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THE COMPLEX ORIENTED COHOMOLOGY
OF EXTENDED POWERS

by John Robert HUNTON

1. Introduction.

Suppose p is an odd prime, G*(—) an unreduced, multiplicative,
complex oriented cohomology theory and X a space. Then an important
problem is to describe the behaviour of G*(—) on the extended power space

Dy(X) = EC, x X?
14

in terms of the behaviour of G*(—) on X. Here Cj is the cyclic group
on p elements, EC, a contractible space with free C, action, and XP? the
cartesian product of p copies of X; the Cy, action on X is by permutation
of factors. These spaces are significant as, among other uses, they form the
building blocks of the infinite loop space construction QX, [23], and are
fundamental to certain constructions of Dyer-Lashof and Steenrod power
operations; see, for example, [3].

In the case G = HF,, the mod p Eilenberg-MacLane theory, the
computation of G*(Dp (X)) is completely described in Nakaoka’s celebrated
paper [19]. The Serre spectral sequence of the fibration

(1.1) x? -4 D,(X) - BC,
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collapses and there is a natural isomorphism of rings between
H*(Dy(X);F,) and H*(BCy; H*(X";Fy)).

In this paper we investigate to what extent such simple descriptions of

G*(Dp(X)) exist for other complex oriented theories G.

An arbitrary cohomology theory will generally fail to have such
straightforward behaviour. For example, McClure and Snaith in [17], and
McClure again in (3], study the case of mod p K-theory KF,. The
corresponding spectral sequence of (1.1) has two potentially non-zero
differentials. The first is related to the mod p Bockstein acting on KF,*(X),
while the second may be viewed as being forced by the differential in the
Atiyah-Hirzebruch spectral sequence for KF,*(BCp).

In this paper we consider two main classes of cohomology theories
G*(—), restricting attention initially to those spaces X with G.(X) free asa
G« module: without some restriction the spectral sequence of (1.1) becomes
extremely hard to say anything about in general, however, we shall see in
84 that this restriction can be relaxed to allow some particularly interesting
examples of spaces X and theories G with G, (X) definitely not free. In §3
we study the case of Morava K-theory K (n); of course K (n).(X) is free over
K(n). for every space X . Here some quite complicated phenomena can arise
and the spectral sequence of (1.1) can have many non-trivial differentials.
We give a qualitative description (3.7), (3.10) and (3.11) of this spectral
sequence which, when specialised (3.12) to the case n = 1, reduces to the
work just mentioned on mod p K-theory [17], [3]. It also reproduces (3.15)
the results of [9], [10] and [1] on K (n)*(Dp(X)) for spaces X satisfying
K(n)°*d(X) =0.

In 84 we consider a range of other theories G*(—), principally the
Landweber exact theories such as complex cobordism MU, the Brown-
Peterson theory BP, complex K-theory, elliptic cohomology or the Johnson-
Wilson theories E(n). In contrast to the case of Morava K-theory, the
spectral sequence of (1.1) always collapses for these theories, providing in a
sense the best possible analogue (4.6) of Nakaoka’s theorem. We use these
cases to discuss more general cohomology theories (4.8), (4.9) including
results which limit further the behaviour of the differentials in the Morava
K-theory spectral sequence discussed in §3.

The nature of our main argument allows us to weaken our original
condition that G.(X) must be free over G, to include any space X with
G*(X) satisfying our condition (4.1) of regularity. This greatly extends the
number of spaces X to which our result applies. For example, for the theory
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G taken to be p complete BP theory, it includes all spaces X with Morava
K-theory concentrated in even dimensions; as noted in [22], this contains
an extraordinary number of interesting space such as the classifying spaces
of many finite groups, Eilenberg MacLane spaces, QS?", BO(n), MO(n),
BO, ImJ, and so on — see [22] for details. There are other examples of spaces
and theories with G*(X) regular and this in turn allows our Theorem (4.6)
to provide one of the technical ingredients for Kashiwabara’s description of
BP*(QX) [12].

We wish to acknowledge the advice and encouragement received from
Ian Leary, Takuji Kashiwabara and Jim McClure concerning this work and
also to thank Neil Strickland who provided us with the proof of (4.4) and
the remarks immediately after it and Jean-Yves Butowiez for his french
translation of the abstract.

2. Spectral sequences.

In this section we recall a number of details needed to set up our
calculations. Our main tool is the spectral sequence of (1.1) in G-theory,
which we shall also refer to as a Serre spectral sequence. This has the form

(2.1)  Ey* = Ey"(G"(Dp(X))) = H*(BCp; G*(XP)) = G"(Dp(X)).

