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GERMS OF HOLOMORPHIC MAPPINGS
BETWEEN REAL ALGEBRAIC HYPERSURFACES

by Nordine MIR

1. Introduction and formulation of main result.

A real algebraic hypersurface in C71 is the zero set of a real polynomial
with non-vanishing gradient. A holomorphic function defined in an open set
in C^ is called algebraic if it is algebraic over the field of rational functions
over C, or equivalently if it satisfies a polynomial equation of the form

Ak(Z)f\Z) +... +Ao(Z)=0,

where the functions Aj(Z) are holomorphic polynomials, with k ^ 1 and
Ak ^ 0. In recent years, several papers appeared concerning algebraic-
ity of holomorphic mappings or CR mappings between algebraic Cauchy-
Riemann manifolds ([16], [7], [5], [22], [3]). For mappings in the same di-
mension, Baouendi and Rothschild [7], [5] (for the hypersurface case) and
Baouendi, Ebenfelt and Rothschild [3] proved that holomorphic nonde-
generacy is a necessary and sufficient condition for algebraicity of germs
of biholomorphic maps between minimal generic CR submanifolds of C71.
Here, holomorphic nondegeneracy and minimality must be understood in
the sense of Stanton [24] and Tumanov [25]. We note also that in the work
[3], the authors consider real algebraic sets (i.e. with singularities). How-
ever, when one drops the assumption of nondegeneracy, no information is
given about the eventual algebraicity of some components of the map. In
this paper, we consider the following setting which will be called the general
situation:

Key words: Algebraic real hypersurface - Holomorphic mapping - Segre variety
Holomorphic nondegeneracy.
Math Classification: 32H99 - 32D15 - 32D99.
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Let (M,po) ^d (M',po) be two germs of real algebraic hypersurfaces
in C^+^TV ^ 1, with M not Levi-flat, and H : CJV+1 -^ C^1 a ^erm a^
po of a holomorphic map of generic maximal rank (i.e. Jac(^f) ^ 0) such
that H(po) = PQ and H(M) C M'.

Then we address the following question. What can it be said about
the mapping H without assuming any nondegeneracy condition on the
manifolds? Theorem 1.1 below gives an answer to this question. We
emphasize that the situation here is much more different than in [7], [5] and
[3], because we do suppose nothing else than the non-flatness assumption
on our hypersurfaces.

We shall now describe our main result. In the general situation
described above, after a translation, we may assume that pg ls sent to

0 and M' is given near 0 by

M' = {Z' e C^+1 / p\Z', Z ' ) = 0}, Z ' = (z\ w') e C^ x C,

where p ' is a real polynomial and p (0) ^ 0 (w' = x ' ^ ^ + ̂ ,1). By
^TV+l

the algebraic (complex) implicit function theorem, M' can also be defined
near 0 by the equation

(1) w'^Q^.w',^),

with Q' holomorphic algebraic of its arguments and Q'(0) = 0 (see [12]).
For any holomorphic function ~\ defined in a neighborhood of 0 in C^,
k ^ 1, we put \(p) = \(p) for p close to 0. Following the philosophy of the
Schwarz reflection principle ([4], [17]), we define the reflection function K
near (po,0) <E C^1 x C^ to be the map (Z,A) -^ (^(^(Z^A). Let AN^-I
denote the ring of germs at 0 in C^4'1 of holomorphic functions which are
algebraic over the field of rational functions over C and .F/v+i denote its
quotient field (this is a field of abelian functions). Write Q/ in the following
way: Q'{z1, w', 0 = E /4(^ ̂ oc' Following [19], we denote by /C(M')

QGN^
the smallest field contained in .F/v+i, containing C and the family ( p g ) p ^ N .
We are now ready to state our main result.

THEOREM 1.1. — In the general situation described above and with
the previous notations, one has:

i) The reflection function 7^ is holomorphic algebraic near (po, 0).

ii) For every element q e AN-{-I which belongs to the algebraic
closure of/C(M'), the function Z —> q o H(Z) is holomorphic algebraic.
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Moreover, if the coordinates (z1\w') are normal with respect to M' (i.e.
Q'(2/,w',0) = w ' ) , the normal component ofH is always algebraic.

We emphasize that here, we have only done a translation from the
original defining function of the target hypersurface. As an immediate ap-
plication of an algebraic criterion of holomorphic non-degeneracy obtained
by the author in [19], Theorem 1.1 leads to the following well-known corol-
lary.

COROLLARY 1 ([7], [5]). — Assume in the general situation that the
source hypersurface is holomorphically nondegenerate at po. Then H is
holomorphic algebraic.

