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LIE-RINEHART ALGEBRAS, GERSTENHABER ALGEBRAS
AND BATALIN-VILKOVISKY ALGEBRAS

by Johannes HUEBSCHMANN

1. Introduction.

It has been known for a while that, given a vector space Q over a field k
or, more generally, a projective module g over a commutative ring R with
1, Lie brackets on 5 are in bijective correspondence with differentials on
the graded exterior coalgebra A^ yielding a differential graded coalgebra
structure. The homology and cohomology of Q with coefficients in any Q-
module M may then be computed from suitable complexes involving A^g
and M and a suitable additional structure, that of a twisting cochain;
in particular, the homology of A^g is that of Q with trivial coefficients.
We refrain from spelling out details since we shall not need them; see
e.g. [11] for the notion of twisting cochain and that of twisted object.
For a general Lie-Rinehart algebra (A, L) (a definition will be reproduced
in Section 1 below), a description of its homology and cohomology is no
longer available in terms of twisting cochains; in fact, when the action of
L on A is non-trivial there is no way to endow A^L with a differential
graded coalgebra structure corresponding to the Lie-Rinehart structure.
Rather, given A, a commutative algebra over the ground ring R, and an
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A-module L, Lie-Rinehart structures on (A, L) correspond bijectively to
Gerstenhaber algebra structures on the graded exterior A-algebra A^L over
L. In the Gerstenhaber algebra picture, there is no differential in sight and
the question arises as to what the link between Gerstenhaber structures and
homology and cohomology of Lie-Rinehart algebras might be. The purpose
of the present note is to show that an answer and some new insight may be
obtained by means of the notion of Batalin- Vilkovisky algebra. This will also
shed considerable light on these algebras themselves. Batalin-Vilkovisky
algebras have recently become important in string theory and elsewhere
[I], [2], [3], [7], [14], [16].

Let (A, L) be a Lie-Rinehart algebra. Given A, we shall also refer to L
as an (R,A)-Lie algebra, cf. [15]. Our first result, Theorem 1, will say that
there is a bijective correspondence between right (A, ^-connections on A (in
a sense made precise in Section 1 below) and R-linear operators generating
the Gerstenhaber bracket on AA^; moreover, under this correspondence,
flat right {A, L)-connections on A, that is, right (A^L)-module structures
on A, correspond to operators of square zero, that is, to differentials.

To explain our next result, write [/(A, L) for the universal algebra for
(A, L) and recall the complex (K{A, L), d) generalizing the usual resolution
used in Cartan-Chevalley-Eilenberg Lie-algebra cohomology [15], [9]. We
refer to (J<T(A,L),d) as the Rinehart complex for (A,L); it is an acyclic
relatively free chain complex in the category of left [/(A, L)-modules. When
L is projective as an A-module, (K(A, L), d) is in fact a projective resolution
of A in the category of left (A, L)-modules. Whether or not L is projective
as an A-module, given an exact generator 9 for the Gerstenhaber algebra
AA^, let AQ denote A together with the corresponding right (A, L)-module
structure (given by our first result). Our second result, Theorem 2 below,
will say that, as a chain complex, the Batalin-Vilkovisky algebra (AA^C?)
coincides with {AQ (g) K{A, L), d). Thus, when L is projective as an A-

£/(A,L)
module, the Batalin-Vilkovisky algebra (AA-£/, 9) computes the homology

H,(L,Aa) (^or^^A))

of L with coefficients in the right (A, L)-module AQ\ we mention in passing
that in general (AA-£/, 9) will compute a certain relative homology in the
sense of relative homological algebra [8].

Thereafter we consider the special case where, as an A-module, L
is projective of finite constant rank (say) n, so that A^L is the highest
non-zero exterior power of L in the category of A-modules. In an earlier
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paper [10], we introduced the concept of dualizing module for such a Lie-
Rinehart algebra. Our next result, Theorem 3, will exploit this notion and
will say that there is a bijective correspondence between (A ̂ ^-connections
on A^L and right (A, L)- connections on A; moreover, under this corre-
spondence, left (A, L)-module structures on A^L, that is, flat connections,
correspond to right (A, L)-module structures on A. Theorem 1 and Theo-
rem 3 together imply at once, cf. the corollary in Section 2, that there is
a bijective correspondence between (A, L)- connections on A^L and linear
operators generating the Gerstenhaber bracket on A^L'^ further, under this
correspondence, flat connections correspond to operators of square zero, that
is, to differentials. This generalizes certain observations made by Koszul
[13] and Xu [18], cf. the remark in Section 2.

