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COMPACT QUOTIENTS OF LARGE DOMAINS
IN COMPLEX PROJECTIVE SPACE

by Finnur LARUSSON

Introduction.

It has been known for a long time that if a bounded domain St. in C71

is a Galois covering space of a compact manifold M, then Q is a domain
of holomorphy and M is projective, meaning that M is isomorphic to a
subvariety of some complex projective space P^. In fact, the canonical
bundle of M is ample. Bounded domains in C71 can be viewed as domains
in P77' with a large complement: the complement is so large that it contains
a hyperplane in its interior. In this paper, we study the other end of the
spectrum, following suggestions of Nori [Nor] and Yau [Yau] that this might
lead to new and interesting compact complex manifolds, outside the well-
known and much-studied classes of manifolds that are algebraic or in some
sense close to being algebraic.

We will consider compact complex manifolds M covered by a domain
fl, in P71 whose complement E = P71 \ fl. is non-empty and small in the sense
that the (2n - 2)-dimensional HausdorfF measure A^n-2{E) vanishes. This
condition is just strong enough to exclude hypersurfaces in E. Little work
seems to have been done on this subject. Among the few relevant papers
in the literature are [Kati], [Kat2], [Kat3], [Kat4], [Nor], and [Yam].

This work was supported in part by the Natural Sciences and Engineering Research
Council of Canada, and by a VPRSC grant from the University of Western Ontario.
Key words: Complex projective space - Covering space - Generalized Kleinian group -
Schottky covering - Blanchard manifold.
Math. classification: 32J17 - 32J18 - 32M99.
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In Section 1, we establish basic properties of manifolds M of this kind.
These include:

(1) The Kodaira dimension of M is —oo.

(2) The covering group Aut^ ̂  is a subgroup of the automorphism
group of P71, so 7Ti(M) is in fact a generalized Kleinian group.

(3) There is a lower bound on the size of £', which implies that no
2-dimensional examples exist.

(4) M is rationally chain connected. The limit set E can be described
in terms of rational curves in M that respect the unique projective structure
on M.

(5) M is not of class C. In particular, M is neither Kahler nor
Moishezon.

In Sections 2 and 3, we study in some detail two classes of 3-
dimensional examples: the generalized Schottky coverings constructed by
Nori, and Blanchard manifolds, for which E is a line, which is the smallest
it can be. We determine their fields of meromorphic functions, and describe
the surfaces they contain. In Section 4, we make some final remarks on the
general 3-dimensional case.

Let us clarify a few terms. By a curve in a complex manifold, we
shall mean a (closed analytic) subvariety of pure dimension 1. A surface
is a subvariety of pure dimension 2, and a hypersurface is a subvariety of
pure codimension 1. When we speak of a manifold, we assume that it is
connected.

Acknowledgements. I would like to thank Donu Arapura and Frederic
Campana for helpful discussions, and Sergei Ivashkovich and Masahide
Kato for valuable comments on a draft of this paper.

1. Properties of the quotient manifolds.

Let M be an n-dimensional compact complex manifold, n > 2,
covered by a domain Q in complex projective space P71 such that the
(2n — 2)-dimensional Hausdorff measure A^n-2(E) of the complement
E = P71 \ fl, is zero. Then f2 is simply connected, so it is the universal
covering space of M. Let TT : f2 —> M be the covering map, and r ^ 71-1 (M)
be the covering group. We assume that fl, / P71, so F is infinite.
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Let us note that if U is a domain in P71, then U D n is connected. For
this, it actually suffices to have Aan-iC^) = 0. Hence, the compactification
P" of 0 is finer than the end compactification of ^. Indeed, the connected
components of E correspond bijectively to the ends of n, which in turn
correspond bijectively to the ends of T since M is compact. In particular,
E is connected if and only if F has only one end.

We will make much use of the following extension theorem, due to
Shiftman [Shil], [Shi2]. See also [HP].

1.1. THEOREM (Shiffman). — Let E be a closed subset of an n-
dimensional complex manifold X. If A^n-2(E) = 0, then holomorphic,
meromorphic, and plurisubharmonic functions extend from X\E to X. If
A^n-s^E) = 0, then the closure of a hypersurface in X\E is a hypersurface
inX.

The theorem implies that M inherits many properties from P71. We
see that Q has no non-constant holomorphic or plurisubharmonic functions,
and no non-zero holomorphic p-forms for p > 1, so

Hpft(M) =0, p > 1,
and M has a trivial Albanese. Also, no positive power of the canonical
bundle of M has any non-zero holomorphic sections, so M has Kodaira
dimension —oo.

1.2. PROPOSITION. — Let (p : fl, —> P71' be a holomorphic map.

(1) (p extends to a rational map P71 —> P71.

(2) If <p is an immersion, then (p extends to an automorphism of
P71. In particular, every automorphism offl. is the restriction of a unique
automorphism of?71, so

rcAutP^PGHn+l.C).

By Selberg's theorem [Sel], the proposition implies that F has a
normal torsion-free subgroup of finite index. It also implies that E C P71 is
a biholomorphic invariant of M, modulo automorphisms of P71.

Proof. — The meromorphic function {zi/zo) o (p on Q extends to a
meromorphic function ̂  on P71, and ^ = [1, ̂ i , . . . , ̂ n] is a rational map
pn _^ pn extending ^>.

