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ASYMPTOTIC DISTRIBUTION
OF NEGATIVE EIGENVALUES

FOR TWO DIMENSIONAL PAULI OPERATORS
WITH NONCONSTANT MAGNETIC FIELDS

by A. IWATSUKA & H. TAMURA

1. Introduction.

The present paper is a continuation to [10] where we have studied
the asymptotic distribution of negative eigenvalues near the origin for two
and three dimensional Pauli operators perturbed by electric fields falling
off at infinity. In the previous work, the strength of magnetic fields (not
necessarily constant) has been assumed to be uniformly bounded from
below. The special emphasis here is placed on the case that Pauli operators
have magnetic fields falling off at infinity.

The Pauli operator describes the motion of a particle with spin in
a magnetic field and it acts on the space L^R3) 0 C2. The unperturbed
Pauli operator without electric field is given by

Hp = (-%V - A)2 - a • B

under a suitable normalization of units, where A : R3 —>• R3 is a magnetic
potential, a = {cr-i^a^^a^) with components

/O 1\ /O -i\ ( 1 0 \
^^[l 0^ a 2 =^ O j - ^O -l)

Key words: Pauli operators — Negative eigenvalues — Magnetics fields — Asymptotic
distribution.
Math. classification: 35P20 - 35Q40 - 81Q10.
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is the vector of 2 x 2 Pauli matrices and B == V x A is a magnetic field.
We write (a;, z) = (rci, a-2, ^) for the coordinates over the three dimensional
space R3 = R^ x R^. We now assume that the magnetic field B has a
constant direction. For brevity, the field is assumed to be directed along
the positive z axis, so that B takes the form

B(x)=(OAb(x)).

Since the magnetic field B is a closed two form, it is easily seen that B
is independent of the z variable. In this work, we exclusively work in the
two dimensional space R^. We identify B(x) with the function h(x). Let
A(x) = (ai (a;), 02(^0)? cij ^ C'^R2)? be a magnetic potential associated
with b(x). Then

b{x) == V x A = 9i02 - O^i, Qj = 0/9xj,
and the Pauli operator takes the simple form

ff ( H + ° \
^ ^ O H . )

in two dimensions, where

H± = (-zv - A)2 =F b = n^ + n| qp &, n^ = -^ - ̂ .
The magnetic field b is represented as the commutator b = [̂112, IIi] and
hence ^f± can be rewritten as

(i.i) jf±=(iii±zn2r(iii±m2).
This implies that ff± >, 0 is nonnegative. If, in particular, b(x) >, 0
is nonnegative, then it is known ([I], [4], [12]) that H^. has zero as an
eigenvalue and its essential spectrum begins at zero for a fairly large class
of magnetic fields. We are going to refer to several basic spectral properties
of Jf± in Section 2.

We now write H for 7f+ and consider the Pauli operator

H(V) = H - V, H = (-zV - A)2 - &,

perturbed by electric field V{x). As stated above, the essential spectrum
of unperturbed operator H = ff+ begins at zero. If the electric field V(x)
falling off at infinity is added to this operator as a perturbation, then the
above operator H(V) has negative discrete eigenvalues accumulating at the
origin. The aim of the present paper is to study the asymptotic distribution
near the origin of such negative eigenvalues.

We formulate the obtained results precisely. Let (x) = (1 -h |;r[2)1/2.
We first make the following assumptions on b(x) and V{x):
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(b) h(x) e C^R2) is a positive function and

{x^/C < b(x) < C(x}-^ \Vb(x)\ < C (x^-^ 01,

for some d >, 0.

(V) V(x) C C^R2) is a real function and

1^)1 < C (^-m, |VV(^)| ^ C (^-m-1, 00,

for some m > 0.

Under these assumptions, the operator H(V) formally defined above
admits a unique self-adjoint realization in L2 = L^R2) with natural
domain {u € L2 : Hu € L2}, where Hu is understood in the distributional
sense. We denote by the same notation H(V) this self-adjoint realization
and by N(H(y) < —A), A > 0, the number of negative eigenvalues less
than —A. We now formulate a series of theorems obtained here.

THEOREM 1.1. — Let the notations be as above. Assume that (b)
and (V) are fulfilled. Ifd and m satisfy

(1.2) 0 ^ d < 2 , d<m,

then, for any 6 > 0 small enough, there exists Xg > 0 such that

N(H(V) < -A) < (27r)-1 ( b(x) dx + SX^-2^^
Jv{x)>{l-6)\

f o r O < A < A < 5 < l .

THEOREM 1.2. — Keep the same notations and assumptions as
above. Then

N(H{V) < -A) ^ (27r)-1 f b(x) dx
Jv(x)>X

-(27r)-1 / b(x) dx - 6^d-2^m

J{l-6)\<\V(x)\<{l-^-6)\

for 0 < A < \s < 1.

The asymptotic formula as A —> 0 for N(H(V) < -A) can be easily
obtained by combining these two theorems. We further assume V(x) to
satisfy

(1.3) liminfA2^ / dx > 0,
A-^0 Jv{x)>\
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so that
liminfA27771 / dx > 0, M > 1,

A-^0 J\<V{x}<M\

by assumption (V). This, together with assumptions (b) and (V), implies
that

lim inf A^2-^/7^ /' 6(0;) dx > 0.
A-'0 ^V(a;)>A

Thus we have the following theorem as an immediate consequence of
Theorems 1.1 and 1.2.

THEOREM 1.3. — Assume again the same assumptions as in The-
orem 1.1. If, in addition to (1.3), V(x) fulfills

lim sup A02-60/771 [ {x^dx = o(l), 6 -^ 0,
A->0 J{l-6)\<\V{x)\<{1^6)\

then

N(H(V) < -A) = (27r)-1 ( b(x) dx(l + o(l)), A -> 0.
Jv{x)>\

Remarks.

(1) If lim la;!2^^) = oo, it is known that the bottom, zero, of
\x\—^oo

essential spectrum of H = ff+ is an eigenvalue with infinite multiplicities
dimKerJf == oo ([12, Theorem 3.4]). On the other hand, ifb(x) = O^x^)
as | x [ —> oo for some d > 2, then it follows that dimKerJY < oo (see
Remark 4.1). We point out that no decay condition on the derivatives of
b{x) is assumed in these results.

(2) The assumption d < m means that magnetic fields are stronger
than electric fields at infinity. In the last section (Section 11), we will briefly
discuss the case m < d , 0 < m < 2 , when electric fields are stronger than
magnetic fields. This case is much easier to deal with and N(H(V) < —A)
is shown to obey the classical Weyl formula. Roughly speaking, it behaves
like N{H(V) < -A) ~ A^-2)^ as A ̂  0. If d > 2 and m > 2, then the
number of negative eigenvalues is expected to be finite, but it seems that
the problem has not yet been established.

(3) Under the same assumptions as in Theorem 1.1, we can prove
that

N(H-(V) ^A):^^^^-5)
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for any e > 0 small enough, where H-(V) = H- - V. This follows from
Theorem 1.1 at once, if we take account of the form inequality

H.(V) = H^ + 26 - V > H^ - CN{x}-N, CN > 0,

for any N > 1 large enough. Thus the number N(Hp(V) < -X) of negative
eigenvalues less than —A of the perturbed Pauli operator

H,(V) = H, - V = ( H+^ v ^_°_ y) on ^(R2) ® C2

obeys the same asymptotic formula as in Theorem 1.3.

There are a lot of works on the problem of spectral asymptotics
for magnetic Schrodinger operators. An extensive list of literatures can
be found in the survey [11]. The problem of asymptotic distribution of
discrete eigenvalues below the bottom of essential spectrum has been
studied by [13], [15] when b{x) = b is a uniform magnetic field. Both
the works make an essential use of the uniformity of magnetic fields and
the argument there does not extend directly to the case of nonconstant
magnetic fields. Roughly speaking, the difficulty arises from the fact that
magnetic potentials which actually appear in Pauli operators undergo
nonlocal changes even under local changes of magnetic fields. This makes it
difficult to control nonconstant magnetic fields by a local approximation of
uniform magnetic fields. As stated at the beginning of the section, we have
recently studied the case of nonconstant magnetic fields in [10], and all the
above theorems have been already obtained under the assumption that the
magnetic field b(x) satisfies (b) with d = 0. However the case of magnetic
fields falling off at infinity remains untouched. The special emphasis here
is laid on the case d > 0. If the magnetic field b{x} > c > 0 is uniformly
positive, then the unperturbed operator H = H^. is known to have zero
as an isolated eigenvalue with infinite multiplicities. On the other hand, if
b(x) falls off at infinity, the essential spectrum of H occupies the interval
[0,oo) (see [4]). This difference in spectral structure produces some serious
difficulties. The argument in [10] makes an essential use of the fact that
the bottom of essential spectrum of H is an isolated eigenvalue. Thus, in
order to prove the theorems for the case d > 0, some new devices are
further required in many states of the proof, although the basic idea is in
principle the same as in the previous work. Much attention is now paid
on the Lieb-Thirring estimate on the sum of negative eigenvalues of Pauli
operators with nonconstant magnetic fields in relation to the magnetic
Thomas-Fermi theory ([5], [6], [7], [8], [14]). The present work is motivated
by these works.
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We end the section by making a comment on the asymptotic formula
in three dimensions. In [10], we have derived such a formula under the
assumption that a magnetic field B(x) = (0,0, b(x)), (x,z) e R2 x R,
is directed along the positive z axis and its strength b(x) satisfies (&) with
d = 0. The derivation is based on the asymptotic formula in two dimensions.
The argument there seems to extend to the case 0 < d < 2 without any
essential changes, if we make use of the two dimensional formula obtained
in Theorem 1.3. The matter will be discussed in details elsewhere.

