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1. Introduction and statement of results.

Let P = 9W be the boundary of a compact, smooth strictly pseudo-
convex domain W, and let a be the contact form associated to a defining
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function r that is positive in the interior of the domain and zero on P.
Specifically,

(1) a == flmOr

where j : P —> W is the inclusion map. Let dp = a A (do)71 / 2 ' K denote the
natural volume form, where the dimension of P is 2n + 1. The manifold

(2) Z := {(p.rap); p e P r > 0 }

is a symplectic submanifold of T*P \ {0} that serves as phase space for
the algebra of Toeplitz operators on P, see [BdM] and [BG]. Recall that a
Toeplitz operator is an operator of the form

(3) T =HQ : n-^n
where T~i C L^^P) is the Hardy space, II : -^(P) —> "H the Szego projector,
[7], and Q a (classical) pseudodifferential operator on P. The symbol of (3),
OT, is the restriction of the symbol of Q to Z, and T is called elliptic if this
symbol is nowhere zero, [8]. Let us assume that this is the case, in fact that
(JT > 0, and furthermore that Q is of order one and self-adjoint. Then T is
bounded below and its spectrum is a discrete set of eigenvalues,

(4) AQ ^ AI ^ AS ^ • * •

oo
In [BG], §12, Boutet de Monvel and Guillemin show that ^ e~^txj is a

j=0

tempered distribution and study its singularities, which are governed by
the periodic trajectories of the Hamilton flow of <JT'

Let V denote the contact vector field on P, uniquely determined by
the conditions: a\V = 1, da\V = 0. The case when V generates a free 6'1

action of automorphisms of P is particularly interesting in semi-classical
analysis, as we will discuss shortly {S1 = R/27rZ). We will henceforth
assume this to be the case, and accordingly denote V by QQ. We are
assuming that QQ generates a flow of automorphisms of P, that is, that
the flow preserves all structures and in particular commutes with the 9b
complex. Therefore QQ commutes with H. Let

(5) H=Q)Hk
k

be the decomposition of 7i into eigenspaces of OQ :

(6) Qe\nk =z/^ i = v^,
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and assume that the multiplier, Q? m (7) commutes with QQ . We can then
simultaneously diagonalize T and Oe:

^ [ T ^ = kE^^
[ ) {Qe^ = ik^

(the reason for denoting the joint eigenvalues by kE^ will become clear
in a moment). In this paper we will study the asymptotic behavior of the
(E^, ̂ ) as i and k tend to infinity in the regime: \E^ — E\ ^ c / k , where
E and c > 0 are constants. More precisely we will study the trace of the
Fourier coefficients of the operator (p(T — E{—i9e)), where E is a constant
and ^ a smooth function with compact ly supported Fourier transform.
(This regime corresponds to the semi-classical analogue of the procedure
of reduction of the classical Hamiltonian system (Z, <7r) with respect to
the 5'1 action, [18].) We now discuss how this setting and problem arise in
semi-classical analysis.

Semi-classical analysis in quantum mechanics usually consists of the
study of spectral properties of (self-adjoint) pseudo-differential operators
on a smooth manifold, in a small parameter limit. That is, one consid-
ers operators of the form a{x^ hD^), where the symbol a{x,^) is a smooth
function on the cotangent bundle T*M of a Riemannian manifold M, the
configuration space (see e.g. [24] for the case M = R^ and [21] for the
Riemannian case). There are however many situations in physics where the
classical underlying phase-space is not of the form T*M, but is a Kahler
manifold. Examples include spin models in nuclear physics (e.g. the liquid
drop model), quantization of the two-dimensional torus (cat map [19], [II],
the baker transformation [3]), perturbations of degenerate harmonic oscil-
lator where the "secular equation" is solved by quantization of a reduced
phase-space [15], and more generally semi-classical theories of quantum
systems having symmetries. When the phase space is a Kahler manifold
the associated Hilbert space is the space of square-integrable holomorphic
sections of a quantizing line bundle, and the operators that naturally arise
as quantization of observables are Toeplitz operators. We mention the pio-
neering work of F.A. Berezin [2] in recognizing the use of Toeplitz operators
when the phase space is a Kahler manifold. We also mention that in [4] such
Toeplitz operators were shown to satisfy deformation quantization condi-
tions, meaning that they exhibit the semiclassical behavior one normally
requires of a quantization scheme.

Thus let X be a compact Kahler manifold of real dimension 2n, and
L —> X a holomorphic Hermitian line bundle such that the curvature of its
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natural connection is the Kahler form of X. (This implies that the Kahler
form of X is integral.) The quantization of X with Planck's constant equal
to 1/k is the space H°{X, Z/^), and the Toeplitz quantization of a classical
Hamiltonian function, H € C'°°(X), is the operator

Sk := TTfcM^TTfc,

where TTk : ^(X, L^) -^ H°(X, L^) is the orthogonal projector and MH
is the operator of multiplication by H. We claim that this setting gives rise
to the one at the beginning of this introduction: Let P C L* be the unit
circle bundle in the dual of L. By the condition that the curvature of L be
the Kahler form, P is strictly pseudoconvex and the contact form a is the
connection form on P. As is well-known, in the decomposition (5) of the
Hardy space of P one can naturally make the identification

(8) Hk == H^X^L^).

Notice that, by the Kodaira vanishing theorem, for large k the dimension
of^

(9) dk := dimHk

is given by the Riemann-Roch theorem, and therefore for large A; it is a
polynomial in k of degree n with leading coefficient Vol(X)/(27^)r^. Under
the identification (8) the operator Sk gets identified with the operator
Sk = IIfcMjfllfc where life is the orthogonal projection ^(P) —^ 1~ik
and (by a slight abuse of notation) MH the operator of multiplication by
the pull-back of If to P (and therefore [Mjy, 9e] =0). It follows that if we
consider the joint eigenvalues and eigenvectors, (7), of the Toeplitz operator

(10) r = n ^ M ^ n , D e - = ^ - 9 e
t

then, for each A;, (E^ ̂ \ 1 = 1,.. • dk-, are the eigenvalues and eigenvectors
ofSk:

(11) V A ; = 1 , 2 , . . . Sk^ = E^^ i = l ^ . . d k .

We now state our main results. We shall keep the notation of the pre-
vious paragraph: X is a quantized Kahler manifold, H C C°°(X) defining
the operator Sk on T-ik with eigenvalues and eigenfunctions (E^, ^k). Let (f)
be the Hamiltonian flow of H on X, and TT : P —> X the obvious projection.
For both of the theorems stated below, y? denotes a smooth test function
with compactly supported Fourier transform.
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Our first result is concerned with the integral kernel of (p(k(Tk — E))
where Tfc = T|^.

THEOREM 1.1. — Let pi,p2 € P o-^d let xj = 7r(pj), j = 1,2. In case
p^ = p2 = p we further assume that x\ (= x^) is not a fixed point of <f).
Then:

1. IfH(x\} = E = H(x^), and x\^ x^ lie on the same orbit of<^, then
the sums

00

(12) ^^(^-E))^(pi)^(p2)
1=0

admit an asymptotic expansion as k —> oo of the form
00

^ ̂  ̂ (De^fc"-1/2-',
r 1=0

where the first summation is over the real numbers r such that (f)r{x'z) == x\.
The coefficient Cr,o is computed in Theorem 2.7 and the angles Or are
defined in (23).

2. If at least one ofx\^ x^ does not belong in H'1^) or these points
are not connected by any trajectory of of), then (12) decreases rapidly in k.

Remark. — The sum (12) measures the correlation between two points
of eigenfunctions in a band of of energies whose width decreases as 1/k. Our
result demonstrates a certain coherence among eigenfunctions at points
which are related to each other classically, and shows that there is no
correlation otherwise. For pi = p^j the sum is the average of the probability
distribution function over a narrow band of energies.

Our second result concerns the trace of (p(k(Tk — E)) and is the semi-
classical trace formula (Gutzwiller's formula) adapted to the present setting
(for a more detailed and more general statement see Theorem 4.2):

THEOREM 1.2. — Under certain assumptions on cleanness of the fixed
point sets of (j) on H^^E) (see ^4), the following weighted trace of Sk
admits an asymptotic expansion:

00 00

(13) ^>(fc(^-£;)) ~ ̂  ̂ C,,^)^^-1)/2-',
1=0 jeJ 1=0

where J indexes the connected components of the set of pairs (re, r) €
H~1(E) x R with <^r(^) = x, dj denotes the dimension of the j-th
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component, and the angles Oj are the holonomy angles for the closed
trajectories. The coefficients C^o(^) are described in §4.