Write ̂  == [go? • • - ? Qn]i where go? • . • 5 Qn are homogeneous polynomials
in ZQ, ... ,Zn of the same degree d, and let ^ = (qo,..., qn): C71"^1 —> C7^1.
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Let p : C"^1 \ {0} —> P"' be the canonical projection. Suppose y is an
immersion. Then ^Ip"1^) is an immersion. The zero set of the Jacobian
determinant J = det[9qi/9zj] of ^ is either empty or a hypersurface in
p"1^) U {0}. Since p~l(E) cannot contain a hypersurface, J is a non-zero
constant. Also, J is homogeneous of degree (d — I)71'1"1. Hence d = 1, so
<7(h • - • ? Qn are linear, and ^ is an automorphism of P71. D

Part 2 of the proposition can also be deduced from [Ival], Theorem 1.

We remark that Q, is maximal among domains in P71 on which F
acts with a Hausdorff quotient. Indeed, if ̂  is a domain containing f^ on
which r acts with a Hausdorff quotient M' = f^/F, then M C Mf is both
open and compact, and hence closed, so since M' is connected, M = M'.
Therefore, ^' C TO = ^, so 0' =^.

We now show that there is a lower bound on the size of E.

1.3. PROPOSITION. — Ifn is even, then An{E) > 0. If n is odd,
then An-i(E) > 0.

Proof. — Suppose K^n-2k{.E) = 0 for an integer k in [0,n]. Then
fl, contains a /^-dimensional complex linear subspace S. Find a sequence
7^ —> oo in r. Then 7z(*S') converge to a ^-dimensional linear subspace in
E, so A2k(E) > 0. Hence, 2fc < 2n - 2fc, so A; < n/2. This shows that if
k >_ n/2, then K'zn-2k{E) > 0, and the proposition follows. D

Since A^n-2(E) = 0, the proof shows that E contains a line.

1.4. COROLLARY. — If a domain fl, in P2 covers a compact complex
manifold, then 0 = P2 or A2(P2 \ ^) > 0.

The proposition is sharp in the sense that we may have An-^-e(E) = 0
when n is even and An-i+e(£') = 0 when n is odd for all e > 0. To see
this, let k be n/2 if n is even and (n — 1)/2 if n is odd, and consider the
automorphism (p given by the formula

ip[zo, . . . ,2^,2^+1, . . . ,Zn] = [2ZQ, . . . ,2^,^+1, . . . ,^].

The group r of iterates of ^ acts freely and properly on d = P71 \ £',
where £? is the union of the two linear subspaces {^o, . . . ,^ = 0} and
{ ^ f e + i , . . . , Zn ==0}, and the quotient manifold M = 0/T is compact.

Next we show that M contains many rational curves.
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1.5. PROPOSITION. — IfL is a line in Q, then 7r(L) is a rational
curve in M. Hence, M is rationally chain connected.

For a very general point p € M and every v in a dense set of tangent
vectors at p, there is a smooth rational curve through p which is tangent
to v.

For very general points pi,p2 m M, there is a connected curve
containing pi and p^ which is the union of two smooth rational curves.

Recall that a general point is a point outside a finite union of proper
subvarieties, and a very general point is a point outside a countable union
of proper subvarieties.

For the proof, we need the following lemma.

1.6. LEMMA. — For an automorphism y? oiP71, n > 3, the following
are equivalent:

(1) L H (p(L) -^ 0 for all lines L in P71.

(2) (p has a hyperplane of fixed points.

Proof. — (2) =^ (1) is clear. For the converse, represent (p by a matrix
A in GL(n + 1,C). First let n = 3. In suitable coordinates ^0,^1,^2,^3 in
C4, A has the Jordan form

ao 0 0 0 "
ei oi 0 0

A
0 C2 02 0 '
0 0 €3 03.

where ei, €2, €3 € {0,1}. Suppose Sr\AS ^ 0 for all 2-dimensional subspaces
S in C4. We need to show that A has a 3-dimensional eigenspace.

Suppose first that A is diagonal. Let S = {z^ = Zi- = ^3}
with io^i^2^3 mutually distinct. Since S H AS -^ 0, we get a^ == o^ or
a^ = 0^3. This means that three of the diagonal entries must be the same,
so A has a 3-dimensional eigenspace.

Now suppose A is not diagonal; say €3 = 1, so 02 = 03. Let
S == {zo = Z3, ̂ i == 0}. Since S H AS' ̂  0, there are x, y e C, not both zero,
such that

A

aox
e^x
0'2V

_y+a^x_

€5,



228 FINNUR LARUSSON

so e-tX = 0 and aox = y + 033;. This implies that ei = 0. Taking
5' = {zo = Z2,^3 = 0}, we get €2 == 0. Taking S = {zo = z^z^ = 0},
we get ao = ai. Finally, taking S = {zo = z^, 2:1 = 2:3}, we get OQ = 02, so
A has only one eigenvalue and a 3-dimensional eigenspace corresponding
to it.

To disprove (1) in general, it suffices to find a 4-dimensional A-
invariant subspace in C^1 which does not contain a 3-dimensional
eigenspace. By examining Jordan forms, it is easy to see that such a sub-
space exists precisely when A does not have an n-dimensional eigenspace,
i.e., when (2) fails. D

Proof of Proposition 1.5. — Let L be a line in ^. Then 7r(L) is an
irreducible curve in M. Now y e L is in a fibre of TT\L with more than one
element if and only if y e L H ̂ L for some 7 € F, 7 7^ id. Since F acts
properly on f^, there are at most finitely many 7 G F with L D 7^ ^ 0.
Also, if 7L = L, then 7 has a fixed point in L, so 7 = id. Hence, 7r|L is
injective outside a finite set, so 7r(L) is rational.