2. Preliminaries.

In this section we summarize two basic facts required for proving
the main theorems. One is concerned with the spectral properties of
unperturbed Pauli operators without electric fields and the other is with
the perturbation theory for singular numbers of compact operators.

We consider the following operators

H^=(-iV-A)2^b=Il2,+tl2^b on L2 = ̂ (R2),

where A(x) = (ai(rc), a^x)), Ilj = -i9j - ay and b(x) = V x A. As stated
in the previous section, these operators can be rewritten as

^±=(ni±m2)*(ni±zii2)
and hence they become nonnegative operators. If, in particular, b satisfies

(2.1) b(x)>c>0,

then H- >_c becomes a strictly positive operator. On the other hand, it
is known ([I], [12]) that H^. has zero as an eigenvalue with infinite mul-
tiplicities. If we choose the magnetic potential A(x) in the divergenceless
form

A(x) = (a^(x),a^(x)) = (-9^9^)

for some real function (p e G^R2) obeying Ay? = fr, then we have

fti + ifl^ = ̂ e-^i + i9^.

This implies that the zero eigenspace just coincides with the subspace

Ky = {u € L2 : u = he-^ with h € A(C)},

where A(C) denotes the class of analytic functions over the complex plane
C. Let Py : L2 —^ L2 be the orthogonal projection on the zero eigenspace
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Ky of J9-(-. We write Qy for Id—Py,, Id being the identity operator. We
also know ([4]) that the non-zero spectra of jff± coincide with each other.
Hence it follows that

Q^Q^ >cQ^

in the form sense, c > 0 being as in (2.1).

We use the perturbation theory for singular numbers of compact
operators as another basic tool to prove the theorems. We shall briefly
explain several basic properties of singular numbers. We refer to [9] for
details.

We denote by N{S > X) and N{S < X) the number of eigenvalues
more and less than X of self-adjoint operator 5, respectively. Let T : X —> X
be a compact (not necessarily self-adjoint) operator acting on a separable
Hilbert space X. We write |T| for VTT*. The singular number {sn(T)},
n € N, of compact operator T is defined as the non-increasing sequence of
eigenvalues of |r| and it has the following properties: Sn(T) = Sn(T*) and
(2.2) 5n+m-lCTi + T2) < 5n(Ti) + S^)

for two compact operators T\ and T^. We now write
N(\T\ > X) = #{n e N : Sn(T) > A}, A > 0,

according to the above notation. If T : X —> X is a compact self-adjoint
operator, then

N(\T\ > A) = N(T > A) 4- N(T < -A), A > 0.
If, in particular, T > 0, it follows that N(\T\ > A) = N(T > A). The next
proposition is repeatedly used throughout the entire discussion.

PROPOSITION 2.1. — Assume that Ti and T^ are compact opera-
tors. Let Ai, As > 0 be such that Ai 4- Aa = A. Then

^dTi + T2\ > A) < ̂ (|ri| > Ai) + N{\T2\ > X^.
If, in particular, T\,T^ > 0, then

^(Ti + T2 > A) $ N(TT, > (1 - 6)X) -h N(T2 > 5A),
N(Tz - T^ > A) > N(Ti > (1 + 6)X) - 2N(T2 > 6X)

for any 6 > 0 small enough.

Proof. — We prove only the third inequality. The other inequalities
are immediate consequences of (2.2). To prove this, we decompose T\ into
TI = (Ti - T^) + T^ and use (2.2) again. Then we have

JV(7i > (1 -1- 6)X) < JV(|Ti - Tal > A) -h N(T2 > 6X)
= JV(Ti - T2 > A) + N(Tz -T2< -X) -+- N(T2 > 6X).
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Since N(T^ - T^ < -X) < N(T^ > A), the inequality in question follows at
once. Q

3. Upper bound; proof of Theorem 1.1.

In this section we complete the proof of Theorem 1.1 by reducing it
to the proof of the three lemmas formulated below.

Before going into the proof, we first fix several notations used through-
out the proof. We use a nonnegative smooth partition {^0,^00} of unity
normalized by ^o(^)2 +^oo(^)2 = 1, where ^o € Cg°('R2) has the property

^o(x) = 1 for \x\ < 1, ^o(^) = 0 for \x\ > 2.

Let d and m satisfy the assumption (1.1) in Theorem 1.1. Then we can
take a as

(3.1) max (1/2, 1/m) < a < 1/d.

We choose the magnetic potential A(x) = (a^(x), a^x)) of the unperturbed
operator H == H^. in the divergenceless form

ai{x) = -9^(po(x), 02 (x) = ()^o(x),

where (po e C^R2) satisfies the equation Ay?o = b. It is shown in the next
section (see Proposition 4.1) that there exists a solution (po(x) obeying the
bound

hoMI < c,{x)2-^
for any p < d. Set go(x) = r2^, r =. \x\. Then go satisfies

A^o = 9'Q + 9o/r = 1.
We define ^pa(x) = (pa(x; A) by

(3-2) ^(x) = ̂ o(^) + rJ\ad^(\ax)go(x)

for 77 > 0, and A^(x) = A^(x\ A) and b^(x) = b^{x\ A) by

Aa(x) = (-Q^a, <9i<^a), b^(x) = A^ = V x A^.
By definition, it follows that Aa(x) = A(x) for \x\ < A-", and by
assumption (6), we can take 77 > 0 so small that

(3.3) W^A^, c^>0 .

We are now in a position to prove the first main theorem.
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Proof of Theorem 1.1. — Throughout the proof, 6, 0 < 6 < 1, is
fixed arbitrarily and A, 0 < A < Xg < 1, is assumed to be small enough.

To prove the theorem, we introduce the auxiliary operator Ha(V) as

Ha{V) = Ha - V, Ha = Ha(X) = (-zV - A,)2 - 6,.

Let {^a(h ̂ cj be the smooth partition of unity defined by

^o(x) = ^o(A^/2), zpa(x) = ̂ (A^).

Then a simple computation yields the relation

H(V) = ^ao(H(V) - v^)^o + ̂ a(H(V) - ̂ a)^
in the form sense, where

^a(x) = [V^oMI2 + |V^(^)|2 = ©(A2") = o(A), A -^ 0.

This relation is often called the IMS localization formula ([4]). Recall that
A(x) = Aa(x) for \x\ < A-0. Hence

H(V) = ̂ oWV) - ̂ ,)^o + ̂ a(H(V) - ̂ )^.

If x C supp^a, then V(x) = O^X^) = o(A) by (3.1). Thus we obtain

(3.4) N(H(V)<-\) < N(H^(V)<-(1-6)\) < N(H^V)<-(1-6)\)^

where ^^(V) denotes the operator Ha(V) over the domain {\x\ < A"01}
with zero Dirichlet conditions. We can also obtain

(3.5) N(H^V) < -(1 + 6)X) < N(H(V) < -A)

by making use of a similar relation. By (3.3), Ha has zero as an isolated
eigenvalue with infinite multiplicities. We denote by Pa = Pa(X): L2 —^ L2

the orthogonal projection on the zero eigenspace of Ha and we write
Qa = Id -Pa. Then we have

Qc^HaQa > CaX^Qa. Ca > 0.