Finally, we combine the present results with those obtained in [10]
establishing homological duality for Lie-Rinehart algebras, in the following
way: Let V be a flat (A, L)-connection on A^L, let Ay be the corresponding
right (A, Z/)-module (Theorem 3), and let 9 be the corresponding exact
generator for the Gerstenhaber algebra AAL (Theorem 1). By Theorem 2,
as a chain complex, the Batalin-Vilkovisky algebra (AA^/, 9) coincides with
(Ay ^ K{A^L\d) and the latter computes the homology of L with

£7(A,L)
coefficients in the right (A, Z/)-module Ay- Theorem 4 below will say that
this homology and hence that of the Batalin-Vilkovisky algebra (AA-^, <9)
is naturally isomorphic to the cohomology

H*(L, A^Ly) (= Ext*y(^)(A, A^Ly))

of L with coefficients in A^Ly? the A-module A^L with left (A, Z/)-module
structure given by the connection V.

In a sense, the approach in the present paper relies on a careful
study of the interplay between left- and right modules and of the resulting
homological algebra for a general Lie-Rinehart algebra or, more generally,
of the interplay between left and right connections. Once the appropriate
notions and language have been found, the theory will somewhat take care
of itself.

To some extent, our terminology is the same as that in [12]. I am
indebted to Jim Stasheff for a number of comments on an earlier draft
which helped improve the exposition and for having drawn my attention to
Xu's paper [18]; in fact, the latter prompted me to write the present paper,
and in a final section we explain briefly how it is related to that of Xu [18].
We mention at this stage that, though our approach includes results of
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KoszuPs [13] and Xu's [18], it goes beyond that. By means of right module
structures and right connections, we place the relationship between Lie-
Rinehart algebras, Gerstenhaber algebras, and Batalin-Vilkovisky algebras
into the framework of standard homological algebra, following Hochschild
and Rinehart [15]; this is completely formal and has nothing to do with
the question whether or not one is working over a smooth manifold (as
Koszul and Xu do) or over more general spaces including singularities.
Apparently at the time, 1963, when Gerstenhaber's and Rinehart's papers
[5] and [15] appeared, the link between them which we work out here
was completely missed. By extending our results to appropriate strong
homotopy notions, we intend to tame elsewhere the bracket zoo that arose
recently in topological field theory, cf. e.g. [16].

1. Lie-Rinehart-, Gerstenhaber-, BV-algebras.

In this section, we will explain the significance of the generator of
a Gerstenhaber structure and that of an exact structure. For ease of
exposition we first recall the definitions.

Let R be a commutative ring with 1 and A a commutative ^-algebra.
An (R^A)-Lie algebra [15] is a Lie algebra L over R which acts (by
derivations) on A (from the left) and is also an A-module satisfying suitable
compatibility conditions which generalize the usual properties of the Lie
algebra of vector fields on a smooth manifold viewed as a module over its
ring of functions; these conditions read

[a,a/?]=a(a)/?+a[a,/?],

(aa)(6) == a(a(6)),

where a, b e A and a, /? e L. When the emphasis is on the pair (A, L) with
the mutual structure of interaction between A and L, we refer to the pair
(A, L) as a Lie-Rinehart algebra; in [6] the terminology Palais pair is used.
Some relevant history may be found in the introduction and in Section 1
of [9].

