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THE COMPLEX ORIENTED COHOMOLOGY
OF EXTENDED POWERS

by John Robert HUNTON

1. Introduction.

Suppose p is an odd prime, €?*(—) an unreduced, multiplicative,
complex oriented cohomology theory and X a space. Then an important
problem is to describe the behaviour of G*{—) on the extended power space

Dp(x) = EC? x xy
Cp

in terms of the behaviour of €?*(—) on X. Here Cp is the cyclic group
on p elements, ECp a contractible space with free Cp action, and X1^ the
cartesian product ofp copies of X\ the Cp action on X^ is by permutation
of factors. These spaces are significant as, among other uses, they form the
building blocks of the infinite loop space construction QX^ [23], and are
fundamental to certain constructions of Dyer-Lashof and Steenrod power
operations; see, for example, [3].

In the case G = H¥p, the mod p Eilenberg-MacLane theory, the
computation ofG*{Dp{X)) is completely described in Nakaoka's celebrated
paper [19]. The Serre spectral sequence of the fibration

(1.1) ^ -^ Dp{X) M BCp

Key words: Extended power of a space — Complex oriented cohomology — Morava K-
theory - Brown-Peterson theory - Complex cobordism - Landweber exact cohomology
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collapses and there is a natural isomorphism of rings between
H^Dp(X)^¥p) and H^BCp'^H^X^^p)).

In this paper we investigate to what extent such simple descriptions of
G*(Dp(X)) exist for other complex oriented theories G.

An arbitrary cohomology theory will generally fail to have such
straightforward behaviour. For example, McClure and Snaith in [17], and
McClure again in [3], study the case of mod p K-theory K¥p. The
corresponding spectral sequence of (1.1) has two potentially non-zero
differentials. The first is related to the mod p Bockstein acting on JCFp* (X),
while the second may be viewed as being forced by the differential in the
Atiyah-Hirzebruch spectral sequence for K¥p^(BCp).

In this paper we consider two main classes of cohomology theories
G*(—), restricting attention initially to those spaces X with G^(X) free as a
G^ module: without some restriction the spectral sequence of (1.1) becomes
extremely hard to say anything about in general, however, we shall see in
§4 that this restriction can be relaxed to allow some particularly interesting
examples of spaces X and theories G with G^(X) definitely not free. In §3
we study the case of Morava K -theory -ftT(n); of course K(n)^ (X) is free over
K(n)^ for every space X. Here some quite complicated phenomena can arise
and the spectral sequence of (1.1) can have many non-trivial differentials.
We give a qualitative description (3.7), (3.10) and (3.11) of this spectral
sequence which, when specialised (3.12) to the case n = 1, reduces to the
work just mentioned on mod p K-theory [17], [3]. It also reproduces (3.15)
the results of [9], [10] and [1] on Jf(n)*(Dp(X)) for spaces X satisfying
K^n^^X) = 0.

In §4 we consider a range of other theories (7*(—), principally the
Landweber exact theories such as complex cobordism MU", the Brown-
Peterson theory BPy complex K-theory^ elliptic cohomology or the Johnson-
Wilson theories E(n). In contrast to the case of Morava 7^-theory, the
spectral sequence of (1.1) always collapses for these theories, providing in a
sense the best possible analogue (4.6) of Nakaoka's theorem. We use these
cases to discuss more general cohomology theories (4.8), (4.9) including
results which limit further the behaviour of the differentials in the Morava
K-theory spectral sequence discussed in §3.

The nature of our main argument allows us to weaken our original
condition that G^(X) must be free over G^ to include any space X with
G*(X) satisfying our condition (4.1) of regularity. This greatly extends the
number of spaces X to which our result applies. For example, for the theory



EXTENDED POWERS 519

G taken to be p complete BP theory, it includes all spaces X with Morava
K-theory concentrated in even dimensions; as noted in [22], this contains
an extraordinary number of interesting space such as the classifying spaces
of many finite groups, Eilenberg MacLane spaces, QS271, B0(n)^ M0(n),
BO, ImJ, and so on - see [22] for details. There are other examples of spaces
and theories with G*(X) regular and this in turn allows our Theorem (4.6)
to provide one of the technical ingredients for Kashiwabara's description of
BP^QX) [12].