If we use the simple form inequality

PaVQa + QaVPa ^ cPaV2 Pa + Qa/C, C > 0,

then we get

Ha{V) > Pa(-V - GX-^V^Pa + Qa(Ha(V) - X^/^Qa

for any c > 0 and hence it follows from (3.4) that

N(H(V) < -A) ^ N(Pa(V + cX-^V^Pa > (1 - 8)X)
+ N(Qa{Ha(V) - X^/^Qa < -(1 - 6)X).
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We can take c > 1 so large that

QaWV) - A^AOO, > Q^H^/2 - V + C2AQd)0,

for some 02 > 0. Since ad < 1 strictly, this implies that

^(Oa(^W) - A^/c)^ < -(1 - 6)\) ̂  N(H^ -2V< -2c3Aad)
for some 03 > 0, and hence we have

N(H^ -2V< ^csA^) < N(H(2V) < -c^)

by the same argument as used to prove (3.5), where H(2V) = H -2V.
Thus we obtain

(3.6) N(H(V) < -A)
< N(H(2V) < -c^) + N(P^V + cA-^V2)?, > (1 - 6)\)

for some c, 03 > 0.

We here denote by V the set of all real functions V(x) satisfying the
assumption (V), m > 0 being fixed in assumption (V). We now accept the
following three lemmas as proved.

LEMMA 3.1. — Let 0 < a < 1/m. Assume that U(x) = U(x; A) > 0
is a bounded function (uniformly in X) with support in {\x\ < A"^}. Then

N(PaUP^ > A2-) = c^-2^), A -^ 0,
for any L > 0.

LEMMA 3.2. — Assume that W € V. Let H(W) = H - W. Then

N(H(W) < -A) = C^A^-2)/771), A ̂  0.

LEMMA 3.3. — Assume that W C V. Then

N(P^WP^ > A) ^ (27r)-1 / b(x) dx + SX^-^^
JW>{1-6)\

for0< A < \s < 1.

We apply these three lemmas to complete the proof of the theorem.
Since ad < 1 strictly, we first obtain

N(H(2V) < -^A^) = o(X(d-2^m)

by Lemma 3.2. Next we choose a as (ad + l)/2m < a < 1/m, so that
X-QdV(x)2 = Q(A-^+2^ ^ ̂
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for |a;| > A"^. Hence

(3.7) N(P^V2Pa > A^+Yc) = o(X{d-2)/rn)

by Lemma 3.1. Thus, by Proposition 2.1 and Lemma 3.3, the theorem
follows from (3.6). D

The three lemmas above remain unproved. We prove Lemma 3.1 in
Section 4, and Lemmas 3.2 and 3.3 in Section 7.

4. Proof of Lemma 3.1.

The aim of this section is to prove Lemma 3.1. The proof is based on
the stationary phase method and it requires two preparatory results. The
first result can be easily proved by use of the Fourier series expansion. We
will give its proof at the end of this section.

PROPOSITION 4.1. — Let 0 < d < 2. Assume that b e (^(R2)
satisfies \b(x)\ = (^(r"^) as r == \x\ —> oo. Then there exists a real solution
(po € (^(R2) to equation Ay?o = b with bound

^f^ 2 -^ 0 < d < 2 , d ^ l ,
^^"to^logr), d=0 , l .

Remark. — We do not assume the decay condition for the first
derivatives of h(x) but the C1 -smoothness of b(x) is required to obtain
yo(x) e ̂ (R2).

Before formulating the second preparatory result, we recall the nota-
tions

J4 = (-zV - A)2 - 6, A = (-82^ 9i^), b = V x A

in Section 2. We denote by Py : L2 —> L2 the orthogonal projection on the
zero eigenspace of Jf+, which coincides with

K^ = {u € L2 : u = he~^ with h € A(C)},

where A(C) is the class of analytic functions over the complex plane.

LEMMA 4.1. — Assume that U{x) > 0 is a bounded function with
compact support. Let (pj e C^R2), 1 < j < 2, be real functions. Write Pj
for P .̂ and Kj for K^. If(p^(x) < ̂ W, then

JV(Pi£/Pi > p) < N^UP^ > /A/7), ^ > 0,
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where

7 = max exp(2o;(:r)), uj^x) = ̂ {x) — ipi(x) >: 0.
a;FsuDD Ua;Gsupp U

Proof. — This lemma has been already verified in [10] (Lemma
2.12). However, for completeness, we here prove the lemma by repeating
the argument there. The proof is done by a simple application of the min-
max principle. Let Cn-> n > 0, be the totality of subspaces in L2 with
dimension not exceeding n. Each element of Cri is expressed as a subspace
Fn = 5'(/i,..., /n) spanned by the linear hulls of /j; 6 L2, 1 < j < n. We
define the injective mapping r : Cn —^ ^n by

r(Fn)=Gn=S(g^...,gn)

with gj = exp(—o;)/j € L2 and we denote the range of such a mapping as
M^ = r(Cn)- Let w = /iexp(—<^i) € K\ with fa e A(C). If w belongs to
the orthogonal complement G^ of Gn = ^(^n) with Fn = 5'(/i) • - • 5/71)5
then w = /iexp(—y?2) ^ -^2 with the same h € A(C) belongs to F^-, and
also it follows that (w,w) ^ (w,w) and

(£7w, w)/(w, w) < 7 (^7w, w)/(w, w),
where ( , ) stands for the scalar product in the space L2. Thus we have
(4.1) min max (Uu,u)/(u,u) < 7 min max (Uv^v)/(v^v).
' ' GneMnueKinG^ " ' ' F^eCn veK^nF^

We now denote by \n(T) the n-th eigenvalue of nonnegative compact
operator T. By the min-max principle,

Xn^(PjUPj) = min max (Uu,u)/{u,u)
Fn^-^-n uEKjOF^-

for n > 0. Hence, if we take account of the inclusion relation Adn C Cni
the lemma follows from (4.1). D

We shall prove Lemma 3.1 in question.

Proof of Lemma 3.1. — For the sake of brevity, we prove the lemma
only for the case d > 0. Let 0 < a < 1/m and let U(x) ^ 0 be as in the
lemma. We may assume that U = U(r) is a function of r = |a;| only. Let
(pa (x) be defined by (3.2). We take p, 0 < p < d, as (2 - p)a < (2 - d)/m.
It follows from Proposition 4.1 and (3.2) that

^) < ^(r) = c((l + r2/2-^/2 + A^r2)

for some c > 0. Hence we have
N{P^UP^ > X1-) < N{P^UP^ > A^),
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by Lemma 4.1, where 7 = exp^iA-^2-^) with some ci > 0.

Let (r, 0) be the polar coordinate system over the plane. Since U(r)
and ip(r) are both spherically symmetric, the compact operator P^UP^ •
L2 -^ L2 has

Un(x) = {x^ + ix^ exp(-^(r)) = r71 exp(m(9) exp(-y?(r)), n e N U {0},

as an orthogonal system of eigenfunctions (complete in the subspace Ky),
and the corresponding eigenvalue \n is given by \n = Sn/Cn, where

/•oo
en = (un, Un) = 27r / r2^1 exp(-2y?(r)) dr

Jo
/•oo

5n = (^^n,^n) = 2^ / [/(r)^2^1 exp(-2(^(r)) dr.
*/0

We now choose v as

(2 - p)a < v < (2 - d)/m < (2 - p)ad/p.

We assert that

(4.2) ^Xn = exp^iA-^-^^A-^A, < 1

for n > A-". If this is verified, then it follows that

N{P^UP^ > X1-) = ©(A-") = c^-2)/771), A -> 0,

and hence the lemma is obtained.

The assertion above is proved by use of the stationary phase method.
We write e^ as

/•oo
en=27r / exp(2/^(r))dr,

Jo
where

/n(r - )=(n+l /2) logr-^(r ) .

We define ^(r) and p(r) as

g(r) = A<^ = ̂ "{r) + ̂ (r)/r, p(r) = ry/(r) = / ^(^ dt.
Jo

By a direct calculation, we see that q(r) > 0 is strictly positive and it
behaves like

q(r) ~ r~p + A^, r -> oo,

uniformly in A, where the notation /(r) ~ g(r) means that f ( r ) / g ( r ) and
^(r)//(r) are both bounded uniformly in r > 1. Hence p(r) behaves like

pM-^-^+A^r2, r-^oo.
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We look at the stationary point of fn(r) with

/nM=((n+l/2)-p(r))/r=0.

Since p(r) is a strictly increasing function, there exists a unique root Tn to
equation

P^n) = / n tq(t) dt = n + 1/2.
./o

The value of fn{r) at stationary point r = rn is calculated as

fn(rn) = -P'{rn)/rn = -g(r,) < 0.

Thus the function fn(r) attains its maximum at r = r^. When n > 1 is
large enough, Tn behaves like

f r^A2-^, A-^ < n < A-(2-p)c^
" I A-^^n1/2, n > A-(2-^Qd/P.