The paper is organized as follows. In Section 2, we recall briefly some
basic facts from algebraic hypersurfaces and the Segre varieties associated
to them. Section 3 is devoted to the proof of an algebraic proposition of
some interest. Section 4 contains some technical lemmas and in Section 5,
we first prove part (ii) of Theorem 1.1, and then part (i). We conclude with
the proof of the corollary and some examples illustrating the spirit of our
main result.

It is a pleasure to thank my thesis advisor Makhlouf Derridj for
his very careful reading of the manuscript and his numerous suggestions
regarding the paper.

2. Algebraic real hypersurfaces, Segre varieties.

Let (M,po) be a germ of a real algebraic hypersurface in CN~['1. As in
the introduction, we may assume that, after a translation, M is given by

M = [Z e C^1 / p(Z,Z) =0}, Z = (z,w) e C^ x C,

where p is a real polynomial and with the corresponding statements of
the introduction without primes. For any point (^, w) near 0, we define a
complex algebraic hypersurface Q(^w)? called the Segre variety associated
to (z, w) by

0(.,w) = {(^ T) € C^1 / p(($, r), (^, w)) = 0},

where we have complexified p. These manifolds were introduced by Segre
[23], and were extensively used by many mathematicians in mapping
problems such as Webster [26], Diederich-Webster [12], Diederich-Fornaess
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[10], [9], Diederich-Pinchuk [II], to name a few. Recall also, as in the
introduction, that by the algebraic implicit theorem, the Segre variety
Q(^) can be given near 0 by Q(^) = {(^,r) e U° / r = Q{z,w^)},
where Q is holomorphic algebraic of its arguments and U° is a sufficiently
small neighborhood ofO in C^1. Recall also that the polar M.oiM (i.e. its
complexification) is the complex algebraic hypersurface in C2^2 given by
{{z, w, ̂ , r) G U1 x U0 I r = Q(z, w, <^)} and U'1 is a small neighborhood^
of 0 in C^1 with (7° C U1. We remind the reader that from the reality of
M, one has the following identity:

(2) Q^Q^w^),z)=w.

We will make use of the following basis of holomorphic vector fields
tangent to the Segre variety Q^z.wY-

(3) X^=^(i,.,^.r)^-^(.,w,^T)^, ,=!,.. .N.

3. An algebraic proposition.

In this section, we consider the target hypersurface given as in the
QWQ'

introduction. First, define for a € N^ 5a($,r,^) == ———(^,T,^). (We
have dropped the ' for the variables.) This defines So; as an element of
A^N-^-i- We also define qp = p^ for f3 € N^. We denote by K the smallest
field contained in ^N+I and containing C, the families z = (^1,.. . ,2^v)
and (Sc,). To finish with these notations, let 1C{M') be the smallest field
contained in ^N+I and containing C and the family (g^). Then one has
the following

PROPOSITION 1. — The field 1C{M') is contained in the algebraic
closure of K.

Proof. — We must show that for each multi-index (3 € N^, q^ is
algebraic over K. First, recall that if k\ and k^ are two fields with k\ C A;2,
a finite subset { « i , . . . , Sp} of k^ is called algebraically independent over k\
if the following proposition:

(P € A;i[7i , . . . , Tp] and P(5i,.. . , Sp) = 0 implies that P EE 0)

^) Throughout the paper, all neighborhoods will be assumed to be connected.
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holds. (For more details about the standard concepts of field theory we
shall use, we refer the reader to [15], [27] or [20].) To begin with, choose
in the families z and (5) a a maximal set of algebraically independent
elements over C. Such a set is always finite and does not exceed 2N + 1,
the transcendence degree of ^N-H over C. Note that since the 2^, for
i = 1,.... N are algebraically independent over C, we can assume that the
set chosen is of the form (2^1 , . . . , z^i So:^, . . . , 5^). This also means that

the algebraic closure of K is the algebraic closure of C ( z, 2c^,. . . , 2c^ ) i.e.

the smallest field containing C and the family (^, 2c^, . . . , 2^). (Moreover,
9Q'one can see that the fact that —— does not vanish at 0 implies that k ^ 1;

but it has no importance in the sequel of our proof.) Recall that we want
to show that for any /3, q^ is algebraically dependent over K, i.e. over the
family (^,5ai, • . • ?5c^). To show this, it suffices to see, according to [15]
(Theorem III, p. 135, volume 1), that the generic rank of the following
Jacobian matrix v = ^(^, r, z):

IN

a^
9zi

0^
QZN

^ -

^ -'•'