We now suppose given an arbitrary Lie-Rinehart algebra (A,L).
Consider the graded exterior A-algebra AAL over L where L is taken
concentrated in degree 1. Write typical elements of AAL in the form

Oi A 0:2 A ... A On, 0 1 , 0 2 , . . . , On € L.
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The Lie bracket [•,•] of L induces an fi-linear bracket on AAL which
endows the latter with a Gerstenhaber algebra structure. Abusing notation
somewhat, we continue to denote the resulting bracket by

[•,.]: AAL ̂  AAL ̂  AAL.
R

To get an explicit formula for it, let u = a\ A ... A o^ € A^L and
v = Q^+i A ... A On € A^~^L, where o;i,..., On 6 -L; then

(1.1) [^]=(-1)H ^ (-l)^+ f c)[a„a,]AalA.. .^. . .afc. . .Aa,.
j<i<k

For example when A is the ring of functions on a smooth manifold and L
the Lie algebra of vector fields, AAL is the algebra of multivector fields and
the bracket is the Schouten bracket. In general, a Gerstenhaber algebra is a
graded commutative algebra A together with a Lie bracket from A (g) A to A

R
of degree —1 (in an appropriate sense: it is a graded Lie bracket in the usual
sense when the degrees of the elements of A are lowered by 1); see [6] where
these objects are called G'-algebras, or [12], [14], [16], [18]. We recall from
Theorem 5 of [6] that the assignment to A of the pair (Ao, Ai) consisting
of the homogeneous degree zero and degree one components Ao and Ai,
respectively, yields a functor from Gerstenhaber algebras to Lie-Rinehart
algebras, and that this functor has a left adjoint which assigns the graded
exterior A-algebra AAL over L to the Lie-Rinehart algebra (A, L), together
with the bracket operation (1.1) on AAL. Thus, given any Gerstenhaber
algebra .4, there is a canonical morphism of Gerstenhaber algebras from
AAO^I to ^- I11 particular, given the underlying A-module of L which we
write LQ (for the moment), there is a bijective correspondence between
(-R, A)-Lie algebra structures on LQ and Gerstenhaber algebra structures
on AA^O-

For a general Gerstenhaber algebra A over J?, with bracket operation
written [•,•], an JZ-linear operator D on A of degree —1 is said to generate
the Gerstenhaber bracket provided, for every homogeneous a, b G «4,

(1.2) [a, b] = (-l)H (D(ab) - (Da)b - (-l)Ha(P&));

the operator D is then called a generator. For the special case where
A = AAL, A and L being the algebra of smooth functions and Lie algebra of
smooth vector fields on a smooth manifold, respectively, this terminology
goes back at least to Koszul [13]. A general Gerstenhaber algebra A is
said to be exact if it is generated by an operator D of square zero, and
the generator is then likewise said to be exact', it is then manifestly a
differential on A. An exact generator will henceforth be written 0. For
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an exact structure, up to a sign, the bracket operation in A, viewed as
an element of the usual Horn-complex Horn(A 0 A, A) with its differential

R
induced by that on A and that on the tensor square, is the boundary
of the multiplication map of A, viewed as a chain in Horn (A 0 A, .4).

D

A Gerstenhaber algebra with an exact generator is called a Batalin-
Vilkovisky algebra [12], [14], [16], [18]; in the literature, the terminology
exact Gerstenhaber algebra occurs as well.

Let M be an A-module. Recall that a left L-module structure
L(g)M —> M on M, written (a,x) \-> a(x), is called a left (A,L)-module

R
structure provided

(1.3.1) a{ax) = a(a)x + aa(x),

(1.3.2) (aa){x)=a(a(x))^

where a € A, x € M, a G L. More generally, such an assignment
L0M —>• M, not necessarily a left L-module structure but still satisfying

R
(1.3.1) and (1.3.2), is referred to as an (A, L)-connection, cf. [9]; in this
language, a left (A,L)-module structure is called a flat (A, L)-connection.
See [9] (2.16) for historical remarks on these algebraic notions of connection
etc. Likewise, let N be an A-module, and let there be given an assignment
N ^ L —>• N^ written (x^a) i—>- x o a or, somewhat simpler, (a;, a) i—> xa

R
(when there is no risk of confusion); it is called a right (A,L)-module
structure provided it is a right L-module structure and, moreover, satisfies

(1.4.1) {ax)a = a{xa) — (a(a))x,

(1.4.2) x(aa) = a(xa) - (a(a))x,

where a G A, x € A^, a G L; we will refer to such an assignment as a
right (A, L)-connection provided it only satisfies (1.4.1) and (1.4.2) without
necessarily being a right L-module structure. Again, a right (A, L)-module
structure is also said to be a flat right (A, L)-connection. The formula
(1.4.2) might look somewhat puzzling at first glance; it is not precisely the
expected replica of (1.3.2). In view of the associativity law, there is only
one consistent way to interpret the expression x(aa), though, that is, we
must have

x(aa) = (xa)a == (ax)a

and the value of (ax)a is forced by (1.4.1).