The proof of Theorem 1.1 appears in §2 and that of Theorem 1.2 in §4
where we also discuss Weyl-type estimates. §3 is devoted to the important
case when X is an integral coadjoint orbit of a compact Lie group.

A Remark on Notation. — The calculations we are about to embark
on are plagued by a profusion of powers of 27T which depend only on the
dimensions of the manifolds involved. Rather than keeping track of such
powers at each step, we have opted to ignore them until the end. Thus in
the proofs presented in Sections 2 and 4 the displayed equations are to be
taken modulo a (multiplicative) power of 27T. The correct constants in the
Theorems are calculated by considering an example: the harmonic oscillator
for Theorem 4.2 and the well-known trace formula for Theorem 4.2.

Acknowledgments. We wish to thank Yves Colin de Verdiere and the
referee for helpful criticism of earlier versions of this paper.

2. Proof of Theorem 1.1.

2.1. Existence of the expansion.

We begin with some preliminaries. Let H e C°°(X,'R) be the
Hamiltonian on X, which we will consider as a function on P which
is 5'1 invariant, let MH be the associated multiplication operator on
L'2(P) and let S = IIM^IL We are interested in the Toeplitz operator
DoS = ILD^MjfIL By Lemma 12.2 of [BG] we can choose a self-adjoint
first order pseudodifferential operator Q : L2^) —> L2^) such that

(14) IIOn = DeS and [Q, II] = 0.

We note that in many cases of physical interest, the line bundle L is
trivialized off a divisor and therefore the space Hk can be identified with
a space of analytic functions. The Hamiltonian and observables of interest
are given as differential operators preserving analyticity. This means that
often the operator Q above is given at the outset. We are given in
particular its principal and subprincipal symbols. The former of course is
the corresponding classical observable and the latter is related to a choice
of operator ordering.
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For t e M define the operator

(15) B = e-^^^n = e-^II,

fundamental solution of the equation on 7^, D^ = —Q^. In terms of the
eigenvalues and eigenfunctions of S, the Schwartz kernel of this operator,
considered as an operator from C°°{P) to C°°(R x P), is

(16) B(t^q) = We-^ ^(p) ^(g).
k=0j=0

Define also the operator F : C§°(R x P x P) -^ C§°{S1) by

(17) F : f(t^q) ̂  ^e^^tE-e^{t)f^Re{pl)^2) d^dOdt,

where ^p is the test function and p\, p^ € P are two points of P (the ones
appearing in the statement of the theorem), and R denotes the natural
action of S1 on P. Using the fact that (p has compact support, we can
extend the domain of F to include distributions such as B. Finally, define
T = F(B). Explicitly,

00 00

(18) T{s) =W ^k(E^ - E)) ^(pi) ^(P2) e^.
k=0 i=0

Observe that the k-th Fourier coefficient of T, namely

(19) i>(̂  - E)) ̂ ) ̂ )
1=0

is precisely the k-ih term of the sequence appearing in the left-hand side
of Theorem 1.1.

The strategy of the proof of the existence of the asymptotic expansion
is the following. We will prove that B is an FIO of Hermite type, see
[16], that F is a standard FIO (this is practically obvious), and will verify
the hypotheses of the composition theorem of [8]. It will follow that Y
is a Lagrangian distribution on the circle, which immediately implies the
existence of the asymptotic expansion of its Fourier coefficients.

We now proceed with the details. Recall that Z C T*P by is the
symplectic submanifold Z = {(p, rap)',p € P, r > 0}, where a is the contact
form. T*P possesses an R"^ action, whose generator is denoted c^. T*P also
inherits an S1 action from the S1 action on P, which we again denote by
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Re, 0 € R/27rZ. Let 9e be the infinitesimal generator of this action. There
is a Hamiltonian function J : T*P —> 1R generating this action, which
restricted to Z is given by J(p, rap) = r.

Let p denote the projection Z —> P. To H we associate the Hamilto-
nian jy : Z —» R given by

(20) H{z) = J{z)H{p{z)).

Let {(f)t} denote the flow on X associated to H and {0} the flow on Z
associated to H^ with 5 and 5 the respective infinitesimal generators. Note
that H is invariant under the S1 action and homogeneous of degree 1
under the R4' action. In particular, <^ preserves J . We can also define a
"horizontal" flow on Z by lifting the flow ^ to P horizontally, and then
extending this to a flow (f)^ on Z by requiring that J be preserved. Let 2/i
be the infinitesimal generator of this flow. A simple calculation shows that

(21) ^{z)=R-tH^)(4>t{z))

(where again Re denote the natural action of 6'i on P) and, correspondingly,

(22) 2^=S-^9e.

By the homogeneity of H^ cj(5, 9r) = dH(Or) = H, but a;(S^, Or) = 0. At
this point we can explain the angles Qr appearing in Theorem 1.1. If r is
such that ^(^(^2)) = 7r(pi), then there exists Or such that

(23) Re^W =Pi.

Our first result involves the moment Lagrangian:

(24) E = {(^, H{z)', (f)t(z)', z); z e Z . t e R } C r*R x Z- x Z.

Note that S is an isotropic submanifold when considered as a subspace of
r*(RxpxP).

Our first results will involve the spaces of Hermite distributions of [8].
Recall that in op.cit.^ Boutet the Monvel and Guillemin define spaces of
distributions I\M^ C) on a manifold M, for any conic isotropic submanifold
C C T*M \ {0}. In case C is actually a Lagrangian submanifold, these
spaces coincide with Hormander's spaces of Lagrangian distributions, [20].
There is however a discrepancy in the definition of the order: here we use
the convention of [8].
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LEMMA 2.1. — The Schwartz kernel, T, of the fundamental solution
of the equation D^ = —Q'0, (16), is in the space I 1 / 2 of [8]:

(25) B € J1/2^ x P x P, S).

Proof. — Let A denote the Schwartz kernel of the operator e"^ and
/C denote the kernel of IL Thus B = A o /C. By [DG], Theorem 1.1,

(26) ^er^^ORxPxP, C),

where C is the moment Lagrangian for the flow of the symbol of Q on T*P.
As mentioned here we use the convention of [8] for the order of a Lagrangian
distribution, which in the present case differs from that of Hormander by
the addition of (dim Rx P x P)/4. We also have, by Theorem 11.1 of [8],

(27) /CeJ^PxP.Z^Z),

where Z ^ Z :== {(;z, z ) ; z C Z }. The fiber product diagram

F ^ C x ( Z ^ Z )
(28) [ [

r*p^r*p ^ r*pxr*p
is clean with zero excess (see [8], page 44, for definitions). Also, because
of (14) the restriction of the symbol of Q to Z is given by the function
H(p, rap) = rH{p). Thus, C o (Z ^ Z) = S, and by Theorem 9.5 of [8],

(29) AoJCC j(^+l/2)+l/2-(dim P)/2^ x p x p^ S),

yielding the result above, n

For j = 1,2 define Lj = T*P. Note that each Lj is a Lagrangian
submanifold of T*P, and that Lj H Z is one-dimensional with tangent
space spanned by Qr' Define the Lagrangian relation
(30)
F = {((9-^,J(mi);^EJ(mi);^(mi);m2);t€R,0eM/27rZ,m, € LJ

C r*S'1 x (T*M x T*P x T*P).

LEMMA 2.2. — The Schwartz kernel of F, JCp, is in the space

(31) !CF € J2^1^1 x R x P x P,r).
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Proof. — We can write fOp locally as the oscillatory integral

(32) ICF(s^q) = ̂ (t) ( e^^^^d^ded^d^'^

where

(33) ^(5, t,p, q, ̂  Q, ̂  ̂ /) = K(S + tE - 0) + ^ ' ( p - Re{pi)) + ^'•{q - ̂ 2).

To find the associated Lagrangian relation we first define the critical set

(34) C^ = {{s,t,p,q,^e^^f)•,d^=d0^ =d^=d^^=0}.

The Lagrangian relation is the image of the map C^ —^ T*(5'1 x R x P x P)
given by

/^ . , n <- <-/\ ( .L 9^ 9^ 9ip 9^\(35) (^,<^,^,0^(^,,;^^^,^J.