^
8zi

9̂^N"̂
^

0

0
0

9q0

9^i

9qo
Qr

\

)
is less or equal to N-^-k. We may assume that k < 7V+1. Indeed, in case k =
7V+1, similarly to what has been done in [19], the family {z, 5^,..., 5c^^)
would be a transcendence basis of ^TV+I over C. As a consequence, we
then would have that the algebraic closure of K is all ^N+I? and then the
proposition follows. We will thus suppose that k < N + 1. We shall first
show that each square submatrix x of order N + k 4-1 extracted from v has
a determinant which vanishes identically. Consider such a submatrix x. For
z close to 0, consider the Taylor expansion of 2^ = 2^(^, r, A) with respect

(\ _ ^\a
to A at z, i.e. S^($,r,A) = ^ E;c,+^(^,T,^)-^————. This implies for z

ae^ a!

close to 0 that q/s ($, r) = ^ 5a+^(^, r, z) and hence
aeN^

{-zY
a!

9qp
9^w W-^'T. 95•a+/3

H=0 ^ ^,T,Z)-
^

a!
for i= 1 , . . . , N + 1 ,
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where we note ^v+i = T ' Now, consider for n C N, the following element uf^
(—z^

of A2N+1 defined by ^($,r,z) = ^ S^+^T^p—— By the choice
Ic^n ^'

of the family (^,5o^,... ,5<^), one sees that each term of the sum is
algebraically dependent over this family, and hence uf^ too. This implies
(again according to [15] Theorem III, p.135, volume 1, or [20]) that the
generic rank of the following matrix:

IN

9E^
9zi

9^
9zN

%-
^

9̂zi

ff^
OZN
9E^

• • • -9^-

^
QT

^\9zi

9̂z N
a<
9^1

^ 1

which is the same as the following one:
92c
yzi

9'Sav.

^-

IN
9E^
9ZN
9^
9^i

9^
9ZNa5c.fc
9^i

0

9̂^i

^5o ^ .
9r /

is less or equal to N + k. Now, one sees that identity 4 together with
the above statement implie that the determinant of x is the limit of a
sequence of determinants which all vanish identically. This shows that
the generic rank of v is less than N 4- k and hence that the family
(^,5c^,... ,2^^,9/3) is algebraically dependent over C. By the choice of
the family (^,2o^,.. . ,5o:^), this proves that q? is algebraic over X. This
completes the proof of Proposition 1.
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4. Algebraicity along Segre varieties.

4.1. Some preliminaries.

We consider now the general situation described in the introduction of
the paper. We will assume that the source manifold is given as in Section 2
and the target manifold is given as in the introduction. To begin with, recall
the following arguments due to Webster [26]. In the general situation, one
has H(Qp) c Q'H^pY where the ? means that we consider the Segre variety
of the target manifold. If H = (f,g) = (A, . . . , /jv,p), then for any point
(z,w) € U1 and any point ($,r) € Q^,w) H U°, we have

(5) 9(^ r) = Q' (7(1^), W^). f{^ r)\.

Recall that (^,r) € Q^z,w), is equivalent to saying that (z,w,^,r) belongs
to the polar M. Define for (z, w, $, r) e M H U1 x U°,

D(z^w^^)=D=det(x^ f^r)}
\ A,j=l,...,7V

/ \al / \QN

and let X^^ denote ^ X^^ j ... ^ X^ ̂  j for each multi-index

a = (ai,. . . ,Q;^v). Differentiating the identity (5) along the Segre variety
Q{z,w} yields the following lemma, whose proof can be found in substance
in [6].

LEMMA 1. — For any multi-index (3 e N^ with \(3\ ^ 1, there exists
a universal polynomial P^ e CP^TV+I)] with a = card{a / 1 ̂  |a| ^ \f3\}
such that for any point (z, w, $, r) € M D U1 x U°, one has

D2^-1 5^(7(^w),^,w),/(^r)) = P/(X^^,T))^|,|^^V

Before following our plan, we would like to point out a simple but
crucial fact . In the above lemma, the identity holds on M r\U1 x [7°, but D
and the right hand-side of the last equation are defined (and holomorphic)
in the whole neighborhood U1 x U° of C2^2. Furthermore, by the choice of
the vector fields tangent to Q^,w) (recall that p is a polynomial), one sees
that D and the right hand-side of this last equation are actually elements
of 0(U°)[Z,W] i.e. polynomials in (z,w) with holomorphic coefficients in
(^T)e£/°.
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Since in our denning functions we allow pure terms and terms of order
one to exist, we must be a bit careful in our computations. Hence, we have
to show the following lemma.

LEMMA 2. — D does not vanish identically in M. D U1 x £/°.