For 7 G r, let Y(^) be the set of y e P71 such that L ^ ^ L ^ 0
for all lines L through ^/. Then V(7) is a subvariety of P71. We have
/3Y^) = Y((3-y/3-1) for /3 e F. Also, for a compact subset K of ^, we
have Y^) H K ^ 0 for only finitely many 7 G F since F acts properly
on ^. This implies that ^(7) = 7r(y(7) D f^) is a subvariety of M. Now
n > 3 by Corollary 1.4, so if 7 ̂  id, then ^(7) 7^ M by Lemma 1.6. Let
x = u ^(7).

79'id

Let p € M\X (so p is a very general point) and q € Tr"1^). For 7 € F,
7 7^ id, let C^ be the set of lines L in ^ through ^ such that L H 7^ = 0.
Then C^ is open and dense in the (n — l)-dimensional projective space
of lines through q in P^ By the Baire category theorem, the intersection
n/^y is dense. If L is in the intersection, then TT\L is injective, so 7r(L) is a
smooth rational curve through p.

Now let pi,p2 C M \ X and g^ e Tr"1^), A; = 1.2. For 7 € F,
7 7^ id, and k = 1,2, let 5(7, k) be the union of lines L in ^ through ^
such that L n 7L = 0. Then S(^,k) is open and dense in ^ \ {^}, so
the intersection Q ^(7, A;) is dense in Cl. Hence there are intersecting lines

7,fe

Li, Z/2 in 0 through 01,92 respectively, such that TT is injective on both Li
and Z/2. Then 7r(Li) U 7r(L2) is a connected union of two smooth rational
curves in M containing both pi and p2- D
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The proposition implies that if n = 3 and the algebraic dimension
a of M is 0 or 1 (examples of which will be given in sections 2 and 3),
then there is no holomorphic surjection / from M onto a 2-dimensional
complex manifold. Namely, if a = 0, then there are only finitely many
surfaces in M. If a = 1, then there is a complex manifold X, a compact
Riemann surface Y (the algebraic reduction of M), a proper modification
g \ X —> M, and a holomorphic surjection h : X —>• V, such that with
only finitely many exceptions, an irreducible surface in M is an irreducible
component of g{h~l{y)) for some y € Y, See [FF]. In either case, by the
proposition, there is a smooth rational curve C in M which is not contained
in any surface in M. But C is contained in the surface f~l(f(C))^ which
is absurd.

Let us recall that an atlas of holomorphic charts on M is called
protective if the charts map to open sets of P71 and the coordinate changes
are restrictions of automorphisms of P71. A projective atlas on M defines
an element of Jf^M, PGL(n 4-1, C)), called a protective structure on M.
Equivalently, a projective structure on M is given by a conjugacy class
of group homomorphisms 71-1 (M) —> PGL(n + 1,C). Clearly, M has a
projective structure. For more information and references, see [Sim]. A
projective structure on M yields a developing map, which is a holomorphic
immersion from the universal covering space Q of M to P^. By Proposition
1.2, any such map is an automorphism of P71, so the projective structure
on M is unique.

The projective structure on M defines a germ Fp of a holomorphic
foliation at each point p in M, obtained by pulling back a pencil of lines by
a projective chart. I f p e M and q € 7^~l(p)^ then the leaf space Dp of Fp
is naturally identified with the space P71-1 of lines through g, so we have a
linear projection of P71 \ {q} onto Dp. Since E is F-invariant, its image in
Dp is well defined, regardless of the choice of q.

We say that a curve in M respects the projective structure on M if
it appears as a union of straight lines in each projective chart, i.e., if its
germ at every point p (or merely at some point in each of its irreducible
components) is a union of germs in Dp. Note that the rational curves
constructed in the proof of Proposition 1.5 are of this kind.

Our next result relates E to rational curves in M that respect the
projective structure.

1.7. PROPOSITION. — A germ in Dp extends to a rational curve in
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M if and only if it does not lie in the image ofE in Dp.

A germ in the image of E in Dp may or may not extend to a curve
in M. This can be verified by explicit computations for the example of a
Blanchard manifold of type A given in [Kat2] (see Section 3). There, some
germs extend to a torus in M, and others do not extend to a curve at all.

Proof. — Let L be the line through q corresponding to a germ in Dp
outside the image of E, so L C ^. Then the curve 7r(L) in M is rational
by Proposition 1.5.

Conversely, suppose L is a line through q that intersects E, and that
the corresponding germ in Dp extends to a rational curve C in M. Then
there is a non-constant map P1 —> C C M, which lifts by TT to a map
P1 —^ ^2, whose image lies in TT'^G) C F(L \ E). Hence, the image lies in
a connected component of 7(L \ E) for some 7 C F, but such a component
is isomorphic a domain in C, which is absurd. D

It remains to be seen if new information about E can be obtained
from this result. It does, however, say something about rational curves in
M through a given point that respect the projective structure.

1.8. COROLLARY. — The set of germs in Dp that do not extend to a
rational curve in M is closed, nowhere dense, non-empty, and, when n = 3,
connected.

Proof. — Only the last statement needs to be proved. Let L be a
line in fl,. Let e be an end of r and (7^) be a sequence in r converging
to e. Then the lines 7n(^) converge to the connected component EQ of
E corresponding to e, so £'0 contains a line. This shows that if £'0 is a
connected component of E, then the image of EQ in Dp ^ p71-3- contains a
line. If n = 3, then two such lines must intersect, so the image of E in Dp
is connected. D

We conclude this section by showing that M is far from being
projective.

1.9. PROPOSITION. — M does not carry a Kahler metric.

It is easy to see that a domain in P71 that contains a complex line
does not admit a Shafarevich map (also known as a F-reduction). Since
universal covering spaces of compact Kahler manifolds have Shafarevich
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maps [Cam2], this implies Proposition 1.9. Also, a domain in a complex
manifold is locally Stein if it covers a compact Kahler manifold [Iva2].
Since fl, is not locally Stein, Proposition 1.9 follows. We will give a detailed
proof using much simpler means.