We can now spell out our first result.
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THEOREM 1. — There is a bijective correspondence between right
(A, L)-connections on A and R-linear operators D generating the Ger-
stenhaber bracket on AAL. Under this correspondence, flat right (A,L)-
connections on A, that is, right (A, L)-module structures on A, correspond
to operators of square zero. More precisely: given an R-linear operator D
generating the Gerstenhaber bracket on AAL, the formula
(1.5) a o a = a(Da) — o;(a), a € A, a € L,
defines a right (A, L)-connection on A. Conversely, given a right (A, L)-
connection (a, a) ̂  a o a on A (a € A, a € L), the operator D on AAL
defined by means of

n

D(ai A ... A On) = ̂ (-l)^"^ (1 o ̂ )(ai A ... a,... A On)
i=l

(1.6) + ̂ (-1)^) [a,, Ok] A ai A ... a, . . .%.. . A a,,
J<k

yields an R-linear operator D generating the Gerstenhaber bracket on AAL.

Before proving this theorem we recall that any (J?,A)-Lie algebra
admits a universal algebra U(A, L) [15] (the algebra of differential oper-
ators when A is the ring of smooth functions and L the Lie algebra of
smooth vector fields on a smooth manifold). We note that left- and right
(A, L)-modules plainly correspond to left- and right (7(A, L)-modules, and
vice versa; see e.g. [9] for details. More generally, left- and right (A,L)-
connections may be shown to correspond bijectively to certain left- and
right U(A, J^)-module structures, for suitable (J?, A)-Lie algebras E map-
ping surjectively onto L. The action of L on A which is part of the Lie-
Rinehart algebra structure endows A with a left (A, L)- and hence with a
left U(A, L)-module structure.

Proof of the first half of Theorem 1. — Suppose given an .R-linear
operator D generating the Gerstenhaber bracket on AAL. A straightforward
verification shows that (1.5) then yields a right (A, L)-connection on A.
Indeed, let x e A, a € A and a G L. Then

(ax) o a = (ax)(Da) — a{ax)
= a{x{Da)) — a(a)x — a{a{x))
•=- a(x(Da) — a(x)) — {a(a))x
= a(x o a) — a(a)x

whence (1.3.1) holds; here a(a) etc. refers to the result of the action on
a € A by a € L via the left L-structure on A (which is part of the Lie-
Rinehart structure of (A,L)). Moreover, from (1.1) we deduce

D{aa) = a(Da) + [a, a] = a{Da) - a(a).
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Hence
x o (aa) = x(D(aa)) - (aa)(x)

== x{a{Da) - a(a)) - a(a(x))
== a(x(Da) - a(x)) - x(a(a))
= a(x o a) — (a(a))x

whence (1.3.2) holds as well. Thus (1.5) yields a right (A, L)-connection
on A. Another straightforward calculation shows that the vanishing of DD
is equivalent to this right connection being flat, that is, to being a right
(A, Z/)-module structure on A.

Rather than giving a direct proof for the converse, we will place the
argument to be offered in its proper context, in the following way.

