from
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Lemma 2. This concludes the proof of Theorem 1 as soon as we have proved
Lemma 2. Q

Proof of Lemma 2. — First, assume that f2 is a smooth, bounded,
and strictly pseudoconvex domain and that y? is smooth. Then we may
apply Proposition 1 in the following way. For a given (n, l)-form /, let ^
be the 9-Neumann solution to

(4.2) n^=(^+c^=/ on 0

When of = 0, it follows that
9^=0

and hence the second term in (4.2) vanishes. This yields

a'̂  = 99^ = f.
Now, we define u to be

u = 9^

Then u will be the L^(^,o;,dy)-minimal solution to Qu = /, since u
is orthogonal to all holomorphic (n,0)-forms. Further, since 9$ = 0,
<9A$ = [<9,A]$ = i9*^ by (2.1). Apply Proposition 1 to this ^. By the
pseudoconvexity of ^2, the boundary integral will be positive, and we obtain

(4.3) 2 Re /*(/, ̂ ^e-^wdV ^ [ i{99y A A$, ̂ e-^WV

-f\u\^e-^wdV^-f\9^\[

+ ( i{9wM^^u)^dV

+ / H2 e-^wdY + / \9^\2 e-^wdV

- [(9w^9^^}^e-^dV.

To estimate the last two terms, we use the bound on 9w. Taking
absolute value, and observing that \9w AA^ ^ \9w\^ |A^|^ ^ ^w2 |$|^,
the fourth term on the right hand side of (4.3) can be estimated by

(4.4) { i{9w A A$, u^e-^dV

:< j V \9w A A$|^ ̂ dV + ̂  V |^|^ e-^wdV
-v

uT*"' ' 26

< f^ /1^ e-^wdV + ̂  /1< e-^wdY,^S^-^^k!
for 6 > 0 to be determined later.
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For the last term of (4.3), the second with <9w, we note that by
Cauchy's inequality, valid for (1,0)- and {n - 1, l)-forms like 9w and <9*^,

\9w A 9*^ \Qwt 19*^ < e^w2 \9-^,
and hence

(4.5) \[{9w^9^^}^dV
\J

< j, f \9w A y^ ̂ dv + ̂  y |̂  e-^dy

^ y 1^ e-^wdY + ̂  /> |̂  e-^wdV.

What needs to be estimated from (4.4) and (4.5) is f |̂  e~^wdV, and
it can be majorized by the 99(p term in (4.3) by choosing an appropriate
metric. If we choose as a metric for Q, the one with metric form uj = i99^p,
then

i{Q9y A A$, 0, = (a, A A^, $)„ = \A^ = |̂  .

Hence, using (4.4) and (4.5), we get from (4.3) the following inequality. (The
constants are chosen so that the terms with \9*^ cancel.) If a; = i99y,
then
(4.6) 2 Re Lf^^wdV

^ ( l ~ • £ ^ ~ ^ ) / 1̂  e-vw<N +(l~^)! ̂  e~vwdv•
On the other hand, the left hand side of (4.6) can be estimated from above
by
(4.7) 2 Re [{f, ̂ e-^wdV ^ J, [ \ff e-^wdV + 6' [ |̂  e-^wdV.

Put (4.6) and (4.7) together, and choose 6 > 1/2 and 6' > 0 such that

-^-
This is possible if e2 < 4./(26 + 1) < 2. For a given e with 0 < e < \/2, it
can be shown that 62 +1/4 = 1/e2 yields the best constant C in the lemma
for this proof. We omit the elementary calculations here. With this choice
of 6, we obtain the estimate

/ H2 e-^wdV < ———^—1————— [ \f\2 e-^wdVJ L - ( i_^_^ ) ( i_^ )7 1^

=^=.!}fte~vwdv

^w^S^'^-
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This proves the desired result for smooth, bounded, strictly pseudoconvex
domains.