Proof. — First, we choose a point q € M (arbitrarily close to 0) such
that the Jacobian determinant of H does not vanish at q (this is possible
since M is a set of uniqueness for holomorphic functions denned near M).
As one can easily check, the rank of the Jacobian matrix of H at q is the
same as the rank of the following N + 1 x N + 1 matrix:

At,,,)̂ )̂,,̂  ( '̂'"^U
V (X^g(q))^ ĵ )|?(g) )

Differentiating (5) along the Segre Varieties and evaluating at the
point (9, q) e M D U1 x U°, we get for j = 1,... N ,

N

(6) X^q) = Y,Q'AH{q) J(qW,f, (9).
i=i

If D(q, q) = 0, then from (6), one sees that the rank of the following
N + 1 x N matrix:

fOw'O.,,^
\ (X^(g)),^ )

is less or equal to N - 1. This implies that the rank of A(q,q) is less or
equal to TV, a contradiction. Hence, D can not vanish identically on the
polar.

We follow our plan by applying Proposition 1. This latter means that
for any (3 e N^, there exists a positive integer k{f3) and holomorphic
polynomials of their arguments R3^ (with 0 ^ j ^ k((3)) such that near
0, one has

k{(3)

(7) ^ ̂  ((2,, (^/, r', ̂ )p=i,...,., A g '̂, rQ = 0,
j=o

with R^ ((2^ (^, r', ̂ ))p=i,...,., z ' ) ̂  0, and ((S,, (^ r', ̂ ))p=i,...,., z ' )
is a maximal set of algebraically independent elements as in the proof
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of Proposition 1. For (^w,^r) e M D U1 x U°, putting z ' = /($,r),
^ = f{z,w), and r' = g(z,w) in the previous equation yields
(8)

fc(/3)

E ̂  ((=a, (7(^ w), p^, w), /($, r))̂ i,...,,, /($, r)) ̂ (^(^ w)) EE 0,
J=0 /

which can be rewritten in the following way:

k(0)

^ <^(z, w, ̂  r)(^(H(z, w)) = 0 in M H £/1 x £/°.
j=o

To continue, we will need the following.

LEMMA 3. — The holomorphic map 6^ does not vanish identically
onMnU1 x U°.

Proof. — Recall that

S^ (^ w, ̂  r) = R^ ((5^ (/-(̂  w), -g^ w), /($, r))^i,,,,, /($, r)).

Moreover, we know that R^ ^(S^'.T', ̂ )p=i,...,r,^') ^ 0. Hence,

to show that ^(/3) does not vanish identically it suffices to see that
the holomorphic map n, defined by (^,w,^,r) € M D [/1 x U° —^
^f(z,w),g(z,w),f(^r)} € C2^1 is of generic complex rank 2N+1 near
0. But if we take a point q € M (arbitrarily close to 0) satisfying the
conditions of the proof of the preceding lemma, we easily get that our
map u is precisely of complex maximal rank at the point (q, q) e M. This
achieves the proof of the lemma.

We shall now use lemma 1. For (^,w,$,r) € ^ = { v G M H U1 x
U° I D{v) -=/=- 0}, we have the following identity for 63:

^^((^^^^^i.H^l)^ ^
(9) 6^w^r)=R^ ——A———^^——————L \^ |

Note also in the case where one of the 0.1 equals 0, we just replace the
corresponding term by ^(^, r) according to Equation 5. Now, multiplying
the last equation by enough powers of D and reminding the reader the
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remark after Lemma 1, one sees that for each /3, we have

kW

^o) E u^ w- ̂  rWH^ w))= o.
j=o

for (/z,w,^,r) € ^. Moreover, k(l3) ^ 1 and each u3 is holomorphic in the
whole neighborhood U1 xU°, and more precisely belongs to 0(U°)[Z, W}.
This implies (together with Lemma 2) that the identity (10) holds on
M H U1 x U°. To finish, note also that from Lemma 3 and Lemma 2,
we see that for each multi-index /3, u^ does not vanish identically on
Mnu1 x u°.

Equation 10 means, in a certain sense, that each function Z —^
q^(H(Z)) is algebraic along the Segre varieties of M. Our aim, now, is
to show that this implies the algebraicity of the latter function. But, here,
the identity 10 is a very weak statement concerning algebraicity compared
to the ones than one can find in the literature ([7], [5], [3]). Nevertheless, we
will show, by using the fact that the u3 are actually polynomials in (^,w),
that 10 will be sufficient for us to prove algebraicity of the desired map.