We describe the E5 term of this sequence and set up some basic notation.
We assume throughout that G*(—) is multiplicative and for the moment
that the space X has G.(X) free as a G, module. This ensures that G*(X?)
is described by a Kiinneth isomorphism (suitably completed in the case of X
an infinite complex) with the action of C), on G*(XP) given by permutation
of the tensor factors.

The Cp-invariant elements of G*(X?) fall into two types. If X is a
topological basis for G*(X) then topological bases for these two types are
given by

I:{a®? =a® @ ®ala € X},
II:{>pec,0(@® @ ap)la; € X, the a; not all equal}.

The column Eg™* in (2.1) is isomorphic to the Cp-invariant subring of
G*(XP?) and we denote by A* and B* the sets of elements spanned by
types I and II respectively. The whole E» term is generated as a ring by
Eg’* and H*(BC)p; G*) where the action, as a G* module, of I/F(BC,,; G*)
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is free on A* and trivial on B*. Note that a®? + b®P = (a + b)®P modulo
elements of B*. For more details, see [19] or [17].

As the fibration (1.1) splits, i.e., we have a factorisation of the identity
on BC,

(2.2) BC, = D,(X) -1 BC,,

there is a splitting at the spectral sequence level and so the subring
H*(BCy; G*) C E3™ behaves precisely as the Atiyah-Hirzebruch spectral
sequence for G*(BCp). Thus the first ‘interesting’ differentials we must
consider are those non-zero on the elements lying in Eg >,

DEFINITION 2.3. — For X and G*(—) as considered, we say that
the spectral sequence H*(BCp;G*(XP)) = G*(Dp(X)) is simple if
Eg’* = EY%*, i.e., if the only non-trivial differentials are those forced by
the Atiyah-Hirzebruch spectral sequence for G*(BC,) and the splitting
(2.2). Simplicity is the best possible analogue of Nakaoka’s theorem that
we can hope for.

3. Morava K-theory.

In this section we concentrate on the case of G = K(n) at the
odd prime p. Recall that K(n) has coefficients F,[v,, v, 1] where v, has
cohomological dimension —2(p™ — 1); in particular, K(n).(X) is free over
K(n). for every space X. To simplify notation we shall consider K (n) as a
Z/(2p™ — 2)-graded theory, identifying the periodicity element v, with 1.

Following [9], we write the mod p cohomology of BC), as the ring

H*(BCy;Fp) = A(Z)H@]Fp[x],

where z € H! and =z € H2. We shall reserve the letters z and z for these
and closely related elements.

The Atiyah-Hirzebruch spectral sequence of K (n)*(BCp) can be read
off from the work of [21]. It has just one non-zero differential, namely dapn_q
acting by dapn_1(2) = zP" and dopn—1(z) = 0. There is thus a non-trivial
differential dap»_1 in the spectral sequence

B} = H'(BCyK(n)'(X7) = (47 @ H™(BG K(n))) & (B)

(3.1) =K (n)*(Dp(X))
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being the sequence (2.1) for K (n)*(Dp(X)). We shall see that in general
there will be plenty of earlier differentials in this sequence.

The following proposition gathers together observations of the previ-
ous section, [9] and [17], and will form the start of an inductive description
of the spectral sequence. In this as in many subsequent places we shall refer
to ‘the first non-zero differential’ in (3.1); this is the differential d, where
r > 2 is the smallest integer such that there is some space X for which
d, # 0, thus r does not depend on the particular space considered in the
proposition.

PROPOSITION 3.2.

(a) The FE5 term of the spectral sequence (3.1) is generated as a ring
by EY* and H*(BC,; K(n)*).

(b) T he elements of type II are all permanent cycles.

(c) The first non-trivial differential, d, say, is either dopn_1, with
action as described above on the elements z and = and the trivial action
on Ey._,, or else acts on the elements a®F € A* by some formula

dr(a®) = (Qi(a))® e, 0#AEF,
where Q; is the K (n) Bockstein operation related to v; torsion, as discussed

in [2]. By the observations in (a) and (b) this suffices to completely describe
the action of d,.

Proof. — Part (a) follows straight from the description of the Ej
term in the last section and part (b) follows from a simple transfer
argument, as outlined in [17], proposition 1.3; indeed for the sequence (3.1)
the subgroup is just the image of the transfer.

For part (c), suppose first that the earliest non-trivial differential is
d, for some r < 2p™ — 1. Then d, is zero on the elements z and z in E}’O
and E2° respectively and so must take the form

dr(a®p es) =b%P - egy,

(recall that we are working modulo v, — 1). We write b as 6(a).