For an arbitrary pseudoconvex set ^, take an increasing sequence of
smooth, strictly pseudoconvex domains ̂  with U^ = ̂ . Let Uk be the
I^-minimal solution to Quk = f on ̂ . Then Uk satisfies the desired bound
on fl,k. Hence, for k > A;o,

/ ^kte-^wdV < I ^k^e-^wdV
•^fco ^fc

^(TiWj^^
^w^L^^-

That is, (uk) is a bounded sequence in L2(fl,ko^,e~(pwdV). The special
case with w ••= 1 as a weight, or standard L2 estimates, yields (u^ is
a bounded sequence in ^(^.^e-^W) as well. Further, the following
sequence, denoted (AA;), satisfies

Ak:= f \Ukte-^dV< /l/l^e-^y,
J^k J^i

i.e., (AA;) is bounded. Hence, for a given ko, there is a subsequence of Uk
(also denoted by u^ with a weak limit u in L^feo^e-^W), and such
that Ak converges. Since w is locally bounded, u is also a weak limit of Uk
in ^(^o.^.e'^wdy). As a weak limit, IA also solves 9u = f on ^^. By
taking further subsequences of (u^ for increasing ko, and then a diagonal
sequence (still denoted by Uk) we may assume that Uk —^ u weakly in
L2(^ko^,e-^dV) and in L2(flk^uJ,e~^wdV) for every ko.

Since weak convergence decreases norms, we have that

(4t8) / {u^e-^wdV ^ lim / I^Pe-^WV
J^ k-'00 J^

^(^/j^^^
and by monotone convergence, this also holds with f2^ replaced by ^.
This is then the desired estimate for u, and all that remains is to prove
that u actually is the L^(n,^,dy)-minimal solution. This can be seen in
the following way. As in (4.8),

/ |< e-^dV < lim / \u^ e-^dV < lim A^
^^feo fe-'00 ̂ 4o k-^00
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and the same inequality holds with f^p replaced by ^. If UQ is the minimal
solution, then, since Uk is minimal on f^,

Ak= ! \Ukte-^dV< I \u^e-^dV< { \u^e-^dV
Jflk J^k Jfl.

< [ \u\2 e-^dV < lim A^.
Jfl k-^ooJo.

Letting k —> oo in the left hand side yields

I ^e-^dv^ I H2

J^i Jo
fte-^dV^ / Id^-^W,

/^ JQ
and hence u has minimal norm. By uniqueness, u = UQ.

In case (p is not smooth, but only in G2, we may use a similar
limiting argument on ^ CC fl, before letting k —> oo: Convoluting
with an approximate identity, we get a sequence of smooth ^ [ y?, and
i99(pe —^ iQQ^p uniformly on 0,^ by continuity. Then we pass to the limit
using arguments similar to the ones above. Leaving out the details, this
will give the theorem for ^ in C2 on S1,k CC 0, and thereafter we may let
Q,k T ^- This concludes the proof of Lemma 2. D

5. Estimating the kernel.

To prove the pointwise estimate of the Bergman kernel Sy(z^) in
Theorem 2, we will first make an L2 estimate of the kernel by using the
weighted L2 estimate of Theorem 1. The weight will be used to obtain the
factor with exponential decay relative to the distance between z and C in the
i99(p metric. First we need a result on the existence of a bounded potential
when the metric is bounded. It can be found for example in Leiong and
Gruman [12]. Since the proof is short, we sketch it for completeness.

LEMMA 3. — Assume uj is a positive, bounded, continuous, d-closed
(1, l)-form on a neighbourhood of a smooth, strictly pseudoconvex, star
shaped domain. Then there exists a plurisubharmonic function '0 on the
domain such that iQQ^ = uj, and \\^\\L00 < C'lMiL00? where the constant
C depends only on the dimension and the domain.

Proof. — Since uj is closed, the Poincare lemma says there exists w
such that dw = uj. Decomposing w we may write d(wo,i -1-w^o) = ̂ , where

rii
wo,i = V / tujkj(tz)zjdzk

J.k Jo
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and

^1,0 == ^Oj = y^ / tiJkj(tz)ZkdZj.
3.k Jo

Hence wo,i and w^o are bounded by ||a;||L°°. Bidegree reasons give that
^0,1 = 0 = 9w\ft. Since wo,i == w]"^ it will be enough to solve i9v = WQ,I
and let ^ == 2 Rev. Then ^99f^^) = i99{v + v) = (<9wo,i + 9w^o) =
d{wo^ + ^1,0) = ^ ' The proof will be finished if we can find a v which
is bounded by WQ,I. The desired result can be found in the book by Henkin
and Leiterer [9], Theorem 2.6.1, p. 82. Their theorem says even more. For a
smooth, strongly pseudoconvex set D, there exists a constant C, such that
if w is a continuous (0, ̂ )-form on D, with 9w = 0 in D, then there is a
solution v to 9v = w which a bounded Holder norm,

IHIc'i/2(D) < C\\W\\L^(D)'

Especially, |H|L-(D) ^ CIH|L-(D). n

Now, remember that in (1.2), we let ^ be an hermitian form that
dominates the Kahler form uj. Then, to use Lemma 3 above, we will map /^
with a complex linear mapping onto the Euclidean metric form /3 defined
in (1.3), thus mapping uj to something with a known bound. For this, we
will need the following observations on the behaviour of the kernel and of
the metric under such mappings.