From now, we only have to consider the following situation. Let M
be a real algebraic hypersurface given as in Section 2, with M not Levi-flat
(near po = 0), and h a holomorphic function defined in neighborhood of 0
(in C^"^1), which is algebraic along the Segre Varieties in the sense that h
satisfies an identity of the form

k

(11) ^^,w;$,r)^,w)=0,
j=o

for(^,w,$,T) G.Mn^xL^.withA;^ 1,^ eO(?7°)[Z, iy]for j=l , . . . ,A; ,
and Vk does not vanish identically on the polar.

First, choose a point po e U° C\ M such that M is of finite type
at this point. Indeed, this is possible since M is assumed not to be
Levi-flat (near 0), and hence M contains minimal points arbitrarily close
to 0. (See for example [13].) In a second time, note that since the set
T = {(^ ,w,^ ,w) € U1 x U° I (z,w) G M} is a maximally real (algebraic)
CR submanifold of M D U1 x U°, it is a set of uniqueness for holomorphic
functions defined on the polar [21], and hence Vk can not vanish on any open
subset of T; and we may thus choose a point pi = (2^1, wi) € M (arbitrarily
close to po) such that vjc does not vanish in an open set V1 x V° of C2^2,
with (pi, pi) € V1 x V° C U1 x U°. Moreover, since M is minimal at po,
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we can assume that M is also minimal at pi (recall that minimality is an
open property since it is equivalent to the finite type condition of Kohn
[18] and Bloom-Graham [8]). Now, we restrict the identity (11) to the
complex submanifold near (pi,pi) given by {M D V1 x V°) D {(^, w, $, r) e
V1 x V° I ($,r) e Qp,} = (M n V1 x V°) n {(^ ,W,$ ,T) C V1 x V° I r =
0(2:1, wi.O}. This gives that for (^) e C^ x C^ near (zi,^), one ha^

k

(12) E^-M^ Q(^i ̂ i,0^); ̂ Q(zi ̂ i,0)^' (^0=o,
J=0

where -0(^0 = ^(^,Q(^Q(^i,wi,$),z)). Our next goal is to show the
following proposition, which will be the main purpose of Subsection 4.2.

PROPOSITION 2. — ^ is holomorphic algebraic near (2:1,2?i).

4.2. Proof of Proposition 2.

Recall first that for j = 1. . . .A;, Vj e 0(V^)[Z,W}. This implies
together with Equation 12 that we have for (z,$) e C^ x C^ near {z\,z\)
the following identity:

k

(13) ^ ^ ^(Q(^ 0(^1^1,0^))^a,.j(0^(^0 =o,
J'=0 QeN-^Joil^b

1^=0,...,c

where &, c C N*, the u^^j are holomorphic near /zi, and

^ (^i)0'^!)''^^^^) =^(^l,wi;^i,wi) ^0.
aeN-^ jQl^b

i/=0,...,c

(We have used the identity (2).) We define for (a,e) € C^ x C^ close
to 0 the following holomorphic function (^(cr,6) = ^(a + ^i,e + ^1). After
this translation was made, it is enough to prove that (p is algebraic near 0
to prove Proposition 2. Now, from (13), one sees that y? satisfies near 0 a
relation of the form (we omit the parameter (2:1, wi))

k

(14) E E ^^^YW^W^e) == 0,
j=0 aEN^Jal^b'

v=0,...,c'

with 0 algebraic holomorphic near 0 (recall that Q is algebraic) and
E WWW(O) = E E WW^^-i) ^ 0. The^=o, ...,c' acN^lo'l^^o,...^

crucial point of our proof is now the following lemma.
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LEMMA 4. — For any given n € N, there exists a family {x^^ )
f|a| ^ V ,v = 0 , . . . , c',j = 0 , . . . , k), such that

i) this family agrees with (Wa^j) up to order n (at 0);
ii) each x^^j is algebraic holomorphic;

iii) E E ^(^ ̂ ))'<.jW(^ ̂  = 0, near 0.
J'=0 aeN^Jal^b'

i/=0, ...,c'

Proof of Lemma 4. — Before beginning the proof, let us deal first
with (14). Expanding it in a Taylor series with respect to a at 0 yields

k °° 7 °° p,

E E aa E ̂ ,̂ )w.,̂ ) E v^)- = o,
j=0 QCN^JQI^ H=0 H=0 '

i^=0, ....c'

for (a, e) belonging to a small neigborhood W1 x W° of 0 in C^ x C^, and
0^^ is holomorphic algebraic. We may thus rewrite the previous equation
in the following form:
(15)