The Fubini-Study metric on P71 is Kahler and invariant under unitary
transformations, so the following corollary is immediate.

1.10. COROLLARY. — r (jL PU(n + 1).

The following lemma is well known. We supply a proof for the
convenience of the reader.

1.11. LEMMA. — IfM is a compact Kahler manifold and H^^^M)
= 0, then M is protective.

Proof. — Let a; be a Kahler form on M. We can find a e ̂ (M, Q)
so close to [uj\ C H2{M,R) that a is positive (but a priori not necessarily
of type (1,1) any more). For some integer k > 0 we have ka € ^(M, Z).
Since ̂ ^(M) = 0, the long exact sequence obtained from the exponential
sequence O — ^ Z — ^ O — ^ C ^ — ^ 0 shows that ka is the Chern class of a line
bundle L on M. Then L is positive, so M is projective. D

Proof of Proposition 1.9. — Suppose M is Kahler. By the lemma,
M is projective, and hence Moishezon, but this contradicts the following
proposition. D

1.12. PROPOSITION. — M is not Moishezon.

Proof. — By the extension theorem 1.1, the field M.{M) of mero-
morphic functions on M can be identified with the field of F-invariant
meromorphic functions on P7'1. Suppose M is Moishezon, so M-(M) has
transcendence degree n over C. Now M^) = C(Xi,. . . ,Xn) also has
transcendence degree n over C, so A^P71) is algebraic over M(M).

Let / € A^P71). Then there are ^i , . . . , gj, € M{M) such that

/ f e +^l / f e - l +• . .+^=0 .

Say p € f2 and ^ I , . . . , ^A ; are all finite at p. Then /(7p), 7 € F, are
roots of the same polynomial, so the set /(Fp) is finite. Taking / = Z i / z o ,
i = 1,.... n, we see that F has a finite orbit in f^, which is absurd. D
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When n = 3, by a result of Kato [Kati], page 53, if the algebraic
dimension of M is non-zero, then there is a plane P in P3 which is invariant
under a subgroup TQ of finite index in F. Then we have an embedding
of To into AutP ^ PGL(3,C) by 7 ̂  7|P. One might say, therefore,
that the "truly" 3-dimensional examples have algebraic dimension zero. In
the following sections, we will see 3-dimensional examples with algebraic
dimensions 0, 1, and 2.

Let us recall that a compact reduced complex space X belongs to the
class C (as defined by Fujiki) if there is a compact Kahler manifold Y and
a holomorphic surjection Y —> X. Equivalently, X is bimeromorphically
equivalent to a compact Kahler manifold. All reduced Moishezon spaces are
contained in C. For more information, see [CP] and the references therein.

We need the following property of the class C.

1.13. THEOREM (Campana [Cami]). — Let X be an irreducible
compact complex space of class C. Then a very general point in X is
contained in a largest irreducible Moishezon subvariety.

The following result combines and strengthens Propositions 1.9 and
1.12.

1.14. THEOREM. — M is not of class C.

Proof. — Let p be a point in M. If there is a largest irreducible
Moishezon subvariety Y through p, then Y must be M itself by Proposition
1.5. But M is not Moishezon by Proposition 1.12, so M is not of class C
by Campana's theorem. D

2. Schottky coverings.

Nori [Nor] has constructed higher-dimensional analogues of the clas-
sical Schottky coverings in the following way. Let n = 2 f c + l , A ; > l , and
g > 1. Choose 2g mutually disjoint linear subspaces Li , . . . , L^g of dimen-
sion k in P71. Fix an integer i with 1 < i <_ g and choose a basis so that

Li == {2:0 , . . . , zj, = 0}, Lg^i = {^+1,... , Zn = 0}.
Define ( p i : P71 -> R by the formula

koP+.-.+l^l2
^[^•••^n] = I^P+.-.+M2 '



COMPACT QUOTIENTS OF LARGE DOMAINS 233

and define open neighbourhoods

V, = {x C P71 : (^OT) < a}, Vg^i = {x € P71 : ̂ (rc) > 1 - a},

of Li, Lg^ respectively, where 0 < a < -. Define an automorphism 7^ of
P71 by the formula

^i[zo, • . . , Zn} = [A^o, . . . , A^fe, ̂ fc+i, . . . , Zn},

where A <E C and |A| = -1 - 1. Then ^(V,) = P71 \ V^. Let F be
the subgroup of PGL(n + 1,C) generated by 7i,...,7^. Let A be the
complement of Vi U ... U Vzg, and let Q, = |j 7A.

^er
Suppose a is so small that the closures of the sets V\,..., V^g are

mutually disjoint. Any positive power of 7^ maps P71 \ Vi into V^+i, and
any negative power of 7^ maps P71 \ V^+i into Vi. Hence, any non-trivial
word in 71,..., 7g maps the interior of A into its complement, so it is not the
identity, and r is free on the generators 71,..., 7?. Also, Q, is a domain on
which r acts freely and properly with compact quotient M. Let TT : Q —> M
be the covering map. The compact manifold M is precisely the quotient
space of A obtained by identifying the disjoint subsets 9Vi and QVg^-z of A
by the transformation 7^ for i = 1,..., g .

The complement E of f2 in P71 is the closure of the F-orbit of
Z/iU. . .UL^g. Its connected components are ^-dimensional linear subspaces.
When g >, 2, E is a "Cantor set of ^-dimensional linear subspaces". Given
e > 0, E has (2k + e)-dimensional Hausdorff measure zero if a is small
enough. Suppose a is so small that A^n-2(E) = 0. Then ^ is simply
connected, so 71-1 (M) = T is free on g generators.