We estimate en from below and Sn from above when n > A"^. The
value Cn is evaluated as

en > 27rexp(2/,(r,)) [ n exp(2(/,(r) - /,(r,))) dr.
^rn

If r^ < r < r^ + 1, then we have

fn(r) - fn(rn) = / t-^p^n) - p(t)) dt > -C^n) > -C^
Jrn

for some 03 > 0. Hence

Cn > €3 exp(2/n(7n)), €3 > 0.

Next we evaluate Sn from above. We write it as
.A-

Sn = 27rexp(2/n(rn)) / U(r) exp(2(/,(r) - /,(r,))) dr.
^o

If 0 < r < A-^, then r < Tn for n > A-1' and

/^ r^n/2
fn(r)-fn(rn) = - ^^P^n)-p(^)) A < - / (- \p{rn )-p(t)) dt

Jrjr^/3

for rj > 0 small enough. We can take 77 > 0 so small that

fn(r) - fn(Tn) < -(j^n) - P(^n/2)) log 3/2 ^ -€4^

for some 04 > 0. Thus we have

Sn < C5A-<Texp(-C4n)exp(2/n(7n))
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and hence
An = Sn/€n <: CQ\~cr eXp(-C4n).

Since n > A-1' > A-^2-^, it follows that

^A-^An < Co exp^A-^2-^) exp(-C4n)A-(<7+JL) -^ 0, A -. 0.
This proves the assertion (4.2) and the proof of the lemma is complete. D

In the previous section, we have used the auxiliary operator Ha,
a > 1/2 (chosen close enough to 1/2) for spatial localization, so that (3.4)
holds true. By (3.3), the operator Ha has at least C^A^) as a spectral gap
above zero eigenvalue. However this width is not wide enough to prove the
remaining two lemmas (Lemmas 3.2 and 3.3). We here introduce another
auxiliary operator with a wider spectral gap (this gap property will be used
in Section 6 to control the commutator of the orthogonal projection onto
its zero eigenspace and multiplication operators). The precise definition
requires some new notations. By assumption (1.2), we can take f3 so close
to 1/m that

(4.3) l/m</3< mm (a, 2/m, (3d + 2)/4md) < 2/md.

We define yp(x) = ̂ pp{x\ A) by

^(^) = ̂ o(x) + 1^\f3d^(\(3x)go(x)

in a way similar to (pa(x) (see (3.2)). The auxiliary operator in question is
defined by

(4.4) ^=(-zV-A^)2-^,
where

AS^) = (-^2^/3,9i^/3), bo{x) = A^ = V x Aft.

We can take the same 77 > 0 as in (3.2) so small that

(4.5) W>c^, co>0.

This means that H^ has zero as an isolated eigenvalue with infinite
multiplicities and that it has at least O^X^) as a spectral gap, which is
wider than that of Ha. Since f3 may be less than 1/2, the estimate of type
(3.4), in turn, does not hold true in general for H^. Lemma 4.2 below
enables us to evaluate the upper bound instead.

We now denote by P^ the orthogonal projection onto the zero
eigenspace of Hp and write Qp for Id-P/s. By definition, ^ satisfies
^a(x) < ̂ pf3{x} and

^a(x) = (pf3(x), \X\ < A-^.
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Thus we obtain the following lemma as an immediate consequence of
Lemma 4.1, which plays an important role in proving Lemmas 3.2 and 3.3.
In fact, the lemma reduces the proof of these two lemmas to evaluating the
quantity N^WPp > X) in place of N(P^WPa > A).

LEMMA 4.2. — If U{x) > 0 is a bounded function with support in
{\x\ < X-^}, then

N{P^UP^ > /.) < NWPft > /.)

for any p, > 0.

The next lemma is proved in exactly the same way as in the proof of
Lemma 3.1.

LEMMA 4.3. — Let 0 < a < 1/m. Assume again that U{x) =
U(x\ A) > 0 is a bounded function (uniformly in X) with support in
{\x\ < A-^}. Then

N(P^UPft > A17) = ^(A^-2^), A -^ 0,

for any L > 0.

We end the section by proving Proposition 4.1.

Proof of Proposition 4.1. — For the sake of brevity, we prove the
proposition only for the case d > 0. If / € C^(R2) has compact support,
then

^(x) = (27i-)-1 ( log \x - y\ f(y) dy

satisfies A'0 = / and obeys the bound ^(x) = O(logr) as r —>• oo. Thus we
may assume that b(x) vanishes in a neighborhood of the origin. We expand
b(x} as

00

•̂̂  Z^ &n(r)exp(m0)
n==—oo

by the Fourier series. By assumption, the coefficients bn(r) satisfy bn(r) =
(^(r"^) uniformly in n. We also expand the solution tpo(x) as

00

(4.6) ^o(x)= ^ gn(r)exp(m0).
n==—oo

Then gn^) obeys the equation

(4.7) g'n^g'n/r-^gn/r^bn.
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If n = 0, then (rpoY = rbo and hence the equation is easily seen to have a
solution behaving like go(r) = O^2-^. I f n ^ l , the homogeneous equation
has f±n(r) = r^ as a linearly independent solution and the Wronskian
Wn(r) = W(/+n, /-n) is calculated as Wn(r) = -2nr~1. If we set

^-r^^-r^^).--.^r^^.^r^ '̂. •<-.
and ^r^^-^^r^'
for n > 2, then pn(r), n ^ 1, yield a solution to equation (4.7) and obey
the bounds

. . ^ f O ^ 2 - ^ 0 < d < 2 , d ^ l ,
m / lo(rlogr), d = l ,

and ^(r) = n~20(r2~d) uniformly in n > 2. Similar solutions can be also
constructed for the case n < -1. Thus the function (po(x) defined by series
(4.6) is absolutely convergent and it belongs to (^(R2) by the regularity
property for solutions to elliptic equations. Thus we can obtain the desired
solution and the proof is complete. D

Remark 4.1. — If b(x) satisfies the assumption in Proposition 4.1 for
d > 2, then the solution y?o can be shown to obey <^o = 0(log r) and hence
it follows that exp(y?o(^)) is at most of polynomial growth. This implies
that

dimKerTf = dimK^ < oo.

The result is known as the Ahanorov-Casher theorem ([!]) when b(x) has
compact support.

5. Min-Max principle.

The present and next sections are devoted to several preparatory
lemmas required for proving Lemmas 3.2 and 3.3. The proof of these
lemmas is based on the min-max principle. However this principle does not
directly apply to the present problem. The difficulty comes from the fact
that the field b(x} and the potential V(x) have the decaying order different
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from each other. This makes it difficult to control the field b(x) by local
approximation of constant field. In fact, let Q be a cube of side R, R being
fixed, with center yo, \yo\ > 1. If we approximate b(x) over Q by the value
6(?/o) at the center, then we have the error order Od^/ol'^"1) dominant to
v{yo) ~ l^/ol"771, provided that m > d-\- 1. On the other hand, both the
field b(x) and the potential V{x) make a contribution to the leading term of
the asymptotic formula in Theorem 1.3. Thus the local approximation by
uniform magnetic fields works only for potentials decaying slightly faster
than b(x). The aim of the present section is to establish the upper bound
(Lemma 5.2) for such a special class of potentials by use of the result
due to Colin de Verdiere [3] (Proposition 5.1 below) about the number of
eigenvalues in a cube with constant field.

Let H{3 be defined by (4.4). We write H^W) = H^-W. By (4.3),
we can take q as

(5.1) (3d < q < (3d + 2)/4m < 2/m,

so that W^ ~ \x\~rnq, mq > d falls off slightly faster than \x\~d for
W € V. We further set

(5.2) ao = max (g/2, (3d/mq, 3q/(2 + 2mg), 4g/(3d -4- 2)).

Then o-o satisfies o-o < 1/m by (5.1). The next lemma plays an important
role in the future argument.

LEMMA 5.1. — Let q be as (5.1) and let a be such that

(5.3) o-o < a < 1/m,

for ao as above. Assume that U(x) = U(x',\), U € C^R2), is a real
function with support in {\x\ > A"^} and it satisfies

\U(x)\ ̂  C{x)-mq, \^/U{x)\ ̂  C{x)-mq-l

for some C > 0 independent of X > 0. Then, for any 6 > 0 small enough,
there exists \s such that

N(H^U) < -^) < (27r)-1 [ b(x) dx + 6^-^
Ju>(l-6}\<l

N(Ho{U) < -A9) > (27r)-1 / b(x) dx - SX^-2^
Ju>(l-[-6)\<l

forO < X < Xg < 1.

