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A PARAMETRIX CONSTRUCTION
FOR WAVE EQUATIONS

WITH C^ COEFFICIENTS

by Hart F. SMITH

1. Introduction.

We introduce in this paper a new parametrix construction for variable
coefficient wave equations, under the assumption that the coefficients of
the principal term possess two bounded derivatives in the space variables,
and one bounded derivative in the time variable. This regularity condition
is the weakest of its sort under which the bicharacteristic flow is well-
posed, and under which energy estimates hold. As a consequence of our
construction, we obtain the Strichartz and Pecher estimates for solutions
to such equations in space dimensions n = 2,3. We remark that the
assumption of two bounded derivatives in the space variables is minimal
for the validity of the Strichartz estimates, as shown by counterexamples
of the author and Sogge [10].

Throughout this paper, A(t^x) = {dij(t^x)}^ -^ denotes a matrix
valued function of the variables (t^x) € [—^o^o] x ^n? which takes values
in the real, symmetric, n x n matrices, such that, for some c > 0,

n

c-^l2 > ̂  aij^x)^ > c|$|2, V(t,rr,0 € [-to^o] x R71 x R71.
z,J=l
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We assume that the coefficients dij(t,x) satisfy a Lipschitz condition
in t,

\aij(t,x) - a^(^a;)| < C\t - ̂ |.

We also assume that the first derivatives in x satisfy a Lipschitz condition
in x,

\^xaij(t,x) - V^(^')| < C\x - x'\.

This is equivalent to assuming that the partial derivatives of second order
with respect to x (in the distribution sense) of the coefficients aij(t,x),
as well as the partial derivative of first order with respect to t, belong to
L°°{[-to,to} XR71).

We set
n

A(t,x,Q^} = ̂  aij(t,x)9^.
ij=l

Let ^(M") denote the Sobolev space of functions with a derivatives in
L^R71).

DEFINITION 1.1. — Suppose that u belongs to

C([-^^o];^+l(]Rn))nC71([-^^o];^(Mn)),

where -1 < a < 2. We say that u is a weak solution to the Cauchy problem

(9^ - A(t, x, Q^))u(t, x) = F(t, x),
u(t,x)\t=o=f(x),

9tu(t,x)\t=o =g(x),

if the initial conditions are satisfied in the vector valued sense at t = 0,
and if, in the sense of distributions, it holds that (9^ - A{t, x, 9^))u(t x) =
F^x).

The assumption that a ^ -1 implies that u e ̂ ([-^o] x IT), so
that (<9? - A(t,x,9^))u(t,x) makes sense weakly.

For -1 < a < 2, given data / € H^^)^ e ^(IT), and
F e ^([-to, to]', ̂ "(R71)), we establish existence and uniqueness of a weak
solution u to the Cauchy problem in the above sense. The key step is
constructing a family of operators s(^s), for -to < s,t < to, which are
essentially Fourier integral operators of order -1, such that

S(t,5)|^=0, 9tS(t,s)\t=s=^
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and such that (<9^ — A(t, x, <9a;))s(t, s) is a bounded operator (for each fixed
t^ s) on the Sobolev spaces ^(R71), for a in the above range. We then pose

u(t,x)= [ (s(t,5)G(5,.))(a;)d5,
Jo

and observe that
rt

(^2 - A(t, x, Q^))u(t, x) = G(t, x) + / [(<9,2 - A(t, x, 9^)s(t, s)G(s, -)](x)ds.
Jo

The right hand side is a Volterra equation, and may be solved by a
convergent expansion for G in terms of F.

The operators s(t^s) are constructed as matrices in terms of a
frame of functions on -L^R71). This frame consists of "coherent wave
packets", similar to the wave packets of Cordoba-Fefferman [3], which
are sufficiently localised in phase space that the action of the wave group
on a wave packet may be approximated by a rigid motion corresponding
roughly to translation of the center of the packet along the Hamiltonian
(bicharacteristic) flow.

The limited differentiability of the coefficients aij(t,x} is handled by
adapting a technique from the multilinear Fourier analysis/paraproduct
theory of Coifman and Meyer [2], and Bony [1]. Precisely, for k > 0, we
take a^(t, x) to be a sequence of smooth functions satisfying

||9r^^(^^)llL-([-to,to]xR-) < G^^27^'-2), 2m+ |/3| ^ 2,

which approximates aij(t^x) in the following sense:

\\dij{t,x) - a^{t,x)\\L^^ta,ta]xR^ ^ C2-k,

||V^(a^,a-) -a^(t,x))\\^([-to,ta}xR^ < C2-^.
For large A;, it follows that the corresponding matrix function Ak(t^x) is

n

uniformly elliptic with lower bound -. Without loss of generality we assumeZi
that this holds for all k >_ 0.

We also assume that the partial Fourier transform of a^(t^x) in the
x variables vanish for frequencies of modulus greater than 2^,

<-(^)=0, |$| ̂ 2t

Such a sequence may be obtained by smoothly truncating the Fourier
transform in x of aij(t,x) to frequencies of modulus less than 2^, followed
by convolution with respect to t against dilates by 2~k of a compactly
supported test function.
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For k > 0, we set
n

Ak(t,x,9^) = ̂  a^x)9^.
Z,J==1

We then construct s(t, s) as a sum of operators Sk(t^«), which are localised
to frequencies of size |$| w 2^, such that

00

^(^-Afe(^,a,))s^,5)
fc=0

is a Fourier integral operator of order 0.

This replacement of A(t, re, Qx) by Afc(^, a;, 9x) at the Littlewood-Paley
localisation of level k represents a balance between the requirement of a
suitable operator theory for s(^, s), and the requirement of a bounded error
term. On the one hand, it yields a family of operators s(t, s) which are
essentially Fourier integral operators with symbols of class 6'i i. This is the
largest class of symbols for which the standard theory of Fourier integral
operators goes through. On the other hand, since

\\aij(t,x) -a^(t,x)\\L^^[-t^to}xR^ < C2~k,

the operator A(t^x,9x) — Ak(t,x^9x) behaves as an operator of order 1
against Sfc(t^s). As a result, the error term

00

^(A(^, x, ̂ ) - Ak(t, x, 9^))sk(t, s)
k=l

is a bounded mapping on ft^R71), for —1 <, a < 2. Balancing these
requirements is one of several places where the methods of this paper break
down if the coefficients a,ij(t^x) have less than two bounded derivatives in
the spatial variables.

The organisation of this paper is as follows. In Section 2, we introduce
the frame of coherent wave packets, and a class of Fourier integral operators
in terms of decay properties on their matrix representation in this frame.
In Theorem 2.7, we establish composition and mapping properties for this
class, under very weak conditions on the associated canonical transforma-
tion. In Section 3, we develop the main idea of the parametrix construction,
which is that, with an error term that is one derivative smoother, the action
of the wave group on an element of the frame can be approximated by a
rigid translation along the flow of the Hamiltonian field of A. In Section
4, this idea is further developed to produce an approximate inverse for the
wave operator, and an exact solution to the Cauchy problem by iteration.
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In Sections 4a and 4b, these results are adapted to operators in divergence
and Laplace-Beltrami form. In Section 5, we establish uniqueness of the
weak solutions produced in Section 4, 4a, and 4b. Finally, in Section 6, we
use the approximate inverse of Section 4 to establish the Strichartz and
Pecher estimates for weak solutions to the Cauchy problem.

2. The frame of functions.

In this section, we introduce the frame of "coherent" wave packets
that are used to realise the construction of the parametrix. The expansion of
a function / in this frame corresponds to a dyadic-parabolic decomposition
of the Fourier transform of /. This dyadic-parabolic decomposition of phase
space has been used in many papers to understand the L^R71) behaviour
of oscillatory integrals. We mention here the work of Fefferman [4] and
Seeger-Sogge-Stein [8]; see also the presentation in chapter 9 of [12], where
it is referred to as the second dyadic decomposition. We also mention
the development by the author in [9] of a Hardy space based on this
decomposition of phase space.

We start with a smooth partition of unity on R" of the form
00

i^wi'+EEiw)!2-
k=l u)

The index uj varies over a set, the set depending on A;, of approximately
2 2 u n i t vectors evenly distributed over the surface of the unit sphere.
The functions h^(^) are smooth functions, which vanish outside the set

2^ < |^| < 2^+1, i^ ,-^ <2-i

We also require the following estimates on the derivatives of ^($),

|^,^^'^^(0| < c^V^),
where the constants C^oc are independent of uj and k. For the construction
of such a partition of unity, see Chapter 9, §4.4 of [12].

The function A^($) is thus supported in a rectangle, with one side-
length, in the a; direction, equal to 27T • 2^, and the orthogonal sidelengths
equal to 27T • 2^. For each pair (a;,/?), we now let 5^ be a rectangular
lattice in M71 with spacing 2~k in the direction a;, and spacing 2~"^ in
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directions orthogonal to uj. Let F denote the corresponding set of triples
{7 = {x,uj, k) : x e 5^}, and set

^^W-^-^e-^h^).