LEMMA 3.3. — The assignment b = 6}(a) defines 6} as a natural
cohomology operation 6}: K(n)*(X) — K(n)*(X) of degree t where
r — 14 pt = 0 mod2(p™ — 1). This operation is stable and satisfies the
property (61)? = 0. Moreover, 6! is also a derivation and so is a primitive
element in K(n)*(K(n)).
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Proof. — The nature of the spectral sequence shows that 6! as
defined is a natural cohomology operation. As d, is of bidegree (r,1 — r)
we have the equation

deg((6}(a))®?) — deg(a®”) =1—r  mod deg(vy,)
ie, p-(deg(6})+deg(a)) —p-deg(a)=1—-r  mod deg(v,)
giving p-t=1-r mod 2(p™ — 1).

That 6} is stable follows as in [17], proposition 1.7: we examine the
related space 5,, (Y) = ECf Ac, Y ®) where Y ) indicates the p-fold smash
product of the based space Y and the superscript + denotes the addition
of a disjoint basepoint. It is easy to show that there is a pairing of spectral
sequences

Er*(G*(Dp(Y1))) ® Ex*(G*(Dy(Y2))) — Er*(G*(Dp(Y1 A Ya))).

Of course if Y = X+ then D,(Y) = D,(X)* and so G*(Dp(Y)) =
G*(Dp(X)). Now let o € E(n)'(S!) be the canonical generator. The
spectral sequence (2.1) for E(ﬁ)*(ﬁ,,(s 1)) collapses for dimensional reasons
— H*(BCyp; E(n)*) is entirely in even dimensions — and so the element o®?
is a permanent cycle. Hence it maps to a permanent cycle, 7P say, in the
spectral sequence for K (n)*(f)p(Sl)). Multiplication by 7®? now induces
an isomorphism of (reduced cohomology) spectral sequences

EX*(K(n)*(Dy(Y))) — Er*P(K(n)*(Dy(ZY))).

This is sufficient to show in (2.1) the stability of 6! under suspension on
elements of the form a®? for any a € K(n)*(X).

As d.d, = 0 we must have §16} = 0 and as the spectral sequence (2.1)
is multiplicative we deduce that 6! is a derivation. 0O

We can now complete the proof of (3.2)(c). Recall [26] (see also [2])

that
Kn)(Kn)=%, ® A,
K(n)«

where ¥, is isomorphic to K(n).(E(n)) and A, is the Grassmann algebra
over K(n), on elements ¢;, i = 0,1,...n — 1, with ¢; in dimension 2p* — 1.
The K(n).-dual of this Hopf algebra is precisely K(n)*(K(n)). We can
take a basis of K(n)*(K(n)) including the elements Q;, ¢ = 0,1,...n — 1,
which form the dual basis to the {¢;} of A,. Following [2], we call A}, the
algebra generated by the Q;’s, the Bockstein subalgebra of K(n)*(K(n)).
The primitive elements in K(n)*(K(n)) are dual to QK (n).(K(n)), the
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indecomposable quotient of K (n).(K (n)). This splits as QX,, ® QA,, where
QA is spanned by the images of the ¢; and Q%, = QK (n).(E(n)) =0
by, for example, [26]. As §! must be primitive it must lie in the subspace
of K(n)*(K(n)) spanned by the Q;; as §} must be of homogeneous degree
it must be Q; (up to some non-zero scalar multiple) for some particular 3.

Finally, if the first non-trivial differential is not until r = 2p™ — 1 we
must show that d,. is trivial on elements of the form a®P. The action of d,. on
the elements A* C Eg;;_l will still be of the form d,:a®? — (61(a))®? - e,
where the order, t say, of §! must now satisfy (2p™ —1) —1+pt = 0
mod 2(p™ — 1), ie., t must be even: but all the Bockstein operations Q;
have odd degrees and so in this case §! must be the zero operation. ]

In fact, we can identify exactly what the first non-trivial differential is.
To do this we use an argument based on the Atiyah-Hirzebruch spectral se-
quence for K (n)*(Dp(X)). As is well known, the first non-trivial differential
in the Atiyah-Hirzebruch spectral sequence for the Morava K theory of an
arbitrary space is dapn—1 and acts up to an invertible multiple as Milnor’s
operation @, [18], [25], [26]. In order to avoid confusion, we shall continue
to refer to the Morava K-theory Bockstein operations as Qs, 0 < s < n,
and shall write Milnor’s operation as QMi!. We can calculate the action
of QMi! on H*(D,(X); K(n).) by the inductive formulae [18] which define
QM as 3, the mod p Bockstein, and put QM! = PP r_l Mil _ QMil pp o

