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CONTACT TOPOLOGY AND THE STRUCTURE
OF 5-MANIFOLDS WITH ̂  = Z^

by H. GEIGES and C.B. THOMAS

1. Introduction.

One of the fundamental problems in contact topology is the question
as to which manifolds admit a contact structure. A classical theorem ofLutz
and Martinet [15] asserts that every closed, orientable 3-manifold admits a
contact structure; indeed, any given tangent 2-plane field is homotopic to
a contact structure. The generalization of this result to highly connected
manifolds of arbitrary (odd) dimension was begun in [17], using explicit
realizations of such manifolds as Brieskorn manifolds and a connected sum
(i.e. 0-surgery) theorem for contact manifolds due to Meckert. General
surgical methods for contact manifolds were developed by Eliashberg [3]
and Weinstein [19], and in [4] these methods were used to show that every
closed, orientable and simply connected 5-manifold which admits an almost
contact structure actually admits a contact structure; again it is true that
in fact every homotopy class of almost contact structures contains a contact
structure (see below for the definition of these concepts). In [6] this result
was extended to essentially all highly connected manifolds.

In [6] an example is given for the construction (based on contact
surgery) of contact structures on certain non-linear quotients of S5 under
the action of a metacyclic group, and various ad hoc methods have been
employed by Lutz and others to construct special examples like the 5-torus
(cf. [5]). But the following result is arguably the first general existence

Key words : Surgery - Contact structures - Contact surgery - Involutions - Brieskorn
manifolds - Characteristic submanifold - Pin cobordism.
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statement about contact structures on non-simply connected manifolds (of
dimension greater than three).

THEOREM 1. — Let M be a closed, orientable 5-manifold with
fundamental group Z^ and second Stiefel-Whitney class equal to zero
on homology. Then M admits a contact structure.

The condition on w^M) will be discussed in the next section. Our
manifolds M are always assumed connected.

Theorem 1 is derived as a corollary of the following structure theorem
for 5-manifolds. First we need to describe certain model manifolds. Let V6

be the complex hypersurface in C4 given by the equation

4 + A + 4 + 4 = o,
where q e No (the natural numbers including 0). Define the Brieskorn
manifold S^ as the intersection of V^ with the unit sphere S7 C C4. The
orientation preserving involution T : E5 —> S5 given by

T(zo, ^1,^2,2:3) = (^o,-^i,-^2,-^3)

is fixed point free on S^. The manifolds S^/T with 0 < q < 8 provide nine
of our model manifolds. As we shall see, only the congruence class of ±q
in Zi6/± is of importance.

The tenth and final model manifold that we shall need is the quotient
Qo of S2 x S3 under the free and orientation preserving involution

((^o,^i,a;2:),(2/o,2/i,2/2,2/3)) —— ((-^o,-^i, -^2), (-2/0,2/1,2/2,2/s)),

where

((^0,^1, ̂ 2), (2/0,2/i, 2/2,2/3)) e52 x S 3 CR3 xR4 .

The map QQ —> RP2 induced by projection onto the ^-coordinates gives Qo
the structure of an fi^-bundle over RP2.

More information about the structure of the manifolds I^/r and Qo
will be given in Section 4.

THEOREM 2. — Let M be a closed, orientable 5-manifold with
fundamental group Z^ and w^M) equal to zero on H^ (M). Then M
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is obtained from exactly one of the ten model manifolds Qo or S^/T,
0 <: q <: 8, by surgery along a link of 2-spheres. More precisely^ M is
obtained in this way from

(i) Qoi^2(M)=0,

(ii) one ofI^/T, q odd, ifw'z(M) ̂  0 and the rank of^M) is even,

(hi) one ofS^/T, q even, ifw^{M) -^ 0 and the rank of^M) is odd.

The outline of this paper is as follows. In Section 2 we discuss some
basic notions of contact geometry, as well as the condition on w^(M) in
the preceding theorems. In Section 3 we collect together various elementary
remarks about surgery, and we describe the contact surgeries that we shall
need later on. In Section 4 we give explicit descriptions of the ten model
manifolds, show that each of them admits a contact structure, and deduce
Theorem 1 (assuming Theorem 2). Finally, Theorem 2 is proved in Section 5
by analyzing Pin cobordisms of 4-dimensional characteristic submanifolds
of 5-manifolds with a free involution.

2. Basic concepts.

A contact structure $ on a manifold M of dimension 2n + 1 is a
maximally non-integrable hyperplane distribution ^ C rM, which means
that any (locally defined) 1-form a with ^ = kera satisfies a A (da)" 7^ 0.

If ^ is co-orientable it can be defined by a global 1-form a, which is
then called a contact form. For n even and M orientable this is always
the case since the orientation of ^ defined by the symplectic form da | $
is independent of the choice of a local 1-form a defining ^. We then have
a splitting of the tangent bundle rM into the Whitney sum of a trivial
line bundle transverse to ^ and the symplectic and hence complex vector
bundle ($,da), which induces a reduction of the structure group of rM
to U(n) x 1. Such a reduction of the structure group is called an almost
contact structure.