In our case,

(36) C^={(0-tE^pre^^p^^0^^f)}^

and the relation is easily seen to be the r defined above.

In computing the order of tCp as a distribution, there is a slight
technicality because ^ is not homogeneous in the phase variables. To
remedy this problem, we introduce a new variable a = K0. Then ^ is
homogeneous of degree one as a function of (^, a, <^, ̂ /), and

(37) 1CF{s,t,p,q) = ̂ (t) [ e^^'^^^di^dad^d^.

The relationship between the order of the distribution, m, and the degree
of homogeneity of the amplitude, s, is m—N/2 = s, where N is the number
of phase variables. So in our case, m = —1 + (4n + 4)/2 = 2n + 1. n

PROPOSITION 2.3. — The composition F o E is non-empty if and only
if pi and p^ both lie in the energy surface H'1^) and 7r(pi) = ^(^(ps))
for some r. If these two conditions are satisfied, then

(38) FoS = {(^,r);^(p2;ra^) = Re(p^ra^)} C T*51.

Proof. — The proof is essentially immediate. The only point to make
is that the the singularities occur at points 6 — TE for the flow 0-r, which
becomes simply the rotation angle 0 under the flow <^, in view of (21).
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COROLLARY 2.4. — If pi and p2 are not connected by a trajectory of
2, then the sum (19) decreases rapidly in k.

Proof. — This follows because WF(T) C F o S, and if this is empty
the Fourier coefficients of T are rapidly decreasing. D

PROPOSITION 2.5. — The nber product diagram

T -. F
(39) i [ p

s ^ T*R x r*p x r*p
is clean provided 7r(pi) is not a nxed point of the flow ofHonX. The excess
of the diagram is 2n. (Ag'ain we refer to [8], page 44, for definitions.)

Remark. — If pi ^ p^, and one of the two is a fixed point, then
there does not exist a r such that 7r(pi) = ^(TT^))? so F o S = 0 in this
case. Thus the only situation for which the cleanness becomes a restriction
occurs when pi = p^ is a fixed point.

Proof. — Recall that definition of the fiber product is that

(40) ^ = { ( ^ ) e r x S ; p(^)=a}.

The two conditions defining a clean fiber product diagram are that T be a
submanifold of r x S and that the linearized diagram

T^JF -^ r^r
(41) [ [ dp^

T^ ^ r^(r*R x r*p x T*P)
where 7 € F, a € E, and ^(7) = (T, must again be a fiber product diagram.
In the diagram (39), we have

(A9\ T = {((^-^^);^^(^);^(^);^,(T,^);^(^);^);[ ) H{z) = EJ{z\ z e 1/2 n z, (t)r(z) e Wi)},
which is clearly a submanifold of F x £. Let (7, a) e .77, such that the image
of 7 under the natural projection Y —^ T*S1 is {6—rE\ 1). For convenience,
we adopt the notation

(43) r = r^r, s = T<,S,
and similarly denote the tangent spaces of Z and Lj. Since T is one
dimensional, to prove the second cleanness condition it suffices to show
that (T^e-rE-^^S1) C S) U F is one dimensional. Now,

(44) S = {(s, cLH )̂; s5 + d(j)r(v)\ v)', v e Z . s e R},
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and
(45)
F = {{i^-sE,dJ{^s',EdJ(^)^QQ+dRe(^Y^ ^ s ' e R,/^- C LJ.

Thus (r^_T£;.i)(T*6'1) C S) D r is defined by the conditions:
(46)
s = s', dH(v) = £" dJ(/^i), 55 + d(f)r(v) = dRe^i) + /^9e, ^ = /^2«

The last condition implies v = /^ = a^r for some a 6 M. Note that
dRe(Or) == d(j)r{9r} = 9r- Thus /2i = a0r also. The second condition is
thus satisfied. The third condition becomes 55 = KOQ. Since 5 7^ 0 at pi
by assumption, this implies K = s = 0 (and thus s' = 0 also by the first
condition). Therefore the intersection is one-dimensional. D

LEMMA 2.6. — The distribution, T, is a Lagrangian distribution on
the circle. More precisely

(47) r{s)eIn{s\^o^).

Proof. — The result follows directly from Proposition 2.5 and Theo-
rem 7.5 of [8]. D

Theorem 1.1 is an immediate corollary of this theorem.

2.2. Calculation of the leading coefficient.

In this section will state and prove a theorem describing the coefficient
Cr,o- We must first deal with a few preliminaries. To a symplectic vector
space V, we associate a Hilbert space H(V) and subspace Hoo(V) C H{V)
as follows. Define H(V) to be the representation space of the Stone-von
Neumann representation of V (D R as a Heisenberg algebra (for general
background on this see [14]). Let Hoo(V) be the set of smooth vectors for
this representation. H{V) can be identified with Z/2^1111^72), and Hoo(y)
with the space of Schwartz functions S^R^^2). We denote the dual of
H^(V), identified with the space of tempered distributions Sf{Rdimv/'2),
by H^(Vy.

Let T^P denote the horizontal subspace of TpP (by definition the
null-space of a). T^P is naturally identified with T^^X, so the Kahler
structure on X gives us a positive definite Lagrangian subspace Ap of
T^P 0 C, namely the type (1,0) subspace. We can think of this subspace
as an abelian subalgebra of the complexified Heisenberg algebra, and so it
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acts on HOO^T^P)^ by extension of the Stone-von Neumann representation.
The kernel of the action of a positive definite Lagrangian subspace is, by
Proposition 4.2 of [8], one-dimensional, and in fact consists only of smooth
vectors. We will denote it by Wp:

Wp := kerAp in the Stone-von Neumann representation C Hoo(T^P).

This subspace is uniquely determined by the Kahler structure of X,
and it essentially defines the symbol of the Szego projector II as a Hermite
FIO. More precisely, the symbol of the Szego projector at (a? , a?) can be
identified with the orthogonal projection,

H(T^P) -^ Wp,

see Theorem 11.2 in [8]; for the expression of the symbol of the Szego
projector in the language of Fourier integral operators with complex phase
see [9]. We note that there is not, in general, a natural choice of normalized
generator of the subspaces Wp, p € P. (We will see however in §3 examples
where it is possible to make a canonical choice of generators.) The possible
choices for each point p form a circle bundle over P, corresponding to the
possible choices of phases of normalized generators of Wp.

Let H € C°°(P) be 5'1-invariant, Q be the pseudodifferential operator
of (14), and more generally resume the notation of §2.1. Let pi, p^ be two
points on P such that <^(p2) = Pi 5 where <^ is the horizontal lift of the
Hamilton flow of H considered as a function on X. To state a formula for
the coefficient C^o of Theorem 1.1 we need to fix a normalized section of
the bundle W := U Wp over the trajectory of <^ joining p2 to pi. Denote
the value of this section at p by e?. The differential of the flow on X gives
a symplectic map d(f)r '- T^ P —> T^ P. By continuity we lift this to an
operator in the metaplectic representation, Mr : Hyo (T^ P) —> Hyo (T^ P).
Let 5 be the infinitesimal generator of the flow on X. Then 2 acts on
H(T^P) (and hence H^(T^P)) via the Heisenberg representation. The
projection from Hoo^^P) to (generalized) vectors invariant under S is
defined by

•oo

PEW = fv)= \ e^vdt.

With these ingredients we can define a function, c(^), on points of the
trajectory, as follows. Let q be the symbol of Q, which generates a flow on
r*P. Since [II, Q] = 0 this flow preserves Z and the symplectic normal of
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Z, which is canonically isomorphic to T^P. Under this identification, the
flow of q acts on T^P (g) C in such a way as to map Ap to A<^(p). Thus
the corresponding metaplectic map takes e? to a multiple of e^(p). We can
thus differentiate the section e? by 5g, the infinitesimal generator of this
flow. We then define c(t} by

(48) ^e^(p) =zc(^(p).

THEOREM 2.7. — With notation as above, the first term in the
expansion is

c^ = 2^(MT-l^l^(^)) exp{-zr(<7sub[0]+c)dt},

where crsub[Q}(t) = <Tsub[0](<MP2,o'p2))-

-RemarJcs.

1. Once can check directly that the expression (49) is independent of
the choice of section e. Indeed the phase dependence of the inner product
in (49) on the choice of section e is cancelled by the exponential of the
integral of c(t). Thus the final result only depends on Q and the path.