There is an elementary formula for how the Bergman kernel behaves
under holomorphic mappings, which is valid also for the weighted kernel:

(5.1) S^ C) = Jcrj(z)S^-. (77(z),77(C))JCT(0,

where Jcrj = 9(^i,. . . , ?7n)/<9(zi, . . . , , Zn) is the complex Jacobian determi-
nant. The proof is principally the same as in the unweighted case, by vari-
able substitution and using the uniqueness of the reproducing kernel. Cal-
culations for the weighted case can be found in the paper by Dragomir [8],
in Lemma 1. This paper also includes some further references on Bergman
kernels with a more general weight than we consider in this paper.

Now, assume for simplicity that ^ = 0, and let 77 be a complex linear
map that takes p, = ̂  to the Euclidean metric, and the unit ball B^(0,1)
onto the Euclidean unit ball. Let L be the linear operator representing fi
in the Euclidean metric, i.e., such that

{V,V)^ = (v,Lv)e.

We see that we can take T) as the square root of the positive operator L,
then rj is the linear operator for which (yy"1)*^ = /?. Then J^r] is constant,
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and

(5.2) S^ C) = \Jc^S^-. (r^), 77(0) = det(/.)5^-i (^), 77(0).

For the metric and the distance function under the same mapping 77,
we observe that since i99(p < fi on jE^(0,1), i99((porj~1) = (r^~l)*^99^p < /3
on 77(^(0,1)) = Be(0,1). Also, if py,(-, •) is the distance in the metric with
potential y?, then

(5.3) P^(^C)=P^-i(^).^(C)),

i.e., distances are preserved.

As mentioned in Section 1, the eigenvalues of a form with respect to
another form is independent of the choice of coordinates. For example, we
have

(5.4) A^n(^) = A^n^-1)*^-1)*^) = >min(i99y o rj-1 \f3\

and likewise that

(5.5) det(c^) = det^a^o-^-1!/?).

5.1. An L2 estimate.

From Theorem 1 we obtain the following estimate on the Bergman
kernel.

PROPOSITION 2. — Let Sy(z, C) be the Bergman projection kernel
in L^C71). Let further p(z^ ^) be the distance function of the metric with
metric form uj = i99(p and let ̂  satisfy (1.2). Assume 0 < e < \/2. Then,
for any C^o, we have

(5.6) hs^^e^^e-^dX^z)

^_____Gdet(/^)e^o)_______
~ {V2 - e)2 infeea^ (Co,i) ^min(^(C)I^Co)'

The constant C depends only on the dimension n.

Proof. — First, assume that uj < (3 in Be (Co, 1). Then we may take
/^o as the Euclidean metric. Let \ : C71 —> R be a nonnegative radial
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function compactly supported in Be (Co, 1) with f \d\ = 1. Then, for any
harmonic function g ,

(5-7) ^(Co) = / x(C)^(C)^(c).
^CeBeCCo,!)

We can use this to estimate Sy (z, <). Namely, let H((,) be a holomor-
phic function in Be (Co, 1) with H^o) = 0, and define

y(Q=x(C)e^H^\
Since Sy(z, C) is antiholomorphic in C, we have by (5.7) that for any z,

s^) = f S^ O^O^^C) = S^ Co)^0) = S^ Co).
^JE?e(Co,l)

Now, let / = 9v, and let u be the L^C^.dA) -minimal solution to
Qu = /. Then v can be orthogonally decomposed as

v = u + S^v,

or

(5.8) ^(z,Co)=^)-^).

The main part to estimate here is u. v is an explicitly known function
with compact support, and unless z and Co are close together, v vanishes.
Generally, since \ is bounded,

(5.9) K^e-^) < c^^21^^),

which will be dominated by the part coming from n.