00

Eau E E .̂ 73^—^T ̂ --^(^^w^)= o.
H=0 aeN^.^N^V .=0,...,c' ^^ Q/ W-

|c(|<b/,ct+/A^^l J==0,...,fc

where a + ̂  ^ u means that for each i = 1,..., N , Oi + /^ ^ ̂ . Now, for
each multi-index ZA e N^, we may define the following holomorphic function
JnrnW0 xC8 ( s = c a r d { (a^J) / \a\ ^ V ,v = 0, . . . ,c',j = 0 , . . . ,A;}),

^(e,(T,^))

= E E ^(u -a-aV (9u-a-^(6)(T^'^+H^^(o))^j(6)•
aeN-^^GN^ l/=0,...,c / ' " v ' /

lal^b ' .Q+^^u j=0, . . . , fc

Note that it is possible to define all these holomorphic functions in a
common neighborhood of 0 in C^ x C8 since the 0^^ and the (p^j
correspond to the derivatives associated to 0 and y?. By the Noetherian
property [14], there exists IQ € N* such that the ideal generated by the
(^neN^ ^ the same as the ideal generated by the (Ju)\u\^io- To continue,
we have to show the following lemma.

LEMMA 5. — For any p, and for any j, (p^j is algebraic holomorphic.

Proof of Lemma 5. — Recall that by construction, ^p.j{e) =
9^^
———(0, e) and that ^(cr, e) = -0(a + ^i, e + ^i). We treat the case j = 1,



GERMS OF HOLOMORPHIC MAPPINGS 1037

since as we shall see, the general case follows from the same lines. We thus
have that the derivatives of ^ evaluated at (0, e) are the same as the deriva-
tives of ^ evaluated at (zi, e+^i). We claim that these derivatives are alge-
braic functions of e. Indeed, recall that ^(z, ̂ ) = h{z, Q($, Q{z^, wi, $), z)).
Hence, all the derivatives of ^ evaluated at (2:1, e + z\} involve the deriva-
tives of Q (which is known to be algebraic) and all the derivatives of h
evaluated at the point (^i,0(e+^i,Q(2;i,wi,e-h^i),2;i)) = (^i.wi) (recall
(2)). Hence, these latter derivatives are independent of e, and we are done.

We come back to the proof of Lemma 4. Since for |7| < IQ, |/^| ^ IQ,
j = 0 , . . . , k and v = 0 , . . . , c', the ̂  - ̂ j(O) and the 6ly^ - (9^(0) are
algebraic, they satisfy the following non-trivial polynomial system:

(16) W^^j - ̂ j(O)) = 0, ,̂.(6;̂  - ft^(O)) EE 0.

The ̂ j and the <I>^ are polynomials of their arguments. We shall now use
a procedure which has already been used (in another context) by Baouendi
and Rothschild ([7] Lemma 1.11). We first choose no e N large enough
so that two families of (germs at 0) holomorphic functions (x^j^-y^) and
(^j? ^7,i/) which satisfy (16) and which agree up to order no must be equal.
Let us consider now n ^ no, and the following system of equations in 6, in
the unknowns R = (^), w = {w^j),T = (T^j), with H ^ ̂  H ^ ^o,
^ = 0 , . . . , c ' , j = 0 , . . . , / c , H ^b':

Y, ^u^(Ru-a-^ + 0u-a-^W)(T^ + Ha,^(0))
aeN^./LiGN^
\a\^bf ,a+^u

i^O,...,^
J=0,...,fc

X(ZZ7^.+^,(0))=0,

^•(e;^j) = 0, ^^(e;fi^^) = 0,

for all u € N^ such that \u\ ^ ^o- (^n a u = -77——————rr') According to
' '• ^\{u - a- fJL)\

(15) and (16), Y = ((^, - ̂ (0)), (^,, - ̂ j(O)), (^,^ - TV.,^(0)))
is a convergent power series solution of this system. Since we deal with
a polynomial system, according to a result of Artin [2], there exists an
algebraic formal power series (I?0'71,^0'71,^^), which satisfies the above
system and which agrees with the original solution Y up to order n at 0.
The algebraicity of T0^ gives a family of non-trivial polynomials (i.e all at
lea^t of degree one) E^ = E^^X) such that E^^T^e)) = 0
(in the sense of formal power series). We consider now the following new
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system in the same unknowns as the first one given by

^ Ku^(Ru-a-^ + 0u-a-^W)(T^j + W^j(0))
aeN-^^eN^
|Oi|^$b/,Q+/A^^l

v=.0,...,c'
j=0 , . . . , k

x(^,j+^j(0))=0,
^•(^ ̂ j) = o, ,̂,(6; R^) EE o, ^ .̂(6; r̂ .) = o.