In this section, M will denote a manifold constructed as above. We
will call M a Schottky manifold.

Note that if g •=- 1, then the functions
ZT, Zk Zk-^-2 ^n

ZQ ? ? ZQ ? 2^+1 ' ' Zk-^-1

descend to algebraically independent meromorphic functions on M, so the
algebraic dimension a(M) of M is at least n — 1. Also, E = I/i U 1/2, so
A2n-2(-K) = 0, and a(M) = n - 1 by Proposition 1.12.

Now let M be a 3-dimensional Schottky manifold with g > 2. The
remainder of this section will be concerned with determining the function
field of M and the surfaces contained in M for small values of a.
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Let Y be an irreducible surface in P3 which is invariant under a
subgroup of finite index in F. Let 1 < i < g. Choose a basis so that
Li and Lg^ are given as above. Now Y is invariant under 7^ for some
natural number m > 1, so if [zo ,2:1,2:2 ,2:3] e Y \ (Li U Lg^i), then
[A7^ 2:0, A7^ 2:1,2:2,2:3] e V for all j € Z. Hence, V has infinitely many
points in common with the line L through the points [0,0,2:2,2:3] e Li
and [2:0,2:1,0,0] € I/^+i, so L C V. This shows that Y is a union of lines
intersecting both Li and I^+,, along with either L, or Lp+,. If Y contains
only one of the lines Li, Lg^i, then Y is a plane containing that line. The
same will hold for other values of %, but that is absurd, since two lines in a
plane intersect. Hence, Y contains all the lines L i , . . . , L^g, and for each i
with 1 <_ i <, g, Y is a union of lines intersecting both Li and Lg^i.

If Z is another irreducible surface in P3 which is invariant under a
subgroup of finite index in F, then both Y and Z are invariant under the
same subgroup F' of finite index in F. Then Y H Z contains the F'-orbit of
Li U ... U 1/2^, which is a union of an infinite number of mutually disjoint
lines, so Y = Z. This shows that there is at most one surface in P3 invariant
under a subgroup of finite index in F.

If / is a meromorphic function on M and A^(E) = 0, then / o TT
extends to a meromorphic function h on P3. Applying the above to the
level sets of h gives the following result.

2.1. PROPOSITION. — Let M be a 3-dimensional Schottky manifold
with g > 2. If A^(E) = 0, which is the case if a is small enough, then M
has no non-constant meromorphic functions.

In the remainder of the section, we assume that ^(E) = 0.

Let S be a smooth surface in M. The closure Y of 7^~1(S) is a F-
invariant surface in P3. If Y is not smooth with singular locus Z, then
Z C E and Z is F-invariant. Since a group with infinitely many ends acts
on its space of ends with dense orbits [Kul], this contradicts Z having
only a finite number of connected components. Hence, Y is smooth and
irreducible. Since Y is covered by rational curves, its degree is 1, 2, or
3. Since Y contains disjoint lines, it cannot be a plane. Since Y contains
more than 27 lines, it cannot be a cubic. Hence, Y is a quadric. In suitable
projective coordinates, Y is the image of?1 xP1 under the Segre embedding,
and Y has two rulings by lines, which are the only lines in Y. Two disjoint
lines in Y must belong to one of the rulings. In particular, the lines
^i? • • • 5 L"zg lie in a quadric.
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Conversely, suppose I/i,. . . ,L^g lie in a smooth quadric Q in P3. A
line in P3 is r-invariant if and only if it intersects all the lines Z/i, . . . , L^g.
Since Q is ruled by such lines, it is r-invariant. Also, E is a union of
lines in one of the rulings. This ruling consists of the fibres of a projection
p : Q ̂  P1 x P1 -^ P1. There is an induced action of F on P1 \p(E), and the
quotient map P1 \ p(E) —> C is a 1-dimensional Schottky covering onto a
compact Riemann surface of genus g. The image of Q \ E in M is a smooth
surface, ruled over C.

We have proved the following result.

2.2. PROPOSITION. — Let M be a 3-dimensional Schottky manifold
with g ^ 2. Suppose A.^(E) = 0, which is the case if a is small enough.
Then M contains at most one surface. Also, M contains a smooth surface
S if and only if the lines Z/i,..., L^g lie in a smooth quadric. Then S is a
ruled surface of genus g.

It is easy to see that four lines in P3 in general position do not lie in
a quadric.

Finally, suppose S is a non-smooth surface in M. Then the singular
locus Z of Y is r-invariant and not contained in E. For each point x € Z\E
and each i with 1 < i < g , there is a line in Z through x intersecting both
Li and Lg^i. The singular locus of Z is finite, but also r-invariant, so it
is empty and Z is smooth. Hence, through every point in Z \ E there is a
line in Z intersecting all the lines Li , . . . , L^g, and Z is a disjoint union of
a finite number of such lines.

We see that if M contains a surface, then there is a r-invariant line
in P3. If g >_ 3 and Z / i , . . . , L^g are in general position, then no such line
exists.

3. Blanchard manifolds.

As before, we let M be a compact complex manifold whose universal
covering space is a domain ^ in P71, such that the complement E = P71 \ fl,
is non-empty with A^n-2{E) == 0. The covering map is TT : ^ —>• M,
and the covering group F ^ 71-1 (M) can be considered as a subgroup of
PGL(n+l,C).

3.1. PROPOSITION. — Suppose E is a subvariety of?71. If there is a
r-invariant curve X in P71, not contained in E, then f is a finite extension
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ofZ or Z2. Moreover, the normalization of each irreducible component of
7r(X \ E) is a torus.