2. The appearance of the subprincipal symbol of Q is the manifes-
tation of a quantum mechanical ordering problem. The prescription for
obtaining Q from H reflects the anti-Wick ordering induced in quantiza-
tion by Toeplitz operators. As we have remarked above, however, in the
physical situations we typically start from a knowledge of Q rather than
H. (This is the point of view adopted in §3.)

3. In certain cases there exists a global normalized section e of the
complex line bundle, W = U Hp, and then the function

(50) <Tsub[Q]+C

(where c is defined as above) is defined in [8] ((11.6)) to be the Toeplitz
operator subprincipal symbol of T, where T == ILD^MQII == TIQI1. We
will see in Section 3 a situation where a global choice of e is possible, see
Lemma 3.5. When the section e exists globally, the function asub[Q] + c
only depends on the choice of section e and on the Toeplitz operator T.

We now turn to the proof of Theorem 2.7, which amounts to the
computation of the symbol of T at a point of F o S. Linearize the fiber
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product diagram at a particular point of S and F as in the proof of
Proposition 2.5. The symbol of T at the point of localization is a half-
form on r o S. Since this space is naturally identified with M, it possesses
a canonical half-form. The leading coefficient (for a particular r) in the
expansion is just the symbol of Y divided by this half-form.

Let us consider again the Schwartz kernel B of the fundamental
solution of the equation D^ = -Q^ as in §2.1. The symbol of B
is a symplectic spinor on S. Recall that the space of symplectic spinors
associated to an isotropic subspace S is given by [G2]

(51) Spin(S) = A172^ 0 H^t^/t).

The symbol of F is simply a half-form on F, as r is Lagrangian.

The calculus of Hermite symbols used to compute the symbol of T is
described in the first section of the Appendix. Let W = Ta (T* (R x P x P)),
and define UQ,U\,U as in Definition A.I. U is isotropic by construction.
The dimension of U\ is the excess of the diagram (39), which is 2n. The
dimension of UQ is the dimension of the fiber of the projection of T through
r to T*5'1, which is zero. Thus UQ = {0}, implying dim U = 2n also. Now,
dim S = 2n + 3 and dim W = 8n + 6, so dim S^/S = 4n. Therefore, U is
Lagrangian in S^/S. The Kostant map yields the pairing

(52) A172^ ̂  ̂ oc^/S) -^ C.

The symbol map in the present case is therefore slightly simpler than the
more general version given in the Appendix. The exact sequence (126) gives
a half-form map

(53) A172? ̂  A172^ ̂  A172^ o s) 0 A172^
which when combined with the Kostant pairing yields the full symbol map

(54) A^r 0 A172^ ̂  H^/t) -^ A172^ o s).

To describe the symbol of B, it is useful to make the following
identification:

LEMMA 2.8. — There is a natural symplectomorphism

(55) t^/t^T^PxT^

where T^P denotes the horizontal tangent space of P (the null-space of
a).
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Proof. — The spaces S, {(0,0; w; 0); w € ^(Z)-1-}, and {(0,0; 0; w);
w € Z"1} are linearly independent, and their total dimension adds up to
6n + 3 = dim W - dim S. Therefore,

(56) S-1- ^ E C d(j)r{Z)1- e Z-^

It is straightforward to see (for instance by using Darboux coordinates),
that the projection of Z1- onto Tp^P is a symplectomorphism from Z1- —>
T^P. The corresponding statement of course holds true for d(f)r{Z)±. a

Let Cp be a section chosen as described at the beginning of this
subsection. The symbol of II at p^ is

(57) e^ 0e^0 VdZ e ̂ oo(T^P) 0 ̂ oo(T^P) 0 f\^\Z ^ Z),

where, abusing notation slightly, dZ denotes the volume form that Z ^ Z
inherits from the symplectic structure on Z. Note that S possesses a natural
volume form which is simply the combination of the Liouville form on Z
with dr.

PROPOSITION 2.9. — Under the identification H^t^/t) ̂  H^(T^P)
<^)Hoo(T^P), the symbol ofB at the point of linearization is
(58))

exp{-z^(asub[0]+c)dt}v/dS0^0ep; € ^t^H^T^P^H^T^P).

Proof. — The operator B satisfies the equation

(59) P^"^]^05

with initial data II. The symbol of B is completely determined by the
associated transport equation, see [8], with initial data the symbol of II.
This yields the result. D

To define the symbol of F, note first that L = T^P possesses a
half-form coming from the metric. Thus T possess a canonically defined
half-form, which we label VdT.

PROPOSITION 2.10. — The symbol ofF at the point of linearization is

(60) ^(r)VdT e A172?.
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LEMMA 2.11. — Under the identification given in Lemma 2.8,

(61) U^{(sEh+d4>r{v),v)^ veT^H-^E^.seR}.

Proof. — We compute directly that
(62)

Ui = {(s ,0;s2+d(^( 'y)+wi;^+w2); 'y C Z,W2 € Z-^wi C ̂ (Z)-^
dH(v) = dJ{v) = 0, z> + W2 € La, s2^ + d^(v) + wi <E dJ^(Li)}.

Note that dRe(L-^) = d(j)r(L'z). For any v e Z such that dJ(v) == 0
and any W2 € Z"1, the condition that v + W2 € Z/2 implies that ^ € T^ P
and that the image of W2 under the identification used in Lemma 2.8 is v.
The further condition dH{v) = 0 restricts the image of w^ to the energy
surface. The same reasoning applies to the relation between s5^ + d(f)t(v)
and wi. D

There is a natural volume form on U, obtained by combining the
Liouville form on the symplectic normal to R5 with ds and the canonical
volume form on MS.

LEMMA 2.12. — The image of product of the canonical half-forms on
r and S under the map (53) is the product of the canonical half-forms on
F o S and U.

Proof. — As explained above, this map comes from the exact sequence

(63) o -^ roE-^ re s -^ (^-/Ui) e u -^ u -^ o.

Note that all of the spaces in the sequence have canonical half-forms. The
computation simply amounts to writing down metabases corresponding to
these half-forms and taking the square root determinant of the metaplectic
transformation that relates them. The calculation is greatly simplified by
dividing the problem up into three independent sectors: the symplectic
normal to MS, the space spanned by 9r and QQ^ and the space spanned
by 2 and its symplectic partner. The second and third sectors are easily
seen to contribute factors of 1. The first sector contributes the square root
of the restriction of 0r* to the symplectic normal to the flow. Since this
metaplectic map is defined by continuity from the identity, the square root
is 1. D
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PROPOSITION 2.13. — The Kostant pairing of e?^ 0 ~Cp^ with the
natural half-form on U yields

(64) (AC^.P^epJ).

Proof. — Choose a symplectic basis for the symplectic normal to R5
in T^P, and fix a vector 3j_ for which c<;(5, <9j_) = 1 and which is orthogonal
to the rest of T^H^^E). This gives the identifications

ff\^} r^h P ^ IR?271"2 ̂  JR?2 7-7' /T^ P^ ^ ^IR'71""1 o^ TR'^^00^ ^p^-r — K tb iK , noo^l^r) — O^K tbK^.

With the d(/)r and the metaplectic quantization Mr, we can make corre-
sponding identifications of T^P and H^(T^P).

Choose coordinates so that
(66)
T^P^T^P^{(x^y^w^z^x^y^w^z^x^yj eR^.w^zj 6 R},

with the obvious symplectic pairing. Then e?^ 0 e?^ becomes a function
f(x-i,wi)g(x^,w'2), and

(67) U = {(.r, y , Wi, 0; a:, y , w^, 0)},

(note that w is the coordinate corresponding to 5). According to Kostant's
theorem, the element h{x\,w^x'z,w^) of^R71"1 © R) associated to U is
the solution of
(68)

/ r\ r\ \

(x^-X2)h=0, [7^~+7^~)h=o^ wi / i=0, W2/ i=0 ,\9x^ Qx^)

namely,

(69) ^(a;i,wi;a:2,W2) = ^(a'2 - ̂ i)<5(wi)^(w2).

Thus the pairing gives

(70) Jf^'g^d271-^.

To write this pairing in an invariant way, note that

(71) f f(x, 0)^0) d^^x = ( F f{x, w)e^twg{x, w) d^-^x dw dt.
J J J — oo
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Also note that the action of 2 on Hoo(T^P) in the Heisenberg rep-
resentation is 5-/(a;,w) = wf{x^w). Thus (70) is the inner product
claimed. D

Now, combining Propositions 2.9 and 2.10 with Lemma 2.12 and
Proposition 2.13, we obtain Theorem 2.7.