(M ^ ^ M ^ y, H ^ /o, 1^1 ^ io, v = o,...,c', ^ = O,... ,A;).
(R0^^0^^0^) is a formal power series solution of this new system,
and this formal power series vanishes at 0 (recall that it agrees with Y
up to order n). According to another theorem due to Artin [I], there is a
convergent power series (R1^, w1^, T1'71) solution of this new system which
agrees up to order n with (^05n, w°^, T°^) and hence with V. By the choice
of no, we get that R1^ = (61̂  - 6^(0)) and w1^ = ( .̂ - ̂ j(O)). As
a consequence, for any multi-index u such that \u\ ^ /o, T1^ satisfies the
following identity in a neighborhood W^ of 0 in C^:

Y, ^u^0u-a-^(e)(T^(e) + Ha,^(0))^,,(e) = 0.
aeN-^^eN-^
\a\^bf ,a+p.^u

l/=0,...,c/

j'=0,...,fc

This precisely means that we have J^e.r1'^)) = 0, for e € W^ and
|^| ^ /o. By the choice of IQ, we get that ^(e.r1'^)) = 0 for e € W^ and
n € N^. But .^(e.r1'^)) is precisely the term of order u of the Taylor
expansion with respect to a of

^ ^^(^e))1-^;^^) + ̂ ,^(0))^(a,6).£
J'=0 QGN^.JQl^b'

Hence we get part (iii) of the lemma by putting (a^,i.,j) to be equal
to C ;̂!1,.; + W^,^(0)). Since T1'71 agrees up to order n with (Wa^j -
^a^,j(0)), we then get part (i). To finish, recall that T1^ satisfies the
following non-trivial polynomial system ^(e;!11'̂ )) = 0 in W^, and
hence, we get that T1^ is algebraic holomorphic. The proof of Lemma 4 is
thus complete.

Completion of the proof of Proposition 2. — Recall that to show this
proposition, it suffices to see that (p is algebraic near 0. Apply Lemma 4
by taking for example n = no ^ 1 as in the proof of this lemma. To obtain
the algebraicity of y?, it suffices to see (according to the transitivity of the
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property of being algebraic [7]), that the identity (iii) is not trivial. But
this is clear because k ^ 1 and

E w<°^(o) = E W^WQ) ̂  o.
î o,...,̂  î o,...,̂

Hence, we are done. We have thus obtained the algebraicity of ^ which was
defined by ^{z^) = /i(z,0($,(3(^i,wi,$),z))) near (^1,^1). To conclude
the algebraicity of h near pi, we shall use a procedure similar to the one
used in [5]. First, note that if y{z^) == Q($,Q(^I,WI,$),^), the gradient
of y with respect to ^ does not vanish identically near (2:1, z\). Indeed,
if it was not the case we would have Q(^<3(^i,wi,^),^)) = ')c(z), near
(2^1, ^i), for some holomorphic function \. The latter identity with $ = z\
together with the fact that pi C M gives that \(z) = Q(z\,w\,z). Hence,
one has Q(z^(z),z) = \{z\ which means that M contains the complex
hypersurface { w = \(z) } through pi = (^i, wi) € M. This contradicts the
minimality assumption of M at pi. Choose (^°,^°) near (^1,^1) such that

Qyfor example Tr—(^°^°) 7^ 0. By the algebraic implicit function theorem,
9^1

there exists an algebraic holomorphic function j defined in a neighborhood
of the point (z°^y(z0^0)) = (^°,w°) such that the following identity holds
near this point:

ofj^^.^.O^i.Wi.^Z.w),^0,^ FEW,

where $° = (^,i^0) € C x C^"1. We may now consider the following map
near (z°,w°), (z,w) - (z,j(z,w),^°) - h{z,y(z,j^w)^)) - /i(^w).
This is a composition of algebraic maps. This implies the algebraicity of h
near (2;°,w°), and hence everywhere where h is defined near 0.

5. Proof of Theorem 1.1 and its corollary - Examples.

We first deal with part (ii) of Theorem 1.1. Recall that the above
result implies that for each multi-index f3 6 N^, the holomorphic function
Z —> qp(H(Z)) is algebraic, which implies the same statement for Z —>
PQ(H(Z)). Pick now q in the algebraic closure of /C(M'). This means that
one has a relation of the form

^ ^((p^^.W'))^!,.,^^^^') =0,

j=0,...,r v /
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where p, r ^ 1 and the ujj are holomorphic polynomials of their arguments
and (^r((pai)i) is not identically zero. After substituing (z',zi/) by H(z^w),
we see that, by the transitivity of algebraicity, it suffices to show that
^r((pai(H))i=i,...,p) is not identically zero. But this is clear since H is of
generic maximal rank. The second part of (ii) of Theorem 1.1 follows easily.