We wish to acknowledge the advice and encouragement received from
lan Leary, Takuji Kashiwabara and Jim McClure concerning this work and
also to thank Neil Strickland who provided us with the proof of (4.4) and
the remarks immediately after it and Jean-Yves Butowiez for his french
translation of the abstract.

2. Spectral sequences.

In this section we recall a number of details needed to set up our
calculations. Our main tool is the spectral sequence of (1.1) in G-theory,
which we shall also refer to as a Serre spectral sequence. This has the form

(2.1) E^ = ̂ *'*(G*(Pp(X))) = 7T(BGp; G*(X^)) =^ G*(Dp(X)).

We describe the £'2 term of this sequence and set up some basic notation.
We assume throughout that G*(—) is multiplicative and for the moment
that the space X has G^(X) free as a G* module. This ensures that G*(XP)
is described by a Klinneth isomorphism (suitably completed in the case ofX
an infinite complex) with the action of Cp on G^X^) given by permutation
of the tensor factors.

The Gp-invariant elements of G^X^) fall into two types. If X is a
topological basis for G*(X) then topological bases for these two types are
given by

I : [a^P = a0 (p) (g)a|a € X},

II : { ^o-^(7 ^(o'\ 0 • • • 0 cip)\ai € ^5 the a^ not all equal}.

The column E^* in (2.1) is isomorphic to the Gp-invariant subring of
G^X^) and we denote by A* and B* the sets of elements spanned by
types I and II respectively. The whole E^ term is generated as a ring by
E^ and H"(BCp\ G*) where the action, as a G* module, of H*(BCp; G*)
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is free on A* and trivial on B*. Note that a^ + b^ = (a + 6)^ modulo
elements of B * . For more details, see [19] or [17].

As the fibration (1.1) splits, i.e., we have a factorisation of the identity
on BCp

(2.2) BCp -^ Dp{X) M BCp,

there is a splitting at the spectral sequence level and so the subring
H*(BCp'^G*) C £^'* behaves precisely as the Atiyah-Hirzebruch spectral
sequence for G*(BCp). Thus the first 'interesting' differentials we must
consider are those non-zero on the elements lying in £^'*.

DEFINITION 2.3. — For X and G*(-) as considered, we say that
the spectral sequence H^BCp', G*^)) =^ G*(Dp(X)) is simple if
E^ == E°^, i.e., if the only non-trivial differentials are those forced by
the Atiyah-Hirzebruch spectral sequence for G^(BCp) and the splitting
(2.2). Simplicity is the best possible analogue of Nakaoka's theorem that
we can hope for.

3. Morava K-theory.

In this section we concentrate on the case of G = K{n) at the
odd prime p. Recall that K(n) has coefficients Fp[^,v^1] where Vn has
cohomological dimension -^(p71 — 1); in particular, K{n)^{X) is free over
K{n)^ for every space X. To simplify notation we shall consider K(n) as a
Z/(2pn — 2)-graded theory, identifying the periodicity element Vn with 1.

Following [9], we write the mod p cohomology of BCp as the ring

H^BCp',¥p)=A(z)^¥p[x],
Fp

where z € H1 and x € H2. We shall reserve the letters x and z for these
and closely related elements.

The Atiyah-Hirzebruch spectral sequence of K(nY{BCp) can be read
off from the work of [21]. It has just one non-zero differential, namely c^p^-i
acting by d'zpn^(z} = x^ and d^pn-^x) = 0. There is thus a non-trivial
differential c^p"-! m the spectral sequence

E^ =y{BCp^K(nY{X^)={A^ 0 H^BCp^K(nY)} © (B*)
K{nY

(3.1) =^K(ny(Dp(X))
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being the sequence (2.1) for JC(n)*(Dp(X)). We shall see that in general
there will be plenty of earlier differentials in this sequence.

The following proposition gathers together observations of the previ-
ous section, [9] and [17], and will form the start of an inductive description
of the spectral sequence. In this as in many subsequent places we shall refer
to 'the first non-zero differential' in (3.1); this is the differential dr where
r ^ 2 is the smallest integer such that there is some space X for which
dr 7^ 0, thus r does not depend on the particular space considered in the
proposition.

PROPOSITION 3.2.

(a) The £2 term of the spectral sequence (3.1) is generated as a ring
byE^ andH^BCp',K(nY).

(b) The elements of type II are all permanent cycles.