To estimate the ^(C^.dA^ininimal solution u to Qu = /, we have
the weighted estimate of Theorem 1. For the right hand side of (1.1), we
see that

/ = Qv = (9x + \9{^ + I?))^ .̂

The norm | • ^ on 1-forms is given by the inverse of a;, and can be estimated
from above by the Euclidean norm and A^(o;|e). This yields

(5.10) |/ |^-^<——2——(|^|^^2Re^4-x2 |^+^)|2^+2Re^).
^minV^py

In the Euclidean metric, 9\ is bounded by a constant. Furthermore, since
H is holomorphic and (p plurisubharmonic, one can see that

|9(^+5^)|^e^+2Re^=|9(^+2Re^^)|^^+2Re^^A^+2Re^.
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Since \2 has compact support, Green's formula allows us to apply the Ae
on \2 instead of on the exponential factor. This yields

/ \f\2,e~(pd\< ——————2——————— [ f (?+A ^2}p'p~}~2ReHd\I ' la; — * -c \ / /^\ i \ / \ ' —~eA. 7° CA/x.
J inf^Be(Co,l) AminMC)|e) 7B,(Co,l)

Now, AeX2 is bounded, and can be absorbed in C. Furthermore, on
^(Co^l), /U^Co) is bounded by 1, since uj < (3 there, and hence
w = e^^o) is bounded from above and below by positive constants. Thus
it may be inserted into the integral, and we obtain, by Theorem 1,

(5.11) f \u(z)\2 e-^e^^dX^z)

^ (Tl^/IAOI^-^^o^dA^
c r

< ——————————______________ / g^+2ReJf^
(V2 - e)2 inf^Be(Co,i) ^min(^(C)) ^Be(Co,i)

By (5.9) the same estimate holds with u(') replaced by ^S^, Co). The
only thing that remains to complete the proof for the case uj < f3 is to
estimate

f ^+2 Re H^

JB^CH.I}^Be(Co,l)

By Lemma 3 there exists a plurisubharmonic function ^ with i99^ =
^ = iQ9(p, which is bounded by a constant on 5e(Co,l). Then, since
^ - ̂  is pluriharmonic, there exists a holomorphic function H such that
2ReH = ̂ -^. Now, let H = H-H^o), i.e., 2ReH = ̂ -^-^(Co)4-^(Co).
Then we may write

f e^2ReHdX = ( e^-^(Co)+^(Co) < Ce^^
^e(Co,l) ^Be(Co,l) ~

since ^ is bounded. This finishes the proof for the case when uj < /3
around Co-

For the general case, let rj be as in the discussion on page 984, with
Co as the origin. We may then use, in the following order, (5.1), variable
substitution and (5.3), the bounded ca^ejust proved, and then finally (5.4).
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This yields

I \S^ ̂ fe^^e-^d^z)

=y>|5^-l(^)^(Co))|2e£^^o)e-^)|JCT|4dA^)

^yi^o,-!^^)!2^^-^)^-^-^^^^^^

<______G6-^-l^)det(^)______
- (V2 - e)2 inf^Be(^i) Amin(^ o r^-KOle)

^ Ge-^o)det(/^)
~ (V^ - £)2 l^CeB^^ (Co,l) -^min^Ko)

This completes the proof of Proposition 2. D

5.2. Pointwise estimates.

To obtain pointwise estimates from Proposition 2, we will use a simple
lemma that can be found e.g. in Berndtsson [2]. The proof from that paper
will be sketched here for completeness.

LEMMA 4. — Let (p be plurisubharmonic on B = JE?e(0,1). Define
further

My = {v ^ 0 : 99v == QQip on B}

and put dy =-- sup^ v(0). Assume that u C L2 (B) satisfies

{ H2^ ^ iJ B
and

2 -.sup|9n| e-^ ^ 1.
B

Then
|^(0)|2e-^o)+^ <G,

where C is a universal constant.

Note. — In our case, we will have that 99^p is uniformly bounded,
and Lemma 3 then says that Oy, is bounded by a constant. The conclusion
is that

|n(0)|2 < Ce^°\
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Proof of Lemma 4. — When (p = 0, take a cut-off function \ on B
which equals 1 when z < 1/2. Let

K = ̂ TTz^
\ \

be the Bochner-Martinelli kernel. Then

^(0) = I 9(xu) • K = ( ^9u . K + fu9x • K.
JB JB J

The first term can be estimated by ||<9n||L°°, since K e ^{B). The second
term can be estimated by |H|L2 since 9\ = 0 for \z\ < 1/2. This gives us
the lemma for y? = 0.