3. Co-adjoint orbits.

In this section we discuss the case when X is an integral co-adjoint
orbit of a compact semisimple Lie group, G. We will show that on the
symmetric orbits (defined by the condition (87)) one can define a global sub-
principal symbol for Toeplitz operators, in the sense of [8], Chapter 11 (see
(50) and the discussion around it). Moreover, for the symmetric elements of
the universal enveloping algebra of^ (i.e. those that are symmetric products
of right-invariant vector fields) this subprincipal symbol is equal to zero.
For such operators the conclusion of Theorem 1.1 simplifies considerably.

3.1. Preliminaries.

Let T be a maximal torus in the compact connected Lie group G,
and let t C Q be its Lie algebra. Choosing an Ad-invariant Euclidean inner
product on 5, ( , ) , we will identify adjoint and co-adjoint orbits. Let us fix
an integral element cf) € t, and let X denote the (co) adjoint orbit through
X. We need to briefly recall how the pre-quantum line bundle of X and its
K abler polarization are defined.

Let 00 the Lie algebra of the isotropy subgroup of 0, G^:

(72) ^ = { A e 0 ; [ A , ^ ] = 0 } .

Since V A, B € ̂  {(f), [A, B}} = -([A, 0], B) = 0, the mapping

(73) A^z^ .A)

is an infinitesimal character of g^. The integrality assumption on ^ means
precisely that this infinitesimal character exponentiates to a character

(74) x : G^S\
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Define next

(75) H := ker(x),

and let I) denote its Lie algebra. Therefore

(76) ^) = {A € 0; [A^] = 0 and (A, 0) = 0}.

The pre-quantum line bundle of X is then the homogeneous space

(77) P := G/H.

LEMMA 3.1. — 1. P has a natural structure of S1 bundle over
X ^ G/G^. The S1 action is induced by the right action ofexp(^) 022
G, which descends to P.

2. Consider (/ ) as an element in the dual Q* of the Lie algebra of
G. Then the left-invariant form defined by (f) descends to a one-form on
P, which is a connection form. Its curvature is the canonical symplectic
structure on X.

Next we discuss the complex structure on X. Let Q<^ denote the
complexification of Q, and consider the root space decomposition

(78) flc = tcC Q) L^.
Q^R

Here R is the set of real infinitesimal roots a : i —> R, a ̂  0, and as usual

(79) L^ = {A € fie ; VB e tc [B, A] = m(B)A}.

Consider next the subsets of R defined according to the sign of the roots
on (j)

(80) R^ = { a e . R ; a ( 0 ) > 0 } , R^ = {a C ̂ ; a(^) < 0},

and let

(81) < = (]) L,.
aCR^

Observe that

(82) ^ = t c C ([) L^
aCR;aW=0
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The complex structure on X is induced by this decomposition of flc, viz.

(83) 9C -^eA^-C^.

The following is known.

LEMMA 3.2. — The two Af's are Lie subalgebras of'Q(^.

It follows that

(84) T^X 0 C = sc/(0^ ̂  C) = A^ CA^-.

PROPOSITION 3.3. — The adjoint action ofG^ preserves the decompo-
sition (83), and therefore the decomposition (84) extends to a G-invariant
almost complex structure on X. This structure is in fact integrable.

The integrability follows from the fact that the A/''s are Lie subalge-
bras.

The complex vector space A/^ has a natural Hermitian structure,
namely

(85) h{A,B) = z ^ , [ A , B ] ) .

(Here the pairing ( ,) is extended to g^ complex-bilinearly.) The imaginary
part of the Hermitian structure is precisely the natural symplectic structure
on X, induced by the bilinear form on Q

(86) (A,B)^(0,[A,B]).

We are identifying t with its dual using the inner product, and therefore
we consider the roots as elements in t.

LEMMA 3.4. — The action of G^ on A/^ is unitary. The action of H
is a special unitary action if (f) is proportional to the sum of the (^-positive
roots,

p^ := ^ a.
ae^

Proof. — The unitarity of G^ on jVJ" is trivial to verify. The
infinitesimal character of this action is precisely p^ (T is a maximal torus
of G^), so this character vanishes on () D t if (p is proportional to p^. D
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For definiteness, we'll take henceforth

(87) (f> = P^'

Although we won't need it, we mention that this means precisely that the
orbit X through (f) is a symmetric space of G. From our point of view the
advantage of orbits of this type is that on them one can globally define
the subprincipal symbol of any Toeplitz operator, as discussed in the third
remark after Theorem (2.7).

LEMMA 3.5. — Let X be the coadjoint orbit through (87), and P —> X
its prequantum circle bundle. Let Z C T*P be as in §2. Then there is a
left-invariant section, e, of the bundle H^Z^-) such that Va G Z the spinor
part of the symbol of the Szego projector at a is e^ 0 ~Ca.

Proof. — Let o € P = G / H denote the coset of H and denote the
connection form on P by a. As we saw in §2, one can identify by the
natural cotangent projection Z^ ^ ^ with the maximal complex subspace
in T()P, which in turn is Aft. Choose Co as the ground state of the harmonic
oscillator, with an arbitrary phase. For concreteness, let us realize the
metaplectic representation of Z ^ ^ ^ in the Bargmann space ofA^", and
choose Co to be the constant function one. The obstruction to being able
to extend Co to a left-invariant section is whether the action of H^ on
J\T^ followed by the metaplectic representation, leaves Co invariant. But it
is well-known that in the Bargmann space realization of the metaplectic
representation, special unitary maps act by translations, and therefore
they leave invariant the ground state of the harmonic oscillator. Hence,
by Lemma 3.4, Co is invariant under H^. D

Following [8] (page 85), we now define the sub-principal symbol of
Toeplitz operators in the Hardy space of P (see also (50)):

DEFINITION 3.6. — Keeping the assumptions and notation of Lem-
ma 3.5, let Q be a classical pseudodifferential operator on P that commutes
with the Szego projector, H, and let T = HQH the Toeplitz operator on
P with multiplier Q. Let the function c be denned as in the hypotheses of
Theorem 2.7, using the section e of Lemma 3.5 (see also [8], page 85; our
c is by definition —ic{Q) of formula (11.6) in op. cit.). Then we define the
Toeplitz subprincipal symbol ofT to be the function on Z

CTsub[0]+C,
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where o-sub[0] is the subprincipal symbol of the pseudodifferential operator
Q restricted to Z.

We will need the following.

LEMMA 3.7. — The subprincipal symbol of the Toeplitz operator with
multiplier Do = -i9/90, where o/90 is the infinitesimal generator of the
S1 action, is constant and equal to |||p^||2.

Proof. — Since De is of order one, the subprincipal symbol of the
associated Toeplitz operator is a function on Z homogeneous of degree zero.
Since that Toeplitz operator commutes with the G action, the function is
necessarily a constant. To evaluate it, observe that the pseudodifferential
subprincipal symbol of De is zero, and therefore the Toeplitz subprincipal
symbol is just the derivative of the section e with respect to the S1 action
on P. This is computed by considering the metaplectic quantization of
the adjoint action of exp(^) on A/^, as follows. Recall that the S1 action
on P = G/G^ is induced by the right action of exp(t^). Therefore the
derivative of the section e is minus the metaplectic quantization of ad^>|^/-+
acting on e. But, since the action of G^ on A/^ is unitary and e is the
ground state of the Harmonic oscillator, it is known that the result of this
action is simply

(88) -^Tr(ad^+),

which in this case is -1/2 < <^, p^ > (for example, this follows directly from
Proposition 4.39 in [Fo]). Recalling that we have taken (f) = p^ we obtain
the result. D

3.2. Theorem 1.1 for operators in the enveloping algebra.

We will now consider operators arising from the universal enveloping
algebra u of G, which we think of as the algebra of right-invariant differen-
tial operators on G. We recall (see for example [Dx] Ch. 2) that if Q € u
then we can uniquely write it in the form

(89) Q = Qs + Oi

where Qs is a sum of symmetric products of right-invariant vector fields,
each of the same degree as Q, and the degree of Qi equals degree(Q) -1. By
right invariance, the operators in u descend to operators on P = G / H and
they clearly form an algebra. Let Up denote this algebra of operators on P.
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Alternatively, Up is the algebra of operators generated by the vector fields
on P induced by the (left) action of G on P. Observe that, since the S1

action on P is induced by the right-action of a one-parameter subgroup in
G<^, every operator in Up commutes with the 5'1 action (by right-invariance
of the elements of u). Moreover, since the action of G on P commutes with
the Szego projector every operator in Up also commutes with the Szego
projector.