The first and, in the case of 5-manifolds, only obstruction to the
existence of an almost contact structure is the third integral Stiefel-Whitney
class W3 (cf. [4]), i.e. the image of w^ under the Bockstein operator f3
of the coefficient sequence O-^Z-^Z-^-^O. The vanishing of Ws
is equivalent to the existence of an integral lift Ci C ^(A^Z) of
W2 € ff^M^), so the condition W^ = 0 is evidently necessary for



1170 H. GEIGES AND C.B. THOMAS

the existence of an almost contact structure : for c\ take the first Chern
class of the (U(n) x l)-bundle.

In the following discussion and throughout this paper, (co)homology
is understood with integer coefficients unless a different coefficient group
is specified. The universal coefficient theorem gives a natural epimorphism
H2{M^2) -»• Hom(^(M),Z2). Saying that w^M) is zero on H^M)
means that it maps to zero under this epimorphism. In that case
(and with 7Ti(M) = "L^) we may think of w'z{M) as an element in
Ext(Jfi(M),Z2) = Z2. The ten model manifolds MQ all have H^Mo) = 0
as our detailed description below will show, so for these we have

^(Mo;Z2) ^ Ext^Mo)^) = Z2.
The E^/r for q odd are homotopy equivalent to MP5, and the
diffeomorphism type is determined by the congruence class of q modulo 8,
the standard MP5 being represented by q = 1, c/. [7], [10], p. 332, [13]. In
particular, the T^/T with q odd all have non-zero second Stiefel-Whitney
class (since it is non-zero for the standard RP5 and because of the homotopy
invariance of Stiefel-Whitney classes). However, in this paper we do not
need to rely on these facts. In Section 4 we shall prove directly that
W 2 ( E ^ / r ) ^ O f o r a U g .

Observe that if w^(M) is zero on H^{M)^ then the fact that
W^ (M) == f3w2(M) = 0 follows from exactness of the Bockstein sequence
and naturality (with respect to group homomorphisms) of the splitting in
the universal coefficient sequence. So all these manifolds are candidates to
admit contact structures.

For the proof of Theorem 2 it would suffice to require that w^(M)
be zero on the spherical elements in H^(M). This condition, however, is
equivalent to the previous one by a theorem of Hopf [9], cf. [2], which states
that for any path-connected space X with fundamental group TT there is an
exact sequence

7T2(X) -^ H^X) -^ H^) -^ 0,

where the first map is the Hurewicz homomorphism. Since

H2^2)=H^(RPOO)=0,
we see that in our situation the Hurewicz homomorphism ^(M) —> H^(M)
is surjective. Furthermore, by the Whitney embedding theorem, any element
in 7T2(M) and thus, a fortiori, any element in H^{M) is represented by an
embedded sphere. Notice, however, that the isotopy class of this embedding
need not be unique.
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3. Contact surgery.

Let M be a closed, orientable 5-manifold with fundamental group Zs.
By performing surgery along an embedded 1-sphere representing the
generator of 71-1 (M), we obtain a simply connected 5-manifold M'. Provided
W^{M') = 0, we know that M' admits a contact structure. However, this
information is no help in trying to construct a contact structure on M, for M
is obtained from M' by surgery along an embedded 3-sphere, but contact
surgery in the sense of [3], [19] is only possible along isotropic spheres,
i.e. spheres tangent to the contact distribution ^, which are necessarily
of dimension at most n in a (2n + 1)-dimensional contact manifold. For
isotropic embeddings there is an /z-principle (cf. [3], [4]), which means
that under an obvious necessary condition it is possible to isotope a given
embedding to an isotropic one. In principle it is feasible to perform contact
surgery above the middle dimension, provided the sphere along which
surgery is carried out is 'coisotropic5 in a suitably defined sense, but for
such embeddings we lack an /i-principle.

So instead of killing 71-1 (M) our strategy will be to turn M into one
of the ten model manifolds MQ by a sequence of surgeries along 2-spheres.
Then the reverse sequence of surgeries leading from MQ to M is again along
2-spheres, and by handle reordering this is the same as surgery along a
link of 2-spheres in MQ. Thus we need to show that each of the ten model
manifolds MQ admits a contact structure and that 2-surgeries on Mo can
be performed as contact surgeries.

First some remarks about 2-surgeries in general. Clearly the
fundamental group Za is preserved under 2-surgeries by the Seifert-
van Kampen theorem.

Further, the condition that w^M) be zero on H^(M) is equivalent
to saying that every embedded 2-sphere in M has trivial normal bundle,
so surgery is possible along any 2-sphere in M. Indeed, if S'2 C M is an
embedded 2-sphere with normal bundle v and i denotes the inclusion of S'2

in M (and r the tangent bundle), then

<W2(rM),z,[52]) = (z*W2(rM), [S2}}

=<^*rM),[52])

={w^rS2)^w^[S2})

={W2WS2}}.

Because of 71-1(803) = Za, there is only one non-trivial ^-bundle over 6'2,
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and it is detected by W2 7^ 0, since wa is the primary obstruction to finding
a 2-frame (hence, by orientability, a trivialization) over the 2-skeleton, i.e.
the whole of S2.

By representing a basis for H^M) by embedded 2-spheres, we see,
by a general position argument, that this condition is preserved under
surgeries along 2-spheres (the belt sphere of the 3-handle corresponding to
such a surgery automatically comes with trivial normal bundle).