For an arbitrary plurisubharmonic (/?, we let v € My. Then v — (^ is
pluriharmonic, and hence there is a holomorphic H so that v ==(/?+ 2 Re H.
Put UH = ue11, then Qun = e11^. Hence,

[ ^nfe^ = I HY-^ <, 1,
J B J B

and

\OUH\2e^ = \Qu\2 e-^ ^ 1.

Since e~v > 1, the same holds with that factor removed. The case (p = 0
now applies to UH^ and we find that

|^(o)|2e-^o)+^;(o)=|^(o)|2<a
Taking supremum over all v now gives the lemma. D

We are now in a position to prove Theorem 2.

Proof of Theorem 2. — To obtain a pointwise estimate from the
left hand side of (5.6), we will use Lemma 4, working along the same lines
as in the proof of Proposition 2. For a given point ZQ, let ^ = ^zo be an
hermitian form on the tangent space, satisfying (1.2). Let 77 be the complex
linear mapping for this ^ as defined on page 984. Furthermore, p^(-,zo) < 1
on B^(zo, 1) D B^^(ZQ, 1), so by the triangle inequality,

^,Co)g-^o,Co) ^ g-sp(^o) ^ ^-V2 f^ ^ ^ g^ ̂

and we may insert this into the right hand side along with a change of
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constant. This yields

/ ^^^^^e-^-^d^z)
JBeWzo^l)

= det(^) / l-V^Co^e-^dA^)
•^W^1)

^ Cdet(^) />|^C^,Co)|2e£p(^co)e-^)dA(^)e-£^o'<o)

Cdet^JdetQ^Je^^e"^0^0)
- (v/2 - eY infce^ (Co,i) AnunMOKo)'

Further, 9 S ( ' , Co) = 0, so Lemma 4 applies for S^rj-1^), Co) with the
plurisubharmonic function ^ o 77"1, yielding

l^^o^Co)!2^^"1^0^^^-1^2^
Gdet^Jdet^Je^^^e-6^0^0)

- (V^ - 5)2 inf̂ B^ (Co,l) Amin(o;(C)|^o) '

But a^orr1 was bounded, independently of ^?, by Lemma 3, so Theorem 2
follows. Q

6. A slightly improved version in C1.

In the case of one complex variable, we will see that, under an extra
condition on y?, it is possible to strengthen the main result of this paper
slightly. The condition we impose is that the (1, l)-form uj = i99(p, which
in the case of C1 is a measure, is a doubling measure.

DEFINITION 2. — A measure uj is a doubling measure on C if there
is a constant Cd such that

^(Be{z^r))^C^(Be^r))

for every z € C and r > 0.

Let p, :== /^o be a constant (1, l)-form satisfying (1.2). In C1, [L is just
a constant factor times the Euclidean volume form, and we identify p, with
this constant factor. Then we let

(6.1) K := ^(Co) := ^ / i99(p
^ ^(Co,i)
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denote the (normalised) i99ip- volume of the /^-unit ball around ^o. Note
that the normalised /^-volume of this ball is 1 since p. is a multiple of /?, the
Euclidean form as denned in (1.3), and has no curvature. Since i99(p < /^,
it follows that K < 1.

In some cases it may be possible to show that the /^-unit ball
is equivalent to the i9Q(p-\imt ball, and then we see that K would be
approximately the (normalised) volume of the unit ball. Generally, the
volume of the unit ball is known to depend on the curvature of the metric.
Results of this type can be found e.g. in Schoen and Yau [17], and Chavel [3],
which are good references in this area.

Remember now, that we use Theorem 1 only for forms / supported
in a ball with radius 1. Using this, together with the fact that in C, it is
possible to solve the 99-equation in general (which then is just the Laplace
equation), we will prove the following proposition, which is to serve as a
replacement for Theorem 1.