(c) The first non-trivial differential, dr say, is either c?2p^-i, with
action as described above on the elements z and x and the trivial action
on £&,*i_p or else acts on the elements a^ € A* by some formula

dr{a^) = {Qi{a))^ ' er O ^ A G F p

where Qz is the K(n) Bockstein operation related to Vi torsion, as discussed
in [2]. By the observations in (a) and (b) this suffices to completely describe
the action of dr.

Proof. — Part (a) follows straight from the description of the E^
term in the last section and part (b) follows from a simple transfer
argument, as outlined in [17], proposition 1.3; indeed for the sequence (3.1)
the subgroup is just the image of the transfer.

For part (c), suppose first that the earliest non-trivial differential is
dr for some r < 2p71 — 1. Then dr is zero on the elements z and x in E^°
and E^° respectively and so must take the form

dr{a^'es)=b^'e^r
(recall that we are working modulo Vn — 1). We write b as S^(a).

LEMMA 3.3. — The assignment b = 6^ (a) defines 6^. as a natural
cohomology operation 6^.:K(nY(X) —> K(n)*{X) of degree t where
r — 1 + pt = 0 mod2(pn — 1). This operation is stable and satisfies the
property (<^)2 = 0. Moreover, ^ is also a derivation and so is a primitive
element in K{nY{K(n)).
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Proof. — The nature of the spectral sequence shows that ^ as
defined is a natural cohomology operation. As dr is of bidegree (r, 1 — r)
we have the equation

deg((^(a))^) - deg(a^) = 1 - r mod deg(^)
i.e., p • (deg(^) + deg(a)) - p ' deg(a) = 1 - r mod deg(z^)
giving p . t = l - r mod 2^ - 1).

That 6^ is stable follows as in [17], proposition 1.7: we examine the
related space Dp(Y) = EC?-/\CpY^ where Y^ indicates thep-fold smash
product of the based space Y and the superscript + denotes the addition
of a disjoint basepoint. It is easy to show that there is a pairing of spectral
sequences

E^(G-(Dp(Y,))) 0 E:^(G^Dp(Y^)) -^ E:^(G-{Dp{Y, A Y^))).

Of course if Y = X+ then_Dp(r) = Dp(X)+ and so G*(5p(Y)) ==
G*(Pp(X)). Now let a e E(n)l(Sl) be the canonical generator. The
spectral sequence (2.1) for E(ny(Dp{S1)) collapses for dimensional reasons
- H*(BCp', E(nY) is entirely in even dimensions - and so the element a^
is a permanent cycle. Hence it maps to a permanent cycle, T0^ say, in the
spectral sequence for K(ny{Dp(S1)). Multiplication by r^ now induces
an isomorphism of (reduced cohomology) spectral sequences

E:^{K(nr(Dp(Y))) -^ E^P^r^Dp^Y))).

This is sufficient to show in (2.1) the stability of ^ under suspension on
elements of the form a^ for any a G K{nY(X).

As drdr = 0 we must have 6^.6^ = 0 and as the spectral sequence (2.1)
is multiplicative we deduce that ^ is a derivation. D

We can now complete the proof of (3.2)(c). Recall [26] (see also [2])
that

K{nUK(n))=^ 0 A,
K(n).

where E^ is isomorphic to K(n)^(E(n)) and Ay, is the Grassmann algebra
over K(n)^ on elements e^, i = 0,1,... n - 1, with e, in dimension 2?' - 1.
The ^(n)^-dual of this Hopf algebra is precisely K(nV(K(n)). We can
take a basis of K{nY{K{n)) including the elements Q,, i = 0,1,... n - 1,
which form the dual basis to the {ej of Ay,. Following [2], we call A,,, the
algebra generated by the 0,'s, the Bockstein subalgebra of K(nY{K{n)).
The primitive elements in K{nY(K(n)) are dual to QK(n)^(K(n)), the
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indecomposable quotient of K(n)^(K(n)). This splits as QE^eQAn where
QAn is spanned by the images of the Ci and Q^n = QK(n)^(E(n)) = 0
by, for example, [26]. As 6^ must be primitive it must lie in the subspace
of K(n)*(K(n)) spanned by the Q^; as 6^ must be of homogeneous degree
it must be Qi (up to some non-zero scalar multiple) for some particular i.