Then

(2.1) \{uJ^9yY{^,9yr^{y)\

, ( (n+1) , |a|^

<G^2V 4 ' 2 ^1+2^1(0;^-^1+2^1^-^|2)-^,

where {uj^.Qy) denotes differentation in directions normal to uj, and where
the constants C^,N are independent of the index 7. The functions ̂ (y)
form a frame of functions on L2(Rn), in the sense that if

then

0(7) = / ^(y)f(y)dy,
JRr.

f(y)=^c(^(y)^ [ \f^dy=^\c^)\\
^ J^ ^

The frame (p^(y) is not orthogonal, nor even independent; however, it also
holds for any sequence of coefficients ^(7) that

/ E^W^^El^)!2'
Rn 7 7

To clarify the relation between a function f{y) and the corresponding
sequence of coefficients 0(7), we define maps

E/i : ̂ (R") ̂  ̂ (F), £/i(/) ={c(7)Ler
t/2 : ̂ (F) -. ̂ (R"), £/2(d(^ E ri(7)^(^)-

7

These are continuous mappings, and U'z is a left inverse for £/i. The mapping

n = [/i o [/2
is a non-orthogonal projection of ^(F) onto the range of £/i. If T is
an operator from Schwartz functions to tempered distributions, it has a
naturally associated matrix a = U\ o T o [/2, or

(7,7')= f^(y){T^){y)dy.^7,7)= / ^(y)[i^

This gives an algebraic homomorphism from bounded operators on L^R^
into the space of bounded operators on ^(F).
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Alternatively, if 0(7,7') is any matrix, one can formally associate the
operator T = U^ o a o U\, or

T/(y)=^a(^,y)c(y)^(y).
7»y

This map, which takes bounded operators on ^(F) to bounded operators
on L^R77'), is not a homomorphism. However, it is a left inverse for the first
map. We remark also that the map from matrices to operators on L^R^)
back to matrices takes the form

a —> II o a o n.

The following is an immediate consequence of the proceeding results.

LEMMA 2.1 (Schur's Lemma). — Suppose that 0(7,7') is a matrix,
and that there exists a strictly positive function ^(7), such that for all 7
one has

Y,\^^'}\PW<CaP(n^

v
^\a(V^MV)<Cap(-r)^
7'

Then the operator determined by a is continuous on L^R71), with operator
norm bounded by a multiple ofCa-

There is a natural algebra of operators associated to the above frame.
We first recall the pseudodistance function on the cosphere bundle -S'*(R71),
which was introduced in [9],

d{x^uj\x^(jJ) = \{uj^x — x)\ + \{^->x — x)\ + min(|.r — :r|, \x — x\2) + |c<; — d)|2.

A useful estimate to be observed is that

d{x,uj',x,Cj) w \(uj^x — x)\ +min(|:K — :r|, \x — ;r|2) + |a; — u}\'2.

It was shown in Lemma 2.2 of that paper that this pseudodistance
is invariant (up to constants) under canonical transformations; the proof
required that the transformation have 2 bounded derivatives. The canonical
transformations determined by a <71'1 Hamiltonian need not meet this
criterion, so we provide the following lemma.

LEMMA 2.2 (Invariance of the pseudodistance). — Suppose that
H(t,a;,^) is real and homogeneous of degree 1 in ^. Suppose also that
Va;H(t,a;,^) and V^H(t,.r,^) satisfy a Lipschitz condition in (x^), with
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uniform Lipschitz constant over the set |$| = 1. Let \t be the transforma-
tion on the cosphere bundle ^(IT) induced by the projected Hamiltonian
now at time t,

dx duj
-^ = H^(s,a;,cc;), -^ = -K^s.x^) + {uj^(s,x,uj))uj.

Then

d(\t(x,LJ)'^t(x,uj)) wd(x,uj\x,Cj\

where the constant of proportionality is bounded by e^l for some K.

Proof. — Let (x, uj) and (x, a)) denote the integral curves with initial
condition (y, rj) and (y, rj) respectively. Since H^ and H^ are Lipschitz in
{x,uj), the curves are uniquely defined, and are Lipschitz functions of the
initial parameters. The flow is thus a bilipschitz mapping, so that

\x - x\ + \u - uj\ w \y - y\ + \r] - rf\,

where the constant of proportionality is bounded by e^L We next show
that

(2.2) ^x-^-^y-y^^e^^y-y^+^-rj}2).
Consider

-^{^,x-x) = (c^H^rr.o;)) - (uj,B.^(t,x^)}

-(Rx(t,x,^),x-x) + (uj,}ix(t,x,u})}{uj,x-x).

By homogeneity, the first three terms on the right hand side can be
rewritten as

H(t, x, u) - H(^, x, uj) - {uj - a), H^(t, x, uj)}

-(H^(t, x, a;), x - x) + (H^, x, a;) - H^, x, a;), x - x).
The first four terms of this latter expression combine to give the second
order error in the Taylor expansion ofH(^,a:,o;) in (x,uj) about (:r,o;), and
hence are bounded by \x-x\2 ̂ -\uj-uj\2 ̂  \y-y\2^-1^-^|2. The last term
is similarly bounded since B.^(t,x,cj) is Lipschitz in (a:,^). The inequality
(2.2) now follows by GronwalPs Lemma. D

The following weight function /^(7,7') is closely related to the weight
function that characterises the matrix of a Calderon-Zygmund operator in
the wavelet bases (for example, see page 282 of [6]).

DEFINITION 2.3. — Jf7 = (x,uj,k) and 7' = { x ' ^ ' . k ' ) , we set

^Y) = (i + |A/ - ̂ )-i2-m)i^i (i + ̂ F^))-'-^
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LEMMA 2.4. — If6>0, then there is a constant C(6) such that

^^(^y)2-^$^)2-^.

Proof. — To establish the estimate, we will show that, for each
7 = (rr.cj, A:), and each k ' ' ,

(2.3) E E (l+^^))-"-^^)(l+2"^)).
"' x ' ^ '

It is then straightforward to verify that

^^y*(fc'-fc)^-^2-(&+t)|fc'-fc| ^ c'(^)2-^.
fc'=0

We first verify the inequality (2.3) in case k >. k ' . The part of the sum
involving \x — x'\ <. 1 is dominated by

^(1+2^1^-a;!2)-^-^ ^ (^^.c^W))-^-1.
^' x'^

This sum converges with bounds independent of k ' . The part of the sum
with | re — x'\ >_ 1 is controlled by noting that

^ (1+2^-a/I)-71-6 ^0(^)2-^^.

l^-o^l

In case k < k1, the proof of (2.3) is similar; the factor of2n^ /-^ arises
by comparing the density of points (x^) to the density of the (a/.cc/). D

LEMMA 2.5. — If6>0, there is a constant C(6) such that

^^(7,y)^(7^7o) ^ C7(6)^(7^7o).
V

Proof. — By symmetry, we assume k <^ ko. We divide the sum into
three parts, for k ' >kQ^ k1 < k, and k < k1 < ko.

If k' >k^, then we dominate

(1 + 2^, o;'; .r, ̂ -^(l + 2fcod(^, ̂ /; rro, c^o))""^
< C(<$)(1 + 2fed(^,a;;^o^o))~7l-'(l + 2 fco•

min^a;', a;'; a;, ci;), d(a;', a;'; ̂ o^o)])"71"^-
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By (2.3), the sum of the latter quantity over (x1,ci/) is dominated by

y^'-fco) (l + 2^, CJ; ;KO, C^))"^.

The desired bounds on the sum over k' > ko follow since
Y^ 2-^+?)(2A; /-fc-feo)+n(fc /-fco) ^ C'^)2-(<5+t)(fco-fe)^

k^ko

For the sum over k' <k^ similar steps lead us to consider
^ ̂ (^)(^_2^) ̂  ̂  2 ,̂ ̂  ̂  ̂ -n-^

fe^fc

which is dominated by

C^)2-^+t^°-^ (1 + 2^, a;; rco^o))"71"6.

For the sum over k < k ' < ko, we are led to consider

^ (1 + |A/ - Af)-^! + |A/ - fcol2)-^-^?)^0-^.
fc<'/<feo (l+2^^;^o^o))-71-6,

which is dominated by

(1 + \k - ̂ ol2)-^-^?^0-^! + 2kd(x,^xo,uo))-n-6. a

DEFINITION 2.6. — -Tf^ is a mapping on ^(R71), we say that a
matrix 0(7,7') belongs to the class M^x) ^

|a(7,701 < ̂ 2^(7, X(7')).

ffere, ^:(7/) = (^(a^a/),^). We also set

^M^n^M.
6>0

THEOREM 2.7. — Suppose that \ is an invertible mapping on
^(R71) such that for some constant C

(2.4) C-1^, ̂  x ' , ̂ ) ̂  d(x(^ a;); x(^, ̂ )) < Cd(x, ̂  x1\ a;').

