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SLOPE FILTRATION OF QUASI-UNIPOTENT
OVERCONVERGENT F-ISOCRYSTALS

by Nobuo TSUZUKI

1. Introduction.

Let X be a smooth curve over a perfect field k with a positive char-
acteristic p. Let X and Z be the smooth compactification of X and the
complement of X in X, respectively. In [Cr2] R. Crew defined the notion
of quasi-unipotent overconvergent (F-)isocrystals over X around Z and
proved some expected properties, finiteness and duality for rigid cohomolo-
gies and the global monodromy theorem, of quasi-unipotent overconvergent
(F-)isocrystals. However, the problem that what kinds of overconvergent
(F-)isocrystals are quasi-unipotent is still open.

In this paper we study local properties of quasi-unipotent F-isocrystals.
Let X be a complete valuation field with an absolute value | | and let 'R be
the Robba ring over K (2.2). The Robba ring is a ring of analytic functions
on some annulus T] < \x\ < 1. We define y?-V-modules over 7^ by a free 7 -̂
module with a connection and Frobenius structures (3.2.1). A y?-V-module
is quasi-unipotent if and only if it is a successive extension of copies of the
unit object as differential modules (4.1.1) after a finite etale extension. For
y?-V-modules over 7^, we define a slope filtration for Frobenius structures
(5.1.1). If a (/?-V-module has a slope filtration, then it is unique (5.1.5). We
establish

THEOREM 5.2.1. — A y?-V-module over "R. is quasi-unipotent if and
only if it has a slope nitration for Frobenius structures.

Key words: Quasi-unipotent I^-isocrystals — y?-V-modules — Slope filtration.
Math. classification: 12H25 - 14F30 - 14F40.
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Let M be an overconvergent F-isocrystal on ~K around Z. M deter-
mines a (^-V-module i^M over a Robba ring for every closed point s € X
canonically. Then M is quasi-unipotent in the sense of Crew [Cr2, 10.1] if
and only if i^M is quasi-unipotent for any closed point s € X by (6.1.2)
and (6.1.8).

The theorem above is useful since we have known finiteness of
irregularities of y?-V-modules with pure slopes [TN2]. So it implies finiteness
of irregularities of quasi-unipotent y7-V-modules in the sense of [TN2]. We
will apply it to the global formula of Euler's number of quasi-unipotent
overconvergent F-isocrystals in the future.

It is expected that any (/?-V-module over K is quasi-unipotent. If
this holds, then any overconvergent F-isocrystal is quasi-unipotent (6.1).
It is conjectured that an overconvergent F-isocrystal on a curve is quasi-
unipotent if it has some geometric origin. (See [Cr2, 10.1].)

Now we explain the contents of this paper. In Section 2 we fix
notations and prove some properties of the Robba ring U. In Section 3
we define a ^-V-module over K. In Section 4 we define a quasi-unipotent
(^-V-module over % and prove that the category of quasi-unipotent ^?-V-
modules over K is independent of the choice of Frobenius on 7^. In Section 5
we define the slope filtration for Frobenius structures of y?-V-modules over
7^. We prove the existence of the slope filtration for quasi-unipotent y?-V-
modules over 7^. In Section 6 we apply our local study to overconvergent
F-isocrystals on a curve. We define a quasi-unipotent overconvergent F-
isocrystal. The definition is a different form from that of Crew. Of course,
the two definitions are equivalent to each other. We give some examples of
quasi-unipotent overconvergent F-isocrystals.

The author would like to thank F. Baldassarri, B. Chiarellotto,
L. Gamier, C. Huyghe and S. Matsuda for helpful conversation and advices.
Many of ideas on this work were found during his visit to the Universita di
Padova. He also thanks members of Universita di Padova.

2. The Robba ring 7Z.

2.1. Let p be a prime number. Let k (resp. K) be a perfect field with
characteristic p (a complete discrete valuation field of mixed characteristics
(0,p) with residue class field fc). Fix an algebraic closure K^ of K and
denote by ^alg the residue class field of ^alg. Denote by | | (resp. Vp) the
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absolute value (resp. the additive valuation) of K^ which is normalized
by |p| = P~1 (resp. Vp{p) = 1).

For any valuation field L, we denote by OL (resp. A;L, resp. L11111',
resp. mL} the valuation ring of L (resp. the residue class field of L, resp.
the maximum unramified subfield in the fixed algebraic closure of L whose
residue class field is separable over k^,^ resp. the maximal ideal of OL).

Let F == k((x)) be the field of fraction of the ring of formal power
series with fc-coefficients. Fix an algebraic closure F^ of k such that the
residue class field of F^ is k^ and denote by F3^ the separable closure
ofFinF^.

For a matrix (a^j) and for an application / (resp. for a norm N),
define

/((^•)) = (/(%•)) (resp. lv((a^)) = supTv(a^).
i j

2.2. For a complete field ̂  with a non-Archimedean absolute value | | : f2 —>•
R^o and for an indeterminate x, we define several ^-algebras as follows:

( _^ an € n, sup laj^ < oo for some 0 < $ < 1,1
7^ = ^, anX" | n<0 ^

n="̂ o Kl^ -̂  0 (n -̂  +00) for any 0 < 77 < 1 J

f V^ On €^,sup|a^| <oo,1
^,Q = < >^ 0,̂  | n ^

In^oo |an|-^0(n-^-oo) J

f oc 1
^ ̂  = ^ ^ an^71 € U^ I SUp |an| < 00 \

ln=-oo n J

S^=^(^0^[[x}}.
On

Each ring is functorial in Q,. We have natural injections of ^-algebras:

,̂n
/

Sx,^ -^ £^
\

Sx^'

We call the ring l^x.o. Robba ring over Q, and an element of Tix,^ is regarded
as a function on some annulus ^ < \x\ < 1 for some $ < 1. We use the
notations %, f, ̂  and 5^ instead ofT^x.K, ̂ x,K'> ^x K an^ ^x,K respectively
if there is no ambiguity.
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Remark 2.2.1. Our K^^ coincides with 7^o(l) in [Ro, 2].

For formal Laurent power series a = ^a^rc71, we define |a|G €
R^o U {00} by supyjaj. The field £ (resp. f1') is a complete discrete
valuation field (resp. a henselian discrete valuation field) under the absolute
value | IG. | | G is an extension of the absolute value | | of K and the residue
class field of £ (resp. f1') is F by the natural projection. (See [Cri, 4.2]
[Ma, 3.2].) For a finite separable extension E over F in F^P, denote by
EE (resp. 4) the unique finite unramified extension of £ (resp. £^) with
residue class field E in the fixed algebraic closure of £.

LEMMA 2.2.2 ([Ma, 3.2]). — Under the notation as above, £a (resp.
£^) is isomorphic to £y,KE (resp. f^j^J ^or an^ ̂ ^S V OI a uniformizer
of E. Here KE is the unique finite unramified extension ofK with residue
class field ha- Moreover the unique extension of the absolute value | \c of
£ on EE coincides with the map ̂  bnV71 ̂  sup^ \bn\-

Let E be a finite separable extension of F and choose a lifting y of a
uniformizer of E in £^. Define a K algebra "RE by

^E=^y,KE'

Since x = x(y) e £^ = £\ KE^ ^ ls û 111'81^ included in KE-

LEMMA 2.2.3. — (1) KE is independent of the choice of the lifting of
the uniformizer of E up to canonical isomorphism.

(2) HE is free over U of degree [E : F]. Moreover, TZ^; ^ f^ (^)7Z

and£+=7Zri4-
^•+

Assume that the extension E / F is Galois and denote by Gal(£'/F)
the Galois group. Since £^ is a henselian discrete valuation field, the Galois
group Gal^/^) is canonically isomorphic to Gal(£'/F). The action of
Gal(E/F) on £^ extends naturally on KE- By [Sel, X.l.Prop.3] and Lemma
(2.2.3) we have

LEMMA 2.2.4. — Under the notation as above,

(1) ^°(Gal(E/F),4) = £+ and ^(Gal^/F^GL, (4)) = {1};

(2)^°(Gal(^/F),7Z£;)=7Z.
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2.3. For formal Laurent power series ̂  a^ of indeterminate x, we define
an additive map 6x = x— by

dx

^(E^^-E^^-
Then 6^ is a ^-derivation on K (resp. <f, resp. ft, resp. 5j<).