Finally, if the first non-trivial differential is not until r = 2^ — 1 we
must show that dr is trivial on elements of the form a^. The action of dr on
the elements A* C ^p*n_i will still be of the form dr: a^ ̂  (^(a))0^ • Or
where the order, t say, of ^ must now satisfy (2pn — 1) — 1 4- pt = 0
mod2(pn — 1), i.e., t must be even: but all the Bockstein operations Qi
have odd degrees and so in this case 6^ must be the zero operation. D

In fact, we can identify exactly what the first non-trivial differential is.
To do this we use an argument based on the Atiyah-Hirzebruch spectral se-
quence for K(nY{Dp(X)). As is well known, the first non-trivial differential
in the Atiyah-Hirzebruch spectral sequence for the Morava K theory of an
arbitrary space is d2pn-i and acts up to an invertible multiple as Milnor's
operation Qn [18], [25], [26]. In order to avoid confusion, we shall continue
to refer to the Morava K-theory Bockstein operations as Qs, 0 <, s < n,
and shall write Milnor's operation as Q^11. We can calculate the action
of Q^11 on H"(Dp(X)\K(n}^) by the inductive formulae [18] which define
Q^11 as f3, the mod p Bockstein, and put Q^11 = T^7"1 .̂11! - Q^P^.

LEMMA 3.4 [16] (see page 402). — Suppose a € ^(X). Then the
(odd primary) Steenrod algebra action in ff*(Dp(X);Fp) is given by

Vs\a^ • e,) = ̂ (s - pi, [ j / 2 ] - s + i + qm + p^P^a))^ . e,+2(,-p,)(p-i)
i

+ 8(j - l)a(q) ̂ (s - pi - 1, [ j / 2 ] - s + i + qm + j/)
i

(^^)-^2(.-^)(p-l)

and /?(a^.e,)=^)a^.e,+i

where 6{j) is 0 or 1 ifj is even or odd, a(q) = —(—l)7719^!, m = (p — 1)/2,
and t is any sufficiently large number. Here we have used the notation ej
to mean xk ifj = 2k and xk ' z ifj = 2k + 1. D

We need only consider the Steenrod operations on elements of this
form since the remaining elements are those in the image of the transfer.
As in the spectral sequence (3.1) these elements split off, performing their
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own independent spectral sequence and play no role in the groups we are
interested in. We will at points omit mentioning these transfer images.

COROLLARY 3.5. — Ignoring the elements in the image of the
transfer, the action ofQ^ on ff*(J9p(X);Fp) is generated by

QMii(^^^^(Qm^0p.^)^ QMii(^^ Q^O^O
1=0

for appropriate positive integers l(i) and scalars \i 6 Fp; the element Ai is
always non-zero. D

Consider the lens space L^, the 2pn—l skeleton ofBCp. By restriction,
the mod p cohomology of Ln can be written

H^Ln^)=A{z)^¥p[x}/(xprt).

The following lemma records the Milnor operations on this cohomology
ring. It also details the Morava J^-theory of the space, the action of the
Atiyah-Hirzebruch spectral sequence for it and, from [2], the associated
K(n) Bocksteins. We write Q^11 and Q» for the total Milnor and total

oo n—1
Morava Bockstein operations respectively, i.e., for ^ Q^11 and ^ Qi.

i=0 i=0

LEMMA 3.6.

(a) In the ring H*(Ln', Fp) the total Milnor operation acts as
00

Q^ii(^)=^V and Qm\x)=0.
i=0

(b) The Atiyah-Hirzebruch spectral sequence for K(n)*(Ln) collapses
for dimensional reasons and we can describe the ring K(n)*(Ln) as the
K(nY algebra A(z) (^^(n)*^]/^") with total Bockstein operation given

by Q.(z) = "E ̂  ancf Q.{x) =0. D
i=0

THEOREM 3.7. — The first non-zero differential in the spectral
sequence (3.1) for K(n)*(Dp(X)) is dp-i, whose action is as described
in (3.2) and is associated to a non-zero multiple of the Bockstein operation
On-l.