Recall briefly the Rinehart complex for (A,L): Consider the graded
left [/(A, L)-module £/(A, L) 0 AAL where A acts on [/(A, L) from the right

A
by means of the canonical map from A to U(A,L). For u € U(A,L) and
ai,. . . ,o;n e L, let

n

d[u (g)(ai A ... A an)^ = ̂ (-l^-^uoi (g)(ai A . . . a,... A On)
i=l

(1-7) +^(-l)o '+ f c )^0([a„afc]AalA...57.. .afc.. .AaJ.
j<fc A

Rinehart [15] has proved that this yields an ^-linear operator

d: [/(A, L) (g) AAL —> (7(A, L) 0 AAL.
A A

We note that the non-trivial fact to be verified here is that, for every
n e E/(A,L), a e A , and ai, . . . ,an e L,

d{(ud) 0(o!i A ... A On)) = d(u (g)((aai) A ... A o^))
v1'0^

= ... = d(u 0(ai A ... A (aan))).
The resulting graded object

K(A, L) = (£7(A, L) 0 AA(SL), d)
A

is the Rinehart complex for (A,L). Rinehart [15] has also proved that
dd = 0, that is, d is an £/(A, L)-linear differential whence K(A,L) is
indeed a chain complex, cf. also [9]. When L is projective as an A-module,
K(A, L) is in fact a projective resolution of A in the category of left [/(A, L)-
modules.

Proof of the second half of Theorem 1. — Suppose given a right
(A, ̂ -connection on A, written (a, a) >—^ aoa. Formally the same argument



LIE-RINEHART-, GERSTENHABER-, BV-ALGEBRAS 433

as that given by Rinehart in [15] establishing (1.8) shows that the operator
D on AAL given by (1.6) is well denned, that is to say, for every a G A and
Q;i,...,Q!n 6 L,

(1.9) P((aai) A ... A On) = ... = D(a^ A ... A (aa^));
this relies on the defining properties (1.4.1) and (1.4.2) of a right (A,L)-
connection. Alternatively, when the right (A, L)-connection on A is flat,
that is, a right (A, L)-module and hence ?7(A, L)-module structure on A,
comparing (1.6) with (1.7), we see that, ignoring the algebra structure of
AAL^ the operator (1.6) then coincides with that of the chain complex
(A (g) K(A.LVd) which arises when the tensor product of A with

t/(A,L)

^(A, L) over ^(A, L) is taken, with reference to the right (A, L)-module
structure on A. For a general right (A, L)-connection on A, this kind of
argument can still be used, with L being replaced by a suitable (-R, A)-Lie
algebra E mapping surjectively onto -L, so that the right (A, L)-connection
on A comes from a genuine right (A, £?)-module structure on A.

To complete the proof, we consider the exterior algebra A^L; the
formula (1.6) yields an operator on ApL, too, which we denote by D as
well, with an abuse of notation. We then write this operator as a sum

D = D^ + ̂ M: ApL -> ApL
where, given ai , . . . , On € L,

n

^(ai A ... A an) = ^(-l^-^l o a,)(ai A ... a,... A a,)
z=l

JDM = ̂ (-l)0'̂  K c^fe] A ai A ... aj... Ofc ... A a^.
j<fc

We note that neither Z^ nor Z)tv] descends from Ap^L to an operator on
K^L but their sum does. Likewise we write

[.,•]: A^L^ARL-^ARL
R

for the corresponding bracket. A straightforward calculation shows that,
given oi, . . . , On € L and letting u = ai A ... A o^ € A^L and ^ =
o^-n A ... A an € A^L, we get

(̂m;) = (D^ + (-l)'̂ ^) € A^L,

J9^(m;) = (Ptvl^ + (-l^^D^^v) + (-l)^'^,?;] C ARL.

Since the sum P7^ + 2^'''^ descends to an operator on A^L we conclude
that, on AA^,

P(u^) == {Du)v+ {-l)^u{Dv) + (-1)^^,?;]



434 JOHANNES HUEBSCHMANN

or, equivalently,

[u,v] = (-l)H(D(m;) - (Du)v - (-l)^u(Dv))
as asserted. Q

Remark 1. — Given a right (A, L)-connection (a, a) i-̂  a o a on A,
the square DD of the operator D given by (1.6) will in general be non-
zero - in fact the failure from being zero is precisely measured by the
appropriate notion of curvature for this right (A, L)-connection. We refrain
from spelling out details here.