We deal now with part (i). Using the fact that Q' is algebraic, we
have a relation of the form

^ W, W, A^Z', W\ \) = 0,
j=0,..,r

where as usual the fl,j are holomorphic polynomials with r ^ 1 and f^ is
not identically zero. Hence, we get

^ ^^(^(^A^^Z.^^O,
j=0,...,r|a|^

for Z close to 0 in C^1. Now, since the derivatives with respect to A at 0
of 7^ are precisely the pg{H{Z))^ and since we know that these latter terms
are algebraic (according to part (ii) proved before), one sees that a similar
procedure as the one used in Lemma 4 gives the following^: For any given
positive integer n, there exists a family ( : r ^ ( Z ) j (with j = 0 , . . . ,r and
|a| ^ 1) of algebraic elements, which agree up to order n with ^(H(Z))
and such that the following identity holds in a neighborhood of 0 (which
depends on n):

(17) ^ ^x^W^W^^^O.
j=0,...,r \a\^l

Suppose that for all n, ^ .^^(Z)AQ' ^ 0. Then, each x^^ vanishes
\0t\^l

identically near 0. Hence, each ̂  (H(Z)) vanishes at infinite order at
0, and hence is identically zero. This implies that f^(Jf(Z),A) vanishes
identically. But here again, since Jac(I:f) ^ 0, by the choice of f2r, we reach
a contradiction. Hence, for some no? we have a non-trivial algebraic relation
for the reflection function. Thus, we are done.

For the proof of the corollary, according to [19], the assumption of
holomorphic non-degeneracy on M (and hence on M' too) implies that
the algebraic closure of /C(M') is all ^/v+i. (This has been proved for not

^ ^ In fact, this is a bit more simpler in this setting.
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necessarily the so-called normal coordinates.) This achieves the proof of
the corollary. We conclude with some examples.

Example 1. — Consider the algebraic hypersurface in C3 given by
^mw = (SKew)]^!;^!6. Theorem 1.1 means that for any (germ at 0 of a)
holomorphic map H = (/i, f^.g) of generic maximal rank fixing the latter
hypersurface and the point 0, one has that g and /i/2 are algebraic. This
result is the optimal one that one can get. Indeed, for this holomorphically
degenerate hypersurface, according to [7], there exists a biholomorphic map
H° = (f^f^g0) near 0 fixing M which is not algebraic. One then gets
that necessarily f^ and f§ are not algebraic (but f^f^ is!).

Example 2. — Consider the algebraic hypersurface in C3 given by
Qmw = z\ 4-^12 4-1 Z212. Theorem 1.1 gives that any holomorphic mapping
H = (A 5/2 ,9) with Jac(^f) ^ 0 fixing the latter manifold satisfies the
following property: /2 and g - 2if^ are algebraic. Applying again the
result of Baouendi and Rothschild cited above, we get a biholomorphism
H° = (f^f^,g0) fixing our hypersurface with the following property: f^
and g° are not algebraic but f§ and g° — 2i{f^)2 are!

Example 3. — Let M be the hypersurface in C5 given by Qmw ==
3 . g
E inLi^l2^ Pj e N*- Note that the holomorphic vector field —— is
j=l OZ^
tangent to the latter hypersurface. Theorem 1.1 implies that any holomor-
phic map H = (/i, /2? /3? /4,9) which sends M into itself with Jac^) ^ 0
must have its components A^/2,/3,^ algebraic. Here, again this will be
the optimal information that one can get since, according to [7], there ex-
ists such a biholomorphism H° which is not algebraic. As a consequence,
one knows that necessarily the component f^ is the only component of H°
which is not algebraic.

Remark. — Theorem 1.1 is obviously false in the Levi-flat case as it
can be seen with the following simple example. Considerer the following
local biholomorphism H near 0 in C^1 given by (z, w) —> (z, exp(w) — 1).
Note that H maps the real hyperplane 9m w == 0 into itself. However, the
transversal component is not algebraic.

Note added in proof. — A long time after this paper was completed,
we knew about the paper of J. Merker, "On the Schwarz symmetry prin-
ciple in three dimensional complex euclidean space", where similar consid-
erations to part (i) of our Theorem 1.1 can be found in the real analytic
category. Also, after this paper was written, F. Meylan and A.B. Sukhov
informed us about their joint work with B. Coupet "Holomorphic maps of
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algebraic CR manifolds". We also received the preprint "Algebraicity of lo-
cal holomorphisms between real algebraic submanifolds of complex spaces"
from D. Zaitsev. Both papers deal with holomorphic maps of algebraic
manifolds in complex spaces of (possibly) different dimension.
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