Proof. — By computing dimensions we see that the first possible
candidate for a non-zero differential is dp-i acting via the operation Qn-i'
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We shall show that this possibility is realised in the spectral sequence for
K(nY(Dp{Ln))- Let us write D^Ln) for the inverse image in Dp(Ln)
of BCp8^ the 5-skeleton of BCp and consider the case s = p — 1. The
differential dp-\ in (3.1) is as claimed if and only if the differential dp-i in
the spectral sequence for the fibration

(LnY -. D^-\Ln) —. BCp^
is non-zero; moreover, for dimensional reasons, this is the only potentially
non-zero differential in this restricted spectral sequence.

Now consider the Atiyah-Hirzebruch spectral sequence for
K(nY{D^p-\Ln)).

By (3.5) and (3.6) this spectral sequence fails to collapse; hence, by counting
dimensions, neither does the Serre spectral sequence for

K(nY{D^-\Ln)}.
D

Remark 3.8. — The technique of playing off the two spectral se-
quences is a very powerful one and one that can be used to obtain much
computational information. In essence it is a tool that systematically uses
the geometric information arising from the double filtration on Dp(X) com-
ing from the skeletal filtration on Dp(X) and the inverse image filtration
of the skeletal filtration on BCp.

Higher differentials than the ones considered in (3.7) can also be
studied. The second differential in the Atiyah-Hirzebruch spectral sequence
is given by the relation (O^)2 = 0, i.e. , on elements of the form a0^ by
the relation

o=QWWi\a'8^
= E ̂ ((^<^ + o^W)")^ • ̂ l(i)+l(j)

w
+E^((^^)a)8p•a;2^(t)

i

where /^j is some scalar, again derived from the formulae (3.4). Thus the
second differential on an element a025 takes the form

E n -(0^ n\^P .r1^1^P'l^Wn-i.n-j0') x

iJ

where Q^ is the secondary operation related to Q^Q^ + Q^11^11 = 0
if r 7^ s and Q^Q^11 == 0 otherwise. These formulae are discussed in much
more detail in [24].
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LEMMA 3.9. — Suppose that r is an odd number in the range
l ^ r <2pn -1. Then the image of

^(n)*(D;(X))/Im(tr) in A:(n)*(^(X))/Im(tr)

is a free module over K(n)*(S1) = A(z); here tr denotes the transfer
homomorphism.

Proof. — In the Atiyah-Hirzebruch spectral sequence modulo the
transfer the only non-zero differentials are generated by the action of the
Milnor operation and its higher operations on elements of the form a^.
Moreover, the E^ page is itself a free module over K(n)*(S1). However,
formulae such as in (3.5) and (3.8) show that all the possible differentials
will preserve the freeness over this ring. Thus £'00 and by extension
J^(n)*(2^(X))/Im(tr) has the property claimed. D

We next consider the general differentials dr in (3.1) for r < 2pn. The
following induction shows the form of a differential dr with r < 2pn — 1 to
be comparable with that of the first possibly non-zero differential in this
range.

THEOREM 3.10. — Suppose r < 2p71 - 1 and that dr represents the
q^ non-zero differential in the spectral sequence (3.1). Then

(a) Er is generated as an algebra by -E^?'* and the elements z €. E^°
and x € E^°,

(b) the differential dr is trivial on z, x and elements in B* C E^* and

(c) the differential dr acts on an element a^ € E^* by sending it to
(^(a))0^ • Or where 6q. is a q^ order K(n) operation, defined on the kernel
of the operations associated to the previous differentials. Moreover, 6^ is of
odd degree and hence r is even.

Proof. — We proceed by induction on g, the case of q == 1 having
been settled by (3.2). We suppose the result proved for the first q — 1 non-
zero differentials and suppose dr with r < clpn — 1 is potentially the next.
Suppose ds with s < r was the (g — 1)^ non-zero differential.

Part (a) follows immediately from the structure of E^* and the fact
that 6j~1 is odd dimensional since this implies that s is even. Note that
multiplication by x: E^* —>• E^2^ is onto for t > 0 and is an isomorphism
for t >. s/2. Part (b) follows as in (3.2).
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For part (c) the argument to associate 6^ with a q^ order operation
is identical with that in (3.2). It remains to show that 6^ is of odd order.
Suppose it is not so r is odd and so for some space X we have an element
o^p ^ ^,* supporting a non-trivial dr but for which dr(a^p • z) = 0.
Consider the spectral sequence for ^(X), the inverse image of the r-
skeleton of BCp\ the differentials of (3.1) restrict to this sequence, but
dr is the final differential. This supposed differential dr now contradicts
(3.9). D