-1^0(7,7') € A/(r(^), tAeii the operator determined by 0(7,77) is a contin-
uous mapping from ̂ (IT) to Jf0'-^71).

Jfoj(7,7') 6 A^^j), where ̂ j,j = 1,2 are invertible mappings on
S^R1'1) satisfying- f2.4^ then 01 o 02 € ̂ (''̂ ^(^i o ̂ 2).
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Proof. — These are simple consequences of Lemmas 2.1, 2.4 and
2.5, together with the fact that

^(7,x(y)) ̂ /^(x"1^)^
and the relation

||/||^(R-)^(E22'alc^)12)i• D

7

DEFINITION 2.8. — We say that an operator T, defined as a map
from Schwartz functions to tempered distributions, belongs to the class
^(x)? if the matrix

^(7,7') = f^(y)(T^)(y)dy
belongs to .A^T^).

It is a simple matter to show that if T is a standard Fourier integral
operator of order r, associated to a smooth canonical transformation ^,
then T e ^(x)- The advantage of the classes ^(x) ls ^at they require
only limited regularity of \.

One can also define classes 2^(^), with only finite order decay
conditions on the coefficients, with the result that 2^(1) forms a Banach
algebra of continuous operators on L^R71), provided 6 > 0. For our
purposes, however, we only need the immediate consequences of the above
theorem, that

I^X) '- H0'^) -^ J^-^R71),
^(Xi)^2^) CZ^+^io^).

LEMMA 2.9. — Suppose that \ satisfies (2.4). If 0(7,7') e J^^x),
then the operator determined by 0(7,7') belongs to Z^^). In other words,

o —> II o a o II
preserves M.r {\).

Proof. — By the comments preceeding Lemma 2.1, it suffices to
check that II C A^°(I), where I denotes the identity transformation. The
matrix of II has the form

11(7,7')== / ^{y)^'(y)dy.JR^
The integral vanishes identically unless both \k — k'\ < 1 and \uj — uj'\2 <
2-A;+4. That II C M°(l) then follows by simple absolute value estimates
on the integral. D
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3. The ansatz.

In this section, for an element ̂ (y) of the frame introduced in Section
2, 7 = (a;,ci;,A;), we introduce a family <^(t,^/), where ( p ^ ( t ^ y ) is related to
^(y) by a rigid motion that corresponds roughly to flowing the point
(re, uj) for time t along the projected Hamiltonian flow of ^/Ak(t^x^). The
construction is such that the second order terms in the expansion of

(^-A^,rr,<9,))^(^)

cancel against each other. As a consequence, we show that ife^(^) is defined
as the operator which takes / = ̂ c^(p^(y) to ^ c^^p^(t^y\ then

7 k^=k

oo

Y^(92, - A,(^,c^))e^)
fc=0

is an operator of order one, in the class of operators of the previous section.
In the next section, this idea is used to produce an approximate inverse for
9^ — A(t, x, 9x)^ where the error is one derivative better than expected. We
remark that the family ^(t^y) will be denoted by (p^(t,0,y) in the next
section, where it is necessary to consider initial manifolds t = s for nonzero
s, and also the flow along —^/Ak(t,x^). For the purposes of this section
the consideration of ^p^(t^y) is sufficient.

Let Hfc (t, x, 0 = ^/Ak(t,x^). The Hamiltonian flow of H^ on T* (R71)
commutes with dilation in $, and hence induces a flow on the cosphere
bundle ^(Hr), which is given by

(3.1) ^ = (H^(t,^), ^ = -(H^(t,^) + (a;, (H,),(t,rr,a;))a;.

Let 6 denote a n x n matrix variable. In the following, v (g) w denotes
the matrix x —> (w, x)v. Consider the flow on R77' x R77' x M71 given by

dx
-^ =(Hfc)^,a1,^),
r l i i j

(3.2) — = -(H^, x, a;) + (a;, (Hfc),^, x, a;))a;,
at
JC\

——, = -0[UJ (g) (Rk)x(t,X,LJ) - (Rk)x(t,X^) (g)^].

It is easily verified that the flow preserves 5'*(R71) x 0{n). The fact that
the orthogonal group is conserved follows from antisymmetry of the term
in braces.
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Now let (x^(t),^(t),0^(t)) denote the solution to (3.2) with the
initial condition

(^(0)^(0), 9^(0)) = (r^c^I).
It is verified that

^[&^)^)]=0,

so that Q^(t)^{t) = uj^ for all t. Next, let
(3.3) ^ y) = ̂ (@^(t)(y - x^(t)) 4- ̂ ).

DEFINITION 3.1. — Ifc(Y) = \ ^(y)f(y)dy, we set
Jprz

^k(t)f(y)= ^ c(7')^y(^).
^ ' : k ' = k

Let \t{x^uj) denote the value at time t of the solution to

(3.4) — =H^S,X,UJ), — = -Ha.(s,.r,o;)+ {uj^{s,x,Lj))^,

with x(0) = x^(0) = uj. We then have the following.

THEOREM 3.2. — The following hold:
Ee^)ez°to),

W-M^y^y^kWei^xt).
k

Furthermore, the constant appearing in Definition 2.6 is uniformly bounded
(for each 6) provided s and t vary over compact intervals.

We prepare for the proof of Theorem 3.2 by examining the function
<9?^(^ y) - Ak(t, y , 9y)^(t, y).

We first observe that
(3.5) Qt^(t,y) = -L(t,x^(t),^(t),y,9y)^(t,y),
where
L(^^a;,^^)=((Hfc)^(^^a;),^)+((Hfc)^(t,^a;)^-.r)(^,^)

-(^,y - x}{(Rk)x(t, x, a;), Qy).

DEFINITION 3.3. — We say that a family of functions {f^{t)}^r C
C7°°(R) is of type C^ if there exists a sequence of coefficients Cj, indepen-
dent of 7, such that

\OiW\<C^ j^m,

\9iW\<C^-^\ j>m.
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An inductive proof shows that any particular coordinate ofx^(t) gives
a family of type <72, whereas the coordinates of ^(t), and 9^), give
families of type Ct. Also, the family of functions (ftk)x{t,x^{t),^{t)) is
of type C^, while (HA;)^,^),^)) and Rk(t,x^(t),uj^{t)) are of type
C1. In the following Lemmas 3.4-3.5, the f^(t) that arise are products
of these functions and their derivatives, so that the constants Cj in each
instance can be taken to depend only on the derivative bounds for A(t, x).

The index 7 can be considered fixed for the purposes of the next
two lemmas, so for convenience of notation we use (^,0^,61) to denote
(^),c^),a^)).

For the given 7, we fix additional vectors (^2,. • -,v-y,n) such that
(c^p v^^ , . . . . v^^n) is an orthonormal set. Let

^•,t=9^)-1^,

so that (o^, z^,..., Vn,t) form an orthonormal frame for all t.

In the subsequent lemmas, ^(y) denotes a generic function of the
form
(3.6)
^(0 = ̂ ^^^'^-^^-^^^.a^-^.a^-^.^^^.o^^^

where ̂  denotes the span of (u^2,. . . , ^7,71). The particular form of ̂ (y)
may differ at each occurrence. As in (3.3), we let

^, y) = ̂ (Q^(t)(y - x^(t)) + ̂ ).

Thus, ̂ (t,y) is a general function of the same "size" as (/)^(t,y).

Recall that Ak{t,y) denotes the matrix valued function such that

Ak^y,9y)={Ak{t,y)9y,9y).

LEMMA 3.4. — One can write L^t.Xt^t^y.QyY^it.y) as

[2{Ak^Xt)^9y}{^9y} - {Ak^Xt)^t^t){^9y}2

+{(y - Xt) ' QxAk{t, Xt)uJt^t){^ Qy}2}^, y)

plus a finite sum of remainder terms, where each remainder term is of the
form

(3-7) ^W^y),

where m<l, f^ is of type C^, and ^(y) is as in (3.6).
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Proof. — We first observe that one can write
(c^, y - Xt)^(t, y) = 2-^^, y),

(^9y)^y)=2k^(t,y),

{^3^ V - Xt)^(t, y) = 2-^(^, y),

(v3^9y}^(t,y)=2^^(t,y),
where ̂  is respectively of the form

^W^^^.y-x^^y)

^(y)={2-k{^ay)^(y)

^(y)=^(vj,y-x^(p^y)

^(y)=(2-^(v^ay)^(y).
Now write L(t^ Xt^t^ y-, 9y) as a sum of four terms:

(3.8) L^Xt^^y^Qy) =Rk^Xt^t)(^9y})

+ <(Hfc)^, Xt^t) - Hfe(^ Xt, ̂ t)^t, 9y}
+ {(^k}x(t,Xt^t),y-Xt){uJt,9y)

- (ujt, y - Xt)(CEk)x(t, Xt, o;t), 9y}.