The proof of the lemma uses the min-max principle and is based on
the following proposition due to [3].
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PROPOSITION 5.1. — Let Qp be a cube with side R and let

SB = (-zV - A)2, A(x) = (-BX2/2, ̂ i/2),

be the Schrodinger operator with constant magnetic field B = V x A > 0.
Consider SB as an operator acting on the space L2(Qfi) under zero
Dirichlet conditions and denote by NI)(SB < ̂ ; Qp), ̂  > 0, the number of
eigenvalues less than fi. Then there exists c > 0 independent of ̂ , R and
A, 0 < A < R/2, such that:

(1) ND(SB < ̂  QR) <. (27^)-1B \QR\ F(/VB)

(2) ND{SB<^QR) r> (27^)-l(l-A/^)2B|^[F((/.-cA-2)/B),

where \QR\ = R2 is the measure of cube Qn and

F{p) = #{n e N U {0} : 2n + 1 ^ p}.

Proof of Lemma 5.L — The proof is divided into several steps.
Throughout the proof, <?, 0 < 6 <^ 1, is again fixed arbitrarily and A,
0 < A < \s <^ 1, is assumed to be small enough.

(1) We first prove the upper bound. Let q and a be as in the lemma.
We set

;/o=min[cr, (mq-^-l)a-q, (d+l)o--^ (3d -h 2)<7/4 - q/2\

Then i/o satisfies i/o > q/2 by (5.3). Hence we can choose v so that

(5.4) q/2 < v < i/o.

Let {Qk}i k = (A;i, k'z) € Z x Z, be a family of disjoint open cubes with side
A"^, which covers the whole plane R2 == UA;Q^, Q^ being the closure of Qfc.
We denote by yk € R2 the center of cube Qk- We further introduce another
family of cubes Qk, Qk ^ Qk, with the same center yk and side (1 +<5)A-l/.
We restrict the operator H^{U) to each cube domain Qk. Let Hko(U)
be the self-adjoint realization in L2^^ of Hft(U) under zero Dirichlet
conditions and denote the number of negative eigenvalues less than —p, of
HkD(U) QS

NkW = N(HkD{U) < -^), ^ > 0.

Since v > q / 2 by (5.4), we have by use of the IMS localization formula that

(5.5) N(HD(U) < -\") ̂  ̂  Nk((l - 6W.
k
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(2) We again write Ap(x) for the magnetic potential of H^ and
denote by bk = bp(yk) the value of field bp (x) = V x A^(x) at center
Vk = {yik,V2k) of cube Qk. We set

rk(x) = (r^(x),r^k(x)) = A^(x) - Ak(x), Ak(x) = (-^2/2,^1/2),
for x eQk. Then r^ satisfies the relation

V x rk = 6/?0r) - 6fc.
Hence Ap(x) takes the form

Ap(x) = AfcQr) + rfcOr) = Ak{x) + V^) + ̂ (.r), a: e Ofc,

with some real function gj, € C^R2), where e^ = (eife(^),e2fc(.r)) is given
by

eik{x) =- s(x2 - y2k) (bo(yk + s(x - yk)) - hk\ ds

e2k(x) = j s(x^ - i/ife) (b^yk + s{x - y^) - bk\ ds.

We define the operator SkD by

(5.6) SkD = (-2V - Afc)2, Ak(x) = (-6^2/2,6^i/2),
and TfcD(^) by

TfcD(^) = ^p(-zgk)HkD(U) exp(^) == (-zV - Afc - e^)2 - ̂  - U.
These operators act on L2(Qk) under zero Dirichlet conditions. By defini-
tion, SkD has the constant magnetic field bk = V x A^, while Tko{U) has
the magnetic potential A^ + e^; and is unitarily equivalent to HkD^U), so
that

NkW = N(HkD(U) < -/,) = N(Tko(U) < -/,).

(3) Let a be as in the lemma. We set

X = {A; e Z x Z : Qk n G ̂  0},
where G = {a: € R2 : A-^ < |a;| < \~f3/2}. We can easily see that

(5.7) ^((1-<^)=0, f c ^ X .
We further divide X into two sets

X ^ = { k e X : U k > ( l - 2^)A9}, X2 == {k € X : Uk < (1 - 2($)A9},

where Uk = (7(2/fe) denotes the value of U(x) at the center yk of cube Qk.
By (5.4), we have

\U(x) - Uk\ = 0{\^^)\x - yk\ = O^^——) == o(A^)
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for x e Qk and hence U(x) < (1 - 6)^ for x e Qk with k e ^2. Thus

(5.8) A^((1-(5)A^)=0, A; 0X2.

I f f c e X i , t h e n

Qfc C [x e R2 : A-^/c < \x\ < cA-1/771}

for some c > 1. Hence 6^ (a;) coincides with b(x) on Q^ by definition, and
we have

|V^)| = |V6(a;)| = ©(A^^)

by assumption (6). This, together with (5.4), implies that

\b(x) - bk\ = 0{\^^)\x - y^\ = O^1^} = o(A^)
\ek{x)\ = O^^x - yk\2 = C^A^1)"-21-).

Thus Tko(U) obeys the form inequality

7fcD(^) ^ (1 - £)^D -bk-Uk- 6X^ - ̂ -^(A2^1)"-^), A; € Xi,

for any £ > 0 small enough, where SkD is defined by (5.6) and it has the
constant magnetic field bk. We take e as e = 6\q~ad < 1, q > (3d > ad, so
that

^-10^2(d+l)<r-4^ ^ o^(3d4-2)<T-4^-<^ ^ ̂ <^

by (5.4) again. Hence we have

Nk({l-6W<N(SkD<rk(\))^
where

Tfc(A) = (6fc + [/fc - A9 + 26\q)/(l - 6\q-ad).

When k € Xi, the values 6fc and (7fc satisfy A^/c < &fc < cA^^, c > 1, and
Uk = O^X^). Since /3d < mqa < q by (5.3), it follows that

T-fc(A) = 6fc + £/fc - A9 + W(A9) < 2bk.

This, together with Proposition 5.1 (1), yields

^((1 - 6W < (27r)-1^ 1^1 = (27r)-1^ |0fc|(l + 0(<?))

for k € Xi. As is easily seen,

Qk C {a; € R2 : U(x) > (1 - 36)\q}

for fc C Xi, and also we have

/ b(x)dx=0(^d-2^rnY
Ju^v
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Thus we combine (5.5), (5.7) and (5.8) to obtain the desired upper bound

N(Hp(U) < -A9) < (27r)-1 / b(x) dx + 60^d-^m).
Ju>(l-36)\<l

(4) To prove the lower bound, we again apply the min-max principle
by restricting the operator H^U) to cube domain Qk. If we use Proposition
5.1 (2) with A = ^A"^, then the lower bound can be obtained in almost
the same way as the upper one. Thus the proof of the lemma is comp-
leted. Q

LEMMA 5.2. — Let q be as in (5.1). Assume that W e V satisfies
W(x) > C{x)-Tn for some C > 0. Then

N(Pf^WqP0 > A9) < (27r)-1 / b(x) dx 4- SX^-2^
JW>(1-6}X

for 0 < A < \s < 1.

Proof. — We choose a as in (5.3). Note that 0 < a < 1/m. By
assumption, we can decompose W(x)q into

W(xy=Wo(x)+U(x)^
where WQ, U € C^R2) have support in {\x\ < 2\~a} and in {|a:| >
A'^}, respectively, and U(x) satisfies the assumption in Lemma 5.1. By
decomposition, U{x} equals W^xY on {|a;| > 2A-0^}. By Lemma 4.3, we
have

N(PpWoPft > A9) = (^(A^-2)/771)

and the min-max principle shows that
N(PoUPf3 > A9) < N{H^{U) < -A9).

Thus the lemma follows from Proposition 2.1 and Lemma 5.1. D

6. Commutator calculus.

This is also a preparatory section. In the previous section, we have
shown the bound on N^PpW'1?? > A). We here establish the upper bound
on N(PoWPp > A) for W(x) > 0, W G V. To do this, we make use of the
relation

N(PpWPft > A) = N((PftWP^ > A9)
= N(PoWqPo > A9) 4- error term,



EIGENVALUE ASYMPTOTICS FOR PAULI OPERATORS 501

and we show that the error term arising from the commutator [P^,TV] is
negligible. The following two facts are essential to evaluate the commutator
(Lemma 6.3 below): (1) The contribution from the region [x : \x\ < A~0'},
a < 1/m, is negligible (Lemma 3.1), and [Viy(a;)| = C^A-^-^) over
{x : \x\ > \~a}. (2) The operator Hp has at least ©(A^) as a spectral gap
above zero eigenvalue, and we can choose a < 1/m so close to 1/m that
a > (3d/2 ~ d/2m, because d < 2 by assumption.