We have now dealt with all the differentials dr for r < 2^ — 1. As
noted before, (^j^-i acts non-trivially on the element z. It is trivial however
on all elements of E^_^ on the elements B* the argument of (3.2)(b)
applies, while the argument of (3.10)(c) shows that it acts on elements of
the form a^P via an odd degree higher order operation <5jpn_i. However,
<$j n_ i clearly has to be an even degree operation and hence is zero. When
c^p"-! has acted the element x^ is killed and there is no room for any
further differentials as JS'̂ n* is zero for m > 2(pn — 1). We thus arrive at
the following description of the spectral sequence (3.1).

THEOREM 3.11. — There are only a finite number of non-trivial
differentials in the sequence (3.1), all acting as in (3.10) for Bockstein and
higher order operations <^?, r < 2^ — 1, except for the final one, c?2p"-i,
which acts trivially on £^p*i_i and as induced on the elements z € ^p°i-i
and x G ^p°i_i by the splitting (2.2). D

We finish this section with some examples. We begin by specialising
to the case n == 1 to obtain the mod p J^-theory results of [17] and [3].

COROLLARY 3.12. — The spectral sequence (3.1) for K(1)* (Dp(X))
has just two non-zero differentials. The first is dp-\ acting as described in
(3.7) via the operation Qo, and the second is d^p-\ forced by the Atiyah-
Hirzebruch spectral sequence differential for K(lY(BCp).

Proof. — For K(l) the only potential operations are the Q^\ s =
1,2,..., where Q^ is the mod p8 Bockstein. As each Q^' is of dimension
1 they can only occur in differentials dr where r — 1 -j-p = 0 (mod 2p — 2).
As the differential corresponding to (%' occurs potentially non-trivially
in dp-i, a differential corresponding to QQ can occur at the earliest at
r = 3p — 3. However, as noted in (3.11) all differentials after d^p-i are
zero. D
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Note that our calculations are easier than those in [17] as we have the
advantage of 2(p — 1) sparseness in K(l).

The case K{1) is reasonably well behaved. However, calculations for
lens spaces show there to be many higher order operations coming into play
for K(n)^ n > 1. The following gives an example of non-trivial differentials
ds occuring with p — 1 < s < 2p71 — 1. Let us write Mp for the mod p Moore
space S'1 Up E2, the 2-skeleton of Ln. Then K(nY{Mp) is free of rank 2
over K{n)^ on generators y and Qo(y) in dimensions 1 and 2 respectively.
We also write y and Q^(y) for the 1 and 2 cycles in the E^ term of the
Atiyah-Hirzebruch spectral sequence for K(ny(Dp(Mp)).

PROPOSITION 3.13. — The spectral sequence (3.1) for

K(2r(Dp(Mp))

has two non-zero differentials. The first is c?(2p+i)(p-i) acting as described in
(3.10) via the secondary operation related to Qo, and the second is d^p2_^
acting as usual.

Proof. — Computation of Milnor's Q^111 in the Atiyah-Hirzebruch
spectral sequence for K(2)*(Dp(Mp)) shows it to have the form

Q^\y^) = W^y)^ . x^-1^2 + W^y)^ • rc^1^-1)/2

where each \i is non-zero. Of course Q^^y) = 0 but as Q^{y) 7^ 0 we see
that the Atiyah-Hirzebruch spectral sequence for K{nY(Dp p (Mp))
does not collapse. As before we conclude that we get a differential

d(2p+i)(p-iy. y^ ̂  (Wy^" • ̂ +1^-1)/2 o + \ e Fp
in the Serre spectral sequence for K(2)*(Dp(Mp)) before the final
^2p2-i. D

Remark 3.14. — The investigation of differentials related to the
primary Bockstein operations Qi, i = n — 1,..., 1,0, of [2] can be carried
out for given values of n using the space Ln and its subcomplexes. For
possible differentials related to more complex Bockstein operations there
is a whole family of lens spaces, various subcomplexes of BCpk, that can
be brought into play. These carry non-trivial higher order K(n) operations
and are discussed in more detail in [2]. However, we understand that using
the machinary of [4] McClure has shown that the only operations that can
arise non-trivially in (3.1) are those associated to the primary operations
Qi.
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We conclude this section by observing a simple reproof (and in fact
an extension) of the results of [I], [9] and [10].