We claim that these four terms are respectively of order 1, -, -,0, in the
sense that, applied to (p^(t, x), they lead to a sum of expressions of the form
(3.7), where the exponent m is less than or equal to the assigned order. This
is immediate for the first, third, and fourth term; it holds for the second
term since the vector (Hfc)^(t, ̂ , c^) -Hfc(t, ̂ , a;̂  is normal to c^, hence
is a linear combination of the z^. We now observe that, upon applying
L(t,Xt,^t,y,9y)2 to ̂ (t,y), the only terms that do not immediately lead
to functions of the form (3.7) come from combinations of the four terms

0

where the combined order is at least -.
2

The cross term between the first and third terms involves

Hk(t,Xt^t){^t,CH-k)x(t,Xt^t))(^t,9y)

which is also of order 1. Thus, modulo terms of order at most 1,
L(t,Xt^t,y,9y)2 equals

2Hfc(t,^,a;,)((Hfc)^^,^,^),^)(^,9^-HJ(t,^,^)(^,^)2

+2Rk^Xt^t)(^kUt^t^t)^y-Xt)(^9y)2

= ((H^)^(t,^,^),^)(^,^) -H^(t,^,^)(^,^)2

-^{(^lUt^t^t)^y-Xt}{^9y)2.



812 HART F. SMITH

Since R^(t,x^) = (Afc(t,a;)$,$), these last three terms are equal to the
three terms in braces in the statement of the lemma. D

LEMMA 3.5. — One can write (<9^ — A^(t, y , 9y))(p^(t, y) as a finite
sum of terms of the following form:

2^(t)^(t,2/),
2^(t,2/)^(t)^(^),

2^ [ak{t^ y) - afc(t, xi)}f^t)^ y),
22k[ak(t,y) - ak(t,Xt) - (y - Xt) ' (9^ak)(t,Xt)}f^t)^y),

where dk(t, x) denotes an element of the matrix Ak(t, x). In the first form,
the functions f^ are of type C°, and in the other three forms the functions
f^ are of type C^.

Proof. — By (3.5), it holds that

9^^{t, y) = L(t, Xt^t, V, 9y)2^(t, y) - [9tL(t, Xt, c^, y , Qy)]^(t, y).

Consider first the term [9tL(t^ Xt^ti y^ Qy)]^^^ y)- ̂  ̂  observed that, after
differentiation in t^ each of the four terms in (3.8) is of order at most 1, in
the sense according to the comments following (3.8). Thus, this term can
be written as a sum of terms of the first form.

Next, let Rk(t-i Xfi ̂ , y^ 9y) denote the operator

Rk{t, Xt^t, y , 9y) =Ak(t, y , 9y) - 2{Ak(t, a;^, 9y){^ 9y)
-{•{Ak(t,Xt)uJt^t){^t,9y)2

- {(y -Xt) -9xAk(t,Xt)^t^t}(^t,9y)2.
Then, by Lemma 3.4 and the preceeding result, one can write

(9,2 - Afe(t, y , 9y))^ y) + ̂ (t, ̂ , ̂ , y , 9y)^(t, y)

as a sum of terms of the first form. It remains to express

Rk(t, Xf, CL>t, V, 9y)^(t, y)
as a sum of terms of the other three forms. To do this, we write
Rk(t^ Xt^t^V^9y) as a sum of three terms

^ (^k{t, y)v^t, v^t) (v^t, 9y)(v^t, 9y}
2<,iJ<^n

+2 ̂  {[Ak(t,y)-Ak{t,Xt)]iJt^^t)(^9y)(vj^9y)
2<j<n

+ ([Ak(t,y) - Ak(t,Xt) - ( y - x^ • (9^Ak)(t,Xt)]^t^t)(^9y)2.
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These lead, respectively, to terms of the last three forms. D

Recall that the operator Ck(t) is defined using the Hamiltonian flow
of ^/Ak(t,x^), whereas ^ denotes the Hamiltonian flow of ^/A(t,x,^).
We thus require the following lemma.

LEMMA 3.6. — Given k, let (x(t),u(t)) be the integral curve of
(3.1), with x{0) = x,uj{0) = uj. Then

d{x(t)^(t)'^t(x^)) < 2-^(6^1 - 1),

where C depends on the derivative bounds and lower bounds for A(t,x),
but in particular is independent ofk.

Proof. — We temporarily denote \t{x^uj) by (x(t)^(t)). Observe
that, on the set |$| = 1, we have the following estimates:

|9^(H(^,0 -H,(t,n;,0)| ^ C2k^~l^ \{3\ < 2.

By GronwalPs Lemma, we conclude that

\x(s) - x(s)\ + |^(s) - Cj[s)\ < 2-t(eclt' - 1).

It remains to show that

KJ;((),;c(t)-^)) | < 2-^1*1-1).

Consider

- ^ { u j , x - x } = (u},R^t,x,uj)-(Kk)^t,x^))-(R^t,x,uj),x-x}

+ (uj,B.^(t,x,uj)}(u},x-x}
= {{u;,R^(t,x,uj) -R^(t,x^)} - (R^(t,x,ui}),x-x))

+(9(2- f e)+0((^,^-rr)).

By homogeneity, the terms in parentheses can be rewritten as

H(^, x, Cj) — H(^, x, uj) — {uj — ci;, H^(^, x, a;)} — (Ha.(t, a;, 0;), x — x)
-h(Ha;(^,a-,ci;) -Rx(t,x,uj),x - x).

The first four terms combine to give the second order error in the Taylor
expansion of H(t,^,o)) in (x^uj) about (.r.o;), and hence are bounded by
\x — x\2 + \uj — dj\2. The last term is similarly bounded since Ha;(t,a*,L<;)
is Lipschitz in x and uj. The desired result now follows by GronwalPs
Lemma. D
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Proof of Theorem 3.2. — The operator ^efc(^) is determined by
k

the matrix
^(7^7)= / ^y(y)^(t,y)dy.

JRr.

By Lemma 2.9, the first part of Theorem 3.2 follows by showing that this
matrix belongs to M°{\t)' The coefficients vanish unless both \k' — k\ < 1,
and |o;y — ̂ (t)\2 < 2-fe+4. Simple size estimates show that, in this case,

( |^(?/)^(^?/)|^<^(l+2fcd(^,^;^(^),^(t)))-N, V7V.
JR"-

By Lemma 3.6,
d(^(^),^(^;Xt(^,^))$2-^

This completes the proof of the first part of Theorem 3.2.

To establish the second part of Theorem 3.2, it suffices to show that,
if <7-y(t, y ) is any of the four forms in Lemma 3.5, then

/ |^^)^(t,2/)|d2/<C7v2fc(l+2fed(^,a;y;^(t),^(^)))-N W,
jRrz

in the case that both [fc '—fcl < 1 and \iJy—^(t)\2 < 2-fe+4, since the matrix
coefficients vanish otherwise as the function ak(t^y) has partial Fourier
transform in the y variable supported in the set |^[ < 2^. In each case,
this estimate follows from simple size estimates on |y?y(^/)| and \g^(t^y)\^
together with the fact that

\dk(t,y) -ak(t,Xt)\ < C\y-Xt\,

\ak(t,y)-ak(t,Xt)-(y-Xt) ' (9^ak)(t,Xt)\ < C\y-Xt\2. n

4. The parametrix.

We now generalise the results of the preceeding section, by introducing
two pairs of families of functions, ( p ^ ( t ^ s , y ) and i9^(t,s,y), so that the
solution to the Cauchy problem

(^2-Ak^y,9y))u(t,y)=0,
u{t,y)\t=s =a^{y),

9tu(t,y)\t=s=b^(y),
is well approximated by

^V) =|(^(t^,z/)+^(t,5,2/)) +^(2-^(t,5,2/)- 2-^ (t,5,^/)).
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To begin, for k > 0 we set

^(0= -2^, 0-^(0.

For a given index 7 = (^,c^,A;), we let (x^(t,s),uj^(t,s),Q^(t,s)) be
solutions to

(Z^C
-^=±CH.k)^t,x,uj),

duj
-^ = ̂ (Hk)x(t,X,tJ) ± {u},(Ilk)x(t,X,U}'))uj,

,jr\

-^ =^e[cj(g)(Hfc)^(t^,cj)-(HA;)^(^^a;)0a;],

with the initial conditions

(x^(s,s),^(s,s),Q^(s,s)) = (^,o^,I).

We next define transformations ^^ on 5*(]Rn) by setting ^^x^uj) =
{x±(t^s}^uJ±(t^s))^ where the latter solve

dx duj
-^ = ±H^(^a;,^), -^ = =FlUt,a )̂ ± {uj^(t,x,uj)}uj,

with initial condition x±{s^ s) = x , ( JJ ± ( s , s) = uj.