LEMMA 3.4 [16] (see page 402). — Suppose a € H?(X). Then the
(odd primary) Steenrod algebra action in H*(D,(X);Fp) is given by

P (a®P-ej) =) (s =96, [3/2) = s +i+am+ ") (P (@) - €42(5-pi)(p-1)

+6(j — 1)e(q) Z(s —pi—1,[j/2] — s+i+qm+p’)

i ®
(BP*(a)) - ejfp+2(S—Pi)(P—1)
and B(a®P - e;) = 6(5)a®P - ej41

where 6(j) is 0 or 1 if j is even or odd, a(q) = —(—=1)™m!, m = (p—1)/2,
and t is any sufficiently large number. Here we have used the notation e;
to mean z* if j = 2k and z* - z if j = 2k + 1. ]

We need only consider the Steenrod operations on elements of this
form since the remaining elements are those in the image of the transfer.
As in the spectral sequence (3.1) these elements split off, performing their
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own independent spectral sequence and play no role in the groups we are
interested in. We will at points omit mentioning these transfer images.

COROLLARY 3.5. — Ignoring the elements in the image of the
transfer, the action of QM on H*(D,(X);F,) is generated by

QMll ®p) Z A (QMxlia)®P . il)l(i), Q%il(z) — xp", Q%ll(m) =0

for appropriate positive integers I(i) and scalars \; € Fp; the element A is
always non-zero. a

Consider the lens space Ly, the 2p™—1 skeleton of BC),. By restriction,
the mod p cohomology of L,, can be written
H*(Ln; Fp) = A(2) ® Fy[z]/(27").
The following lemma records the Milnor operations on this cohomology
ring. It also details the Morava K-theory of the space, the action of the
Atiyah-Hirzebruch spectral sequence for it and, from [2], the associated
K (n) Bocksteins. We write QM and @, for the total Milnor and total

o) ) n—1
Morava Bockstein operations respectively, i.e., for - QM and }~ Q;.
i=0 i=0

LEMMA 3.6.
a) In the ring H*(Ln;Fp) the total Milnor operation acts as
(a) g p

QMII z) Z'Tp and QMll(x)

=0

(b) The Atiyah-Hirzebruch spectral sequence for K (n)*(Ly,) collapses
for dimensional reasons and we can describe the ring K(n)*(L,) as the
K(n)* algebra A(Z) ® K (n)*[Z]/(zP") with total Bockstein operation given

n—1 .
by Qe(2) = 3. z*" and Q.(z) = 0. O
i=0
THEOREM 3.7. — The first non-zero differential in the spectral

sequence (3.1) for K(n)*(Dp(X)) is dp—1, whose action is as described
in (3.2) and is associated to a non-zero multiple of the Bockstein operation

Qn—l-

Proof. — By computing dimensions we see that the first possible
candidate for a non-zero differential is d,_; acting via the operation Q,—_;.
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We shall show that this possibility is realised in the spectral sequence for
K(n)*(Dp(Ln))- Let us write Dp(Ly) for the inverse image in Dp(L,)
of BCS?, the s-skeleton of BC, and consider the case s = p — 1. The
differential d,_; in (3.1) is as claimed if and only if the differential d,_; in
the spectral sequence for the fibration

(Ln)? — DF~Y(L,) — BCFY

is non-zero; moreover, for dimensional reasons, this is the only potentially
non-zero differential in this restricted spectral sequence.

Now consider the Atiyah-Hirzebruch spectral sequence for

K(n)* (D5 (Ln))-
By (3.5) and (3.6) this spectral sequence fails to collapse; hence, by counting
dimensions, neither does the Serre spectral sequence for

K(n)" (D5~ (Ln))-
O

Remark 3.8. — The technique of playing off the two spectral se-
quences is a very powerful one and one that can be used to obtain much
computational information. In essence it is a tool that systematically uses
the geometric information arising from the double filtration on D,(X) com-
ing from the skeletal filtration on D,(X) and the inverse image filtration
of the skeletal filtration on BCy,.

Higher differentials than the ones considered in (3.7) can also be
studied. The second differential in the Atiyah-Hirzebruch spectral sequence
is given by the relation (QM)2 = 0, i.e. , on elements of the form a®P by
the relation

O — QMil(QMil(a®p))
= Z ul’]((QMll Mll Mil r]:'/[i]i)a)®p . xl(i)'f"l(j)
i#]
+ Z i, (QMIL QML )g)®P . 21)

where p; ; is some scalar, again derlved from the formulee (3.4). Thus the
second differential on an element a®? takes the form

Z ,u‘i,j( %111 n—]a)®p xl(z)-{-l(])

where QM1 is the secondary operation related to QMIQM! + QMIQM! = ¢
if r # s and QMIQMi! = 0 otherwise. These formule are discussed in much
more detail in [24].
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LEMMA 3.9. — Suppose that r is an odd number in the range
1 <r < 2p™ — 1. Then the image of

K(n)"(Dy(X))/Im(tr) in K(n)*(Dy(X))/Im(tr)

is a free module over K(n)*(S') = A(z); here tr denotes the transfer
homomorphism.