Let R be either 7Z, C, ft or 5^. Define a free ^-module o/^ of rank
one by

,dx
^R =R——.

x

We define an additive map d : R -> ̂  by d(a) == ^(a)-^ for a e A Then
d is a J^-derivation on R.

Let £' be a finite separable extension of F and choose a lifting y of
a uniformizer of E m Sg. Then the derivation ̂  extends uniquely on HE
and we also use the notation ̂  for this extension. We have the relation

_ x(y)
ux — ~<~~7—7—^T °v •><^Q/))

where x = x{y) e 8^ and ^ commutes with the action of Gal(^/F) if
E / F is Galois.

LEMMA 2.3.1. — Under the notation as above, we have

(1) ker(^ : HE -^ 'RE) = KE;

(2) coker(^ : 7Z^ -. 7Z^) ^ ^——^—, where -xw is the
^(y)) Sy(x(y))

image of x ( y ) ^6y(x(y))

Proof. — The assertion easily follows from the fact that xw is
6y(x(y))

a unit in 7Z^. y / Q

2.4. Fix a power q == p" (a ^ 1) of p. Denote by ^o the field of fraction of
the Witt vector ring W(k) and Frob is the usual lifting of the g-th power
map on KQ. We say that an automorphism a : K —> K is a Frobenius on K
if and only if a is a continuous lifting of the q-th power map on the residue
class field k. Since k is perfect, we have a\Ko = Frob". Note that, if K has
a Frobenius and if L is an unramified extension of K, then the Frobenius
a extends uniquely on L.



384 NOBUO TSUZUKI

For a Frobenius a on K, put J^1 = {n e ̂  | a(u) = n}. One can
easily see that ^<7==1 is finite over the field Q ofp-adic integers.

LEMMA 2.4.1 ([Cri, 1.8]). — Let a be a Frobenius on K. Then there
is a finite unramified extension L of K such that L ^ L"1 (S?) LQ and

(L-=i)o
that the unique extension a on L is id^a=i (g) Frob". Assume furthermore
that the residue class field k is algebraically closed, then one can choose
L ^ K .

Proof. — First we prove the assertion in the case where k is alge-
braically closed. In this case there exists a uniformizer TT of K which is
algebraic over Qp. Then we have K^ ^ Q^TI-) and K ^ Q^TI-) ̂

where Qg is the unique finite unramified extension of Q with residue class
field ¥q of q elements. Now we prove the assertion in the case where k is
an arbitrary perfect field. Denote by K™ the j9-adic completion of K^.
Then a extends uniquely on K™. Put L = K^K^^' ) in K^. Then L
is finite over K and is included in K™. Hence, L is a desired extension of
K. D

From now on to the end of this paper we assume that K has a
Frobenius a.

We say a ring endomorphism a on 8 (resp. ^+) is a Frobenius on £
(resp. £^) if and only if it is the Frobenius a on K and cr(a) = a9 (mod me)
(resp. a(a) = aq(mod m^+)) for a € Oe. (resp. a € 0].). A Frobenius a
on £ is that on f1' if and only if a(x) € f^. One can easily see that a
Frobenius on <?1' extends naturally on K by ̂  an^71 i-̂  ̂  a^anX71) (adding
coefficients in each term of a;71). We call this extension a Frobenius on K.
We say a ring endomorphism a on SK is a Frobenius if and only if it is the
Frobenius a on £ with x~q<7(x) € S K '

For a Frobenius a on £, put

/ ^ <WaO)/^=/^a)= . . .
a^)

Then \II\G < 1. One can easily see that a is a Frobenius on £^ (resp. SK)
if and only if u. e £^ (resp. /2 e S K ) '

Let ^ be either K, £, ̂  or Sj< and let a be a Frobenius on R.
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LEMMA 2.4.2. — If we regard R as an R-module through the Frobenius
a, then R is free of rank q.

dx dx
Define a : UJR —> ^R by a— i-̂  p.a(a)—. Then the diagram belowx x

D d

R —^ ^R
^ l [ ^
R —^ ^R

d

is commutative. Equivalently, 6 o a = ̂ a o 6.

Let E be a finite separable extension of F and choose a lifting y of
a uniformizer of E in £^. Then the Frobenius a on R extends uniquely on
KE and we also use the same notation a for this extension. The Frobenius
a commutes with the derivation 6x (resp. the action of Gal(£'/F) if E / F
is Galois).

2.5. Fix a Frobenius a on S and put £ = K^ (g) W{F^). Then
(K^o

there is a unique homomorphism

ia : £ —^ £

such that (i) \U\G = ia(u)\ for u € £, where | | is the unique valuation
on £ which is the extension of that on K, (ii) the map on residue
class field induced by iy is the injection F C F^ and (iii) ia(cr{u)) =
(idA^Frob0)^^)). (See [TN1, 2.5.1].)

3. (^-V-modules over 7 .̂

Assume that the complete discrete valuation field K has a Frobenius
a from this section to the end of this paper.

3.1. Let R be either 7Z, £, £^ or S K '

DEFINITION 3.1.1. — (1) A pair (M,V) is called a V-module over R
if and only if it satisfies the conditions as follows:

(i) M is a free R-module of finite rank.

(ii) V : M —> UJR Q^ M is a K-connection over R.
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(2) A morphism of V-modules over R is an R-linear homomorphism
which commutes with connections.

(3) We denote by Mj^ the category of ̂ -modules over R.

For a V-module M over R and for a basis {ei, 62, - • • , Cy} of ^5 define
a matrix CM,C ^ Mr{R) by

V(ei,62, • • • , Cr) = — 0 (ei, 62, • • • , Cr.)C'M,e.a;

The category M^ is additive. We can define tensor products and duals
for V-modules by usual methods and, then, (J?, d) is the unit object of the
category. We often use the notation M instead of (M, V) for simplicity.

Since an 7^-module of finite presentation with a connection is free
over U by [Cr2, 6.1], we have

PROPOSITION 3.1.2. — If R = K,£ or £^, then the category M^ is
an abelian category.

Now fix a Frobenius a on R.

DEFINITION 3.1.3. — (1) A pair (M,(/?) is called a (p-module over R
with respect to a if and only if it satisfies the conditions as follows:

(i) M is a free R-module of finite rank;

(ii) (p : M —> M is a a-linear homomorphism such that the induced
R-linear map

(pa- : cr*M —> M a 0 rn »—>• ay?(m)

is an isomorphism. Here a*M is the scalar extension ofM by a. We call (p
Frobenius.

(2) A morphism of ̂ -modules over R is an R-linear homomorphism
which commutes with Frobenius.

(3) We denote by M<1>^ y the category of (p-modules over R with
respect to a.

For a (^-module M over -R and for a basis {ei, 62, • • • , fir} of M, define
a matrix AM,C € Mr(R) by

^(e i ,C2 , - - ' , ^ ) = (e i , e2 , - - - , e^ )AM,e .
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The category M$^ ^ is additive. We can define tensor products and
duals for (^-modules by usual methods and, then, (R, a) is the unit object.
We often use the notation M instead of (M, y?) for simplicity.

PROPOSITION 3.1.4. — IfR = 8, £^ or S K , then the category M^R a
is an abelian category.

Proof. — In the case where R = £ or £^ the assertion is trivial. Let
R = SK- We have only to check that, for a morphism r] : M —> N of
M^g^^, the cokernel of 77 is a free 5j<-module, and then the rest is easy.
Since SK is a principal ideal domain, the torsion submodules of the cokernel
of T] is the form e5'j</(a^) for some a^ e SK with |a^G = 1. Since a is

i
flat by (2.4.2), the induced Sj<-linear map a*(e S K / ^ ) ) -> C5'j</(a^) is

i i
isomorphic. However, we have

dim^a*((])^/(a,)) = dim^ (])^/(a(a,)) = qdimK ®*W(a,).
2 1 I

Hence, N/r)(M) is a free 5j<-module. D

We recall the notion of slopes for Frobenius structures. Denote by the
same notation Vp the additive valuation of £ which is the unique extension
of the valuation on K.