We now set
^{i, s, y) = ̂ (e^, s)(y - x^(t, s)) + ̂ ),

^(^s? 2/) = H r 1 . ^7(Q^(^ ^)(2/ - <(^ ̂ ) + ̂ )--"-feV0? X^^LO^)

Thus,

(4.1) ^(^5,2/)==T^<(^5),^(^5),^^)^(^5,2/),
^(^5,2/)=T^^(t,5),^(^5),2/,^)^(^5,2/),

where L{t,x,uj,y,9y) is as in (3.5).

DEFINITION 4.1. — Jfc(7') = / ^y(y)f{y)dy, we set
JR-rt

Ck(t^)f(y)=^ ^ c(y)(^,(^5,2/)+^,(^5,2/)),
-y^fc^fc

s.(^5)/(2/) = ̂  ^ c(7/)(2-^,(^5^)-2-fc^,(^5,2/)).
^^fc^fe

We then have the following two theorems, the proofs of which follow
immediately from the proof of Theorem 3.2.
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THEOREM 4.2. — The following hold:

^c.^^e^^Jez0^),
k

^s.^^ez-^^Jez-1^).
k

Furthermore, the constant appearing in Definition 2.6 is uniformly bounded
(for each 6) provided s and t vary over compact intervals.

THEOREM 4.3. — The following hold:

^(^ - A^y^0y))c^s) e I\xfs) CZ1^),
k

(̂9,2 - A^ ̂  9y))s^ s) e I°(xts) C Z0^-,).
k

Furthermore, the constant appearing in Definition 2.6 is uniformly bounded
(for each 6) provided s and t vary over compact intervals.

We now set

c{t,s)=^ck(t,s).
k=0

As operators on ̂ (IT), the family c(t, s) is a strongly continuous function
of both t and s. This is seen by observing that, for fixed / (hence fixed c(-7))
the sum ̂  0(7)^ (t, s, y) is the uniform limit of finite sums as s and t vary

7

over bounded intervals. It similarly follows from (4.1) that, in the sense
of distributions, 0^c(t, s) is a strongly continous family of operators from
Ha(Rn) -^ ^-^R71), and that

c(t,s)\t=s=1, 9tc(t,s)\t=s=0.

The definition ofs(^.s) is more complicated since 9t^(t,s,y)\t=s ^
^(y). To define s(t,s), we let

^kf{y)= ^ ( [~^(z)f(z)dz)^(y).
V-.k^k J

For a constant A;o, to be determined depending on the derivative estimates
and lower bounds for A(t, x), we now set

s(^ s) = ̂  sj^, s) + (t - s) ̂  Afc.
k>ko k<ko
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LEMMA 4.4. — For ko sufficiently large, depending only on the
lower bounds and derivative estimates for A(t,x), and in particular inde-
pendent ofs, the operator 9ts(t, s)\t=s admits a bounded inverse on ̂ (R^).
The inverse extends to a bounded operator on ^(R71) for all a, and is a
continuous function ofs in the norm operator topology on ̂ (R^.

Proof. — By (4.1) and (3.8), we observe that

2-fecW^,5,2/)|^
2-fe

=±^^±^(, „ .. ^[((H^(^^,^)-Hfc(g,^,^)^,^)
^-^- fev-? *~7? ~7/

+ ((H.k)x(s, x^, c^), y - x^} (c^p Qy)

-(^,y-x^)((Rk)x(s,x^,^),9y}}^(y).

By the proof of Lemma 3.4, the terms in braces applied to ^^(y) give
terms that are ^ order better than (p^(y). It follows that the operator

R(s) = I-9ts(t,s)\t=s belongs toZ~i(I), with uniform bounds as s varies.
For ko sufficiently large, R(s) has L^R71) operator norm less than 1, so
that 9tS(t,s)\t==s = I - R(s) is invertible on L^Br). By writing

27V-1

(I-RQO)-^ ^ RW+R^^-R^))-1^^,
j=0

it is seen that (I - R(5))-1 is bounded on ^(ItT) for all values of a. Since
R(s) is a continuous function of s in the operator norm topology on maps
from Ha(Rn) -^ J^-6^) for e > 0, it is seen that (I - R(s))-1 is
continuous in s in the operator norm topology on ^"(R71). D

We now set
s(t^s)=s^s)(9tS^s)\t=s)~1.

The family s(^, s) is then a strongly continuous function of both t and s
as operators from ^(ST) -^ H^1^). Furthermore, in the sense of
distributions, 9^s(t,s) is a strongly continous family of operators from
Hoi(Rn) -^ Jf^-^R71), and we have

s(t,s)|^=0, 9ts{t,s)\t=s=^

Now set

(4.2) To(t, s) = (9,2 - A(t, x, 0,))c(t, s\

T^s)=(9^-A^x^9,))s^s).
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THEOREM 4.5. — If -1 < a < 2, then for each fixed t, s,
T (+ o\ . tT^+l/'TD)7'^ v J-^af^D>1^'\lo(^,5j . n ^K ) —> n [K J,

T /^ o\ . J-^a ^'\0>n\ ^ I-7'Q'/f^D)n^l(t,s^ : H (K J —> n [K ).

The operator norms are uniformly bounded as t — s varies in any bounded
interval.

Proof. — By Theorem 4.3, this follows by showing that

^(a^x) - a^x))9^c^s) : H^^) -^ Ha(Rn)^
k

^a^x) - a^x))9^s^s) : ̂ (R71) ̂  ̂ (IT1),
k

where Sk(t, s) is defined in Definition 4.1.

By splitting the sum into even and odd k^ it suffices to show that if
T is an operator of the form

T= Y, {ai,^x)-a^x))(3k(D)^
k even

where {0k} is an appropriate family of Littlewood-Paley cutoffs, then

(4.3) r:^-1^71) -^^(R71), - l ^ a ^ 2 .

We first establish (4.3) in the case a = 1. We suppress the t and ij. Consider
the operators

T^^W^a^-a^x^W).

From the fact that

lla^-a^rr)!!^^)^^-7',

and that

3.(DVa(x) a^x^D} - <f /W)^)-^-3^))^). 3 ^ k-3,f3,{D)(a(x) - a (x))W) - ̂  ̂ ^(x^-^W^ j ^ k+3,

we conclude that

{ /^—2fe ^ < ̂  _ 3

||T^||L2(Rn)-^2(Kn) < C2-^ \j - k\ < 2,
C2-2^ j>k-^-3.

The estimate (4.3) for a = 1 is an easy consequence.

.We next observe that

[%,r]=(^a(^)) ^ (3k(D)- ^ (9,a,(.r))^(P).
k even k even
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Each of the two terms on the right hand side is bounded on ^^(R71), for
-1 < ^ < 1; indeed, Q^a is a multiplier on ^(R71), and the second term
is a pseudodifferential operator of type S^ y _ . Together with the fact that
(4.3) holds for a == 1, this establishes (4.3) for -1 < a < 2. D

THEOREM 4.6. — If-1 < a < 2, and f € Jf^+^JR71), g € ^(HT),
andF e ̂ ([-^o];^^)), then there exists G € ̂ ([-to^o];^^)),
with

HGHLi^-to^o];^"^))

^ c(to){\\f\\H^(R^ + llpll^R^+ll^llLia-to^ol^aR71))^

such that

n(t, a;) = c(t, 0)/(^) + s(t, 0)g(x) + /' (s(t, 5)G(5, .))(rr)d5
Jo

is a weaic solution to the Cauchy problem

(9? - A(t, .r, a^))n(t, a;) = F(t, rr),

n(t^)|i=o=/(^),
9^(t,a:)|t=o =^(^).

If f = g = 0, and F vanishes for t < 0 (respectively, for t > 0) then G,
hence u, vanishes for t < 0 (respectively, for t > 0).

Proof. — Suppose that G(t, x) C I^Q-to, to]; ̂ (B^)), and set

( t
v(t^x)= \ s(t^s)G{s,x)ds.

Jo
From the strong continuity of s(t,s) and 9fs(t,s), and the fact that
s(t, t) = 0, it follows that

v^x) e C([-to^o];^Q+l(^n))nCfl([-to^o];^a(]Rn)),
with

9tv(t,x)= \ 9ts(t,s)G{s,x)ds,
Jo

and hence that
v(0,x)=0, Qtv(t,x)\t=o=0'

Next, if (f)(t,x) € G^°([-to,to] x M^), then the function

(<^.),^s(^)G(5,.))
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(where {•, •) denotes the distribution pairing on R71) is smooth in t for each
fixed s, and

9t{ct>(t^),9ts(t,s)G(s^)}

= (W, •), 9ts(t, s)G(s,.)} + (< ,̂ •), 9^s(t, s)G(s,.)}.

integrating both sides that, in the sense of distributions,
rt

9^v(t, x) == G(t, x) + / 9?s(t, s)G(s, x)ds,
Jo

where the last integral is a vector valued integral in Ha~l(Wt).