Remark 2. — For an ordinary Lie algebra Q over the ground ring R,
viewed as an {R, R)-Lie algebra with A = R, the statement of Theorem 1
comes down to the observation, cf. [12], that the complex (Aj^,<9) which
computes the homology of Q with trivial coefficients may be viewed as that
underlying the Batalin-Vilkovisky algebra {ApQ, [•,.], 9) with bracket [ • , • ]
defined by (1.1).

Given a generating operator 9 of square zero for the Gerstenhaber
bracket, we will accordingly write AQ for A together with the right (A, L)-
module structure given by (1.5). An exact Gerstenhaber algebra or, equiv-
alently, Batalin-Vilkovisky algebra structure on K^L has an underlying
chain complex structure, and we now spell out explicitly an observation
which was already implicit in the proof of Theorem 1.

THEOREM 2. — Given an exact generator 9 for the Gerstenhaber
algebra AA-L, the Batalin-Vilkovisky algebra (AA-L, 9) coincides as a chain
complex with (AQ 0 K(A, L), d). In particular, when L is projective as

U(A,L)
an A-module, the Batalin-Vilkovisky algebra (AA^S) computes

H.(L,Aa) (^Tor^^Aa.A)),

the homology ofL with coefficients in AQ. D

In general, that is, when L is not necessarily projective, (KAL.Q)
computes a certain relative Tor-functor; see [8] for details on relative
homological algebra.

2. Duality.

We now suppose that, as an A-module, L is projective of finite
constant rank (say) n, so that A^L is the highest non-zero exterior power
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of L in the category of A-modules. In an earlier paper [10], we introduced
the concept of dualizing module CL for such a Lie-Rinehart algebra.
Recall that, by definition, CL = H^L.L^A.L)), with its induced right
(A,L)-module structure (coming from the obvious right C/(A, L)-module
structure on ?7(A, L)). Moreover, the negative of the Lie-derivative endows
Hon^A^L, A) with a right (A, L)-module structure and, by Theorem 2.8
of [10], CL and Horr^A^L.A) are isomorphic as right (A, L)-modules.

THEOREM 3. — There is a bijective correspondence between (A, L)-
connections on A^L and right (A, L)-connections on A. Under this cor-
respondence, left (A, L)-module structures on A^L (i.e. flat connections)
correspond to right (A, L)-module structures on A. More precisely: Given
an (A, L)-connection V on A^L, the negative of the (generalized) Lie-
derivative on A ^ HomA(A^L,M) with reference to the connection V
on M = A^L, that is, the formula

(2.1) ((f)a)x = (/>(ax) - V^(^)),
where x € A^L, a € L, (f) e HomA(A^L.A^L) ^ A, yields a right
(A, L)-connection on A, written (a, a) i—^ aa (a € A, a 6 -Z^). Conversely,
given a right (A, L)-connection on A (written (a, a) H^ aa), on A^L ^
HomA(CL,A), the assignment

(2.2) (Va'0)^ = '00m) - (^x)a, x € CL, a G L, -06 HomA(CL,A),
yields an (A, ^-connection V ('written L^A^L —> A^L, (a,-^) i-̂  ^a^)'

Ft

Proof. — This is straightforward and left to the reader. D

Combining Theorem 1 with Theorem 3, we obtain the following:

COROLLARY. — There is a bijective correspondence between (A, L)-
connections on A^L and linear operators D generating the Gerstenhaber
bracket on A^L. Under this correspondence, flat connections correspond to
operators of square zero, that is, to differentials. The relationship is made
explicit by means of (1.5), (1.6), (2.1) and (2.2). D

Remark. — The statement of the corollary, without the explicit
relationship given by (1.5), (1.6), (2.1), and (2.2), was proved by Koszul [13]
(Section 2) for the special case where A is the ring of smooth functions and
L the (R, A)-Lie algebra of smooth vector fields on a smooth manifold, and
by Xu [18] (3.8) for the special case where A is the ring of smooth functions
and L the (R, A)-Lie algebra of sections of a general Lie algebroid on a
smooth manifold. However, our approach in terms of right (A, L)-module



^6 JOHANNES HUEBSCHMANN

structures on A (coming into play in Theorem 1 and Theorem 3) seems to
be new and is far more general.