DEFINITION 3.1.5. — (1) For an object (M,y?) of M .̂ ^ (resp.
M<l>gt^), we define the slopes of (M,y?) by those of (<f(S?)M,y?) as (p-

^ R

spaces on £ (resp. by those of {£ (S?) M, (p)) which are measured using the
^+

valuation -Vp. Herep0^ = q. We denote by Newton(M) the Newton polygon
CL

of slopes of M.

(2) For an object (M,y?) ofM<l>g^^, we define the slopes ofM for
the Frobenius structure at the generic point by those of £ (S?) M and the

SK
slopes of M for the Frobenius structure at the special point by those of
(J^unr ̂  ̂  ̂  ^5 (p-spaces on ̂ unr, where S —> K (resp. y ) is the natural

s
reduction modulo x (resp. (p modulo xM). We denote by Newton^ (M)
(resp. Newtons(M)) the Newton polygon of slopes ofM at the generic
point (resp. at the special point).

Since £ is p-adically complete, we have
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PROPOSITION 3.1.6. — Let M be an object ofM<^ ^. Then there is
an increasing nitration {S^M} ^Q ofM such that each S^M is an object
ofM^ y and, for a sufficiently small positive rational number e « 1,
S^M/S^-eM is pure of slope 7.

By [Kal, 2.6.3] we have

PROPOSITION 3.1.7. — Let M be an object ofM^g^g.. Assume that
the Newton Polygon both at the generic point and at the special point
coincide with each other, that is, Newton^ (M) = Newtoiis(M). Then there
is an increasing nitration {S^M} ^QofM such that each S^M is an object
ofM^g^^ and, for a sufficiently small positive rational number e « 1,
S^M/S^-^M is pure of slope 7 at both points.

3.2. Now we define y?-V-modules over R.

DEFINITION 3.2.1. — (1) A triple (M,(/?,V) is called a (p-\7-module
over R with respect to a if and only if it satisfies the conditions as follows:

(i) (M, V) is a V-module over R;

(ii) (M, ip) is a (p-module over R with respect to a;
(iii) the diagram

M -^ ^(9)M

(P [ i (70y?

M -^ UJR 0 M
V

R

is commutative.

(2) A morphism of (p-modules over R is an R-linear homomorphism
which commutes with connections and Frobenius.

(3) We denote by M^^ y. the category of </?-V-modules over R with
respect to a.

For a y?-V-module M and for a basis {ei, 62, • • • , e^.}, the condition
(3.2.1)(l)(iii) is equivalent to the relation

(3.2.2) <^(AM,e) + CM,eAM,e = ̂ {x, ̂ AM^CM^}-

We can define tensor products and duals for y?-V-modules by usual
methods and, then, (-R, a, d) is the unit object of the category. We often
use the notation M instead of (M, y?, V) for simplicit"



SLOPE FILTRATION OF -F-ISOCRYSTALS 389

By Proposition (3.1.2) and Proposition (3.1.4) we have

THEOREM 3.2.3. — The category M$^ is an abelian category with
tensor products and duals.

By the extension of scalar there are natural functors

Cn
/

CSK -̂  c^

\

Ce

of categories, where C is either M^, M<1> or M<1>^. For an object M of
CTZ, a sub £ ̂ -module (resp. a sub 5j<-module, resp. a sub JC-space) L is
an ^-lattice (an 5j<-lattice, a J^-lattice) if and only if M ̂  7^ (^) L (resp.

^•+
M ̂  %6?)L, resp. M ̂  %(^)L) and (L,^|L,V[L) belongs to C^i (resp.

5K ^

(L,(/?[jr,,V|L) belongs to C^, resp. L is stable under y? and V).

3.3. In this subsection we define inverse images and direct images of </?-V-
modules.

Let / : F —>• E be a finite separable extension in F^ and let Rp be
either 'Rp(= ^)? £?(== S) or ^(= ^T)- Then the extension / determines
a unique finite and flat extension RE over Rp and denote by the same
notation / the extension Rp —> RE- Fix a Probenius a on Rp. Then a
extends on RE and UJR^ ^ RE (S?)^R.

j?
Let C be either the category M^ M^^ or M^J. Define an inverse

image functor

/* ^ Cpp -^ ^RE
as follows. For an object M of Cpp^ put /*M = (M£;, ( p E ^ V^;) to be

M£;=J?£;(g)M

R

</?£;= a (g) </?
VE = d 0 idM + id^ 0 V.

One can easily check that /*M is an object of CR^. By the definition /* is
faithful and exact.
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Define a direct image functor

/* '' CRE -^ Cpp

as follows. For an object M of CR^, put f^M = {Mp, ( p p , Vj^) to be

Mp = M (we regard it as an -R-module)
( p p = ^

VF=V:MF ->a;^0M^^fi(g)MF.
J?£; J?

LEMMA 3.3.1. — For an object M ofCn^, f^M belongs to Cpp.

Proof. — It is sufficient to check that the natural map from a*(Mj?)
(a pull back by a : Rp —> Rp) to cr*M (a pull back by a : RE —> RE) is
bijective. Since M is free over 7^, it is enough to prove that the natural
map o"*((7^e)^) —^ cr*7^B is bijective. The following Lemma (3.3.2) implies
the assertion by (2.2.3).

LEMMA 3.3.2. — Under the notation as above, the natural map
°'*((^I;)^) ~^ °'*^E ls bijective.

Proof. — Denote by o-q the g-th power map. Consider the perfections
both of F and E, and dimensions over F, then cr^Ep) —> cr^{E) is injective,
hence bijective. The assertion holds by Nakayama's Lemma. D

We show some properties of inverse images and direct images.

LEMMA 3.3.3. — Let f : F —> Ei\ and g '. E\ —> E^ be finite separable
extensions over F in F8^. Then, we have {gfY = g ^ f * and (gf)^ = /*p*.

PROPOSITION 3.3.4. — (1) The functor /* (resp. f^) commutes with
natural functors C^ —^ Cn and C^ —» Ce.

(2) The functor /* preserves tensor products and duals.

(3) /* is a right adjoint of /* and /* is a left adjoint of f^.

We study the behavior of Newton polygons of (^-modules under an
inverse image functor (resp. a direct image functor). By the definition of
Newton polygon we have
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PROPOSITION 3.3.5. — Let RF be either Sp or £^. The Newton
polygon of (p-modules is preserved by the inverse image functor /*. In
other words, we have

Newton(/*M) = Newton(M)

for any object M ofM<I>^ .

PROPOSITION 3.3.6. — Let RF be either £p or £^. For an object M
ofM<I>j^^, the Newton polygon Newton(/*M) of f^M is [E : F] times
Newton(M). In other words, the rank of the slope 7-part of f^M is [E : F]
times the rank of the slope ^y-part of M.

Proof. — One may assume that the extension E over F is Galois by
(3.3.5). If we denote by Mr a scalar extension of M by an T^-embedding
T : RE —> <?, then we have

£(^)f.M^ (]) Mr
RF reHom7Zi7.(7Z£;,?)

as ^-modules over £. Since the action of Galois commutes with Frobenius,
we obtain the assertion. D

3.4. Let R be either 8^ 8^ or S K ' Let M be an object of M^ and
{^i , 62, • • • , fir} a basis of M. For an element m = d\e\ 4- • • • + dr^ri define

IM|M,e =max|a^G.

Then || ||M,e is a norm on M which is compatible with the norm | \c of R.
The topology which is determined by the norm || ||M,e is independent of
the choice of the basis of M.

Define a K -linear map V^ : M —> M by

V^ = idM and V^l = (v^^-) - n)v^.

for any non-negative integer n. Here the map V(a:—) is defined by\ dx/
V(m) = — 0 V(.r— ) (m) for m € M. By Leibniz's rules we have

x \ dx)

LEMMA 3.4.1. — VM(am) = ^ ^-^ (a)V^ (m) for a € R,
i-\-j=n ̂ 'J'

m € M.
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Let M be an object ofM^. Consider the conditions (C) and (OC) as
follows:

1
~n\ ' ^llM.e'(C) -^(^ rfn-^o (n-^oo)

for any m € M and any number 0 < rj < 1;

00 n

(OC) ^ w- V^ (m) converges in M
n=o n'

for any m 6 M and for any w G R with |w|G' < 1. If R = £ and S K - )
the condition (C) implies (OC) since R is complete in the p-adic topology.
In the case of £^ however, the condition (OC) is delicate since S^ is not
complete.