More is true, though. Namely, by that same general position argument
we see that the triviality or non-triviality of W2(M), which is detected by
evaluation on 2-cycles over Za, is not affected by a 2-surgery. So if w^(M)
is zero on homology and M' is obtained from M by a sequence of surgeries
along 2-spheres, then both M and M' have w^ = 0 or both have w^ -^ 0
(recall that if w^ is equal to zero on homology we may regard it as an element
of Ext(^fi(M), Z2), which in the case H^ = 71-1 = Z2 is the group Z2). This
observation explains the distinction in Theorem 2 between (i) on the one
hand and (ii), (iii) on the other, for we shall see in Section 4 that Qo? m

contrast to the manifolds S^/T, has w^ = 0.

The distinction between (ii) and (iii) is a consequence of [18], p. 260,
where it is shown that the parity of the rank of ^(M) is a 2-surgery
invariant (for 71-1 (M) == Z2), and the description of the S^/T in Section 4,
where the rank of ^(S^/T) is shown to be zero or one, depending on q
being odd or even.

We note in passing that as a consequence of Theorem 2 and these
observations there are no 5-manifolds with TT^ of even rank, 71-1 = Z2, and
W2 = 0.

We now turn to the contact surgeries relevant to our subsequent
applications.

LEMMA 3.

(i) Any 0-surgery (this includes connected sums) can be performed as a
contact surgery.

(ii) Let i : S1 —^ (M^) be an embedding into an arbitrary contact
manifold with co-orientable contact structure ^. Then this embedding is
isotopic to an isotropic embedding i' (i.e. one that is tangent to ̂ ) and thus
contact surgery is possible along i'^S1).

(iii) Let i : S2 —> (M,^) be an embedding with ^ as in (ii), dimM > 5,
and H2 (M) finite. Then the same conclusion as in (i) holds.
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Proof. — Contact surgery in the sense of [3], [19] is possible along
any isotropic sphere 5^ C (M, ̂ ) with trivial conformal symplectic normal
bundle

CSN^M.S^ ̂  ( r S ^ / r S 1 ' ,

where {rS^1- C ^ denotes the symplectic orthogonal bundle to r-S^ C $
with respect to the (conformal) symplectic structure da on ^ = kera
(cf. [6], Sections). Notice that CSN^M2^, S^ is an Sp(2n - 2AQ-bundle
(or U(n — A;)-bundle). Necessary and sufficient for the existence of an
isotropic embedding i' isotopic to i : Sk —^ (M, $) is that i be covered by
a fibrewise injective complex bundle homomorphism rfi^ 0 C —>• ^(6^),
see [3], [4], [6].

• For case (i) we observe that any embedding of 5° is evidently
isotropic.

• In case (ii) this bundle homomorphism exists since both rS1 (g) C
and i*^ are trivial complex bundles over S1. The symplectic bundle
CSN(M2n+l,Sl) is trivial because its structure group Sp(2n - 2) is
connected.

• In case (iii) the assumption that H2{M) is finite implies that the
induced homomorphism i* : H'^^M) —>' H2^2) is trivial, so i*^ is a U(n)-
bundle over 5'2 with vanishing first Chern class and hence a trivial bundle.
The complexified tangent bundle r5'2 (g) C is likewise a trivial bundle,
so again there is the required fibrewise injective bundle homomorphism
rS2 0 C —^ $ [ i(S'2) covering i. Notice that z*$ being trivial implies
in particular that the normal bundle of i(S2) in M is trivial (this is
detected by w^\ so the topological condition for surgery is satisfied. The
condition that H2(M) be finite also guarantees that the Sp(2n — 4)-bundle
OS^M27^, S2) is trivial. D

Remark. — In general it is a subtle question which framings can be
realized by contact surgeries. However, we shall apply (ii) only in a situation
where the choice of framing can be controlled, and in (iii) no questions of
framing arise because ^2(80^-2) = 0 (m = dimM).

4. The model manifolds.

In this section we show that each of the ten model manifolds admits a
contact structure and determine enough of their homological data to prove
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that the lemma on contact surgery of the preceding section applies (which
will prove Theorem 1), and to explain the distinction of the three cases
in Theorem 2.

We begin with the manifold QQ. Clearly we have ^(Qo) ^ Z. The
bundle TT : QQ —> RP2 may be thought of as being obtained by gluing the
trivial S^-bundle over D2 with the non-trivial ^-bundle over the Mobius
band. Then a straightforward application of the Mayer-Vietoris sequence
shows H^Qo) = 0.

Write T) for the canonical line bundle over RP2 with total
Stiefel-Whitney class w(rj) = 1 + a, where a denotes the generator of
^(RP^Za) = Z2, and write e for a trivial line bundle. By construction,
Qo is the unit sphere bundle of the R^bundle T] C 3e over RP2, so the
tangent bundles rQo satisfies

rQo C e = 7r*(rRP2 C rj C 3^),

where the e an the left hand side is to be thought of as the trivial line
bundle complementary to rQo in the tangent bundle of the R^bundle
r] (D 3e. Hence, computing modulo a3,

1 + wi(Qo) + W2(Qo) = (1 + a)4 = 1,

i.e. we find w^(Qo) = 0.