Proof. — Now X \ E is r-invariant and has finitely many irreducible
components. The elements of F that leave each component invariant form
a normal subgroup F' of finite index. Let C be an irreducible component of
the curve TT(X\E) in M, and let Y be an irreducible component of TT'^C).
Then Y is an irreducible component of X \ E. Also, Y is a non-compact
covering space over C whose covering group F" contains F'.

Let Z be the irreducible component of X containing Y. Then Z \ Y
is finite and non-empty. The normalization Y of Y is naturally identified
with the complement of a non-empty finite set in the normalization of Z.
Each element of T" lifts to a unique automorphism of Y. These are the
deck transformations of the induced covering map Y —> C. Since Y is a
compact Riemann surface with a finite non-zero number of points removed,
and Y has an infinite automorphism group, Y is either the complex plane
or the punctured plane. In the first case, F" = Z2, and in the second case,
r" = Z. In both cases, C is a torus. D

3.2. COROLLARY. — Suppose E is a curve (so n = 3). IfM contains
two distinct irreducible surfaces 5i and 62 which intersect, then F is a
finite extension ofZ or Z2. The intersection 5i D 62 is a curve, and the
normalization of each of its irreducible components is a torus.

Proof. — The closure Yj, ofTT"^^) is a surface in P3, and Vi Dl^ f-
E is a r-invariant curve. D

Now we restrict ourselves to the lowest dimensional case, so we let
n = 3. We have seen that the smallest E can be is a line. If E is a line, then
M is called a Blanchard manifold. The first example of such a manifold
was given in [Bla]; see also [Kail]. Kato [Kat2] has shown that if M is a
Blanchard manifold, then F is torsion-free and contains a subgroup Fo of
finite index which is isomorphic to Z4. Furthermore, in a suitable system
of homogeneous coordinates ZQ,Z\ ,2:2,^3, which we will henceforth adopt,
we have E = {2^2, z^ = 0}, and either Fo == F n G or Fo = F D H, where

G=

1 a b c1
0 1 a b
0 0 1 a
0 0 0 1

:a,6,c€Cl
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and

H=-{
1 0 a &1
0 1 c d
0 0 1 0
0 0 0 1

: a, 6, c, dec},

considered as subgroups of PGL(4,C). Note that the groups G and H are
abelian. A Blanchard manifold M is said to be of type A if 71-1 (M) contains
an abelian subgroup of finite index which is conjugate to a subgroup of G,
but TTi (M) does not contain an abelian subgroup of finite index which is
conjugate to a subgroup of H. If M is not of type A, then M is said to
be of type B. Blanchard manifolds of different types are non-isomorphic.
There are examples of both types [Kat2].

The Blanchard manifold M constructed in [Bla] is of type B. It is
diffeomorphic to the product of the 2-sphere and the real 4-torus [Kail].
Hence, the underlying smooth manifold of M carries a projective algebraic
complex structure, in addition to the complex structure being considered
here, which by Theorem 1.14 is not of class C. In particular, M does not
fail to be Kahler due to any topological obstruction. Note that there are
no 2-dimensional examples of this kind, due to the fact that a compact
complex surface carries a Kahler metric if and only if its first Betti number
is even.

From now on, we let M be a Blanchard manifold.

Consider the planes in P3 containing the line E. They foliate f2, and
the leaf space is P1. The covering group F permutes these planes, so there
is an induced holomorphic foliation F of M. Its leaves are the images of
the planes. The leaves are smooth, but not necessarily closed in M.

3.3. PROPOSITION. — A plane P in P3 containing E is invariant
under a subgroup of finite index in F if and only ifT = 7r(P \ E) is closed
in M. Then T is a smooth connected surface in M, and T is either a torus
or a hyperelliptic surface. IfFo = F, then T is a torus.

Proof. — First of all, T is closed in M if and only if r(P \ E) =
Tr^CT) is closed in Q if and only if the F-orbit of P consists of finitely
many planes if and only if P is invariant under a subgroup of finite index
inF.

Suppose the subgroup F' == {7 € F : 7? = P} is of finite index in F.
Ifp € T and x ^ y € /JT~l(p), then y = ̂ x for some 7 e F, so 7PnPn^ 7^ 0,
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and 7? = P. This shows that P \ E ^ C2 is a Galois covering space of T
with covering group F'.

Now P is given by an equation of the form 5^2+^3 = 0 with s, t € C.
Simple computations show that the zero-free holomorphic 2-form dzo A d^i
on P \ E is ro-invariant, so it descends to To = (P \ ^)/(r' D Fo). Hence,
the canonical bundle of To is trivial, and the Kodaira dimension of TQ is
zero. Also, F' HFo is of finite index in Fo, which is isomorphic to Z4, so the
first Betti number of TQ is 4. Hence, by the Enriques-Kodaira classification
[BPV], To is atoms.

This shows that T has a torus as a finite unbranched covering. Hence,
T is Kahler, the Kodaira dimension of T is zero, and the fundamental group
of T is infinite. By the Enriques-Kodaira classification, T is either a torus
or a hyperelliptic surface. D

We recall that every hyperelliptic surface X is the quotient of a
torus (in fact, a product of two smooth elliptic curves) by a finite group
acting freely. In particular, X is projective, so any torus covering X must
be an abelian variety. Furthermore, a torus is never homeomorphic to a
hyperelliptic surface, e.g. since they have different first Betti numbers (4
and 2 respectively).

If M is of type B, then all the planes containing E are invariant under
Fo, so by the proposition, M is foliated by smooth surfaces, and each leaf
is either a torus or a hyperelliptic surface. On the other hand, if M is of
type A, then only the plane {^3 = 0} is invariant under a subgroup of finite
index in F, so by the proposition, F has only one closed leaf, and this leaf
is a torus or a hyperelliptic surface.