PROPOSITION 3.4.2. — Any object M ofM<I>^ y. satisfies the condition
(C).

Proof. — Fix a positive integer k with T] < p"1/^ (P-1)). By
(3.4.1) we have only to prove the condition (C) for one basis of M.
Choose a basis {61,62, • • • ,e^} of M such that \C\G ^ p-{pk-^/{p-^ ^
where we denote C = CM,C' We can choose such a basis after chang-
ing a basis by (ei,e2, • • • ,Cr) ^ (^1,625 • • • ,ey)Aa(A) • • '^(A) for a
sufficiently large n, where A = AM,C- Define matrixes (7^ G Mr(R)
by VM(ei, 62, • • • , e , ) = (ei,e2,-- ,e,)C7M. Since |C^+1] - (^(G^) -
nC^)|G ^ IC^lGp"^"^7^"^, one can easily check that \C^\G ^
^_(,+i)(pfc_i)/(p-i) ^ ^ = ^ ^ ^ ^ ^ o,0 < j ^ p^). Note that
Vp(n\) < r i / { p — 1) for any positive integer n. Since

(i + 1)̂  - l)/(p - 1) + n/^^p - 1)) - ̂ (n!)
= ((^ - l)/(p - 1) - ̂ 0-!)) + (V(p - 1) - ̂ !)) + j7(^(p - 1)) > 0,

we have IC'^+^/nilo??" -> 0 if n -> oo. D
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COROLLARY 3.4.3. — The connection of objects in Mg>^ ^ is topolog-
ically nilpotent.

Define a map ON '" £ —^ R by

^NC^cinX71) == sup |an|
n^N

for any integer N. Note that (i) a € £^ if and only if ajv(a) ^ (^-N for
any integer N for some c > 0 and 0 < $ < 1 and (ii) if ON (a) ^ Ca^~N and
o^NW ^ c^-^, then o^(a6) ^ c^-^

PROPOSITION 3.4.4. — Any object M ofM^J, ^ satisfies the condition
(OC).

Proof. — Keep the notation as in the proof of (3.4.2). By (3.4.1)
we have only to prove the condition (OC) for one basis of M. Choose
a positive integer k, a basis { e ^ e ^ ' " , e r } of M and a real number
0 <^ < 1 such that ajv(w) < p-1/^^-1)) min^-^, 1} and 0^(07) ^
P~(pk~l)/(p~l)mm{^~N,l} for any integer N. Then one can easily check
that c^v(C^) ^ p-^+i)^-!)/^-!) min{r^ 1} for n = ̂  +j (z ^ 0,0 <
j ^ p^). By the calculation of valuations as in the proof of (3.4.2) we
have (^(CHw^/n!) ^ min^-^l}. Since ^ C^w71/^ is convergent in

n=0

Mr(£) by (3.4.2), ^ GMw71/^! is convergent in M^(ft). D
n=0

Let ai and ^2 be Frobenius on R. For an object M ofM^ ^ , define
an J?-linear homomorphism

€ai,a2 : 0'^M —> CT^M

by
00 i / / \ \ n

e^{a^m)=a^-(a^w-l) 0V^(m).2^^ \^(a;) ^ /
71=0

Since one knows the identity
00 1 / / \ \ n

-«)=E^(^-O^M(«))
for any a e f, the map e^,^ is well-defined and continuous by (3.4.2) and
(resp. (3.4.3)). By easy calculations we have
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LEMMA 3.4.5. — Let o-i, 0-2 and 0-3 be Frobenius on R. Then

(i) ^i,^ =id;

V11 / "O'l,^ — ^<TI ,<72^<72i<73 •

Define a functor

^:M^-^M^

by
(M, y?, V) ̂  (M, (̂  o e^ ̂  11^, V).

LEMMA 3.4.6. — Under the notation as above, the triple (M, (p^ o
€<7i,o-2li0M,V) is an object ofM<^^.

Proof. — Put y?i = (^ o e^^Ji<g)M. By (3.4.5) e^^ is isomorphic,
hence (^i)cri is isomorphic. An easy calculation implies the commutative
of y?i and V. Q

LEMMA 3.4.7. — Let o-i, 0-2 and 0-3 be Frobenius on R. Then

(i) ^,^ =id;

\11) ^0-1,0-3 == ^a-1,0-2 ^(72 ,0-3 •

LEMMA 3.4.8. — (1) The functor e^^ commutes with tensor prod-
ucts and duals.

(2) For a finite separable extension f : F —^ E in F^P, the functor
^i,^ commutes with /* and f^.

PROPOSITION 3.4.9. — Let o-i and 0-2 be Frobenius on R and let M
be an object of M<I>]^. Then the slopes of M for Frobenius structures
coincide with those of6^^(M). In other words,

Newton(e^^ (M)) = Newton(M)
(resp. Newton^e^o-^^) = Newton^(M)

Newton,, (e^^ (M)) = Newton,, (M))

ifR=£ or ft fresp. ifR = S K ) .

Proof. — We have only to prove the assertion in the case where R = £
and M is pure of slopes 0 by (3.1.6). We can choose a suitable basis of M
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with AM,C € GLr{Oe) and e^^^) ^ e, (mod 77^). Therefore, we have
the assertion. Q

Now we have obtained

THEOREM 3.4.10. — The category M<^^. is independent of the choice
of Frobenius up to canonical equivalence.

4. Quasi-unipotent (^V-modules.

4.1. Fix a Frobenius (p on U. We define quasi-unipotent (^-V-modules.

DEFINITION 4.1.1. — (1) A V-module M (resp. a (^-V-module M)
over % is unipotent if and only if M is a successive extension of the unit
object (7^,d) (resp. (M,V) is a unipotent V-module).

(2) A V-module M (resp. a ̂ -V-module M) over U is quasi-unipotent
if and only if there exists a finite separable extension / : F —> E such that
the inverse image /*M is unipotent.

(3) We denote by M^ (resp. M^;^) the full subcategory ofM^
(resp. M<1>^) whose objects consist of quasi-unipotent V-modules (resp.
y?-V-modules).

By the standard arguments we have

PROPOSITION 4.1.2. — (1) Let

0 -^ Mi -^ M2 -^ Ms -> 0

be an exact sequence in M^ (resp. M^^). M-^ is quasi-unipotent if and
only if both Mi and M^ are quasi-unipotent.

(2) The category M^'^ (resp. M^^) is an abelian subcategory of
M^ fresp. M<I>^) with tensor products and duals.

PROPOSITION 4.1.3. — Let / : F —^ E be a finite separable extension
in F^P.

(1) Let M be an object ofM^ (resp. M<I>^ ^). M is quasi-unipotent
if and only if f*M is quasi-unipotent.

(2) Let M be an object of M^ (resp. M|>^J. M is quasi-
unipotent if and only if f^M is quasi-unipotent.
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Proof. — The assertion on inverse images is easy. In the case of direct
images we may assume that the extension E is Galois over -F by (1) and
(4.1.2). For r C Gal(E/F), denote by Mr the V-module (resp. y?-V-module)
whose 7^-action is defined by (a,m) i—> r(a)m for a € 7^ and m € M.
Then f*f^M ^ © Mr. The assertion (2) easily follows from the

r€Gal(E/F)
isomorphism. D

Example 4.1.4. — (1) Any y?-V-module M over 7^ of rank one is
quasi-unipotent. Indeed, if we fix a base e of M, then A^g ^ ̂ x = (^^^ •
By the relation (3.2.2) we have GM,C ^ ^+- Hence, M has an f^-lattice and
it is quasi-unipotent by [Cri, 4.11] (or (2) below).

(2) Any (^-V-module over % which has an etale ^-lattice is quasi-
unipotent [TN1, 4.2.6]. ("Etale" means that all slopes of Frobenius are 0.)

4.2. We show some properties of unipotent y?-V-modules.

PROPOSITION 4.2.1. — (1) An object in M^^ has an £ ̂ -lattice.

(2) Assume that a is Frobenius on S K ' An object of M<I>^ ^ is
unipotent if and only if it has an SK-lattice.

Remark 4.2.2. — The ^-lattice (resp. the 5^-lattice) is not unique
in Proposition (4.2.1).