If u(t, x) is of the form in the theorem, it follows that u is a weak
solution to the Cauchy problem provided that

. . G(^)+ / T^s)G(s^x)ds=F^x)-{9?-A^x^9^)(c^O)f(x)
(4.4) Jo

+s(^,0)^)),
where Ti(^,s) is given by (4.2). By Theorem 4.5, the operator Ti(^,5)
is bounded on ^(R71), for -1 ^ a < 2, with norm less than C(to) if
1^1 J^| < to. The Volterra equation (4.4) can thus be solved by iteration.
Indeed, i!F(t,x) e ^([-to.to^H0'^)), then the equation

[ t

G(t, x) + / Ti {t, s)G(s, x)ds = F(t, x)
Jo

^ 00

is solved by G(t^x) = F(t^x} + ^ Gn(t,x), where
n=i

^(^,a;)= /* / l l • • • / t n 'Ti^CTiO?!,^)
Jo Jo Jo

• • • Ti(Sn-i, 5n)F(Sn, 3;)̂  • - • ds^.

The series converges in ^([-to^o];^0^71))? with norm dominated by
exp(toC(to))\\F\\. D

THEOREM 4.7. — Suppose that, in addition to the regularity
assumptions of the introduction, it holds that

7?
a(t^x) C L^a-to^oh^^W), 5o > ^

Then the statement of Theorem 4.6 holds for SQ + 1 > a > —SQ.

Proof. — By the proof of Theorem 4.5, it suffices to show that, for
SQ + 1 > OL > —SQ, the operator

T^{a(x)-a\x))W)
k
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maps ^-^R71) to JT^R71), whenever a(x) e H80^^) n (^(R71), and
l3k(D) is a Littlewood-Paley decomposition. This holds for -1 <, a <, 2 by
Theorem 4.5. Since 9xa(x) is a multiplier on Jf^R71) for -SQ < s <, SQ,
it holds that [9x,T] is a bounded operator on ff^R71) for -SQ < s ^ SQ,
which implies the result. D

4a. Operators in divergence form.

In this section, we modify the theorems of Section 4 to the situation
where A(t^x^9x) is replaced by an operator in divergence form

n

(4.1a) A^^a,)^^) = ̂  9^(cnj(t,x)9^u(t,x)),
ij=l

where we assume that the matrix aij(t,x) satisfies the conditions of the
introduction. We take c(^,0) and s(t,0) to be the family of operators
constructed in Section 4. Thus, the approximate inverse is the same, for
a given a^(^,^), whether the operator is in divergence form or standard
form. However, the error is invertible on a different range of Sobolev spaces
for the two cases.

THEOREM 4.6A. — If -2 < a < 1, and f € If^+^R71),
g C ^^(R71), and F e ^([-to^o];^^71)), then there exists G e
^([-to^H^^^with

llGH^ld-to^oj^o-^n))

^ ^oXII/ll^+lORn) + ||^||^a(Rn) + || F|| ̂ 1 ([-^^o];^0 (R71)) ) ̂

such that

u(t,x) =c(t,0)/(;z;)+sM)^)+ I (s(t^s)G{s^))(x)ds
Jo

is a weak solution to the Cauchy problem

(o2,-AD(t,x,9^u(t,x)=F^x\
u(t,x)\t=Q = f{x),

9tu(t,x)\t=o = g(x).

If f = 9 = 0, and F vanishes for t < 0 (respectively, for t > 0) then G,
hence u, vanishes for t < 0 (respectively, for t > 0).
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Proof. — By writing
n

A^(^^9,)=Afc(^^^)+^(^^,(^^))^,
^=i

and observing that
CO

^{9^a^x))a^c^s)eIl(xts)^^{x^).
k=0

it follows that
00

^(9? - A^,<5,))c,(^) e I\xfs) eZ1^-.).
fc=0

Similarly, we have
00

^2 - A^,y,<),))sfc(t,s) € Z°(x^) ®Z°(X(-J.
fc=o

We next note that an operator of the form

Tu=Q^ ̂  (aij(t,x)-a^(t,x))/3k(D)u)
k even

maps H^^) -> ^a(Rn) for -2 ^ a < 1. This follows from the fact that
the operator in parentheses maps H^^R71) —^ ^""^(IR71) for a in this range.
Thus, we have the analogy of Theorem 4.5, for — 2 ^ a < l :

(^2 - A^,^))^) : JT^OR71) -. ̂ "(R"),
(9,2 -AD(^,a,))s(^) : ̂ (M71) ̂  ^(R71).

The proof now follows exactly as in Theorem 4.6. D

Similarly, we have

THEOREM 4.7a. — Suppose that, in addition to the regularity
assumptions of the introduction, it holds that

a(t^x) e L-a-^o];^0^71)), so > j.

Then the statement of Theorem 4.6a holds for SQ >_ a >_ —SQ — 1.

4b. Time independent Laplace-Beltrami operators.

In this section, we assume that the matrix coefficients a^(a') are
independent of the time variable t, in addition to satisfying the conditions
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of the introduction. We consider the wave equation for an operator of the
form

n

(4.1b) A^x^^u^x) = p(x)-1 ̂  o^{p{x)a^x)9^u(t^))^
^'=1

where p(x) e C151^) is a real scalar function, globally bounded from
below. If gij(x) is a Riemannian metric, and

dij(x) = g'^x), p(x) = | det[^(.r)]|,

then A^rc,^) is the Laplace-Beltrami operator associated to g.

For general / € ff^+^R71), the expression A1'(a;, 0^)f(x) makes sense
only for a ^ -1. On the other hand, we note that if a >_ -1, then

^,a•)eC([-^^o];^Q+l(Mn))nC l([-to^o];^a(Rn))
is a weak solution to the Cauchy problem for 9^ — A^rr,^), with initial
data (f,g), precisely when v(t,x) = p{x)u(t,x) is a weak solution to the
following Cauchy problem:

n

Q^x)- ̂  9,M^W9x^p(x)-lv^x)))=p(x)F^x)^
^j=i

(4.2b) v^x)\t=o=p(x)f(x)^

Otv(t,x)\t=o = p(x)g(x).

As the next theorem shows, our technique yields solutions to (4.2b) for the
range — 2 ^ a < 0 .

THEOREM 4.6b. — If -1 ^ a ^ 1, and f € ^-^(R^,
g € ^(ST), and F e ^([-^o]; ̂ "(M71)), tAen there exists G €
^([-to^o^O^.with

|l(^||Ll([-to,<o];a^a(R7l))

^ c(to)(\\f\\H^+^R^ + ||^||^a(Rn) + H^llL^r-to^o];^"^71)))^

such that

u(t, x) = c(t, 0)/(rc) + s(t, 0)^(.r) + f (s(t, 5)G(5, •))(^)d5
Jo

is a weak solution to the Cauchy problem

(^-AL(a;,^))^(t,^)=F(t,r^),

u{t,x)\t=o= f(x),

9tu(t,x)\t=o = g(x).
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If -2 < a < 0, and f G fT^R71), p € ^(R71), and F e
^([-to^o];^^71)), then there exists G € ^([-to^o]; ̂ (1^)), with

IIG'llL^t-to^o];^"^71))
< C^o)(||/||j^+i(R^) + |b||^(R^) + ll^llLia-Woh^OR71))^

such that

^,rr) = c(t,0)0o/)0r) 4-s(t,0)(w)(^) + / (s(t,5)G(5,.))(;z:)d5
^0

is a weaJc solution to the Cauchy problem (4.2b).

In each case, if f = g = 0, and F vanishes for t < 0 (respectively, for
t > 0) then G, hence u, vanishes for t < 0 (respectively, for t > 0).

Proof. — The proof of the first statement follows by showing that,
for — l ^ o ; ^ ! , one has

(9,2 - A^a,))^): jr^iEr) ̂  ̂ (BT),
(9,2 - AL(x,9^)s{t,s) : ̂ (ST) ̂  ̂ (ST).

This follows by writing
n

AL{x,9^ = A^^.B,) + ̂  p^)-1^?^))^,^)^,,
^j=i

and noting that the second term maps H^1 (R71) -^ 77° (M71) for -Ko^l.

The second statement follows in a similar fashion by writing

p(rr)AL(^^)(p-V)(^=AD(^9,)/(^-^(^)-l^,p(^)a^

and noting that the second term maps H^1^) -^ H0'^) for
-2 < a ^ 0. D

5. Uniqueness of solutions.

In this section, we show that the solutions to the Cauchy problem
constructed in Theorems 4.6, 4.6a, and 4.6b, are the unique such weak
solutions, in the sense of Definition 1.1. Precisely, we show that, if a lies in
the range indicated by the appropriate theorem, then given a weak solution
u e C'([-to,to];^a+l(Rn))^Crl([-to,to];^^a(IKn)) to the Cauchy problem
with / = g = F = 0, necessarily u = 0. For a uniqueness theorem under
the condition that u € H^((-to,to) x R71), see [5].
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We provide the proof in the case of Theorem 4.6, the other versions
follow similarly. To prove uniqueness for Theorem 4.6, it suffices to consider
the case a = -1. Thus, we will suppose that u € C^-to.to^L2^)) D
^([-to.to^H-1^)), and that

(c^-A(^,a,))n(^)=0,

u(t,x)\t=o =0,
9tu(t,x)\^o=0.