Next we recall from Theorem 2.8 of [10] that (A, L) satisfies duality
and inverse duality in dimension n; this means that there are natural
isomorphisms

0: H^L, M) -^ H,_fc (L, CL 0 M)

for all non-negative integers k and all left (A, L)-modules M and, further-
more, natural isomorphisms

^:H,(L,7v) -^ H-^L.HomA^,^))

for all non-negative integers k and all right (A, L)-modules N. We now
combine this with the results of the present paper, in the following way:
let V be a flat (A, L)-connection on A^L; from Theorem 3 we know that
V determines a unique right (A, L)-module Ay having A as underlying A-
module. Further, by Theorem 1, this right (A,L)-module structure deter-
mines a corresponding exact generator 9 for the Gerstenhaber algebra AA-L
and, by Theorem 2, as a chain complex, the resulting Batalin-Vilkovisky
algebra (AAL.Q) coincides with the chain complex (AQ (g) K(A,L),d)

^(A,L)
arising from the Rinehart resolution K(A, L) of A in the category of left
(A, L)-modules and computing

H.(L,Av) (^or^^A^A)),

the homology of L with coefficients in the right (A, L)-module Ay.

THEOREM 4. — The homology of L with coefficients in the right
(A, L)-module Ay, that is, that of the Batalin-Vilkovisky algebra (AA.L, 9),
is naturally isomorphic to the cohomology

H*(L,A^Lv) (=Ext^)(A,AlLv))

ofL with coefficients in A^Ly, the A-module A^L, with left (A, L)-module
structure given by the flat connection V. D

3. Some applications and concluding remarks.

(3.1) Lie algebroids. Let (A,L) be the Lie-Rinehart algebra arising from
a Lie algebroid of dimension n over a smooth manifold, so that A is the
algebra of smooth functions and the L underlying A-module the space of
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sections of the Lie algebroid. Then n is the rank of L, and A^L, being
the space of sections of a real line bundle, manifestly has a flat (A, L)-
connection V. (Over the complex numbers, in particular in the holomorphic
context, there will in general be obstructions to the existence of such a flat
connection.) Hence A has a right (A.L)-module structure (Theorem 3),
to be referred to as Ay which, by Theorem 1, determines a generator 9
for the Gerstenhaber algebra AA-ZY; by Theorem 2, the homology of the
resulting Batalin-Vilkovisky algebra (AA^,^) is naturally isomorphic to
the homology of L with coefficients in Ay and, by Theorem 4, to the
cohomology of L with values in A^Ly, the A-module A^L, with left (A, L)-
module structure given by the connection V. The isomorphism between
the homology of (AA^, 9) and the cohomology of L with values in A^Ly
has been observed in [18] (4.6) for the special case where the line bundle
underlying A^L is trivial in such a way that, as left (A, L)-modules,
A^L and A are isomorphic or, more formally, when the modular class of
the Lie-Rinehart algebra (A,L) is trivial, cf. [10] and also [4], [17]. Xu's
isomorphism (4.6) is in fact a special case of the duality isomorphism

(3.1.1) H,(L,Ay) ^H-^L.A^Ly)

established in our paper [10]. Notice that when L is the (R,A)-Lie algebra
of smooth vector fields, we can view the elements of AAL as de Rham
currents and hence the Batalin-Vilkovisky algebra (AA^C?) as a chain
complex defining de Rham homology.

(3.2) Poisson structures. Let A be a Poisson algebra, with Poisson structure
{' ,•}, and let Ds.^.\ be its (J?,A)-Lie algebra, coming from the Poisson
structure, see [9] (3.8) for details and also [10]. Besides its obvious left
(A,Pj.^.})-module structure, from the Poisson structure, the algebra A
inherits also a right (A, Z)^.})-module structure by means of the formula

a{b(du)) = {ab,u}

which we refer to by the notation A{.^.}; here a,&,n € A and du denotes
the differential of u. By Theorem 1, this structure induces an exact gen-
erator for the Gerstenhaber algebra AA-D{.,.}; we denote this generator
by 9{.,.}. The resulting Batalin-Vilkovisky algebra (AA-D-{. .} ,&{. .}) com-
putes the Poisson homology of A. This follows at once from Theorem 2, in
view of the definition of Poisson homology, cf. [9]. In fact the chain com-
plex which underlies (AA^{.,.},9{.,.}) coincides with the chain complex
(Aj. .\ (g) K ( A ^ D s . .i),d) and, by definition, the Poisson homology