We also need a surgery description of QQ that will allow us to use
contact surgery to find a contact structure on QQ. We claim that Qo is
obtained from S5 by first performing a 0-surgery (which yields S1 x S4) and
then a 1-surgery along twice the generator of 71-1 (5'1 x 54). The manifold
obtained this way has w^ = 0 and the same 71-1 and H^ as QQ, which in
connection with the arguments below would be sufficient for our purposes.
But we can actually give a direct geometric identification of Qo with the
result of this surgery. For this it is sufficient to show that S1 x S4 can
be obtained from QQ by a surgery along an .S^-fibre. Indeed, by removing
a neighbourhood S'3 x D2 of a fibre we obtain the non-trivial -^-bundle
over the Mobius band, and gluing a copy of D4 x S1 along the boundary
produces an orientable fi^-bundle over the spine S1 of the Mobius band,
i.e. the desired S1 x S4.

Because S5 admits a contact structure, Lemma 3 shows that the
same is true for Qo, provided we can realize the framing of the 1-surgery
on S1 x S4 (described in the preceding paragraph) by a contact surgery.
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To see that this is indeed the case we notice that CSN(S1 x S4^^ is
a U(l)-bundle, so the choices of trivialization are given by 71-1 (U(l)) ^ Z,
which maps onto the group 71-1 (S0(4)) == Za (under the homomorphism
induced by inclusion U(l) —> S0(4)), the group classifying topologically
possible framings.

Next we describe the model manifolds E^/T. Let V^(e) be the complex
hypersurface in C4 given by the equation

4 + z! + 4 + 4 = ̂

where e G R^ (the non-negative real numbers) and q € No. For e -^ 0
this hypersurface is non-singular. Define the Brieskorn manifold E5^)
as the intersection of V^(e) with S7(2) C C4, the sphere of radius two.
(Usually one considers the intersection with the unit sphere S7, but some
of the formulae below take a neater form if we take S7(2) instead. In [8],
Section 14.2, it is shown that V^(e) H S7(2) is diffeomorphic to V^(e) H S7

for e > 0 sufficiently small.) We abbreviate E^(0) to E^. For e > 0 small
enough, E^(£) is diffeomorphic to E^, see [8], Satz 14.3.

The orientation preserving involution T : E5^) —> S5^) given by

r(zo, ̂ 1,^2,^3) = (^0,-^1,-^2,-^s)

is fixed point free on ̂ (e) for small e. The argument used in the proof of
[8], Satz 14.3, also applies to show that T.^(e)/T is diffeomorphic to E^/T
for small e.

LEMMA 4. — The manifolds E^ are simply connected. For q odd,
H^(^) = 0 (so E^ is diffeomorphic to 55). For q even, H^(T,^) ̂  Z.

Remark. — Below we shall see that E^ is diffeomorphic to S2 x S3

for q even.

Proof. — For the case q = 0 see [8], p. 36. For q >_ 1 we observe that
E5 is homotopy equivalent to

X, = {z € C4 | 4 + ^ + ^ + ^ j = ()}-{()},

since the function / : Xq —> R defined by

3
f^Q.Z^Z^Z^) =^\Zj\2

j=0
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has no critical points on Xg, as can be seen by a simple Lagrange multiplier
method (see [8], Satz 5.5). Hence Ef ^ Xi ^ C3 - {0}, since Xi may be
regarded as the graph of a function over C3 — {0}.

For q = 2 we have an explicit diffeomorphism between S| and S2 x S3.
Here the formulae are very simple. Write zj = xj + iyj^ j = 0 , . . . , 3. Then
the defining equations for S| become

\x\2-\y\2+2i{x,y) =0 and \x\2 + \y\2 = 2,

i.e. \x\ = \y\ = 1 and (:r,^/) = 0. So S| is the tangent sphere bundle of i?3,
which is the trivial bundle because S3 is a Lie group.

For the remainder of this proof we assume q > 3. By Satz 11.2 of [8], S^
is diffeomorphic to the tree manifold M^A^i). That is, let M6(A^) be
the manifold with boundary obtained by plumbing q—1 copies of the tangent
disc bundle DrS3 of S3 according to the graph Ag-i, which means that the
z-th copy of DrS3 is plumbed together with the (z + l)-st, 1 < i <: q — 2.
Then S^ = M^A^J is defined as the boundary of-M^A^i).

Then, according to Section 8.1 of [8], ̂ (^) can be computed from
the sequence

^C(g-l) _S_, ̂ -1) ——> H^q) -^ 0,

where S is the (q — 1) x (q — 1) matrix

S=

/ 0 1
-1 0 1

-1 0

determined by the intersection product in H^{M) (notice that M. is
homotopy equivalent to a wedge of (g — 1) 3-spheres).

Congruence modulo the image of S is generated by 62 ^ ^q-2 = 0 and
€{ = e^+2 for i = 1,. . . , g — 3, where e i , . . . , eg_i denotes the standard basis
for Z9^-^. So for q odd, 5 defines an isomorphism, hence ̂ (^) = 0;
for ^ even, H'z(E5) ̂  Z®^"1^ / im5' is isomorphic to Z, generated by e\.

Since .M with its spine S3 V ... V S'3 removed retracts onto the
boundary QM. = E5 and this spine has codimension three in M.^ we find

TTi(^) == TT^QM) = 7Tl{M - S3 V . . . V S3) = TT^M) =0. D
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As mentioned in Section 2, the I^/T, q = 1,3,5,7 mod 8 represent the
four diffeomorphism types of homotopy projective 5-spaces. In particular,
the group ^(S^/T) = ̂  is finite, ^(S^/T) = 0, and w^/T) ^ 0.
These statements are also easy to prove directly (for all q), as we shall
now see.

We begin with a preparatory lemma for the case q even.