PROPOSITION 3. — Let (p be a strictly subharmonic C2 function
on C, and assume that uj = i99(p is a doubling measure and that cj(^) < /3
for ( € -Be (Co? 1)? Le-? the Euclidean metric form p, = (3 satisfies (1.2). Let K
be defined as in (6.1). Let further u be the -L^C, e~(pd\) -minimal solution
to 9u = f, and assume that supp(/) C -Be(Co51)- Then,

[ H2 e-^e^^dX < ————— I \ft e-^d\
J (V2 - e)K. J

where the constant C depends only on the doubling constant of uj.

This will give us the following version of Theorem 2.

PROPOSITION 4. — Let (p be a strictly subharmonic C2 function
on C, and assume that uj = i99(p is a doubling measure. Let 0 < e < \/2,
and 11 z satisfy (1.2). Then the weighted Bergman kernel in C satisfies the
estimate

|Q ( y ^|2 < c „ ,,^00+^(C)-^(^C)l^^s/l -= / /7» ^ p^PC6 '(V2 - e)K

where the constant C only depends on the doubling constant Cd ofuj.

The proof of Proposition 4 is the same as for Theorem 2, with
the following comments: Using Proposition 3, we will prove a variant of
Proposition 2, which is given in Proposition 5. Proposition 5 can then be
used to prove Proposition 4. D
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Proof of Proposition 3. — Similarly to Theorem 1, we will obtain
this result from the identity in Proposition 1. In C, it can be seen that the
identity is actually the same in every metric, a different metric corresponds
to a substitution of the differential form ^. From now on, we will use the

convention to denote A = — — for the Laplace operator. If we write down
9z 9z

Proposition 1 directly in the Euclidean metric, identifying ^ = adz A dz
with a, we obtain the following identity:

(6.2) 2 Re I fae-^wdX = ( A(^ \a\2 e-^wdX + [ \u\2 e-^wdX

+

+

/
/

9a
<9i e ^wdX +/ dw

~dz
aue'^dX

dwda_
———ae "dA.
dz dz

Now, assume, as in the proof of Lemma 2, that |9w|^ < ^w, that is,

dw
~dz

< e2w2^.

In analogy with the proof of Lemma 2, (essentially Theorem 1), we estimate
the terms involving dw/dz as

dw
dTau\ < -

- 2 \dz ^~+ T6 H2W ^ ̂ ^H2 + ̂ ufw-
6 | dw | |a|

and

dw da
dz dz

a\ < -
1 \dw

~ 4 \dz
W_
w

+
da
~dz

2 2

w < -j-Ay? \a\2 w +
da
dz

w.

Thus, we obtain from (6.2), that

^ (l-c-T-c-i)f^e'rwdx+(l-^)/
^
'2

2 r 1
e-} A^^e^wdX+d-—
4 / J \ Zo

^e-^wdX

<, A ( |/|2 e-^wdX + 1 / |a|2 e-^wdX
^B,(Co,l) A ^B.fCn,!)^e(Co,l)'Be(Co,l)

for any positive A, since / is supported on Be (Co? 1)- To obtain the desired
estimate, we have to take care of the last integral on the right hand side.
Previously, we did this with Ay? |a|2 on the left hand side, but this time
we will use a different approach; we will use formula (6.2) again, with a
different w, and add the result to (6.3). After a partial integration in (6.2)
in the terms with dw/dz and discarding some terms, we obtain that, for
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V>0,

(6.4) / A(p {a^e'^vdX - I /^v |a|2 e-^dX

<2Re f fae-^vdX

^ A f |/|2 e-^vdX + 1 / |a|2 e-^dA,
•^(Co,!) A ^Be(Co,l)

for any positive A. If we choose 6 so that 1 - e26/2 - e 2 / ^ = 0 i es-^
then the factor in front of the integral with u in (6.3) is

'-^•-A^^-^
By adding (6.3) and (6.4), we obtain that

(6.5) f(v^ - Av) \a\2 e-^dX + —(V2 - e) f \u\2 e-^wdX

^A [ (w + v) |/|2 e-^dX + 1 / (w + v) |a|2 e-^dX.
^(Co,!) A 7Be(Co,l)

Since / is supposed to be supported in Be(^o,l) C B^(Co,l), and w =
ep(Co,-)^ if follows that 1 ̂  w ^ e on Be(Co, 1). From now on, assume that
we can find a weight v such that 1 <, v < K for some constant K, which is
to be determined. Then, from (6.5) the following holds:

(6.6) / (v^ - A^ - (e—^) XB.(CO,I)) H2 ̂ -^A
- ' v \ Jri / }

^—(^ - e) ( \u\2 e-^dX < A(e + K) f |/|2 e-^dX.