COROLLARY 3.15. — The spectral sequence (3.1) for K{n) * (Dp (X))
is simple for any space X with Morava K-theory concentrated either
entirely in even dimensions or entirely in odd dimensions.

Proof. — The operations ^(-) are all odd dimensional so they are
all zero on a space X with Morava K-theory concentrated as supposed. D

4. Landweber exact theories.

In this section we prove results which show that the spectral sequence
(2.1) is simple for a variety of cohomology theories G*(-) in various
circumstances. We need to restrict to spaces X for which the E^ page
of (2.1) is similar to that given in §2; the following definition encapsulates
our requirements.

DEFINITION 4.1. — For a space X and multiplicative cohomology
theory G*(-), say the ring G*(X) is regular as a G* module if the E^ page
of (2.1) is generated by the image of the transfer, the image ofH"{BCp\ G'*)
under the splitting map j of (2.2) and by elements of the form a^ e E^
whereaeG^X).

Of course, if G^(X) is a free G* module then G*(X) is certainly
regular, but we shall see below that other G*(X) will also satisfy (4.1).

Note that, as in the proofs of (3.2) and (3.10), elements in the image
of the transfer are always permanent cycles in the spectral sequence. Thus
the first potentially non-zero differential in the spectral sequence (2.1) for
a space X with G* (X) regular is either one arising from a differential in
the Atiyah-Hirzebruch spectral sequence for G*(BGp) or else one which is
non-zero on some element a0^ e ̂ '*.

The case of theories G*(—) with torsion free coefficients is particularly
interesting in light of the following result.

LEMMA 4.2. — Suppose G*(-) is a multiplicative complex oriented
cohomology theory with torsion free coefficients concentrated in even
dimensions. Then the Atiyah-Hirzebruch spectral sequence for G*(BGp)
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collapses and hence the spectral sequence (2.1) for spaces X with G*(X)
regular is simple if and only if it collapses.

Proof. — The assumptions on the coefficients G* mean that the
Atiyah-Hirzebruch spectral sequence for G*(BCp) has £'2 term concen-
trated in even dimensions and hence collapses. Under these conditions the
elements in the image of the homomorphism

j*:jr(BC^G*) —.H^BC^G^X^)
are thus permanent cycles in (2.1) and so to say that (2.1) is simple is to
say that none of the ring generators of E^ support non-zero differentials.

D

LEMMA 4.3. — I f G * ( — ) i s a multiplicative complex oriented coho-
mology theory with torsion free coefficients then G*(X) is regular if and
only ifH'^^BCp'.G^XP)) = 0, or, equivalent!^ if and only if the E^-term
of (2.1) is concentrated in E^611'*.

Proof. — This follows as H*(BCp', M) is periodic of degree 2 for any
coefficients M. D

A case of particular interest is that of p complete Brown-Peterson
cohomology BP^\ see [22] for a discussion of the role of this theory. The
following result gives us a useful criterion for a space X to have (BP^)*(X)
regular.

PROPOSITION 4.4. — Suppose E(n) (X) is a completed free E(n)
module and there is a completed Kiinneth isomorphism E(n) (X^ =
E(n)\X)^. Then (BPp-y(X) is regular.

Proof. — By [6], the natural inclusion of BP^ into the product of the
K(n) localisations ]~[ L^(^)BP is a split monomorphism. Hence by (4.3)

n>o
it suffices to show that ^(Cp; (Lj^.BP)'16^)) = 0. However, by [7] and
[8] this will follow by showing that each H1 (Cp; E(n^(XP)) = 0, which
follows by the usual calculations from the hypotheses of the proposition.

D

Remark 4.5. — There are many examples of spaces X satisfying
the hypotheses of (4.4). One particularly interesting class of examples is
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that of spaces X with K{n)°^(X) = 0 for all n since in this case the
spectral sequence leading from K(n)*(X) to E(n) (X) collapses and we
can appeal to [8]. This class includes the classifying spaces of many finite
groups, Eilenberg MacLane spaces, QS2711, B0(n), M0(n), BO, ImJ, and
so on; see [22] for a detailed discussion of such spaces. There are however
other classes of spaces satisfying (4.4); for example the types of space QX
considered in [12].