"-'^(A,^.,})
of A is the homology of this complex [9]. For the special case where, as
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an A-module, -D{.,.} is finitely generated projective of constant rank n, the
corresponding left (A,Z){^.})-module structure on the top exterior power
A^P^.} has been introduced in (7.8) of our paper [10]. When A is the Pots-
son algebra of smooth functions on a smooth Poisson manifold and -D{.,.}
the corresponding (R, A)-Lie algebra arising from the cotangent Lie alge-
broid, the chain complex (As. .\ 0 K ( A ^ D i . .\).d) coincides with

j j f A r~» \U[A,D{.^.})
KoszuPs complex defining Poisson homology [13]. In fact, Koszul has in-
deed shown that then the operator 9^.^ is a generator for the correspond-
ing Gerstenhaber algebra. For this special case, a geometric description of
the corresponding left (A,P^.})-module structure on A^D^.} or, rather,
that of the corresponding flat connection on the underlying line bundle
was given in [4]; an expression relating the latter with the generator of the
corresponding Batalin-Vilkovisky algebra has been given in (18) of [18]. In
(4.8) of that paper, a certain isomorphism between Poisson homology and
cohomology is given which is again a special case of (3.1.1) above; see our
paper [10] (7.4) for details.

Let L = Der(A), with its obvious (J?,A)-Lie algebra structure. The
pair (L, jDj. . i ) constitutes the structure of what we will call elsewhere
an (J?, A)-Lie bialgebra, in fact, a triangular (J?, A)-Lie bialgebra. These
are abstractions from the notion of a Lie bialgebroid and from that of a
triangular one, respectively, cf. [12]. Here we only remark that the notion of
(-R, A)-Lie bialgebra is equivalent to that of strong differential Gerstenhaber
algebra, that is, to a Gerstenhaber algebra endowed with a derivation of
degree 1 and square zero which behaves as a derivation for the algebra and
bracket structures; cf. [12] and [18].

(3.3) Finally we comment on question 2 and question 3 in Section 5 of [18]:

(3.3.1) Given a general Lie algebroid, for its Gerstenhaber algebra, there
does not seem to exist a canonical generating operator corresponding
to its modular class: in fact, write (A, L) for the Lie-Rinehart algebra
arising in the usual fashion from the Lie algebroid under consideration. We
know from Theorem 1 above that these generating operators correspond
bijectively to right (A, L)-module structures (or connections) on A and,
for a Poisson algebra A, the Poisson structure (somewhat miraculously)
induces a right module structure for the corresponding Lie-Rinehart algebra
as well and hence a canonical exact generator. Now, on the one hand, by
Theorem 3, right (A, L)-module structures on A correspond bijectively to
left (A,L)-module structures on the top exterior power A^L of L. On
the other hand, the modular class is determined by the left (A, L)-module
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QL = HomA(CL,o;A) (see [10] for the right (A, L)-module CI;A), but there is
no obvious way to relate these structures with requisite right (A, L)-module
structures (or right connections) on A. The fact that there is a canonical
such structure in the Poisson case seems to reflect certain compatibility
properties between left and right structures in this case. Indeed, the Koszul
operator <9{.^ on AA^{.,.} looks canonical but depends tacitly also on
the right module structure on A which, in turn, depends on the Poisson
structure, too. Hence the answer to Xu's question 2 will presumably be No.

(3.3.2) The family of Poisson homologies parametrized by the first
Poisson cohomology are precisely the homologies H^^A.Ay) where
V runs through connections on A^L; these homologies are isomorphic to
the cohomologies H^^(A,A^Ly), where L = D{.,.}, the corresponding
(M, A)-Lie algebra having constant rank n as a projective A-module. This
answers Xu's question 3.
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