Proposition (4.2.1)(1) (resp. (2)) follows from Lemma (4.2.5) (resp.
Lemmas (4.2.6) and (4.2.7)) below.

Put u 6 (f^ to be a(x) = xqu for the Frobenius a. Then JU—I |G < 1
and one can define log(n) in £^. If a is a Frobenius on S K , then log(^)

belongs to S K ' Note that ^ = ^{x,a) = ^ V V Z / J = q 4- ^ v / and
(T(X) U

K n ( \\ ^(<u)^(log(u)) = ——.

/O 1 \ /O 1 \
0 . . 0

LEMMA 4.2.3.—Letd = (resp.C'2= ' ' )
i ' * . i

\0 o/ \0 o/
be a matrix of degree r\ (resp. r^). A matrix Q C M^^^) (resp.
Q G My.^y.2(-ft"[[a;]])^ satisfies the relation

W)+CiO=^QC2
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if and only if
ai <^2 â i

Q=
\0
/ai

0

<?rl-2a2
^'i-1^

^n ^ y-2

^2 a^

^c^
g^ai

J^i ^ r-2

\ 0

/^Q'2 /?i== Alog(^) + ( 3 2 , ' " , O rwith ai

^2
(r-1)! log'-1^) +

-^ log7'-2^) + • . • + /3r for some (3, € K./ _ o\( ^6 Y"'^ ^ ' • ' -T f^r ^i »U11W pi t= J\ .

Proof. — We use Lemma (2.3.1) to show the assertion. Assume that
Q = te,j) is a solution of the differential equation above.

First we prove that q^ = 0 (1 ^ j < r^) and q^^ is contained
in K. Since ^(^1,1) == 0, ^,,1 is contained in K. Then the identity
<U9n,2) = Wri,i implies that q^^ = 0 and ^2 is contained in J^.
Repeating these, we proved the assertion.

Secondly we prove that g,,i == 0 (2 ^ i) and gi,i is contained in K.
Assume that ^+1,1 = ... = g^ = o. Since <^fe,i)'+9z+i,i = 0, ^,i is
contained in K. So the assertion follows from ^(^-1,1) + q, i = 0.

Thirdly we prove that, if g^+, is a linear combination of l,log(^),
log (u),-" over K and if q-^q,^, does not depend on i when n is
fixed, then ^,n+i+, is a linear combination of ^^(^.log2^), • • • over K
and ^"^^n+i+z is independent on %. The former assertion holds by the

equation <^(^) + q^j = Wi^-\ (i < r^j > 1) and fi = q + ̂ ^ and
by two assertions above. Moreover ^-^+l^,n+l+, does not depend^on % up
to^constant terms. (When q^ (resp. q,^) appears, g-^+lg,^+l+, = 0 and
^ ^^n+i+z does not depend on i up to constant terms.) Since

^fe,n+l+(z+l)) = Mz,n+l+z - gz+l,n+i+(,+i)

= constant term + g^-n-^,

the constant term must vanish. Hence, the later assertion also holds.
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Finally we have got the relation ^(^,7-2) = Mi^-i ~ ^+i,r2 =
W

qi^-i' Therefore, Q has a form as in the assertion. The converse
can be easily checked. D

Let / : F —>• E be a finite separable extension in F^. Denote by x
(resp. y) a lift of uniformizer of F (resp. E) in £^ = E^p (resp. £^)). Using
similar arguments as in Lemma (4.2.3) and by Lemma (2.3.1) we obtain

/o i

LEMMA 4.2.4. — Under the notation as above, let C\ =

• \ }
/o i

(resp. 62 = ) be a matrix of degree r\ (resp. r^). A ma-

\0 o/
trix Q € Mr^^^E") satisfies the differential equation

W)-^C^Q=QC2

for the derivation 6x = x— if and only ifdx

( /O • • • 0 Oi 02 • • •

ifri ^ r2
0-2

ai /
Q={ /a! ^ • • • Q /r2\

0 ' • • ' • . :

' • • ' • • 02 if r-i ^ r2

^ \ 0

for some Oi € -?C£?.

'. ai
0 /

COROLLARY 4.2.5. — (1) Under the notation as above, assume fur-
thermore that M is a unipotent V-module over Tia- Then there is a basis
{ei, 62, • • • , Cy.} ofM such that, if we define a matrix CM,C,X ^ ^r(^£?) by
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dx
V(ei ,e2,-- ,e^) = — 0 (ei,e2, • • • ,e^)CM,e,;x

/O 1

C2
C with d =M.e.x =

C.
i
o/

Moreover, if M has a a-linear homomorphism (p : M —^ M which is
compatible with the connection and if LE is an E^-subspace which is
generated by {ei, 625 • ' • ? ̂ r}, then LE is stable under (p.

(2) Let M be an object of M^ and let f : F -^ E be a finite
separable extension in F8^ such that f*M is unipotent. If {ei, 62, • • • , Cr}
is a basis of /*M as in (1) and if we denote by LE the 8^-subspace
which is generated by { e i , 6 2 ? • • • ? ^r}? then LE is stable under the action
ofG^E/F).

Proof. — (1) We use induction on r. Let {61,625 • • • 5^-1, e'} be a
/ r 1 c1 \

basis of M such that CM^',x = ( n 12 ) with Cn as in the assertion

and some (7i2 G W~1. Using (2.3.1), one can get a matrix of type

Q = [ 1 12 ) with Qi2 € U7'-1 such that (ei, 62, • • • , 6r-i, e')^ is the

desired basis. Let {ei, 62, • • * , fir} be a basis as in the former assertion. Then
we have ^(AM,e)+C'M,e,a;AM,e = P'(x, cr)AM,eCM,e,x by the commutativity
of Frobenius and connection. By (4.2.3) there is a matrix Ay, € GLr(£^)
which satisfies the relation 6^{Ax) 4- CM,e,x^x = P'{x,a)AxCM,e,x' Hence
we have

6x(AM,eAx~ ) + CM,e,xAM,eAx~ == AM^X~ CM,€,X

and AM e^x~1 ^ GLr(KE) by (4.2.4). The assertion (2) easily follows from
the commutativity of the Galois action and the connection and by (4.2.4).

D

Let M be an object in M^. Put M = M/xM (resp. NM = V (x—)
to be the induced ^-linear map). By the relation (3.2.2) we have

LEMMA 4.2.6. — For any object M o/M^j^^, the K-linear map NM
is nilpotent.
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LEMMA 4.2.7. — Let M be an object ofM<l>^^ and let {ei, 62, • • • , er}
be a basis of M. Put Co to be the representation matrix of the K-
linear map NM for the basis {e i ,e2," ' ,er}- Then there exists a solution
Q € lr + a;My.(J^[[a;]]) of the system of linear differential equations

W)+CM,eQ=QCo

such that Q belongs to GLr(1V).

Proof. — Since all proper values of Co are 0 (4.2.6), one can
uniquely solve the system of differential equation above in My.(Jf[[a;]]) with
Q (mod ^[[.r]]) = 1^. Put Ao = Q^Acr^Q). Then the pair (Ao.Co) sat-
isfies the relation (3.2.2.). Hence, Ao is contained in GZ/r(<S^) by (4.2.3).
If we denote by 7 the radius of convergence of Q? tnen 0 < 7 ^ 1 and the
radius of convergence of o-(Q) is 79. By the relation QAo = Acr(Q) we have

min{7,1} = min{79,1}.

Hence, 7 = 1 and Q is contained in Mr (7^). Consider the dual object
M^ of M and the dual basis {^i, e^, • • • , e^r}- Then there is a matrix
Q^ e Mr(K[[x\\)^[Mr(n) with Q^ (mod xK[[x}]) = lr and 6^) -
'CM,^ = -Q^'Co. So we have

WQ) + CoQ^Q = Q^QCo.

Therefore Q is invertible by (4.2.4). D

4.3. Let K ' be an extension of K which is complete under the extension of
the valuation of K and put 'R,K' = ̂ K',x to be an extension of 7^. Denote
by Q K ' I K : ̂ S^ —^ M^ , the natural functor which is defined by the scalar
extension. If the Frobenius o on K extends on K1\ then the Frobenius a
on 7^ extends on ^R.K' ' (The extension of the Frobenius on T^K' is uniquely
determined by the extension of the Frobenius on Kf.) In this case there is
a natural functor <^//^ : M<1>^ —> M^^ ,.