We set u(t,x) = u^(t,x) +u~(t,x), where

^(tx}-!^^ ^0?
v ? ' f o , t<0.

V+U n A - } ^^^ v - ̂v ? ' t o , t<o.
Then ̂  € C^-to.to^L2^)) H ^([-^o^o];^"1^)). and a simple
limiting argument shows that, in the distribution sense,

{92-A^x^^)u±^x)=0.
We will show that H4"^, x) = 0, the proof that u~ (t^ x) = 0 being similar.

Thus, we are given that, for ^ G C^°((—to^o) x K71), the following
holds:

(5.1) [u^(t,x)(92 - A^t,x,9^(t,x)dtdx = 0,

where
n

A"(t,x,9^(t,x) = ̂  ̂ ^,(a^(t,^(t,a;)).
^•=1

By the support condition on u^~ and a density argument, (5.1) holds for
^ € (^([-to^o];^2^)), provided that ^(t, a:) = 0 for ^ > to-e, for some
e > 0 .

We need to show that, for (f) G C^°((-to,to) x R71), the following
holds:

(5.2) / u^(t, x)(f)(t, x)dtdx = 0.

We observe that

j u^~(t,x)(f)(t,x)dtdx < ll^ll^a-wo]^2^71))-

Therefore, (5.2) is a result of (5.1) and the following lemma.

LEMMA 5.1. — Suppose that (l)(t,x) G ^([-to.to^L2^)), and
that 4>(t^x) = 0 for t > to — e. Then there exists a sequence ^;(t,rr) C
^([-to^o]; H2^)), with ̂ k(t,x) = 0 for t > to - e, such that

lim || (92 - A*(^,a,))-0fe - H^a-to^L^R-)) = 0.
k—^oo
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Proof. — We first note that the operator

(5.3) (^-A*(^,9,))s(^)

is a uniformly bounded family of operators on Ha(Wl') for — 3 < a < 0 .
This is seen, as in the proof of Theorem 4.6a, by noting that

f^2 - A;(t,y,^))s^,s) € I°(xt,s) ®^°(XM),
A:=0

and that an operator of the form

Tu=a,,^,( ^ (ai^t,x)-a^(t,x))(3k(D)u)
k even

maps H^1^) -> H^^) for -3 < a ^ 0. In particular, the family of
operators (5.3) is uniformly bounded on L^R71).

Let G € LKHo^o];^2^)) solve

GM - f °((^2 - A*(t^,^))s(t,5)G(5,.))(a;)ds = ̂ ,a:).
Jt

Then G(^ x) == 0 for ̂  tQ - e. We choose a sequence Gk e C°°([-to, to\ x
R71), with Gk(t, x) = 0 for t ^ to - e, such that

fe11"̂  ^Gfc - ̂ ll^^t-^O^o];^2^)) = °-

Now set
^k{t,x) =- [ \s(t,s)Gk(s,'))(x)ds.

J t
Then ̂ k(t,x) E ̂ ([-to^o];^2^)), and

(^-A*(^ ̂ , 9,))^ = Gfc(t, ̂ - /l °((a?-A*^ re, ̂ ))s(^, 5)Gfc(5, .))(^)d5.
Jt

This converges to <^(t, x) QJS k —> oo. D

6. Estimates for the wave equation.

In this section, we apply the results of the previous section to obtain
certain space-time estimates, in the case of space dimensions n = 2 and
n = 3, for the solution to the Cauchy problem

(^2 - A(t, x, 9^})u(t, x) = F(t, rr),
u(t,x)\t=o = f{x),

9tu{t,x)\t=o =g(x).
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The estimates we obtain hold also for the solution to the Cauchy problem
where A(t, x, 9^) is replaced by A^, x, 9^) or AL(x, <9^), given respectively
by (4. la) and (4.1b).

We first reduce matters to establishing mapping properties for opera-
tors belonging to the class developed in Section 2. In particular, we observe
that, by Theorem 4.6 and Lemma 4.4, if -1 ̂  a ^ 2, then an estimate of
the form

ll^llL^[-to,<o];^(R-))<G(||/||^+l(R-)+||^||^(Rn)+||^||^l([-to,<o];^Q(K7^)))^

is a consequence of the following estimates:

II^^VII^a-to^o];^]]^)) < c\\f\\Ho+i^,
\\s{t,s)g\\L^[-t^toW(Rn)) ̂  C\\9\\H-(R^.

The same reduction holds for the Cauchy problem in divergence or Laplace-
Beltrami form, provided that a is in the appropriate range indicated in the
corresponding version of Theorem 4.6. The estimates below correspond to
a = — . and a = 0, which lie in the correct range for all three versions
of the Cauchy problem. We also note that it suffices to establish such an
estimate for some small value of to, since by the group property of the wave
group, the estimate then holds for any finite value of to.

We use this reduction to establish two sets of estimates of importance
in nonlinear wave equations, in space dimensions n = 2 and n = 3. The
estimates we establish are, in the case of the standard wave equation on
R7^1, due respectively to Pecher [7], and Strichartz [13], [14].

In higher dimensions the proof of the crucial endpoint estimate breaks
down, due to the fact that the symbols of c(t, 0) and s(t, 0) are only of class
s^-

Pecher Estimates.

N1 ^ < C(\\f\\H^) + ||5||^(R3) + ||.F||^([-^];^(K3))),
-"t ^a^l^ChtoJXJK")

6 ^ q < oo.

Homogeneous Strichartz Estimates.

IMlL6([-,o,to]xR2) < C(\\f\\^^ + N1^-^),

IH|L4([-to,to]xR3) < C'dl/11^^3) + ll^l^-i(R3))'
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By the comments above, these estimates are reduced to appropriate
mapping properties of c(^0) and s(^0). These, in turn, are an immediate
consequence of the following theorem.

THEOREM 6.1. — Let \t be the canonical transformation given by
the solution of (3.4). Suppose that 6(^,7,7') is a one parameter family
of matrices, such that the coefficients vanish unless \k - k'\ < 1, and
such that the following estimates are satisfied for all N , with constant
CN independent ofte [—to^to]:

\b(t^ 7,7') I < CN{I + 2^, a;; Xt(x^ cx/)))-^

Let B be the operator mapping functions on R71 to functions on [-to, to] x
R71, such that the matrix off —> Bf(t, •) is given by b(t, 7,7'). Then, if to is
sufficiently small, depending on the bounds for the aij(t,x), the following
estimates hold:

l|B/||L6([-^o]xR2) ^ ̂ ll/ll^^

1|B/||^([_^^^3)<C||/||^^,

IIB/11 ^ ^G||/||^(R3), 6 < g < o o .
L^L^([-to,*o]xR3)

Proof. — The first step in the proof of Theorem 6.1 is to reduce
matters to establishing uniform bounds for the operator B localised to
dyadic frequency shells. Specifically, we set

b.(t ^ ^-p(^y) , ^ = A ; ,
^^-to ,^A;,

and define B^ to be the operator given by bk(t, 7,7'). Then, by Littlewood-
Paley theory, together with the fact that the exponents on the left hand side
are greater than 2, Theorem 6.1 is a consequence of the following estimates
(with constant C independent of k):

l|Bfc/||L6([-^]xR2) < G2^ H/11^2),
(6.1) ||B,/||^_^,R3) < G2t II/H^),

11 /̂11 ^ ^C^II/II^RS), 6<q<oo.
L?-6 Ll{[-to,to]xR^ v /

For example, in the case of the first estimate, we observe that by the
vanishing condition on the matrix coefficients, (6.1) implies the stronger
estimate

||Bfc/||L6([-to,to]xR2) ^ C2^\\fk\\L2(R2^
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where fk is an appropriate Littlewood-Paley decomposition of /. The
following argument then holds:

00 j|_

«B/||..<,-..,.|>,,,»|(g|B )̂'||̂ ^^^^

(̂EllBt/lll.d-,.,,.!.,,))1
fc=0

00 j_

^c(y\\Mi^Y«c\\f\\^^.
k=0

The next step is to observe that, by a duality argument, the estimates
(6.1) are a consequence of the following estimates:

||BfcB^||^6([_^]xR2) < ̂ ll/ll^^^^)7

(6.2) \\BWh^-i^w ^ ̂ ll/ll^a-^^
11'D "D* ^ 1 1 ^ /^'o2fc|| £\\||BfeB^/|| ^ <^C2 11/11 20 _L ,

L^L^t-to^ojxR3) L^LS-1 ([-to,to]xR3)
6 < g < oo.