Proof. — In the Atiyah-Hirzebruch spectral sequence modulo the
transfer the only non-zero differentials are generated by the action of the
Milnor operation and its higher operations on elements of the form a®P.
Moreover, the E; page is itself a free module over K(n)*(S'). However,
formulee such as in (3.5) and (3.8) show that all the possible differentials
will preserve the freeness over this ring. Thus E. and by extension
K (n)*(Dy(X))/Im(tr) has the property claimed. O

We next consider the general differentials d, in (3.1) for r < 2p™. The
following induction shows the form of a differential d, with » < 2p™ — 1 to
be comparable with that of the first possibly non-zero differential in this
range.

THEOREM 3.10. — Suppose r < 2p™ — 1 and that d, represents the
q** non-zero differential in the spectral sequence (3.1). Then

(a) E. is generated as an algebra by E>* and the elements z € E}°
and z € E20,

(b) the differential d, is trivial on z, z and elements in B* C E®* and

(c) the differential d, acts on an element a®P € E2* by sending it to
(69(a))®? - e, where 69 is a ¢** order K (n) operation, defined on the kernel
of the operations associated to the previous differentials. Moreover, 62 is of
odd degree and hence r is even.

Proof. — We proceed by induction on g, the case of ¢ = 1 having
been settled by (3.2). We suppose the result proved for the first ¢ — 1 non-
zero differentials and suppose d, with r < 2p™ — 1 is potentially the next.
Suppose d, with s < r was the (¢ — 1)** non-zero differential.

Part (a) follows immediately from the structure of E** and the fact
that 697! is odd dimensional since this implies that s is even. Note that
multiplication by z: E&* — E!*2* is onto for ¢ > 0 and is an isomorphism
for t > s/2. Part (b) follows as in (3.2).
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For part (c) the argument to associate 62 with a ¢*® order operation
is identical with that in (3.2). It remains to show that 62 is of odd order.
Suppose it is not so r is odd and so for some space X we have an element
a® € E%* supporting a non-trivial d, but for which d,.(a®” - 2) = 0.
Consider the spectral sequence for D;(X ), the inverse image of the r-
skeleton of BCp; the differentials of (3.1) restrict to this sequence, but
d, is the final differential. This supposed dlﬁ"erentlal d, now contradicts
(3.9). O

We have now dealt with all the differentials d,. for r < 2p™ — 1. As
noted before, dapn 1 acts non-trivially on the element 2. It is trivial however
on all elements of Egz’;_lz on the elements B* the argument of (3.2)(b)
applies, while the argument of (3.10)(c) shows that it acts on elements of
the form a®? via an odd degree higher order operation 83, _,. However,
62pn ; clearly has to be an even degree operation and hence is zero. When
dopn—1 has acted the element zP" is killed and there is no room for any
further differentials as E;;’,’n is zero for m > 2(p™ — 1). We thus arrive at
the following description of the spectral sequence (3.1).

THEOREM 3.11. — There are only a finite number of non-trivial
differentials in the sequence (3.1), all acting as in (3.10) for Bockstein and
higher order operations 62, r < 2p™ — 1, except for the final one, dzpn 1,
which acts trivially on Ezp,, , and as induced on the elements z € E2p., 1

and z € Ezpn 1 by the splitting (2.2). O

We finish this section with some examples. We begin by specialising
to the case n = 1 to obtain the mod p K-theory results of [17] and [3].

COROLLARY 3.12. — The spectral sequence (3.1) for K(1)*(Dp(X))
has just two non-zero differentials. The first is d,_; acting as described in
(3.7) via the operation Qo, and the second is dgp—1 forced by the Atiyah-
Hirzebruch spectral sequence differential for K (1)*(BCp).

Proof. — For K (1) the only potential operations are the Q0 , 8 =
1,2,..., where Qo is the mod p°® Bockstein. As each Q(()s) is of dimension
1 they can only occur in differentials d,, where r — 1+ p = 0 (mod 2p — 2).
As the differential corresponding to Q((,l) occurs potentially non-trivially
in dp_1, a differential corresponding to Q(()2) can occur at the earliest at
r = 3p — 3. However, as noted in (3.11) all differentials after dg,_; are
Zero. O