PROPOSITION 4.3.1. — Under the notation as above, let a be a
Frobenius on 7^ and let M be an object ofM^'^. Then there exists a finite
extension K ' over K and a positive integer d such that the Frobenius a on
K extends on K ' and that g^u^^ nas a Frobenius structure with respect
to o'd. In other words, there exists a o'd-linear homomorphism (pd : M —>• M
such that the triple (KK' (5?) M, y?d, V) is an object ofM4>^[ , ̂ d -
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Proof. — Let / : F —> E be a finite Galois extension in ^sep

such that /*M is unipotent. Let {p\} be the finite set of all irreducible
representations of Gal(J^/F) in Qp3'16. Choose a finite extension K ' over K
and a positive integer d such that (1) K ' contains all eigenvalues of p\^ (2)
a extends on K ' and (3) a ' 6 ' o p\ == p\. We can choose such K ' and d by
(2.4.1). Replacing K^ q and (T into K ' , qd and cr^, we may assume that all
eigenvalues of p\ are contained in K and a o p\ = p\.

Let {ei, 63 ? • • • i ̂ r} be a basis of T^E (^) M such that CM,€ ^ Mr(K)
n

(4.2.5) and denote by LE (resp. TE} the f^-subspace (resp. the K-
subspace) of 7^ 00^ which is generated by {ei, 62, • • • , e^}. We prove

n
that there exists a Frobenius structure (p on /*M which commutes with
the action of Gal(J^/JF). By (4.2.4) F£; is stable under the action of
Gal(£7F). By the assumption and Schur's Lemma FE is a direct sum
of TE,X such that the Galois group Gal(£'/F) acts on FE,\ via p\ and that

V (x— ] (YE x) C FE \- So it is enough to prove the existence of Frobenius\ dx/
structure on T^E (^0 ̂ E,\ which commutes with the Galois action. Since

K
Cf^M,e is nilpotent and the Galois action commutes with the nilpotent
endomorphism Vir^ ^ one can choose a basis {e^i, • • • , e^, • • • , e^.^ } of
TE,\ such that {e^}i^j^r^ is a basis of the irreducible component on which
Gal(£'/F) acts via p\ and that the differential structure is given by a direct

( o r x lr> . °\
sum of the type C^ ^ = ' ' by Schur's Lemma. Here

o^ i.,
\ 0 o^ /

r\ is the degree of p\. Hence, there exists a Frobenius structure (p which
commutes with the Galois action by (4.2.3) and the condition (3) above in
this proof. Of course, LE is stable under (p. Put L = L^ ' ) to be the
Galois invariant part. Then (L, Vl^) is an £ ̂ -lattice of M and L is stable
under y?. D

From this proposition we know that, if one want to study some
properties of quasi-unipotent V-modules, then it is enough to work on
y?-V-modules.

4.4. Let a\ and a^ be Frobenius on %. Define a functor

e^ • M^'9" —^ M^'9"t<Ti,o-2 • •'—'•"-TZ,^ "'"—•T^q-i
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as follows. For an object M of M^'^ and for an ^-lattice L of M (4.2.1),
put

6^(M)=7Z(g)6^,^(L).
f+

(See the definition of Co-^o-^ in (3.4).)

LEMMA 4.4.1. — The construction of the functor e^^(M) is inde-
pendent of the choice of £^-lattices.

Proof. — Let Lx (resp. {6^1,6^2, • • • ,e\}) be an £ ̂ -lattice of an
object M ofMi>^ (resp. a basis of I/) (A = a,/3). Denote by e^9^ the
map which is defined using Lx (A = a,/?). Define a matrix Q € GLr('R)
by (e°'i, 6% • • • , e % ) = (e^i.e^'-^e^O and put a matrix ^A to be
^i9^ ̂  (e\A ' • • ,e\)) ==(10 (e^e^, • • • ,e\))^A. It is enough to
prove that the diagram

^M e^2 cr^M

a\M -^ a?M
1 ^,qu z

eCTl,^2

is commutative. In other words, we have only to prove cr^Q)^ = ^^o-i (Q).
Assume that A^^X^^CM^ (A == o;,^ and z == 1,2) and Q are

convergent and o-i (resp. a^) is defined on the annulus 7 ^ |a;| < 1 for
some 7 < 1. Define a K- algebra

c/ ^ J \^ n \ Q T I ^ K , K^ is bounded, 1
^^[S^ W-O(n--oo) J -

Then £(7) is complete under the norm l^an^^ = ^Pri^n^ 8Ln(^
di (i == 1,2) induces a map on £(7). The pair (A^gA^^G^gA) (A =
a,/? and z = 1,2) define an £(7) module 2^(7) with a connection and
a Probenius structure with respect to o-i (i = 1,2). Since Q is contained
in G?Ln(f(7)), ^(7) is isomorphic to I/f(7) (i = 1,2). By the similar
arguments as in (3.4) we can define a similar map of e^i,^ ^o]r ^(7)
and the matrix fl,\ is the representative matrix of this map for the basis
{^1,6^2, • • • ,e\}. Therefore, we have (72(Q)^a = ̂ /3^i(Q)' a

LEMMA 4.4.2. — Let (TI, 02 and 0-3 be Frobenius on K. Then we have

0) ^i^i =id;
^11^ ^01,0-3 = ̂ 0'l,a'2^Cr-2,(T3 •
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THEOREM 4.4.3. — The category M^^ is independent of the choice
ofFrobenius on K via. the functor e^ ^ .

Remark 4.4.4. — The author does not know whether the category
M^7Z,<r is independent of the choice of Frobenius on K or not. But it is
expected that the natural functor M^^ -> M^g^ is an equivalence.

5. Slope filtration for Frobenius structures.

In this section we define a slope filtration for Frobenius structures
and prove that a ^-V-module over U is quasi-unipotent if and only if it
has a slope filtration.

5.1. Fix a Frobenius a on 7 .̂

DEFINITION 5.1.1. — Let M be an object ofM^^^. An increasing
filtration {S^M}^Q ofM is a slope filtration for Frobenius structures if
and only if it satisfies the condition as follows:

(i) S^M is a sub y?-V-moduIe ofM over 7^;

(ii) S^M = 0 (7 « 0) and S^M = M (7 » 0);

(iii) for a sufficiently small positive rational number e, there exists
an ^-lattice L^ ofS^M/S^-eM which is pure of slope 7.

PROPOSITION 5.1.2. — If L is an object of M^ ^ pure of slope
7, then there are a finite separable extension f : F —> E and a basis
{ e i , e 2 , - - ' , e y } of f*M such that Cf-M,e = 0.

Proof. — Replacing (M, <^, V) into (M, ay?^ V) for a suitable positive
integer d and a e K, we may assume 7 = 0 . The assertion follows [TN2
4.2.6]. Q

PROPOSITION 5.1.3. — Let rf : Mi —> MQ. be a morphism ofM^ ^.
Assume that both Mi and M^ have a slope filtration S^Mi (i = 1,2) for
Frobenius structures. Then rj is strict for filiations, that is, rj(S^M^) =
7y(Mi) H S^M^ for any 7 e Q.

Proposition (5.1.3) follows from Lemma (5.1.4) below.
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LEMMA 5.1.4. — Let Mi (resp. M^) be an object of M^>^ ^ with an E^-
lattice L\ (resp. L^) pure of slope 71 (resp. 72,).

(1) Jf7i 7^ 72, then there is no nontrivial morphism from M\ to M^.

(2) If 71 = 72, then any morphism 771 : M\ —> M^ preserves the
^-lattice, that is, 77(1/1) = r]{M^)^}L^.

Proof. — (1) Since HomM^^Mi, M2) ^ HomM^,^, M^A^),
we have only to prove the assertion in the case where M\ = 7^ and M-z is
an arbitrary M with ^-lattice L pure of slopes 7. There exist a finite
separable extension / : F •—»• E in F8^ and an element A 6 GLr(K) such
that M is isomorphic to ((T^j^^A^d) by (5.1.2). One can easily see that
there is no morphism from the unit object to f*M if 7 7^ O.