Now let T = TT(P \ E), where P = {^3 = 0}. We know that T is
a smooth connected surface in M. Suppose S -^ T is a surface in M.
The closure X of ^^{S) is a F-invariant surface in P3 which intersects
P in a curve. By Proposition 3.1 (applied with F replaced by Fo), the
intersection must be E. Also by Proposition 3.1, X \ E is smooth, so S is
smooth. Choose an irreducible component Y of X. It is the zero locus of
an irreducible homogeneous polynomial g. Since Y H P = £', we may take
g = z^ + 2:3/1, where m >_ 1 is the degree of ^, and h is a polynomial. Now
Y is invariant under a subgroup of finite index in F, so for every 7 in a
subgroup of finite index in TQ there is a constant c / 0 such that

eg = 7*^ = (^2 + az^ + 2:37* h = z^ + z^k,
where a G C and A; is a polynomial, so c = 1 and g is 7-invariant. Hence,
the non-constant meromorphic function / = g / z ^ on P3 is invariant under
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a normal subgroup Fi of finite index in r. The indeterminacy locus of / is
E. The restriction f\Q, : Q, —^ P1 is a Fi-invariant holomorphic map with
smooth fibres, and it descends to a holomorphic map /i : Mi = ^/Fi —> P1.
Let /2 '- Mi —> C\ be the Stein factorization of /i. The 1-dimensional
complex space C\ is normal, and hence smooth, so it is a compact Riemann
surface. The fibres of /2 are the connected components of the fibres of /i.

The finite group F/Fi acts on Mi with quotient M. By Corollary 3.2,
the fibres of /2 are the only irreducible surfaces in Mi, so they are permuted
by r/Fi. Hence, there is an induced action of F/Fi on C\ that makes /2
equivariant. Passing to quotients, we obtain a non-constant holomorphic
map -0 : M —> G, where C is a normal complex space, and hence a compact
Riemann surface. The fibres of ^ are smooth, and they are the images of
the fibres of /2? so they are connected. The map ^ lifts to a non-constant
holomorphic map from fl, to the universal covering C of G, but Q carries
no non-constant holomorphic functions, so C must be P1, and C = P1.

So far we have proved the following.

3.4. THEOREM. — IfM is a Blanchard manifold, then one of the
following holds.

(1) M contains only one surface, which is a torus or a hyperelliptic
surface. Hence, M has no non-constant meromorphic functions.

(2) There is a holomorphic map ^ : M —^ P1 with smooth connected
fibres, which are the only irreducible surfaces in M. Hence, M(M) ==
A^P1) o ̂ , and the algebraic dimension ofM is 1.

If M is of type B, then (2) holds, and the fibres of ̂  are the leaves
off.

We now wish to understand the dichotomy in the theorem when M
is of type A. First we consider the automorphism group of M. Let Ny be
the normalizer of F in PGL(4,C). If v € Nr, then YvE = vYE = vE, so
the line vE is r-invariant. Now vE (JL f2, so vE must intersect E in the
unique r-fixed point [1,0,0,0] of E. Computations show that E is the only
r-invariant line through [1,0,0,0], so vE = E. This shows that ^2 is Np-
invariant. Therefore, every v € Nr induces an automorphism of M, which
is the identity if and only if v € F. Conversely, every automorphism of M
lifts to an element of TVr, so

AutM=7Vr/r.
Let P = {2^3 = 0} be the unique plane in P3 containing E, which is
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invariant under a subgroup of finite index in F. Since P is to-invariant,
vP is invariant under the group ^Fo^"1, which is of finite index in F, so
vP = P. This shows that the surface T = (P \ E)/Y in M is AutM-
invariant.

Assume now that F C G. This amounts to replacing M by the finite
unbranched covering space MQ = O/Fo. Clearly, (1) in Theorem 3.4 holds
for M if and only if it holds for MQ.

Since G is abelian, G C Nr. This shows that the dimension of the
complex Lie group AutM is at least 3. It is easy to see that G acts
transitively on f2 \ P (with trivial stabilizers) and on P \ E^ so G acts
transitively on M \ T and on T. Hence, Aut M has precisely two orbits,
namely M \ T and T. In particular, M is almost homogeneous.

Let

N=

ro i o 01
0 0 1 0
0 0 0 1o o o o

The commuting matrices TV, TV2, and TV3 form a basis for the Lie algebra
Q of G, and the exponential map exp : Q —> G,

r7V + sA^2 + W3 ̂  J + rA^ -+- f1/-2 + 5^2 + (^ + ^r3 + rsW,

is an algebraic group isomorphism with inverse log : G —»• g,

I + a7V -+- bN2 + c7V3 ̂  aN + (ft - ̂ a2)^2 + (c - ab + ^a^N3.

Suppose now that T is not the only surface in M. By Theorem 3.4,
there is a holomorphic map ^ : M —> P1 with smooth connected fibres,
which are the only irreducible surfaces in M. Say T = ̂ ^(cx)). Then G
permutes the fibres of ^, and we get an induced action of G on P1 which is
transitive on C and fixes oo. The stabilizer of 0 € C is a proper algebraic
subgroup H of G, and F C H. In particular, r is not Zariski-dense in G.
We have H = exp (), where \} is a 2-dimensional subspace of g. If \) is defined
by an equation of the form ar + bs = 0 with a, b € C, then the polynomial
function

/[z, w, 1,0] = bz — —bw2 + aw
Zi

on P\ E is H -invariant, and hence F-invariant, so / descends to a non-
constant holomorphic function on T, but this is absurd since T is compact.
Hence, () is defined by an equation of the form t = ar 4- bs with a, b € C.
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For r € C, let Wr be a solution of the quadratic equation

w2 + (r + b)w + -r2 -h -6r - a = 0,
o 2

and let
Sr=-r^r+Wr).