LEMMA 5. — The involution T : E^ —> S^ induces the non-trivial
isomorphism on H^(Tj5.) ^ Z {q even).

Proof. — Consider the embedded 2-sphere in S^ defined by

S2 = {xo = 1, x-i = X2 = X3 = 0, yo = 0, yi + y^ + yj = 1} .

We observe that T maps this S2 orientation reversingly onto itself, so it
suffices to show that the fundamental cycle [S'2] generates H-z{Ti^).

Define a 3-dimensional submanifold of S^ by

N3 = ^(2) H Li = iz^, ̂  = iz3\

This is a submanifold of S5 which is diffeomorphic to S3 by an argument
analogous to that employed in the proof of Lemma 4. Observe that we can
regard N3 as the intersection of 5r7(2) with the graph of the homogeneous
polynomial (^o, ̂ 2^3) h-> ^i = ̂  ? defined on the hyperplane z^ = izy,.

The intersection of S'2 and S3 = N3 consists of the single point

p = {xo = 2/1 = 1, x-i = x-2 = xs = yo = y'2 = y^ = 0} ,

and this intersection is transverse since TpS2 is spanned by Oy^ and 0^3,
and TpS3 is spanned by 9^ — c^, c^g + 9y^ and 9i/o+ a lmear combination
OtQ^^y,.

So the intersection product [S2] • [S3] is equal to ±1, which proves
that [S'2] generates ^(S^). D

PROPOSITION 6. — The manifolds S^/T satisfy H^^/T) = 0 and
w^/T) ̂  0.

Proof. — For q odd we have S5 ̂  55, hence

7r2(S^/r)=7T2(^)==0.
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With the theorem of Hopf mentioned in Section 2 we conclude
^2(^/r)=o.

To deal with the case q even we consider the following short exact
sequence of chain complexes (with integer coefficients) :

0 -^ (1 - T)W,) -^ a(E^) -^ C^/T) -^ 0,

the first map being given by inclusion and the second by projection. The
relevant part of the induced long exact sequence in homology is

H^{(1-T)C^)) -^H^) —^(^/T).

Again by Hopfs theorem we know that there is a surjection ^(E^/T) —>
^(E^/T), and a generator of ^2(1^) ^ H^(Y^) ̂  Z maps to a generator of
^(S^/T) under the homomorphism induced by the projection S^ —> S^/T.
So it suffices to show that a generator of ^(S^) maps to zero in H^(Y^/T).
But this follows from the homology exact sequence above and the proof
of Lemma 5, because there we have seen that we can find a generator of
H^(^) of the form (1 - T)A with A a suitable 2-disc in S^, for instance

A = [xo == 0, x-i = X2 = X3 = 0, yo = 0, y{ + yj + yj = 1, ys ^ 0} .

It remains to compute w^T^/T). The 2-sphere described in the proof
of Lemma 5 descends to an embedded RP2 in S^/T (for q even or odd). To
prove z^i^/r) 7^ 0 it suffices to show that the restriction of the tangent
bundle to this RP2 has non-trivial W2.

Along S2 C S^ the differentials of the defining equations of S^ are

q dzo -\- 2iy^ dz\ + 2z^/2 d^2 + 2z^3 dz^ = 0

and

2 d.ro + 2^/i d^/i + 2y-2 dy^ + 2?/3 d^ == 0,

which simplifies to

dxo = 0,
Vi dyi + y-z dy2 + 2/3 di/3 = 0,

9 d^/o + 2^/i da-i + 2^/2 d.z'2 + 2?/3 d^3 = 0.
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We see that the normal bundle vS2 of S2 in S^ is spanned by

Xo = 29y^ - q{yiQx^ + 2/2^2 + V^x^)

and vectors of the form

01^1 + ^2^2 + ̂ Qxs

with

(01,02,03)^/1,2/2,2/3) =0,
so we can naturally identify vS2 with r^2 0 e. The differential T*
of T acts trivially on £ and like the antipodal map on r5'2, so we
find vRP2 ̂  rRP2 C e.

Write i for the inclusion of RP2 in S^/T. Then for the total Stiefel-
Whitney class we have

rw(S^/T) = w(rRP2 © z/RP2)
=w(TRP2eTRP2)
= ( l + o ) 6 = l+o2 ,

where o denotes the generator of ^(RP2^). Therefore z*W2(S^/T) ^ 0
and hence w^^/T) ̂  0.

This concludes the proof of Proposition 6. D

For completeness we mention the following simple proposition.

PROPOSITION 7. — For q even, E^ is diffeomorphic to S2 x S3.

Proof. — In the proof of Lemma 5 we have described embedded copies
of 5'2 and S3 which have trivial normal bundle, generate ^(S^) ^ Z and
Hs (S5) ^ Z, respectively, and which intersect transversely in one point.
Hence, after removing a tubular neighbourhood U of S'2 V S3 ^-> S^ we are
left with a contractible 5-manifold with boundary 6'4. By Smale's classical
work (cf. [12], Cor. VIII.4.7), S^ - U is diffeomorphic to D5, and because
of the non-existence of exotic spheres in dimension 5 the result of gluing U
with D5 has to be diffeomorphic to 52 x S3. D

Remarks.

(1) Using the discussion in Section 3 about the triviality of normal
bundles of 2-spheres being detected by W2, it is easy to show that any
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5-manifold with 71-1 = Za, H^ = 0 and TT^ ^ Z has 5'2 x 5'3 as universal
cover.