The next theorem considers the Landweber exact cohomology theories
[13]. Recall that a complex oriented theory G*(—) is said to be Landweber
exact if on finite CW complexes X its relation to complex cobordism is
given by the tensor product

G*(X)=G* 0 M/*(X)
MU*

where the MU* module action on G* comes from the complex orientation.
Examples of such theories include complex ^-theory, elliptic cohomology,
the Johnson-Wilson theories E{n) and of course M7, BP and their p
completions themselves. These are all multiplicative with torsion free
coefficient rings, concentrated in even degrees.

THEOREM 4.6. — Suppose G = MU, BP or any other Landweber
exact spectrum with coefficients concentrated in even degrees. Suppose also
that X is a space for which G*(X) is regular. Then the spectral sequence
(2.1) collapses.

Proof. — We begin by considering a universal example. Let us write
G2m for the infinite loop space representing the cohomology group G277^—).
Now the spectral sequence (2.1) for G* {Dp{G^rn}) will certainly collapse
for dimensional reasons and by (4.2) since G*(G2m) is free over G^ and
concentrated in even dimensions - this is proved for G = MU and BP in
[20], Landweber exact theories with coefficients G* in even dimensions and
countably generated over some subring of the rationals in [5] and for the
general case in [11].

Now consider a general X satisfying the hypotheses of the theorem.
It will suffice by (4.2) to show that the elements in E^* are all permanent
cycles. Suppose not and the first actually non-trivial differential in this
spectral sequence was dy, taking a non-zero value on some y^ e E^* (note
that, once again, the elements in the image of the transfer are all permanent
cycles). Suppose for the moment that y is an even dimensional cohomology
class, say y € G2771^). Then y is represented by a map X —> G^rn and we
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have an induced map of spectral sequences

^(G'*(Dp(G2.n))) — ^'•(G*(Z5p(JO))
the image of which contains the element ^/0P. As the left hand spectral
sequence collapses, this contradicts drd/^) ̂  0.

Finally, if y was odd dimensional we can argue instead with the space
EX using the isomorphism of spectral sequences as set up in the proof of
(3.3). D

Remark 4.7. — One way to view this result is that these spectral
sequences collapse because such cohomology theories have no Bockstein
operations. Complex cobordism and the Landweber exact theories may be
among the few with so trivial a spectral sequence for the extended power
construction. The Bockstein related differentials exhibited for K(n) suggest
similar non-trivial differentials for any BP module theory with Bocksteins
Qi^ for some z < ?z, but a non-trivial Vn action in coefficients, for example
P(n). A borderline case is that of the theory BP(n). Here BP{—1) is
H¥p and so we have a collapsing sequence by [19], while BP(oo) = BP
and so collapses by (4.6). Certainly inverting Vn m BP(n) yields E(n\
a Landweber exact theory and hence covered by (4.6) as well. Nakaoka's
theorem also implies that the Serre spectral sequence for BP{0}*{Dp{X)) ==
HK ^(Dp(X)) has no non-trivial differentials provided HK ^(X) is torsion
free (the case where HK -. (X) has torsion is considerably more complicated
and is discussed in detail in [15]).

Theorem (4.6) can be used to deduce the simplicity of the spectral
sequence for G*(Pp(X)) in various circumstances for other cohomology
theories. The following is such an example and one that finds application
in the work of Kashiwabara [12] on BP*(QX).

COROLLARY 4.8. — Suppose the space X has BP*{X) regular and
that the reduction homomorphism

K(nY 0 BP\X) —.K{nY{X)
BP*

is onto. Then the spectral sequence (3.1) for K(nY{Dp(X)) is simple.

Proof. — If the reduction homomorphism as stated is onto then so
is the induced homomorphism £'(n)*(X) —> K(nY(X). The result now
follows from (4.6) by naturality of the spectral sequence (2.1). D

A similar argument can be used to prove
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COROLLARY 4.9. — Suppose the space X has BP*(X) and G*(X)
regular (as BP* and G* modules respectively) for some BP module theory
G*(—) with torsion free coefficients concentrated in even dimensions.
Suppose further that the reduction homomorphism

G* 0 BP^(X) ^G*(X)
BP*

is onto. Then the spectral sequence (2.1) for G*(Dp{X)) collapses. D
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