We now write the operator B^B^ in the form

BkBmx) = [to (T^F(5,.))(^)^,
J-to

where T^g 6 Z°(^t-s) has matrix coefficients given by

<t(7,y) ̂ E^^'^x5'^'^')-
7"

By the arguments on page 894 of [II], the estimates (6.2) can be obtained
by interpolation of the following pair of estimates:

l|Tt/||^^)<q|/||^^),
||Tt/||^(^) < 02^(1 + 2^ - s\)-^ \\fhw.

The first of these estimates follows from Theorem 2.7. To establish the
second, we note that the matrix of T^ satisfies the same conditions as
the matrix bk(t— 5,7,7') of Theorem 6.1. The second estimate, and hence
the conclusion of Theorem 6.1, is then a consequence of the following
lemma. D



830 HART F. SMITH

LEMMA 6.2. — Suppose that h{t^', 7) is as in Theorem 6.1. Set

Kk(t,y,x) =^bk(t,Y^)^y(y)^(x).
^y

Then, for to sufficiently small, depending on the bounds for the a^(^a-),
the following bounds hold, for dimensions n = 2 and n = 3:

\Kk(t, y,x)\ < G2^(l+2^|)-^.

Proof. — By Lemma 3.6, the size bounds on the coefficients
^^Y) remain valid if \t{x,uj), the Hamiltonian flow determined by
the matrix A(t,x), is replaced by the Hamiltonian flow determined by the
smoothed out matrix Ak(t,x}. Consequently, there is no loss of generality
in assuming 9^A(t^ x} is continuous.

We write 7 = {z,uj,k}^' == (2/,c</,A;), and observe the following
estimates:

\b(t^ 7', 7)| < CN(I + 2^, a;'; Xt{z, o;)))-^,

\^(x)\<CN2klI^l(l+2kd^^x^))-N,

|^(2/)|<^2M^(l+2fcd(^,a;/;2/,a;/))-N.
As a result, \Kk(t,y,x)\ is dominated by

2^ ^ (1+2^W;^(^)))-^
-z,^,^',^'

(1 + 2fc<^,a;;a•,^))-A^(l + 2kd(z',u}'•,y,iu'))-N.

By Lemma 2.5, this is in turn dominated by

2"^ E^2^'^^)))-^
Ct/,a//

Write Xt(x,uji) = (x(t),uj(t)). The above sum is then dominated (for t < 1)
by

2'̂  E(1 + ̂ IM^)' y - ̂ ))l + 2^ - ̂ WD-^.
Ci/

We next observe that the summand is essentially constant as uj varies over
any set of diameter 2~^ in ^S^"1. We are thus led to the following estimate:

IW^I^CA^ / (l-^2k\(^t)^y-x(t))\+2k\y-x(t)\2)-Nd^.
Jsn-l

The conclusion of Lemma 6.2 is now immediate if 2^] < 1, so we
henceforth assume that 2^] ^ 1.
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We next make a change of coordinates, so that x = 0, and so that
a^(0,0) =6ij. Set

H^.O = (J^a^tx^Y.
ij

Let (x(uj),uj(uj)) denote the image at s = 1 of (0,o;) under the following
flow:

^H|(̂ ,.),

-^ = -H^(5,^) + {UJ^(S,X^)}LJ.

Then
o;(t) =c<;(a;), a;(t) =t:r(o;).

We next observe that the following estimates hold, uniformly on the set
H < l,\x\ < 2.

\9^(aij(ts,tx) - 6ij)\ < C\t\, \a\ ^ 2.

Thus, uniformly on the set |s| <: 1, \x\ <: 2, - <_ |^| <, 2, we have
z^

^ 1^(^(5,^,0 - 1^)1 <^|.
|a|+|/3|<2

Replacing y by ty, Lemma 6.2 is now a consequence of the following
lemma. D

LEMMA 6.3. — Suppose that the function H(5, a-, ^) is homogeneous
of degree 1 in ^, twice continuously differentiable with respect to x and ^,
and that, uniformly on the set \s\ <: 1, |a;| < 2, - < |$| <_ 2, the following

Zi
estimates hold:

(6.3) ^ |^(H(5,a:,0-|^|)|^6.
|a|+|/3|^2

Let (.r(ci;), Ct)(c<;)) denote the image of(0, a;) at time 1 under the Hamiltonian
flow on the cosphere bundle induced by H(5,:c,^). Then, in dimensions
n = 2 and n = 3, the following holds:

sup / (l+A|(a;(^),2/-.^(a;))|)-2da;<C'A-2^1.
i/eR" Js71-1

Here, e and C are universal constants.
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Proof. — Consider the Hamiltonian flow
/ rj^

^-(5, T]) = H^(5, x(s, 77), $(5, 77)),

(6.4) (5,77) = -Ha;(s,a-(s,77),^(s,77)),ds
l ;r(0,77)=0, $(0,77) =77.

By (6.3), we see that, uniformly for |s| <^ 1,

x(s,rj) =0(6), |^,77)-77|=0(6).
^

Differentiating the equations (6.4) and applying GronwalPs Lemma now
leads to

Ox I 77 (g) 77
^'N'^F^^ |̂ (1, 77) =1+0(6).

It follows that, for 6 sufficiently small, the map c<; —>• :r(a;) is a (71 embedding
of iS'71"1 into M7'1, and that the map uj —> Cb(uj) is a C1 diffeomorphism of
6'n~l, with uniform upper and lower bounds on the Jacobian. From the fact
that the Hamiltonian flow is a canonical transformation, it follows that

-( \ Qx^ n
^ • a T - 0 5

so that Cj{uJ) is the outer normal map to the surface uj —> x(uf).

We next make a change of coordinates in the integral from uj —> a),
and write x(uj) to express x written in terms of the new variable. We are
thus left to demonstrate the following inequality:

/ <•./.s71-1
+ \\{Cj, y - x^^-^duj ^ C\~

For notational convenience, we relabel x and uj by x and uj.

We first consider the case n = 3. Since {uj^x{uj)} = 1 + 0(6),
7

the estimate is immediate if \y\ < -. By rotating, we will assume that
0

the minimum of \y — x{uj)\ occurs at uj = (0,0,1), and x(uj) = XQ.
From the fact that uj is the outer normal to the surface, we may write
y = XQ + (0,0,r), where r > —-. We take standard coordinates c<;(0,<^) =
(cos 0 sin 0, sin 0 sin 0, cos (p) on <5'2. We will show that, for each fixed value
of 0, the following holds:

/t7r

/ (1 + A|<o;((9, (f)),x{6, <^) - XQ) - rcos^l)"2 sin^ d(j) < CA-1,
Jo
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uniformly over 6. For simplicity, we consider 0 = 0 and suppress the 6 in
what follows. We then have the following:

x((f)) — XQ = (sin <^, 0, cos (f) — 1) + 0(60),
uj{(f>) = (sin(/),0,cos<^),

9^uj((f)) = (cos 0,0, —sin^>).
It follows that
(6.5) (uj{(f)),x((f)} - XQ) = 1 - cos0+ O(e^).

The integral over — <_ 0 ^ TT is easily bounded, since for small 6,

from the fact that r > —-, the integrand is bounded by C\~2 on this
4

interval .

We next consider the integral over — < ( / > < — . By (6.5), for small e,

^<(^) ,^)-^)<^ if ^^<^-

Thus, if —- < r <: -, then the integrand is bounded by C\~2 on this4 4 ^
interval. We thus assume r > -. Let~ 4

ff^ = cos(i)

Jw W)^)-x^Y
Since
(6.6) <9<^(^),.r(^) - a-o) = {9^((f)),x((l)) - xo} = sin^ + O(e^),

we deduce that
9/_ -sin^)
^~ ( l - c o s ^ ) 2 ' ^ 5

so that — - < /'(^ < —- on the interval — < (/> < —. The desired bound
Ĵ TC ~E ~E

on the integral over this interval is now a consequence of the bound
37T

/ 4 (l+A|(o;(^),.r(^) -xo) -rcos^D^sin^ d(/>
^z

^ ̂ 4 (1 + (Ar)|^ - /(^)|)-2 ̂  ̂  G(Ar)-1.
T

To estimate the integral over 0 <: (f> <: —, we consider the function

^ {u}{(j)),x((f>)-xo}
f f v ' / COS(/>
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By (6.5) and (6.6), we have

^ss^+o^•
We can then compare

^
\ (l+\\{uJ((|)),x((f))-xo}-rcos(f)\)~2sm(f)d(t)

Jo

^ / '( l+AI^-rD-VW^^GA-1.
Jo

This concludes the bounds for the case n = 3. For the case n = 2, we
need to show that

/.7T

/ (1 + \\W),xW - xo) - rcos0|)-2 d(f) ̂  C\-^.
Jo

7T
The integral over - ̂  (f) < TT is bounded by A~1 as above. To conclude, we

dominate the integral over 0 < (f) <_ — by

A - ^ + A ^ ^^+\\W),x((^))-xo}-rcos(/)\)-2sm(t)d(f),

which is dominated by A~^ by the arguments for n = 3. D
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