The assertion (2) follows (2.2.3) and (5.1.2). D

COROLLARY 5.1.5. — A slope filtration for Frobenius structures of an
object ofM^^ y is unique.

5.2. We state one of our main local theorems.

THEOREM 5.2.1. — Let M be an object of M^ ^. M is quasi-
unipotent if and only ifM has a slope nitration {5^M}^Q for Frobenius
structures.

Proof. — It is enough to prove the assertion in the case where
a(x) = a;9 by (3.4.9), (3.4.10) and (4.4.3). Let / : F -^ E be a finite
separable extension in F8^ such that f*M is unipotent. Then there
exists a Gal(^/-F)-stable J^-lattice YE of f*M. In fact, choose a basis
{ei ,e2, • • • ,Cr} of f*M as in (4.2.5) and put YE to be a JC^-subspace of
f*M which is generated by {ei, 625 • • • ? ^r}- Here KE is the finite unramified
extension with residue class field kE- Then YE is stable under the Frobenius
structure (p and the action Gal(£'/jF') by (4.2.4) and (4.2.5), that is,
V|r£ ° ̂ Ir^ == O^FE ° ̂ \TE' ^y tne theory of (^-spaces with a nilpotent
structure over a complete discrete valuation field we have a slope filtration
{S^YE} for the Frobenius structure ^|r^ of YE which is compatible with
the nilpotent operator VIr^. Moreover the theory of slopes implies that
the filtration {S^YE} is compatible with the action of Gal(-E/jF1) since
^P\VE commutes with the action of Gol{E/F). Define a filtration {S^M} of
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Mby

S^M = 7Z(g) (4 0^^)^^).
^•+ ^

{5/yM} is a slope filtration for Frobenius structures of M by (2.2.4) and
(3.3.5). The converse follows from (5.1.2). D

Remark 5.2.2. — In Theorem (5.2.1) the slope filtration {S^M} ofM
is split as (^-modules (not as V-modules) over U if we choose a Frobenius
a(x) = xq, because the filtration {S^FE} of TE over KE is split as (p-
Gal(£'/^)-modules in the above proof. In general cases the slope filtration
is not always split as (^-modules.

6. Quasi-unipotent overconvergent -F-isocrystals on a curve.

In this section we give a definition of quasi-unipotent overconvergent
F-isocrystals on a curve and apply our local study to them. We use some
results on overconvergent F-isocrystals on curves from [Bel], [Be2], [Be3]
and [Cri].

6.1. Let k (resp. K) be a perfect field of positive characteristic p (resp. a
complete discrete valuation field with the residue class field k and with a
Frobenius cr). Let X be a smooth curve over Spec k which is geometrically
connected. For a closed point s G X, denote by k(s) (resp. K(s)) the residue
class field at s (resp. the finite unramified extension of K with the residue
class field k(s)).

Let U be a dense open subscheme of X and put Z = X — U. Fix
a closed point s € X and denote by X a formal scheme over Sp/ OK
which is a lifting of X/Spec k and formally smooth around x. Choose a
section x 6 F(O^) which is a lifting of a local parameter of Ox at s.
Since ^/Spf OK is formally smooth at s, the completion of Ox at s is
isomorphic to Oj<(s)[[^]]. Put Us (resp. £3, resp. ^J, resp. Sjc(s)) to be
^,K(5), (resp. ^,j<(s), resp. £\^{sY Tes^' ^(^^(^[N])- Therefore, we

OK
have an injective homomorphism

i s : r(0]£/[) -> Ss (x^ x)
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of J^-algebras. The map is is independent of the choice of the lifting of
parameter via the natural isomorphism £\ ̂ , . ̂  S^ ̂ ,. for any parameter
x ' . Especially, if s € U, then ^(F(O]^)) C S K { S ) ' By [Cri, 4.7.] we have

LEMMA 6.1.1. — Assume that X is affine and U = X - {s}. Under
the notation as above, we have

WO]x[))=Im(^)n^(.);^(ra+0]x[))=im(z,)n^,
where j :}U[^ ^an.

By the construction, is(x,-(u)\ = 6^(is(u)) for any section u €
F(0][/[). If a : 0^u[ —^ 0^u[ is a lifting of q-th power map on Ou (q = p0)
which is an extension of the Frobenius a on K, then a extends on 8s (resp.
SK{S) if 5 € ?7). We call the extension a a Frobenius on Oj^/r.

Denote by Iso^ (£/, X / K ) (resp. F^lsoc^U.X/K)) the abelian cat-
egory of overconvergent isocrystals on U / K around Z (resp. the category
of overconvergent F^isocrystals on U / K around Z) [Be3, (2.2.10)]. By the
natural extension i^ : F^O]^) —> Us of scalar there is a functor

^:Isoc+((7,X/^)^M^

which is factored via the natural functor %% : Isoc^t/, X/X) —> M^ (resp.
^^(,) ^ ]so^(U,X/K) -^ Mj^^ if 5 € £/)s. For any Frobenius a on 0]^,
we also have a natural functor

^ : Fa-Isoc+(^X/^) -. M^^

which is factored via the natural functor z% : F°'-]soc\U,X/K) —>
MiJ^, (resp. i^^ : Fa-Is^c+(^X/^) -M^^^^ if s e £/). One
can easily see that the functor i^ (resp. z^ ^) is independent of all choices
up to canonical transformations. One can also see that the functor i

/̂<-s ,<T

is independent of the choice of Frobenius a up to the functor 6^^ by the
definition of F-isocrystals, Proposition (3.4.10) and Lemma (4.3.1).

Now we define a quasi-unipotent overconvergent isocrystal. Our defi-
nition differs from that in [Cr2, 10. II], but we will prove that our definition
is equivalent to Crew's one in Theorem (6.1.6).

DEFINITION 6.1.2. — (1) An object M of ]soc\U,X/K) (resp.
F^JW
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(77, X / K ) is unipotent at a closed point s € X if and only ifi^ M. is unipo-
tent. An object M of]soc^(U,X/K) (resp. Fa-]so^{U,X/K)j is unipotent
if and only ifA4 is unipotent at any closed point on X.

(2) An object M oflsoc1'^ X / K ) (resp. Fa-]so^(U, X / K ) ) is quasi-
unipotent at a closed point s € X if and only if i^ M. is quasi-unipotent.
An object M oflsoc1'^ X / K ) (resp. J^-Isoc1'̂ , Xs/K)) is quasi-unipotent
if and only if M. is quasi-unipotent at any closed point on X. Denote
by Isoc^X/X)^ (resp. Fa-Isoc1'(U\ X / ' K ) ^ • ) the full subcategory of
Isoc'(U, X / K ) (resp. Fa-]so(^(U^X/K)) which consists of quasi-unipotent
objects.

PROPOSITION 6.1.3. — The category Isoc^^X/JQ^ (resp.
Fa-]soc\U,X/K)qu) is an abelian subcategory of ]soc\U,X/K) (resp.
J^-Isoc^ (U, X / K ) ) which is closed under subquotients, tensor products
and duals.

Let i : Y C X (resp. V C U) be a non-empty open subscheme and
put ZY = Y - V. Denote by it : ]so^(U,X/K) -^ ]so^(Y,Y/K) (resp.
^ : Fa-]so^(U,X|K) -^ FMsoc^y/jr)) the natural inverse image
functor which is induced by i. By the definition we have

PROPOSITION 6.1.4. — Under the notation as above, let M. be an
object of]soc\U,X/K) (resp. F°-Isoc1'(U\ Xf'K)). IfM is unipotent (resp.
quasi-unipotent), then i^ M is so. Assume furthermore that Y = X, then
M. is unipotent (resp. quasi-unipotent) if and only ifi^M. is so.