So, if v satisfies
. . (e+K\

V^ - ^V - ————— XBe(Co,l) ^ 0,\ A /
we would have a weighted estimate for u. This is achieved by solving

(6-7) A^^-^^^.

A necessary and sufficient condition for this to have a bounded solution is
that the total mass of Az» is zero, and this is true if

A =2^,
K
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since A(^dA == i99y/2. Now, with this A, a bounded solution to (6.7) is the
logarithmic potential

v=2 ( log^-C|(A^(C)-^)dA(C)
^ -'Be(Co,l) 2

- /* log 1-^ (o;(C)-^A(C)).
^ ^e(Co,l) z

When ^ —» oo, clearly D —^ 0, and since v is harmonic outside jE?e(C(h 1)? the
maximum of i) must be attained in Be(Co, 1).

To estimate v in Be(Co,l), we use the doubling property of uj. A
doubling measure is known to have a polynomial behaviour; for r <^ R^

' y \a
^B^r))^C,(^)\(B^R))

for some constants C\ and a > 0 depending on the doubling constant C^.
See Lemma 2.1 in Christ [4] for a proof of this result.

We may also note that the same is true when we replace C by a nearby
point z in the left hand side. If \z - <| ^ 1, then Be{z, 1) C JE?e(C, 2), and
it follows that for r <: 1,

(6.8) o;(Be(z,r)) < Cir^(Be(^ 1)) ^ ^1^(^(0,2)) ^ Ci 07^^(0.

When integrating \og\z-(,\uj in the definition of v, any negative
contribution comes from integrating over the ball Be (^1). Hence, to
estimate y log i;.-CMC),
from above and below, the following inequalities suffice. When \z - Co| ^ 1,

^:log2^ [ log |^-CMC)
7r ^Be(Co,l)

^^- / iog|2:-cKO
7r ^Be(^,l)

-^E/ logi^-ci^o
^ ^QJ2-3-^\z-C,\<2-^

1 00

^^E10^2"'"1^^^2"'))
J=0

^ -CiQ ̂ 0- + l)2-a^(Be(^ 1)) ^ -/.G2,
J=0
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where the last line follows from the inequality (6.8), and the assumption
that |^ — Co| <: 1- The constant C^ depends only on the doubling constant
Cd.

Also, a simple calculation shows that for \z — Co| <: 1,

0^ f log|z-C|^A(C)>-^,
7r ^Be(Co,l) 2

so we have shown that

/<1/2 + log 2) >, v > -C^.

Now, we let the weight function v be

v = v + C^K, + 1.

Then we may bound v by
1 < v < K,

where K = 3/2 + log 2 + C^ This yields

^^C^^,
K K

where (7 depends only on the doubling constant.

Thus we have proved everything that is needed to obtain Proposition 3
from (6.6). D

We may now apply Proposition 3 to prove the following version of
Proposition 2.

PROPOSITION 5. — Let Sy{z, C) be the Bergman projection kernel
in L^(C). Let further p ( z ^ ( ) be the distance function of the metric with
metric form uj = i99ip, and assume that it is a doubling measure. Let
further p,^ satisfy (1.2), and assume that 0 < e < \/2. Then, for any Co,
we have

fW^e^e-^d^) ̂  T^^T,
J (V2 - £)^(Co)

where the constant C only depends on the doubling constant Cd.

Proof. — The proof is just like the proof of Proposition 2, with the
following changes. Replace (5.10) with the estimate

\f^e-^^2\9x^e^2ReH+2x2\9^^H)\\^2ReH.
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This will give us

[\f^e-yd\<2 ( (G+AeX2)^21^^.
J ^Be(Co,l)

Then, using Proposition 3 instead of Theorem 1, we obtain, instead
of (5.11), that

(6.9) [wfe-^e^^dX^z) < c f \f^e-^dX{C)
J {V2-£)K^o)J

^ c [ ev+2ReHdX.
~ (V2-e)K^o) 7Be(Co,i)

The proof is then completed as in the proof of Proposition 2, by estimating

f ^2ReH^

^(Co,l)

and then rescaling to the case when ^ is not equal to /3, and observing that
K is preserved under scalings. D
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