Throughout the section, the notations 6 and A<$ are used with the
same meanings as in the previous sections. The aim here is to prove the
following lemma.

LEMMA 6.1. — Assume again that W € V satisfies W(x) >
C{x}~m for some C > 0. Then

N{P(3WPo > A) < (27r)-1 [ b(x) dx 4- (^A^-2^
Jw>(l-6)\

forO < A < \s < 1.

As an immediate consequence, we obtain the following lemma, which
is used for the proof of Lemma 3.2.

LEMMA 6.2. — Assume that W e V. Then

N{PoWP(3 > A) == (^(A^-2^), A -^ 0.

The proof of Lemma 6.1 is done through a series of lemmas. The basic
tool used for the proof is a simple commutator calculation.

LEMMA 6.3. — Assume that U(x) = U(x', A) € C^R2) has support
in {\x\ > A"^} for some K, > 0 and it obeys

\U(x)\ < C{x}-n, \^U(x)\ < C{x}-n-l

uniformly in A for some n > 0. Then

\\PoUQo\\=0(^)^ A->0 ,

with rj = (n+l)^—/?d/2, where || || denotes the norm of bounded operators
acting on L2 == ^(R2).

Proof. — The operator under consideration is represented as

PpUQp = P^UQo - QoU) = Pp[U^ Qo] = Po[P^ U}.
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Recall that zero is the isolated eigenvalue of H^. Let F be a circle around the
origin with radius cA"^ in the complex plane, c > 0 being small enough.
We may assume that Hp has no eigenvalues in the interior of closed curve
r except for zero. Then the eigenprojection Pp is represented by the line
integral

Pp = (2m)-1 <(((;-Hf3)-1 d(;
Jr

along r. We now write Hp as

Hf, = (-zv - A^2 - bft = n? + n| - bft = n^
with 11̂  == IIi -j- zEEa, and we calculate the commutator

[(C-^)-l,^]=(C-^)-l[^,y](C-^)-l.
If we write Uj{x) for 9jU(x) = 9U(x)/9xj, then Uj obeys the bound
Uj{x) = (^(A^'1"1^) by assumption, and we have

[H^ u] = n^, u] + [n^, £/]n^ = n^[n^, u] - z(u, - iu^
Since P^ = (n^P^)* = 0, we obtain

Pf3[P^ U] = -ZP^I - ̂ 2)BA,

where
^ = (27Tz)-1 y c-'n^c - H^)-1 dc.

As is easily seen,

||n̂  - c)-1!! < ll̂ 2^ - C)-1!! == o(A-w2), c e r.
This proves the lemma. D

LEMMA 6.4. — Assume that W G V, W{x) ^ 0, is nonnegative. If
I € N is an integer, then

N(P(3WPo > A) ^ N^P^Pp > (1 - ̂ )^) 4- 6\{d-^/m

for 0 < A < \s < 1.

Proof. — Since /?d < 2/m by (4.3), we can take a as

(6.1) (< 4-13(1/2) I (ml + 1) «7 < 1/m

for given ( € N. We decompose W(x) into

(6.2) TV(a;)=lVo(^)+^), W o ^ O , £7^0,
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where WQ € C^(R2) has support in {\x\ < 2A-0'}, and U(x) has support
in {\x\ > A"^} and satisfies the assumption in Lemma 6.3 with n = m. By
Lemma 6.3, we have

(PpUPo)1 =P0UlP^R^

where R\ : L2 —>• L2 satisfies
[[^11 = 0(^+l)a-/3d/2) ̂  ̂

by (6.1). This, together with Proposition 2.1 and Lemma 4.3, completes
the proof. D

LEMMA 6.5. — Assume that W € V satisfies the same assumption
as in Lemma 6.1. Ifq-= l / k > 0 is a rational number, then

N{P^WPo > A) < N^P^Pp > (1 - 6)Xq) + 6\(d~2)/rn

for 0 < A < \6 < 1.

Proof. — We again take a as in (6.1). By assumption, W^x^ is a
C1 -smooth function and it satisfies

IVH^r)9! = Oda;!-^-^), \x\ -^ oo.
Hence we can decompose W{x)1 into

W{x)1 = Wo{x) + U(x)\ Wo > 0, £7^0,
where Wo € (7^(R2) has support in {\x\ < 2A-<7}, and U(x) has support
in {[re | > A"^} and satisfies the assumption in Lemma 6.3 with n = mq.
By decomposition, U(x) equals W^xY on {\x\ > 2A~<T} and we have

P^PO^ ^UPo)\Rx

by Lemma 6.3, where R\ obeys the bound ||-RA|| = °(^Q- This, together
with Proposition 2.1 and Lemma 4.3 again, implies that

N^PoW1?? > X1) < N{P(sWqPft > (1 - ̂ )A9) + SX^-2^171.
Thus the lemma follows from Lemma 6.4 at once. D

We conclude the section by proving Lemma 6.1 in question.

Proof of Lemma 6.1. — We take a rational number q = l / k to satisfy
(5.1). Then the lemma is immediately obtained from Lemmas 5.2 and
6.5. D
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7. Proof of Lemmas 3.2 and 3.3.

In this section we prove Lemmas 3.2 and 3.3 which remain unproved.
The proof of Lemma 3.2 is based on the following lemma.

LEMMA 7.1. — Assume that W G V. Then

N(PaWP^ > A) = (^(A^-2^), A -> 0.

Proof. — The lemma is easy to prove. We may assume that W € V
is nonnegative. Since W(x) = o(A) for \x\ > \~13', it follows from Lemma
4.2 that

N{P^WP^ > A) < N^WPp > (1 - 6)\)

for (5 > 0 small enough. This, together with Lemma 6.2, completes the
proof. D

Proof of Lemma 3.2. — It suffices to prove the lemma for nonneg-
ative potential W e V. The proof uses (3.7). It should be noted that this
relation has been obtained without using Lemma 3.2 (see the proof of The-
orem 1.1). By Lemma 7.1, it follows from (3.6) and (3.7) that

N{H(W) < -A) < C^A^-2^) 4- N(H(2W) < -cA^)

for some c > 0. Fix e so small that 0 < e < (2 — d)/2ma. Since ad < 1
strictly, we repeat the same argument as above to obtain that

N{H(W) < -A) < ©(A^-2^) + N{H(cW) < -A6).

We here recall the notations

H(W) = H - W , H= (-zV - A)2 - 6, b = V x A.

Let Ge = {x 6 R2 : \x\ < \~aE} and let SD be the self-adjoint realization
in L^Gg) of So = (—%V — A)2 under zero Dirichlet conditions. Then we
have by the IMS localization formula that

N(H(cW) < -A6) < N(SD < ci)

for some ci > 0 independent of A. By the Feynman-Kac-Ito formula ([2]),
the integral kernel of exp(-tS'i)), t > 0, obeys the bound

0 < exp(-tSD)(x,x) < exp(t/^)(x,x) = (47^)~1.

If we use the relation

Tr (exp(-^D)) = / exp{-tSD){x,x)dx,
JGe
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then the above inequality with t = 1/ci implies that
N(SD < ci) == ©(A-206) = ©(A^-2)^)

and hence the proof is complete. 0

The proof of Lemma 3.3 requires the following lemma.

LEMMA 7.2. — Assume that W c V. Set W^(x) = max (W(x), 0).
Then

N{PpW^Po > A) < (27r)-1 f b(x) dx + 6^-^^
Jw>(l-6)\

forO < A < \s < 1.

Proof. — We approximate W+(:c) by a smooth potential. We can
construct W^(x} e V in such a way that We{x) > c^x)^ for some c^ > 0
and

H+M ̂  TV,(a;) < IV+(^) + e{x)-m

for any £ > 0 small enough. Hence it follows from Lemma 6.1 that

N(PoW^Po > A) < N{PpW,Po > A) < (27r)-1 [ b(x) dx + ̂ A^-2)/^
, l/^where

D=:{xeR2:W^x)>{l-6)\}.
We now take e = 62 and divide D into two domains

DI = {^ € D : W^(x) > (^-m}, ^2 = [x e D : W^{x) < Six)-^}.
If x e D^^ then

(1 - <$)A < We(x) < W^(x) 4- ^{x)-^ < (6 + ̂ )^)-m

with £ = <$2, so that \x\ < 61/mO(X~l/m). Thus we have

/ b{x) dx = ̂ -^/^(A^-2)^).
JD^

On the other hand, if x € Di, then
(1 - 6)X < W,(x) < W^x) 4- ^{x)-^ < (1 + <5)IV+(^).