(2) As pointed out by the referee, the S^/T with q even are not all
pairwise homotopy equivalent (in contrast with the case q odd). This can
be seen by looking at the action of T on ^(S^) ^ n^S2) C ̂ (S3) ̂  Z C Z.
For different values of q one may obtain actions on Z Q Z which are not
conjugate in GL(2,Z).

Finally, we still have to exhibit a contact structure on S^/T.

PROPOSITION 8. — The manifolds E^/T admit a contact structure.

Proof. — By a result of Lutz and Meckert [14] the real 1-form

• 3 1
a= ̂ ^[—(^j-^j)

j=o a '̂

with ao = g, ai = 02 = 03 = 2, defines a contact form on S^. Obviously a
is r-invariant, so it induces a contact form on I^/T. D

The discussion in this section, together with Lemma 3 and Theorem 2,
completes the proof of Theorem 1.

5. Proof of Theorem 2.

The distinction between the three cases in Theorem 2 has already
been explained in Section 3. We only have to show that a manifold M as
in Theorem 2 can be obtained from one and only one of the ten model
manifolds Mo by surgery along a link of 2-spheres, or, equivalently, that
there is a cobordism between M and Mo containing 3-handles only.

With every M we can associate a 4-dimensional characteristic
submanifold, as will be explained in a moment. We shall then see that the
separation of the manifolds M into ten "2-surgery classes" is directly linked
with the existence of ten 4-dimensional Pin cobordism classes (modulo the
action ofwi) of such characteristic 4-manifolds.

Throughout this section, M will denote a closed, orientable 5-manifold
with TI-I (M) = Zs and w^M) zero on homology. Let M be the universal
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cover of M and T the free involution on M such that M = M/T. Let P
be a characteristic submanifold for (M,T), i.e. a 4-manifold such that
P = A D TA and M = A U TA, where A is a compact submanifold of M
with boundary <9A = P. We also call P = P/T a characteristic submanifold
forM.

Such characteristic submanifolds always exist : consider a classifying
map f '. M —> RP7'1, n large, for the double cover TT : M —^ M (recall B^ =
RP00), make / transverse to RP71-1, and define P = Tr-V-^RP71-1).
Furthermore, by equi variant surgery we may assume that P is simply
connected and hence 7Ti(P) = Za, with the inclusion i : P —> M inducing
an isomorphism on fundamental groups [13], pp. 11-12.

Before formulating the next lemma we recall a few basic facts about
Spin and Pin structures (cf. [11]). The group Spin(n) is the double cover
of S0(n), the groups Pm^(n) and Pm~(n) are double covers of 0(n)
which are topologically the same but algebraically different as central
Za-extensions of 0(n). The obstruction to putting a Spin(n) or Pm^~(n)
structure on an R^bundle C (oriented in the former case) over a base
space B is W2(C) ^ ^(-S;^); tor a Pin~(n) structure the obstruction
is W2(C) + ̂ (0- I11 au cases ^(t^Zs) acts simply transitively on the
set of structures on ^, so a one-to-one correspondence between this set of
structures and ^(-E?; Zs) is given by this action and a choice of structure.

LEMMA 9. — If w^(M) = 0, then P (with 7Ti(P) = Za) has a pair
of Pin" (4) structures, and if w^(M) -^ 0, then P has a pair ofPin"^)
structures. The Pin cobordism class of this pair of structures is independent
of the choice of characteristic submanifold P (with TTI (P) = Za) and remains
unchanged under '2-surgeries on M.

Proof. — Write i : P —> M for the inclusion of P in M. The normal
bundle of P in M is non-orientable, because T acts orientation reversingly
on the normal bundle of P in M. Hence i* (rM) = rP (B 77, where T] denotes
the unique non-trivial line bundle over P, characterized by w\ (rj) -^ 0 (since
H1(P; Zs) = Zs). Furthermore we can identify w\(rf) with wi(P). Hence

%*W2(M) = w^(rP C r])

=W2(P)+Wi(P)wi(7y)
=W2(P)+^(P).

So if W2(M) = 0, then P (or to be precise, rP) admits a pair of Pin~
structures (but no Pin"^ structure, as the following arguments will show).
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If W2(M) is non-zero (but vanishes on homology), then w^(M) may
be regarded as the non-zero element in Ext(ffi(M),Z2) = Zz. Since the
inclusion i : P —> M induces an isomorphism on 71-1, we get an induced
isomorphism

z* : Ext(^i(M),Z2) —— Ext(^i(P),Z2),

so z*W2(M) == 1 e Z2 = Ext(^i(P),Z2). Furthermore, wi(P) is the
pull-back of the generator a of Hl(RPn•,^) under the classifying map
/ o i : P —, RP71. Since a2 is the generator of

^(RP^) = Ext^RP^^) = Z2,

its pull-back w^(P) is the generator of Ext(^i(P),Z2). We conclude that,
in the case w^(M) ̂  0, we have

W2(P) = Z*W2(M) + W^(P) = 0

(but W2(P) + w^(P) ^ 0), so P admits a pair of Pin+ structures (but no
Pin" structure).

Different characteristic submanifolds can be joined by a characteristic
cobordism (obtained from a homotopy between classifying maps /o and /i),
which gives a Piir^ cobordism in the case under consideration.