Let / : Y —> X be a finite morphism of smooth curves over Spec k
and put UY = y Xx U and Zy == Y x^ Z. Assume that the restriction
fu '' UY —> U of / is finite and etale. Since one can choose a lifting y of
Y such that ]£/y [—»]£/[ is finite etale and J't0]y[ is finite of degree deg(/)
over j^0^x[ locally at 5, one can define the inverse image functor (resp. the
direct image functor)

/* : Isoc1' (U, X / K ) -^ Isoc^y, Y / K )
(resp. /* : Isoc^y, Y / K ) -^ Isoc^, X / K ) )

by f^M = J^O]Y[ 0 /~1M (resp. the restriction j^0^x[ -^ f^0]y[
f-^^o^

of scalar). One can also define the inverse image functor /* and the direct
image functor f^ for -F-isocrystals. Let t 6 Y be a closed point with
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f(t) = s. Choose a formally lifting y over Sp/ OK of V/Spec k which is
formally smooth around t, a lifting / : y —>• X over Sp/ OK of / : Y —^ X,
a section y e r(0y) which is a lifting of a local parameter at t. Such lifting
/ always exists locally on X and our arguments below work well on this
situation. Then / induces an injection / : %s —>• 7^ of Jf-algebras and we
have natural commutative diagrams

]soc\U,X/K) ^ ]SOC\UY,Y/K)
inj i ̂
M^ -^ MS
——K-s r* ——l<'t

and
]SOC^UY,Y/K) ^ Isoc^U.X/K}

^.l I ̂ n,
MS. - M^.j*

If a is a Frobenius on 0]c/[, then a extends uniquely on 0^uy[ since /c/
is etale. We also have commutative diagrams for F-isocrystals as in above
diagrams. By Proposition (4.1.3) and (6.1.3) we have

PROPOSITION 6.1.5. — Under the notation as above,

(1) an object M of]soc^(U,X/K) (resp. Fa-]so^(U,X/K)) is quasi-
unipotent if and only if f*M is quasi- unipotent;

(2) an object M of ]SO^{UY,Y/K) (resp. Fa-]so^{UY,Y/K)) is
quasi- unipotent if and only if f^M, is quasi-unipotent.

Now we compare Crew's definition to ours.

THEOREM 6.1.6. — Let M. be an object of lsoc^(U,X/K) (resp.
Fa-]soc^ ( U ^ X / K ) . M. is quasi-unipotent if and only if there is a finite
morphism f : Y —> X of smooth curves over Spec k and a nonempty open
subscheme L : V —> U such that fy : Vy —> V is etale and that f^^M is
unipotent.

Proof. — Assume that M. is quasi-unipotent. Denote by K{X) the
field of rational functions of X. Since Z is a finite set, there is a finite
separable extension L of K{X) such that, for any point s G Z and for
any place t of L above 5, f^s^u -^ ls unipotent over 7^(= %L()- Here
K(X)s (resp. Lf) is completion of K{X) (resp. L) at s (resp. t) and
ft^s : K(X)s — ^ L i i s o . structure map. Define a smooth curve Y over
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k by the normalization of X in L. Since L is separable over K{X)^ the
natural morphism / : Y —> X is generically etale. Therefore we obtain the
assertion by (4.1.3). The converse follows from (4.1.3). D

Remark 6.1.7. — Matsuda pointed out that, either if X is affine or if
the number of geometric points in X — U is greater than 1, then one can
choose a finite covering Y of X such that Uy is etale over U in Theorem
6.1.6 by [Ka2, 2.1.6].

6.2. We give some examples of quasi-unipotent overconvergent F-isocrystals.
By Proposition (4.2.1) we have

PROPOSITION 6.2.1. — A convergent F-isocrystal on X/K is quasi-
unipotent.

DEFINITION 6.2.2. — Let M be an object of Fa-]so^(U,X/K). An
increasing nitration {S^M.} ^Q of M is a slope nitration for Frobenius
structures if and only if it satisfies the conditions as follows:

(i) S^M is a subobject ofM in Fa-]so^(U,X/K);

(ii) S^M = 0 (7 « 0) and S^M = M (7 » 0);

(iii) for a Frobenius cr on j^O^uh {^n^^M.}^ is a slope nitration for
Frobenius structures ofi^ M. ofM^^ y. at any point s € X.

The condition (iii) above is independent of the choice of Frobenius by
Proposition (3.4.9). By Theorem (5.2.1) we have

PROPOSITION 6.2.3. — If an object M of Fa-lsQ^(U,X/K) has a
slope nitration for Frobenius structures, then M is quasi-unipotent.

COROLLARY 6.2.4 ([Cri, 4.12]). — An overconvergent Fa-isocrystal
on U / K around Z of rank one is quasi-unipotent.

COROLLARY 6.2.5. — A unit-root overconvergent Fa-isocrystal on
U / K around Z is quasi-unipotent.

Example 6.2.6. — Let p be an odd prime. Let k = Fp, K = Qp(7r)
with Tr^"1 = —p and cr be a continuous lifting ofp-th power map on K with
o-(Tr) = TT. Put X = P^ (resp. U = (Sm^, resp. Z = {0,oo}) and X == P1

over Sp/ OK with a coordinate x. In [Dw] B. Dwork constructed the Bessel
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overconvergent F-isocrystal M. on U / K around Z. M. is of rank 2 and is
defined by the following differential and Frobenius structures:

/ o -x~l\
V(ei,e2) = da: 0(61,62) ^ _ 2 g )

^^^^(e^^f'1 a2)
\ 03 04 /

on the strict neighbourhood |a;| ^ -7 for some 7 > 1 of \U[x with
/Oi(0) 02(0)^ (\ *\ /ai 02 \ /I 0\ , , . ,
(03(0) a4(0)J = (,0 J' (03 oj = (o Oj (mod 7r) and

detf01 ^\=p.
\ 03 04 /

CLAIM. — .M is quasi- unipotent.

By Proposition (4.2.1) .M is unipotent on any closed point s G
X — {00}. Now we discuss the quasi-unipotency of M. at oo following the
arguments of [Dw, Section 8]. We change the coordinate x into x~^ and
denote by F = k ((x)) the completion of the field of fractions of the local
ring Oxoo at the infinity. Define a tamely ramified extension E = k{{y))
over F with ^y2 = x and choose a lifting y of the parameter of KE with
4^2 = x. Then the differential structure of i^M over "RE is given by

, dy , . ( 0 2 \
V(6i,62)=^0(ei,e2)(^_^-2 o j -

If ( x ] is a solution of the differential equation^ ( x )+( ^_i 2 -2 n )

( 1 j = 0, then z\ satisfies the differential equation ^(^i) = Tr2^/"2^.
\^2/

Consider the formal solution z\ = y^u^(y) exp(=L7^/-l). Then n± = n±(^/)
satisfies the differential equation:

4^(^±) + 4(?/ q= 27r)^(^±) + ̂ ± = 0.

By easy calculations we have

^.w^,-,
71=1 v /

where (2n — l ) ! ! = l x 3 x - - ' x (2n — 1), and n± is convergent on the unit
disk \y\ < 1. Put a matrix

0 = ( u+ u- \
^ ^^(^)+(j-^-l)u+ ^(^_)+(i+^- l)^_;•
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Since 6y(detQ) = -detQ, we have detQ = 27ry~1 and Q e GI^TZ^).
Change the basis (ei,62) into (e+, e-) = (ei, C2)Q. By our construction we
have

V(e^e-)=^0(e^e-)G with G = f-^+7n/-l , ° \y \ o -^-^-iy
Put a matrix A = A^M^- Note that a(^) = 2P-1^, and the pair
(A,G) satisfies the relation Sy(A) + CA = pAo-(G). Since exp(27^/-l) is
not contained in 7^, we have

A = ^a+1/~£i"L ^P^'Q/"1 - ̂ (2/~1)) _ 0 \
V 0 a,y-^ exp(-7r(2/-1 - a(y-1))) )

for some a+^a- e J^ with a+a- = 21-Pp. Hence, M is quasi-unipotent
at oo by the example (4.1.4). Finally we determine slopes of M at oo.
Since r(y) = -y for the nontrivial element r in Gal(^/F), e+ + e- and
i/e+ - ye- is a basis of i^M over 7Z^. By the commutativity between the
Galois action and the Frobenius structure we have

<^(e+ + e_) = 61 (e+ + e-) + b^ye^. - ye-) with 61,62 € 7Z^.

On the other hand we have

y?(e+ + e_) = a+2/-^1 exp(7r(t/-1 - a(y~l)))e^

-^a-y-^ exp(-7r(2/-1 - a(2/- l)))e_.

Comparing both identities, we obtain Vp(a+) = Vp{a-) = - for a+a- =

21-pp. Therefore, all slopes o fA^a too are - by Proposition (3.3.5).z^
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