This implies that W(x) > (1 - 2^)A for x e Di, and hence

/^ &(rr)da;^ /* 6(a;)&.
JDi Jw>{l-26)\

Thus the proof is complete. D

Proof of Lemma 3.3. — As in the proof of Lemma 7.1, we have
N(P^WPa > A) ^ N(P^W^ > A) < N(PoW^ > (1 - 6)X).

Hence the lemma follows from Lemma 7.2 at once. D
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8. Auxiliary operator with wider spectral gap.

The remaining sections are devoted to proving the lower bound
(Theorem 1.2). For the same reason as explained at the beginning of Section
5, the proof based on the min-max principle does not directly apply to the
lower bound estimate. It also seems that the trial function method does
not work for it. Indeed, it would be natural to take the zero eigenstates
(a-i + ix-z^e'^^ A</? = 6, of the unperturbed operator H = H^. as a
candidate for trial functions. However this family of eigenfunctions does not
necessarily form an orthogonal system if (p{x) is not spherically symmetric.
Hence it is not simple to look carefully at the dependence on I ^> 1,
when the family is orthogonalized by the Schimidt method. In addition,
since these eigenfunctions are not spatially localized, this also makes it
difficult to evaluate the quantity (Wu^ u) ̂ 2 for a linear combination u of
the eigenfunctions. Thus to prove Theorem 1.2, we again employ the same
idea as developed in the previous sections.

By (3.5), we have

(8.1) N(H(V) < -X) ̂  N(Ha(V) < -(1+(5)A) > N(PaVPa > (1+^)A).

However Lemma 4.2 is not useful for the lower bound estimate, even if the
lower bound on the quantity N{P^VP(3 > A) is obtained. Thus we take a
slightly different approach to prove the theorem. The idea is to introduce
a new auxiliary operator different from Hp, which still has the same zero
eigenprojection Pa as the original operator Ha. The construction of such
an operator is very simple.

We represent Ha in the form Ha = H^II^ like (1.1), so that

Ila^a = H^HC, + 2^, ba = V x Aa.
We now set

Ka=KaW=ry^ r,=^n,,
with some positive bounded function ga(x) = ga(x\\) € C'°°(R2), ga
being not necessarily bounded uniformly in A. By definition, Ka > 0 is
nonnegative and it has the same zero eigenprojection Pa as Ha' We also
have the relation

Ta^a = 9a^a^a9a ̂  26^

in the form sense. Since ba{x) > c((x)~d -I- A"^), we can choose ga(x) in
such a way that ba(x)ga(x)2 > CyA^, Cy > 0, and

(8.2) ga(x) = 1, \x\ < A-^ < A-0.
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By construction, the operator Ka coincides with H^ over {|a;| < A"^} and
it obeys the form inequality

(8.3) QaKaQa ̂  C^Q^ Q^ = Id -P,.

This is the desired operator and it has spectral properties similar to those
of operator H^. We formulate these properties in a series of lemmas below.

We use the notation K^(W) to denote the operator Ka(W) =
Ka - W, and we again take q and a as in Section 5 (see (5.1) ~ (5.3));

/% < q < (3d + 2)/4m < 2/m, (TO < o- < 1/m,
where

(TO = max (q/2, {Sd/mq, 3g/(2 + 2mg), 4g/(3d + 2)).

LEMMA 8.1. — Let q and a be as above. Assume that U(x) =
U(x', X), U C C^R2), is a real function with support in {A~°' < \x\ < \~0}
and it satisfies

\U(x)\ ̂  C{x)-m^ \^U{x)\ ̂  C(x)-m^-l

for some C > 0 independent o f A > 0 . Then

N(K^U) < -^) ̂  (27r)-1 / b(x) dx - 6^-^^
Ju>{l-{-6)\<l

for 0 < A < Xg < 1.

Proof. — The proof is based on the min-max principle. We first note
that

/ b(x)dx=o(^d-2^rn).
J\x\<\-a

By (8.2), g^(x} = 1 on the support of U and hence H^U) = K^(U) over
the region [\x\ < \~^}. To prove the lower bound, we need not take account
of the contribution from the exterior region {|a;| > A"^}. Thus the desired
lower bound is obtained in exactly the same way as in the proof of Lemma
5.1, if we make use of Proposition 5.1 (2). D

LEMMA 8.2. — Let q be again as above. Assume that W e V
satisfies W{x) ̂  C{x)-rn for some C > 0. Then

N(P^P^ > A^) > (27r)-1 / b(x) dx - SX^-2^
Jw>{l+6}\

for 0 < A < \6 < 1.
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Proof. — Let (TO be as above. We take a as
f3d/mq < max (ao, (g 4- /3d)/2mg) < a < 1/m.

By assumption, there exists a nonnegative function £/ € (^(R2) with
support in {A'^ < |a;| < \~13} such that

U(x) = TV(a;)9, 2A-0^ ^ |̂ | ̂  A-^/2,

and W (a:)9 ^ ^(^) ^ 0 over R2 and that U(x) satisfies the assumption in
Lemma 8.1. The quantity N(Kot(U) < —A9) is majorized by the sum

N(P^(U + cX-^U2)?^ > A9) + N(Q^(Ka -U - X^/^Qa < -A9).
As is easily seen, mqa > (3d and 2mqa — (3d > q, so that

U(X) = C^A^) = o(X(3d), X-^U^X)2 = 0(;\2mg<r-/^ ^ ^(^)

on the support of E7. By (8.3),

Qa^-U-X^/^X)
for c ^> 1. Thus it follows that

N^PaW^^ > A9) ^ N(PaUP^ > A9) > N(Ka(U) < -(1 + <5)A9).
This, together with Lemma 8.1, proves the lemma. D

LEMMA 8.3. — Let o- be such that
(1 + /3d/2)/(m + 1) < a < 1/m < (3.

IfU € (^(R2) has support in {X^ < \x\ < X~^} and obeys
\U{x)\ < C{x}-rn, \VU(x)\ < C{x}-m-\

then one has
\\PaUQ^\=0(X1^)^ A^O ,

with rj = (m + l)a - l3d/2 - 1 > 0.

Proof. — The lemma can be proved in almost the same way as in
the proof of Lemma 6.3. By (8.3), the zero eigenvalue of Ka has at least
c/yA^, c/y > 0, as a spectral gap. Since ga(x) = 1 on the support of U, we
have

[r^^n^^A^^).
If we regard Pa as the zero eigenprojection of Kai this relation makes it
possible to repeat the same argument as used in the proof of Lemma 6.3
and the proof is complete. D
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9. Form inequality.

We further prepare a simple proposition on a form inequality, which
is also used in proving Theorem 1.2.

PROPOSITION 9.1. — Let A > 0 be a bounded nonnegative oper-
ator acting on a Hilbert space X and let P : X —^ X be an orthogonal
projection. Then

(PAP)0 >PA°P, 0 < 0 < 1 ,

in the form sense, and hence

N((PAP)° > \) ̂  N(PA°P > A), A > 0.

The proof requires the following simple lemma.

LEMMA 9.1. — Let the notations be as above. Then one has

||(A + s^P^PAP + ̂ -^PH ^ 1, s > 0,

as a bounded operator on X, and hence

||(A + s)l/2P{PAP + s)-lP{A + 5)1/2]! < 1.

Proof. — We denote by ( , ) and || || the scalar product and norm
in X, respectively. Let Y = Ran P denote the range of P. We calculate

IKA+s)1/2?!;!!2 = ((PAP+s)Pv,Pv) = ̂ PAP^)1/2?^2

for v e X. If we set u = (PAP 4- ̂ ^Pv e V, then u ranges over Y and
we have

||(A + ̂ (PAP + 5)-1/2^|| == ||n||, u e V.

Thus it follows that

||(A + s)^\PAP + s)-^Pw\\ = ||Pw|| < ||w||, w e X,

and the lemma is obtained. Q

Proof of Proposition 9.1. — As is well known, the fractional power
is represented by the formula

(PA?) =ce f ^(PAP+O-^PAP^,
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where

l/Ce= r^-^+l)-1^.
^0

Similarly we have
/*00

PA0? = ce \ s^P^A + s^APds.
Jo

The operators in the integrands are rewritten as
(PAP + s^PAP = P - sP(PAP + 5)-1?

P(A + 5)-^? = P - 5?(A + 5)-1?