If M' is the result of performing 2-surgeries on M, the preceding
arguments (and the considerations in Section 3), applied to the cobordism
between M and M' (which consists of 3-handles only), show the existence of
a PITT^ cobordism between respective characteristic submanifolds P and P'.

D

We now prove the converse of this lemma. Let M, M' be manifolds
as in Theorem 2 and P, P' characteristic submanifolds with 71-1 = Z2 and a
pair of Pin'11 structures as described above. By slight abuse of language we
say P and P' are Pin2^ cobordant if for matching choices of Pii^ structures
on P and P' we find a P^ cobordism between them.

LEMMA 10. — If P and P ' are Pin^" cobordant, then M' can be
obtained from M by surgery along a link of'2-spheres.

Proof. — Let V be a PI!^ cobordism between P and P'. Choose a
generator po of 7Ti(y) on which wi(V) is non-zero. By performing surgery
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on g^ we may assume that go has order two. By replacing each element gi,
1 < i <, s, of a generating set {go.gi,..., gs} of 7Ti(V) by gog^ if necessary,
we may assume further that Wi(V) is zero on ^ i , . . . , ^s - After surgery
on ^i, . . . , g s we arrive at a Pin^ cobordism (still denoted V) between P
and P' with 71-1 (V) = Z2 (and the inclusions of P resp. P' in V inducing
isomorphisms on 71-1, as can be seen by looking at the first Stiefel-Whitney
class). Notice that this V admits exactly two Ph^ structures, restricting
to the pairs of Ph^ structures on P resp. P'.

This Pin^ cobordism V lifts to a simply connected Spin cobordism V
between P and P'. We obtain a closed 5-manifold VQ by gluing

ALJ^yu^A',

where A, A' are as at the beginning of this section. This manifold admits a
Spin structure since there is a unique Spin structure on each of the simply
connected manifolds P and P', so the Spin structures given on the three
constituent pieces A, V, and A' match along the boundaries.

Since the 5-dimensional Spin cobordism group ̂ pln is zero, we find a
6-dimensional Spin manifold WQ with boundary QWo = VQ. By performing
1-surgery we may assume 7Ti(TVo) = 0. The cobordism V was obtained by
lifting a cobordism between P and P', so there is an involution To on V
extending the involutions T on P and T ' on P ' . Now think of WQ as having
corners at P and P' and glue it with a diffeomorphic copy W^ of WQ,
thought of as cobounding

rAu^yu^r'A',

by identifying x G V with TQX € V (see Figure 1 for a schematic
illustration). This yields a Spin cobordism WQ U_ W^ between M and M'
which descends to a cobordism W between M and M' with w^(W) zero on
homology and 7r-^(W) = Zz, and the inclusions of M and M' in W inducing
isomorphisms on 71-1.

P ̂  ^\ ' ^L ^— P'

'~~^L^-^^
Figure 1. Constructing the cobordism.
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The cobordism W has a handle decomposition on M from which all
0- and 6-handles can be removed using [16], Corollary 6.14. Furthermore
we can eliminate all 1-handles (see [16], Lemma 6.15) at the price of
introducing extra 3-handles. In essence this is because the vanishing of the
relative homotopy group 7Ti(W, M) allows us to introduce a complementary
pair of 2- and 3-handles in such a way that the former cancels a 1-handle
in the original decomposition. Rourke and Sanderson work in the piecewise
linear category, but the smooth argument is identical. By considering the
dual handle decomposition on M' we may also remove all 5-handles (of the
handle decomposition on M), again at the price of introducing additional
3-handles.

To finish the proof of the lemma, we need to show that W can further
be changed into a cobordism without 2- and 4-handles.

Geometrically this can be seen as follows. To each 2-handle (resp. 4-
handle) there corresponds a descending core 2-disc (resp. ascending cocore
2-disc). If we choose a Morse function on W corresponding to its handle
decomposition, these are the stable (resp. unstable) manifolds of the critical
points of index 2 (resp. 4). Since the inclusions of the boundary components
M, M' in W are injective on 71-1, these 2-discs close off to 2-spheres. Surgery
along these 2-spheres, which is possible because of w^(W) being zero on
homology, removes these 2- and 4-handles.

More algebraically one may argue that by 2-surgery on W we
can kill H^(W,M) and H^W.M'), because every element of these
groups comes from H^(W) (the homomorphisms ^i(M) —> H^(W) and
H\{M') —> H^(W) being isomorphisms) and w^(W) is zero on homology.
The groups H^(W,M) can be computed from a cellular chain complex
whose generators are in one-to-one correspondence with the handles of W
on M. The fact that H^(W,M) = 0 implies that to every 2-handle we
find a complementary 3-handle, and such complementary handles cancel
in pairs [16], Lemma 6.4. By considering the 4-handles as 2-handles in the
dual handle decomposition of W on M', we can remove those as well. D

To complete the proof of Theorem 2 we now only have to show that
our ten model manifolds represent all possible Pin± (4) cobordism classes of
characteristic submanifolds. Recall our abuse of language explained before
the preceding lemma.

LEMMA 11. — The ten model manifolds Qo and I^/T, 0 ^ q < 8
(resp. their characteristic submanifolds) represent the ten different Pnr^)
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cobordism classes of pairs of Pm±(4:) structures on non-orientable 4-
manifolds P with 7Ti(P) = Zs.

Proof. — The group ^m~ is the zero group [II], so QQ is the only
representative we need (recall that Pin~ corresponds to w^M) = 0).