We next discuss symbolic matters. By right-invariance, the symbols of
the elements of u (considered as differential operators on G) are determined
by their restriction to T^G = g*. The map

(90) a : u->C00^)

has for image the complex-valued polynomial functions on 9*. On the other
hand, given Q € u, the corresponding operator Qp € Up has a principal
symbol (as a differential operator on P) which is a function on T*P. It is
homogeneous, and by S1 invariance, its restriction to Z D { J = 1} C T*P
descends to a function on X C s*. (Recall that J : r*P —> R is the
Hamiltonian generating the 5'1 action.)

LEMMA 3.8. — For every Q C u, the function induced on X by the
principal symbol of Qp is simply the restriction to X of a(Q), where a is
the map (90).

Proof. — Let P C T*G, be the annihilator of the vectors tangent to
the fibers of the fibration G —^ P. Notice that P is right-invariant under
the action of ft, and that there is a natural projection

(9i) TT : p -> r*p.
For every Q € u, the principal symbol of the corresponding operator in up
is the function on T*P which, when pulled-back by (91), agrees with the
restriction of the principal symbol of Q to P. On the other hand, we claim
that

(92) TT-^Z) = {(^,Ad;(r0)); g € G, r > 0},

where we are identifying T*G with G x Q* using right translations. Indeed
by left-invariance of Z and left-equivariance of TT under G it is enough
to verify (92) at the identity, which follows from the discussion around
Lemma 3.5. The lemma follows easily from (92) and the definition of a. n
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PROPOSITION 3.9. — For every Q G u, the subprincipal symbol of the
Toeplitz operator defined by Qp in the Hardy space of P is the function,
91, on Z induced by the principal symbol ofQi.

Proof. — By the equivariance of the section e, the subprincipal
symbol of the Toeplitz operators defined by the vector fields induced by the
action of G are zero. Using the symbol calculus for subprincipal symbols
(Proposition 11.9 in [8]), it follows easily by induction that the subprincipal
symbol of the Toeplitz operator induced by Qs is zero. D

Let Q € Up; we wish to normalize Q so that it has order one. For this
purpose we recall a construction found for example in [25]. Let A denote
the Laplacian on G associated to the bi-invariant metric. Then A is in the
center of u, and recall that

^(A+llpll2)^ ||A+p||2

where p is half the sum of the positive roots and TT\ the representation with
highest weight A. Using a suitable function of A, one can easily construct
an operator A\ with the following properties:

LEMMA 3.10. — There exists a first-order, invariant, self-adjoint
elliptic pseudodifferential operator Ai on P that commutes with the Szego
projector and with every operator in up and that defines the same Toeplitz
operator as DQ. In particular, the Toeplitz subprincipal symbol of A\ is
M2-

We now introduce the following notation. Define

(93) A := Ai - J \\p4\

Observe that the Toeplitz subprincipal symbol of A is zero. Next, for every
Q € Up of degree m and every k = 1,2,..., let

(94) T^ = life o Q o A1-771 o IIfc .

This is a first-order Toeplitz operator with same eigenfunctions as those of
IIfcQIIfc. Moreover, if

^) < ^ ^(fc)AI ^ • • • ^ A^

denote the eigenvalues of IIfeQn^;, with multiplicities, then the eigenvalues
of TA are simply

(95) ^-(t-lj/2)-- ^ l•••••*•
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THEOREM 3.11. — Let ̂  denote an eigenfunction ofUkQ^k with
(k\eigenvalue A" . Then the conclusions of Theorems 1.1 and 1.2 remain valid

in the present context. Moreover, in the formula for Cr,o of Theorem 1.2 one
has c = 0 and Osub[0] = 9i? ^he function of Proposition 3.9. In particular,
q\ = 0 ifQ is symmetric, i.e. if Q\ as defined by (89) is equal to zero.

Proof. — The proof is identical to that of Theorems 1.1 and 1.2,
applied to the Toeplitz operator TQ = II o Q o A1"771 o n where 11 is the
Szego projector of II. As for the calculation of the Toeplitz subprincipal
symbol of TQ, observe that the Toeplitz subprincipal symbol of A is zero
and apply Proposition 3.9.

4. The semi-classical trace formula.

4.1. Statement of the theorem.

The techniques of §2 also serve to prove the semi-classical trace
formula for the operator 5^. Given the setup of §1, let E be a regular
value of H : X —> M. The Hamilton flow (^ of H is said to be clean on
H~1(E) iff the immersions /, A

H-^E) xR
(96) I f

X -^ X x X
A

where f(x,t) = (x,(f)t{x)) and A(.r) = (x,x) intersect cleanly. Recall that
this in turn means that each connected component of the set

(97) V = {^r)eH-\E)xR',^(x)=x}

is a submanifold of H~1(E) x R and at every point (a-, r) C V one has

(98) T^V = {{v,6r)eT^H-l(E)xR^d((i)^Uv)^6T^=v}.

We will henceforth assume this is the case. To state the trace formula we
need to recall a known result:

LEMMA 4.1. — The holonomy function

^ ) : y —^ s1

{x, r) ^ exp(% ̂  a)
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where a is defined by 1 and the integral is along the trajectory of (f) with
between x and (f)r(x), is locally constant.

Let

(99) V = U ̂
jeJ

denote the decomposition of V into its connected components. Vj € J
denote by 1) the holonomy of the periodic trajectories in Vj and by dj the
dimension of Yj. We index the components above so that

(100) Vo = {(^ 0); x € H-1 {E)}.

We can now state the trace formula:

THEOREM 4.2. — Let A be a zeroth order pseudodifferential operator
on P commuting with DQ. Then, under the "cleanness" assumption above,
V(/? Schwartz function on the line with (p compactly supported we have the
asymptotic expansion

00 ___ 00

(101) ^<A^>(fc(^-£0) ~ ^^C,,,(o^) (^ fc^-D/^
j=o j'eJ i==o

where a is the function on X induced by the principal symbol of A and
Cj^(a(p) can be expressed as an integral

(102) Cj^) = / af>d^
^

where di^j is a natural density on Yj (more about it later). In par-
ticular, the leading term is O^71"1), with coefficient given by Co,o =
(27^)~n (^(0) fif-ifE^^ where di denotes Liouville measure.

4.2. The proof.

The proof follows the general outline of the proof of Theorem 1.1. To
lighten up the notation we'll first take A == I , and then observe that the
proof generalizes to A's as in the statement of the theorem. Once again
take B = e'^II, but now choose the Lagrangian FIO F to be

(103) F : f(t^q) ̂  [e^^tE-e)^t)f^Re(p)^)d^d0dtdp.
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Then T = F(B) is
00

(104) TOO = ̂  ̂  WE^ - E)^^
k=0j==0

yielding the asymptotics we need.

The Schwartz kernel of F is a distribution

(105) ICp C r^1/2^1 x M x P x P, r),

where the Lagrangian relation is
(106)
r = {((9 - tE, J(m); t, EJ{m)\ Re{m)', m); 0 e M/27rZ, t e M, m <E T*?}.

LEMMA 4.3. — The assumption made above (on the cleanness of the
Hamilton flow ofH on H~1(E)) guarantees that the composition ofV with
S, the isotropic relation of B, is clean.

Proof. — Recall that the isotropic relation of B is the moment
Lagrangian (24),

E = {(t, H{z), (j)t(z)\ z)', z e Z,t e R} C r*M x Z~ x Z.

By definition the composition of F with E is clean iff the pull-back diagram

T —> r
(107) i I

S —. r*(RxPxP)

is clean. We must prove this is the case assuming that (96) is clean. The
elements of the fiber product, F^ are precisely those elements of

T*(5'1 x R x P x P) x r*(M x P x P)

of the form

(108) ((0 - tE, J(z) ; t, E J ( z ) ; Re(z) ; z) ; (^ H(z) ; 4>t{z) ; z ) )

where z e Z and

(109) <f W = <^);(109) \H{z) = E J ( z ) .