Thus it suffices to show that

(9.1) P(PAP + 5)-1? < P(A + 5)-1?, s > 0,
in the form sense. By Lemma 9.1,

((A + s)l/2P(PAP + ̂ -^(A + sy/\ v) ^ (^^), ^ e X.
If we set ^ = (A + ̂ -^Pw for w e X , then

(P(PAP + s^Pw, w) < (P(A + s^Pw^ w).
This yields (9.1) and the proof is complete. D

10. Lower bound; proof of Theorem 1.2.

In this section we complete the proof of Theorem 1.2 in question.
Throughout the proof, 6, 0 < 6 < 1, is again fixed arbitrarily and A,
0 < A < \g < 1, is assumed to be small enough. By (8.1), we have

N(H(V) < -A) > 7V(^(V) < -(1 + 6)\) ̂  7V(P,yP, > (1 + 6)\).
Thus the proof of the theorem is reduced to evaluating N(P^WP^ > A)
from below for W € V. We do this through a series of lemmas below.

LEMMA 10.1. — I f W ^ V satisfies W(x) > C{x)-m for some
C > 0, then

N^W2?^ > A2) > (27r)-1 I b(x) dx - ̂ A^-2)^
Jw>{1^6)\

forO < A < \s < 1.

Proof. — The lemma is obtained as a simple application of Propo-
sition 9.1. If U C C^R2) satisfies the assumption in Lemma 8.3, then

Pa^Pa^Pa^P^'+PA,
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where R\ : L2 —^ L2 obeys the bound \\R\\\ = o(A2). Thus we combine
Proposition 2.1, Lemmas 3.1 and 8.3 to obtain that

N(PaW2P^ > A2) > N((p^WPa)2 > (1 + <5)A2) - ̂ -2^

and hence it follows that

N^W2?^ > A2) > N(P^WP^ > (1 + 6)\) -6\{d-2^rn.

We now apply Lemma 8.2 to evaluate the first term on the right side. Let q
be as in Lemma 8.2. Since f3d < ad < 1, we may assume that (3d < q < 1.
Thus the lemma follows from Proposition 9.1 at once. D

The lemma above may be obtained by repeated use of commutator
calculations as in Section 6. However it is more convenient to use Proposi-
tion 9.1 for the proof and the proposition seems to have another application.
Thus we have proved this lemma in a different way.

LEMMA 10.2. — Let W C V and set W-(x) = max(0, -W(x)).
Then

N(P^WPa < -A) ^ N(P^W,P^ > A)

< (27r)-1 / b(x) dx + SX^-2^^.
Jw<-(l-6)\

Proof. — By Lemma 4.2,

N(P^W-P^ > A) < N{Po\V-Pf3 > (1 - 6/2)\)
and hence the lemma is proved in exactly the same way as in the proof of
Lemma 7.2. D

LEMMA 10.3. — Let W € V. Then

limsupA^-^/^P^Pa > A2/^2) = O^2-^/771), 6 -^ 0.
\->o

Proof. — We may assume that W{x) ^ C{x}~m, C > 0. By the
argument used in the proof of Lemma 10.1, we can show that

N^W2?^ > A2/^2) < N(P^WPa > X/26) + c^2-^/77^-2^
for some c > 0. We further obtain

N(P^WP^ > X/26) < N(H^(W) < -X/26) < N(H(W) < -\/3S)

by repeating the same argument as used to derive (3.5). Thus the lemma
follows from Lemma 3.2 at once. D
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We now evaluate N{PaWPa > A) from below for W e V. We set

Ws(x) = (w{x)2+63Um(x)2)l/\ Um(x) = {x)-^.

Then it follows from Proposition 2.1 that

7v(P^P,>(l+2<$)A2) < ̂ (P^P^l+^A2) + 7V(P^P,>A2/^2).

Since I^(rr) > |lV(a;)|, the term on the left side satisfies

N{P^WJPa > (1 + 2<5)A2) > (27r)-1 f b(x) dx - ̂ A^-2^
J\W\>{1-^-36)X

by Lemma 10.1. Next we estimate the two terms on the right side from
above. By Lemma 10.3, the second term satisfies

limsupA^-^/^P^Pa > A2/^2) = O^2-^^) -.0, 6 -^ 0.
A-^O

If we again repeat the same argument as used in the proof of Lemma 10.1,
the first term obeys

N^PaW2?^ > (1 + <5)A2) ^ N{(paWPc^ > A2) + ̂ A^-2^,

so that we have

N{P^WPa>\) > ̂ (P^P^l+^A2) - N(P^WP^<-\) - 6\{d~2)/m.

Thus it follows from Lemma 10.2 that

N{P^WP^ > A)

> (27r)-1 ( b(x) dx - (27r)-1 ( b(x) dx - SX^-^^.
Jw>\ J(1-<5)A<|IV|<(1+<$)A

This yields the desired lower bound and the proof of Theorem 1.2 is now
complete.

We end the section by some comments on the proof of Theorems
1.1 and 1.2. As previously mentioned, the remarkable spectral property
of Pauli operator is that its essential spectrum occupies the positive half-
line [0, oo) and the bottom (origin) of essential spectrum is an eigenvalue
with infinite multiplicities for a fairly large class of magnetic fields falling
off not too rapidly at infinity. The important ingredient in the proof of
both the theorems is how to make a spectral gap with suitable width in
a neighborhood of the bottom of essential spectrum. To do this, we have
introduced two auxiliary operators H^ and Ka- The first method using
Hp is useful only for the upper bound estimate. On the other hand, the
second method using Ka may apply to the upper bound estimate as well
as the lower bound estimate under several modifications and hence the two



EIGENVALUE ASYMPTOTICS FOR PAULI OPERATORS 513

theorems can be verified in a unified way. However the comparison lemma
(Lemma 4.2), which has played a basic role in the first method, seems to
have an interest of its own. Thus we have proved the upper and lower
bounds in two slightly different methods, although both the methods are
in principle based on the same idea.

11. Concluding remarks.

We end the paper by making some comments on the asymptotic
distribution of negative eigenvalues in the case that electric fields are
stronger than magnetic fields at infinity. The case is much easier to deal
with. We can obtain the following theorem.

THEOREM 11.1. — Assume that (b) and (V) are fulfilled. Let
0 < m < d < 2. IfV{x) satisfies (1.3), then

N(H(V) < -A) = (47r)-1 / (V(x) - X) dx + ̂ (A^-2^), A -> 0.
Jv>\

Remarks.

(1) The asymptotic formula above can be rewritten as

N(H(V)<-\) = (27^)-2vol({(^0 6 R^R2 : ̂ ,0<-A})(l+o(l)),

where H(x, 0 = |̂  - A(x)\2 - b(x) - V(x). Thus N(H(V) < -A) obeys the
classical Weyl formula.

(2) As is easily seen from the proof below, the theorem remains true
without assuming b(x) to be strictly positive, and also it is still valid for
the case when d>_2 and 0 < m < 2.

Sketch of proof. — We give only a sketch for the proof. The proof
uses the min-max principle. We cover the plane R2 by a family of disjoint
cubes Qj with side 7j, where rj satisfies

( l+I^D^/c^r^cO+l^l)^ 2 , 01,

for the center yj = (^/ij,?/2j) G R2 of cube Qj. Let bj = b(yj) be the value
of b(x) at the center yj. Then the magnetic potential A(x) takes the form

A{x) = A,(x) + V^-OK) + e,(x)
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on each cube Qj, where

A?^) = (-^(^ - y2j)/^,bj(x^ - yij)/2).
When \yj\ ^> 1 is large enough, Aj(x) and Cj(^) obey the bounds

\W\ = Od^l"'72), \e,(x)\ = 0(|%-|-1), 1^1 - oo.

By assumption, m < d, and hence the operator -^(VQ is approximated
as H(V) ~ ~A — Vj on each cube Qj by gauge transformation, where
Vj = V(%). This yields

N(H(V) < -X) - (27^)-2^vol({(^0 e Q, x R2 : |^|2 - V(^) < -A))
3

and the asymptotic formula in the theorem is obtained. D

Finally we discuss the case d = m when magnetic and electric fields
are comparable to each other. We get the following theorem. The theorem
can be verified in almost the same way as in the proof of Theorem 11.1, if
we make use of Proposition 5.1. We skip its proof.

THEOREM 11.2. — Let (b) and (V) be fulfilled and let 0 < d =
m < 2. Assume that V(x) satisfies (1.3). Set Vn(x) = V(x) — 2nb(x) for
n G N U 0. If Vn(x) satisfies

limsupA^-^^ { (x^dx == o(l), 6 -^ 0,
A-^O J(l-<$)A<|Vn|<(l+<5)A

then
oo .

N(H(V) < -A) = (27r)-1 V / b{x) dx + ̂ A^-2^), A ̂  0,
n=oJv^>\

where the summation is actually a finite sum.
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