The group ^m+ is isomorphic to Zie (generated by ±RP4), and
the action of wi(RP4) exchanges these two generators [11]. So we need to
represent exactly |Zie/± | = 9 cobordism classes of pairs ofPin4" structures.
Following the dictum of Kirby-Siebenmann [10], p. 337, that it is "wise
to seek several proofs" when working with the involutions T on the E5,
we offer two alternative arguments for showing that the S^T, 0 <_ q < 8,
represent the required 9 cobordism classes. The first proof is based on
a Lefschetz fixed point formula, the second on a more direct cobordism
argument. In either proof the subtle point is to establish correct signs, be it
those of contributions of fixed points to the Lefschetz formula, or those of
Pin^ structures on copies of RP4 in the boundary of a certain cobordism.

First argument. — It suffices to show that there can be no cobordism
W between S^/T and S^/T of the kind described above (in particular
7r-t(W) = Zs and w'z(W) zero on homology) unless q = ±r mod 16.

Assume there is such a cobordism for some q,r € N. The free
involution T on S^) extends to an involution with q isolated fixed points

(^/ie27"^, 0,0,0), O ^ k ^ q - 1 ,

on W^ = V^(e) D D8^). Let X be the closed Spin manifold obtained by
gluing

w^u^wu^w^.

The given involutions on the three constituent parts glue together to give
an involution on X with (geometrically) q + r fixed points. Applying a
Lefschetz fixed point formula as in [1] one finds that q = ±r mod 16. More
specifically, the Lefschetz fixed point formula yields divisibility by 16 of the
total number of fixed points (counted with sign), and so the key issue is to
show that the q fixed points of T on W6 all contribute with the same sign.

Notice that the proof of Theorem 9.8 in [1] only shows q ̂  ±r mod 8;
the statement q = d=r mod 16 in that theorem is a misprint. But in a short
addendum published in [10], p. 338, Atiyah proves the stronger statement.



1186 H. GEIGES AND C.B. THOMAS

Notice further that the argument in [1] for showing that all q fixed
points contribute with the same sign is (apparently) only valid for q odd.
But the alternative argument provided by Satz 15.7 of [8] applies in all
cases.

Second argument. — There is a Zg-action on W^ = Vq{e) D D8^),
generated by

S{zQ,z^,z^Z3) = (e27"79^ ,^1,2^3),

which cyclically permutes the q fixed points of T. Notice that the
characteristic submanifold of S^^/T can be realized as

P,=(S^)n{Im^=0})/T,

the intersection of S^) with {Im2:i = 0} being transverse. (Again, this
is a straightforward check using the Lagrange multiplier method.) Remove
from Wq a T- and ^-invariant union of q disjoint small balls Bi, . . . , Bq
around the q fixed points of T. The intersection of W6 with the hyperplane
H := {Im2;i =0} fails to be transverse in the two points (0, ±^/?, 0,0)
only. We can perturb H around these points to obtain a T- and ^-invariant
hyperplane H ' transverse to W^, so that

Y := ^((Wq-^B^nH^/T
k=l

is a cobordism from the characteristic submanifold Pq to q copies of RP4

(since the coordinate description shows that restricted to 9Bk H {Im z\ = 0}
the involution T is equivalent to the antipodal map on 54).

We have 7Ti(y) = Zs, so Y admits a pair of Pin"^ structures (by
Lemma 9, since W2(S^/T) ^ 0 and hence w^Wq - UBk)/T) ^ 0). The
argument will be complete if we can show that for a fixed choice of Pin"^
structure on V, the induced Pin"^ structures on the q copies of RP4 in the
boundary 9Y are the same. For that, in turn, it suffices to prove that the
action of S on Y preserves the chosen Pin"^ structure.

Consider the loop C in the universal cover Y of Y defined by

(0,0, y^ cosy?, y^ sin y?), 0 < (p < 27T.

One half of this loop, say that corresponding to 0 < ^> < TT, descends to an
embedded loop C in Y representing the generator of 7Ti(y) = Zs, and C



CONTACT TOPOLOGY AND 5-MANIFOLDS 1187

is pointwise fixed under the action of 6'. Along C the defining equation for
the complex hypersurface V^ has differential

^/ecos^pdz^ 4- \fi sin (/? 0.̂ 3 == 0,

so the normal bundle of C in Y is spanned by

9x^9y^9x^ and cos^Qy^ -sm(p9y^

and the tangent bundle by cos (p 8x3 — sin y? Q^. The involution T acts
non-trivially on (9^ and trivially on the other vector fields. Hence

rY\c^ y/C4£,

where, as before, r] denotes the canonical (non-trivial) line bundle on
C = RP1 and e the trivial line bundle. The action of S on the trivial
subbundle e2 of rY\c spanned by Qxo^Qyo is a rotation, hence homotopic
to the identity, and the action on the complementary subbundle T] (D 2s-
is trivial. So we obtain the desired result that S fixes the chosen Pin"^
structure on Y (which is determined by its restriction to rY\c)- D

Acknowledgement. — We are most grateful to the referee for detecting
a grave error in an earlier manuscript. The idea to use Pin cobordism theory
for proving Theorem 2 was kindly suggested by the referee. In fact, this
new argument allowed us to remove a weak but superfluous condition on
the second Stiefel-Whitney class in Theorem 1.
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