We first must prove that F is a submanifold. Introduce the space

(110) Vp := {(p,t) e K x P ; (7r(p),t) e V}.
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This is a submanifold of R x P; indeed it is the pull-back of P to V
under the natural projection V —^ X. Now observe that there is a natural
diffeomorphism

(111) f :R~^ xYp —>r.

(More precisely, / is an immersion into F x S whose image is ^r.) Explicitly,
/ maps (r,p,^) to the point (108) where

and 6 is defined by the first condition (109), which indeed has a unique
solution modulo 27T by the periodicity of 7r(p). The second condition (109)
follows from the fact that 7r(p) € H~1(E). The verification of the tangent
space condition will be left to the reader, n

By the invariance of Hermite distributions under clean composition
with FIO's, we can conclude that

(112) T e (j)^/2^1, {(),.} xS4),
j'eJ<p

where

(113) Jy := {j e J ; ̂ (x,t) e Vj s.t. t e supp(^)}

is a finite set (by the compactness of the support of (p). This proves the
existence of the asymptotic expansion (101), and the leading coefficients of
the expansion are obtained from the symbol of Y.

We now turn to the calculation of the symbol of T at a particular
singular point. Let us fix henceforth a point (108) in F. As in §2, we will
denote the tangent space to a manifold Y (at an obvious point) by V.

The Appendix outlines the Hermite symbol calculus. Note that the
map defined there yields the product of the symbol of T with a density on
the vector space t/o, which is by definition the tangent space to the fiber
of the projection from F —> T*S1. The symbol computation is completed
by integrating this density over the (compact) fiber of this projection.

The key fact that reduces the calculation to the standard trace-
formula calculation on X is that T splits

(114) r = Ficrs
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where

(115) Fi C T(T*(51 x R)) x Z x Z and f^ C {0} x {0} x Z1- x Z^.

Fa is just the diagonal and carries a natural half-form induced from the
symplectic form on Z^. Both Fj are Lagrangian subspaces of the symplectic
vector spaces on the right-hand side of the inclusions in (115). Moreover,
thinking of the tj as relations from T(T*(S'1 x R x P x P)) to r(r*51),
the domain of Fs does not intersect E, so ?2 will not play a significant role
in the calculation. The details of this are presented in the Appendix.

The symbol of B is given in Proposition 2.9, and the symbol of F is
just (p times Vds 0 Vdt 0 (the canonical half form on r*P). We wish
to apply Proposition A.5 to the symbol map for F{B), where we take
Z = r(T*R) x Z x Z. In this case S^/S = Z1- = Z1- x Z-1, and we
take

(116) /3=exp{-% f (asub[0]+c)dt}e(g)e e H^Z^) (g) H^(Z^).

For p, we have the natural half form on f^ mentioned above, which means
the Kostant pairing amounts to nothing more than (e, e)fj^±\ = 1, so that

(117) {{3^}K = exp{-z ( (asub[Q] + c)dt^.

So by Proposition A. 5, we now have only to calculate the result of the
Lagrangian symbol map A. But now we can proceed as in the trace formula
calculation in the presence of circular symmetry in [18]. Namely, we move
the calculation down to X by considering symplectic reduction under the
S1 action. X is the symplectic reduction of Z (the quotient of Z D J~l(l)
by 6'1), and the flow of H is the reduced flow of H. Under these reductions
the space UQ is identified the tangent space to the fixed point component
Yj, resulting in the formula

(118) Coj(^)= I Wdv^
J y .

Coj(^)= / Wdy,,
y.

where

(119) dv, = e-'^^^^d^

and the measures dp,t are those appearing in Theorem 5.6 of [18]. As the
construction of the d^t was described in detail in this paper, we will not
repeat these details here.
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Instead we consider two important cases. First, the contribution from
YQ is simply

(120) Co,o(^) = (27^)-7l(^(0) vol^-^E)).

For the other case, suppose that Vj = (7,r), where 7 is an isolated,
closed trajectory of (f). Then, following [18], the contribution is

^ / - \ 1 - / \ -i F ^^b[Q]-\-c}dt TO
C^-^e J o < det(J-P,)^'

where TO is the primitive period of 7, and P^ is the Poincare map associated
to 7.

To obtain the result with an observable A as in the statement of the
theorem, repeat the above working with

BA = Ae-^II

where A is a pseudodifferential operator commuting with II and with Do
and defining the same Toeplitz operator as A. BA has the same microlocal
properties as B, except that its symbol is the symbol of B multiplied by
the symbol of A.

4.3. Weyl-type estimates.

In this final section we remark that the Tauberian lemmas used in [21]
and [22] also apply in the situation of this paper. We obtain immediately:

THEOREM 4.4. — IfE is a regular value ofH and the set of periodic
points in H~1(E) has Liouville measure equal to zero,

(121) D{^ ; | k(E^ - E) |^ c} = ——— Vo^H-^E))^-1 + o(A;71-1).

THEOREM 4.5. — If 7r(p) is either non-periodic or belongs to an
unstable periodic trajectory of period T^ and action S^ C 27rZ, then
(122)
^ | ̂ (p) |2 = 2cxCoftkn~l/2+o{kn~l/2) if7r(p) is not periodic

WE^-E^C
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and

(123) ^ |^(p)|2 = ^C^.o2811;^6^"-17^^"-1/2)
IJfc^-.Enkc I -r / \ • 7 . -i-J if 7r(p) is periodic

where Crj is as in Theorem 1.1.

The case where 7r(p) belongs to a stable periodic orbit can be treated
as in [23].

A. Appendix.

A.I. The calculus of Hermite symbols.

We begin with a review of the symplectic linear algebra that is at
the core of the calculus of Hermite symbols. We begin by recalling the
contents of §6 of [BG], where the reader can find more details. Let V and
W be symplectic vector spaces, r C V x W~ a Lagrangian subspace and
S C W an isotropic subspace. We think of r as a canonical relation from
W to y; r o E is an isotropic subspace of V. We assume given a symplectic
spinor on E and a half-form on F. Recall that if Hoo(V) denotes the space
of C°° vectors in the metaplectic representation of the metaplectic group
of the symplectic vector space V, the space of symplectic spinors on S is
^^(S^/S) (g) A172^)- The (linear) symbol map of the Hermite calculus
is a linear map

^(E±/s)0Al/2(s)0Al/2(^)->IAI(^o)^^oo((^oS)±/^oE)0Al/2(^oS).
(The space UQ, defined below, is the tangent space to a compact manifold;
the final stage in the symbol calculation is to integrate over this manifold
the density resulting from (124).)

Our first goal here is to describe the map (124). There are two
ingredients in its construction, which will be examined separately. First
however we must introduce some vector spaces.

DEFINITION A.I.

Uo := { w e s ; (o ,w)e r} cw,
(7i := { w e s ^ ; (o ,w)e r} cw,
U := U^/UQ = image ofU^ in S^/S.

The first ingredient in the symbol map is a canonical isomorphism:
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LEMMA A. 2. — There exists a canonical isomorphism

A^s^A172^) ^ A^i^A^o^A^roS).

Proof. — Let

p : r e s -^ £/i1-
be the map

p((z>,w),wi) = w-wi .
One can show that the image of this map is exactly U^-. In fact one has
two exact sequences:

0
i

Uo
I

(126) 0 -^ ker(p) -^ F C S -^ U^- -^ 0
I

FoS
i
0

The horizontal sequence is just the natural short exact sequence associated
to the surjection p. The first non-trivial map in the vertical sequence is

(127) w^((0 ,w) ,w) ;

observing that ker(p) = {{{v,w),w) e F C S } we see that the cokernel of
(127) is naturally F(S).

Having established the existence of these exact sequences the desiredi / r )isomorphism follows from the behavior of the functor A when applied
to short exact sequences and to direct sums.

Remark. — In case S is actually Lagrangian, then U\ = UQ and if we
use the fact that the symplectic form of W gives us an isomorphism

A^ - A^o,
the previous Lemma gives us an isomorphism

(128) A : A172^) 0 A172^) ^ lAK^o) 0 A172^ o S).

This is the symbol map in the Lagrangian case.

The second ingredient in the Hermite calculus is the following:
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LEMMA A. 3. — There exists a canonical map

^(E^/E) -^ A"172^) ̂  A172^) ̂  <s((r o E^/F o E).

Proof. — First we need the following fact:

CLAIM 1. — The subspace

U C E^/E

is isotropic, and there is a natural identification

(129) [/-^^(FoE^/roE.

Next we need a generalization of a map defined by Kostant.

CLAIM 2. — Let y (in our case we will take Y = E^/E) be a
symplectic vector space, and U C Y an isotropic subspace. Then there
is a natural map

(130) H^(Y) -. A"172^) ̂  H^U^/U).

The desired map follows from these two claims, if we recall that U = U\/UQ.

D

To obtain the symbol map (124), tensor the maps from the lemmas
and use the fact that the symplectic form on W defines a natural identifi-
cation

A'^i^A172^)^.

A.2. Reduction of the symbol map for the trace formula.

We will now consider the abstract setting of the symbolic calculation
in the proof of the trace formula. Let V, W, F, and E be vector spaces as
above, and let Z C W be a symplectic vector space. We make the following
additional assumptions:

1. E is a Lagrangian subspace of Z.

2. r splits as a direct sum F = Fi (B Fa, where

Fi C V x Z and T^ C {0} x 2^.
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3. FI is Lagrangian in V x Z~, and T^ = {0} x U.

(In the application to the trace formula, we take V = T(r*5'1),
iy=r ( r*(RxPxP)) ,and

z = r(r*R) x z x z,
where the right-hand side is written in the notation of §4, and all the
tangent spaces are taken at the appropriate points. Is is easy to check that
the listed assumptions hold for this case.)

We will need the following fact:

LEMMA A.4. — The composition

Z1- ̂  S-1 -^ S^/S

is an isomorphism of symplectic vector spaces.

We will identify below S^/S with Z1- in this fashion.

The assumptions listed above imply that

FoS = F ioS

is a Lagrangian subspace of V. It follows that the subspace U C S^S ̂  Z1-
is also Lagrangian.

Our goal in this subsection is to explain how the Hermite symbol
map, with S isotropic C W and T the relation from W to V, reduces to
the Lagrangian symbol map with S Lagrangian C Z and Fi the relation
from 2 to V.

To this end, fix [i € A1721^ and an element (3 € ^^(S^/S).
Contracting the symbol map (124) with them, we obtain a map

^A^^A172^!) - lAia^A^roS).

Observe that the assumptions above allow us to naturally identify

(131) ^CH^Z^) and ^ € A172^

Since U C ^"L is Lagrangian, we can form the Kostant pairing of e and /^,
which we will denote by < /3,/^ >K' With this notation the result we are
after is the following:
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PROPOSITION A.5. — Let X : A172^) ^ A172^!) -^ lAK^o) ^
A^^roE) be the Lagrangian calculus map (denned as in (128)) associated
to Z, E, andFi. Then

f^/3 =< (3^>K A.

The proof is simply to go over the definition of the map /^, the
main point being that the hypotheses on F,Z and E allow us to identify
the Kostant pairing in the definition of /^ with the pairing of e and p,.

B. The harmonic oscillator.

For the harmonic oscillator with n degrees of freedom the calculation
of the asymptotics of the sums of the squares of the lengths of the
eigenstates with a given eigenvalue (in the regime of Theorem 1.1) can
be done explicitly. We present here the highlights of the calculation.

We begin by recalling the abstract setting of the harmonic oscillator.
Let H be the Hilbert space of the theory, and Oj,a^, j = l,..,n be n
commuting couples of creation and annihilation operators on 7^, that is a^
is the adjoint of dj and

(132) [^,^*] = h

with all other commutators equal to zero. Let

N=f^a^a,.
j=i

Then the harmonic oscillator quantum hamiltonian is

S = N + h/2.

We recall that the spectrum of N (without multiplicities) equals the set
of eigenvalues { mh\ m = 0,1,2,. . . }. Zero is a simple eigenvalue; denote
by |0) a corresponding normalized eigenstate. Then all other normalized
eigenstates are obtained as follows. For every multi-index v = (1/1, . . . ^),
let

(133) \v} = ———=- W1 -Kr-IO)
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n
where v\ = v \ \ ' ' ' v^' ^d M = S ^j- Then N\i^) = |^||^). The eigenvalue

j=i
11/| is therefore degenerate, the degeneracy arising from multi-indices v '
with \v'\ = |^|. The multiplicity of E = |t/| can be shown to be equal to the
binomial coefficient (77 ,

Next recall that the theory above can be realized in the context of
this paper, that is, with Ji a space of holomorphic sections of a line bundle
and with S a Toeplitz operator. The underlying phase space is X = C71

and L = C71 x C with the hermitian metric |(^,C)| = ICIe"^1272. One can
then naturally identify 1-ik with the space

Hk = {/(^e-^/^C'-.C;

/ is holomorphic and / |/(^)|2 e"^12 dl < 00}

(Bargmann's space), where dl is Lebesgue measure. Here k = 1/h. Notice
that in the hermitian metric of L<s>k the constant function equal to one has
length e"^! /2. The operators aj and their adjoints are given by

1 9 , ,
a j =^ and ^ = z 3 '

All this implies:

LEMMA B.I. — The square of the length of the eigenstate \v) equals

zA71 j^M
K } K \^\^1 . . . \ z \^n ^-k\z[

~n) v\ }zl} pnl e(134) K^)!2^ - ——|^|^... |^|2-e

Let us now plug in (134) in the sum appearing on the left-hand side
of Theorem 1, where we replace the index j by multi-indices and

pk M+l^ = —,—k
are the eigenvalues of the harmonic oscillator. We obtain

(135) (^"E^H+I-^)^^!2"-^"6-"212-
\ / v \ /

Let us now specialize to E = 1 and take (p supported in (0,1)
and taking the value one at 1/2. Then (135) reduces to the sum over
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eigenfunctions with eigenvalue k, that is
(136)

©" E ^^-•••M-e-H2 =(1)^(1^0-^
v / i/;\i/\=k ' /

where we have used the multinomial theorem. Next estimate k\ by Stirling's
formula, k\ ̂  ^/2:Kkl^2kke~k, to obtain that (136) is asymptotic to

t.n-l/2
(137) "_^|^|2)^-fc(M2-^
v / T^X/^" ' /

A simple analysis shows that (l^l2)^""^^ -1^ is rapidly decreasing as
k —> oo unless \z\ = 1, in which case it equals one. Let's summarize the
conclusion:

LEMMA B.2.
v- ./ , .,2 (0(k-°°) if\z\2^!
^ |{^)| ~ ^ ̂

V H=fc v ^V^TT 1 '

We finish by observing that Theorems 1.1 and 2.7 have straightfor-
ward proofs in case of the harmonic oscillator. For brevity we will only
consider the case p\ == p2« Observe that, in general,

(138) f>(^ -£;)) |̂ )|2 = ̂  f We-^ktE{z\eitks\z)dt.

Here (p is the Fourier transform of (p and

(139) {z\w) = f^V e^e-^l2/^-^'2/2.
\7r/

is the reproducing kernel. It is well-known however that for the harmonic
oscillator e^tks\z} = e^/2 |e~^), and therefore (138) becomes exactly

(140) f^)71^- / ̂  eit/2 6-ifct£; e^l^l2^^-1) dt.

We can now apply the method of stationary phase. Assuming E 7^ 0,
the critical points are of the form t = 2'nC. with £ € Z, provided that
|^|2 = ^ (otherwise there are no critical points). The contribution from
such a critical point to the asymptotics of (138) is exactly

L.n— - ^t
(141) ——= —— e-127^ ̂ (2^).

^"V^Tr ^/E
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In order to compare this result with that of Theorem 2.7, recall that
M^n. = (-1)^, and that

e^dO)) = \-tE).

(See [14], formula (1.72) keeping in mind that different normalizations are
being used. To check our normalizations, observe that e^ must be unitary
and that {z\z} is independent of z). The state e is in this case the normalized
ground state of the harmonic oscillator, i.e.

e = Tr^l^O).

Together with (139) (with k = 1), this implies that

r°(e|exp^t = F e-W/^ = ̂  = ̂ .
J—00 J—00 l^l Fl

(Since the flow of 5 equals "complex multiplication by e^" we must have
that 121 = \z\.) If we are at a critical point as above we get

{M-^e\P^e} = V27T-.

Finally one can check that the angle Q^n is equal to —2^1E, so (138) agrees
with Theorem 2.7 (both the subprincipal symbol of Q and the function c
are zero in this case).
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