Then
hr = exp(rN + SrN2 + (ar -h &^)7v3) € ̂

maps pr = [0,0, Wy., 1] to [0,0, Wr +r, 1]. Since Wy. —^ oo and Wr -\-r —> oo as
r —^ oo, both py. and /lypr converge to the point [0,0,1,0] in Q. This shows
that H does not act properly on fl,.

Now r = expA, where A is a lattice in I). There is a constant CQ > 0
such that for every v € () there is u 6 A with \u — v\ < CQ. Hence, there
is a constant c > 0 such that for every h € H there is 7 e F such that all
the off-diagonal entries of 7/1"1 have absolute value less than c. Let 7r € F
be associated to hr in this way. Then 77. —> oo as r —> oo. Let U be the
neighbourhood of the point [0,0,1,0] denned by the inequality

M+N+N < H.
Then U is relatively compact in Q. There is p > 0, depending only on c,
such that if g e G and all the off-diagonal entries of g have absolute value
less than c, then gU lies in the compact subset K of fl, defined by the
inequality

|^ol+ki|^p(k2|+M.
For r € C sufficiently large, we have hrpr € U, so ^rPr = ("Vrh^hrpr € K.
This shows that F does not act properly on f^, contrary to hypothesis.

We have proved the following.

3.5. THEOREM. — IfM is a Blanchard manifold of type A, then M
contains only one surface, and F is Zariski-dense in G.

This shows that the classification of Blanchard manifolds by type is
the same as their classification by algebraic dimension.

Note that F is Zariski-dense in G if and only if log(F D G) spans Q as
a C-vector space.

It would be interesting to have a characterization of those discrete
Zariski-dense subgroups F of G of rank 4 that act freely and properly on
fl, with compact quotient, so that 0,/r is a Blanchard manifold of type A.
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Proposition 3.3 and Theorems 3.4 and 3.5 imply the following.

3.6. COROLLARY. — An irreducible surface in a Blanchard manifold
is a torus or a hyperelliptic surface. JfFo = r, then it is a torus.

If M is of type B, then the map ^ : M —^ P1 in Theorem 3.4 is
a proper submersion, and hence a smooth fibre bundle by Ehresmann's
fibration theorem [BJ], over the complement of its finite set of critical
values. Hence, all but finitely many of the surfaces in M are mutually
diffeomorphic, so either all but finitely many surfaces in M are tori, or all
but finitely many surfaces in M are hyperelliptic.

3.7. Example. — We will now show that hyperelliptic surfaces can
occur in Blanchard manifolds of type A.

In [Kat2], Kato constructs a Blanchard manifold Mo = ^I/TQ of type
A, such that TQ is the subgroup of G generated by I + TV, I + z7V, I + N2^
and J+z7v 2 .

Let

y?=

i / 2 0
-1 -z/2
1 1
0 -1

ePGL(4,C).

Then
(pN == -Nip,

so (p commutes with I + N2 and I + iN2. Also,

(p(I + N)ip~1 = I - N and y(I + iN)^>~1 = I - iN

are in Fo, since their logarithms lie in the Z-span of the logarithms of the
given generators of Fo. Hence, FQ is a normal subgroup of the subgroup F
of PGL(4, C) spanned by To and ip. Moreover, ̂  = I + (z - 1)N2 e Fo, so
FO is of index 2 in F.

This shows that y? induces a holomorphic involution of Mo. It has a
fixed point in MQ if and only if there are 7 € Fo and x e ^2 such that
^px = ̂ x. Then

^x = ̂ x = (^W^)^) = ̂ W'S^

so (p2 = y^^"^ since To acts freely on Q,. Hence, ^7~1 € F is of order 2.
We will show that this cannot happen.
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For 7 = I + CL/V + &A/'2 + cN3 e ro, we have
•I 0 2 6 - a 2 - l + z *"
0 1 0 *
0 0 1 *(^7)2

- 0 0 0 1.
so if (<^7)2 == ^d? then a2 + 1 = 26 + i- Now log 7 is a Z-linear combination
of the logarithms of the given generators of Fo, so

a = ni + m2, & = ̂ (ni 4- ms)2 + ̂ (^2 - ni) + ̂ 3 + ̂ h

where n i , . . . , n4 C Z. Hence, the imaginary part of a2 + 1 is an even
integer, whereas the imaginary part of 26 + i is an odd integer. This shows
that r has no elements of order 2, so (p has no fixed points in Mo, and
M = Mo/^p = Q/r is a Blanchard manifold of type A with fundamental
group r.

The unique surface T = (P \ E)/F in M has the torus (P \ E)/To in
Mo as a 2-sheeted unbranched covering space, and its fundamental group
is r. Let a : r -^ r' = F/[r,r] be the abelianization map. Then a(Fo) has
finite index (1 or 2) in F'. Also, Fo contains non-trivial commutators, such
as y?(J — Tv)^"1^ — N)~1, so the rank of F', i.e., the first Betti number of
T, is less than 4. Hence, T is hyperelliptic.

It has been pointed out that certain Blanchard manifolds of type B
are twistor spaces, as are certain 3-dimensional Schottky manifolds with
g = 1. See [Bes], Chapter 13.D,E and [Hit]. On the other hand, we have
the following result.

3.8. PROPOSITION. — A Blanchard manifold of type A is not a
twistor space.

Proof. — Suppose a Blanchard manifold of type A is a twistor space.
The twistor structure pulls up to the universal covering ̂ , so fl, is smoothly
fibred by smooth rational curves, and fl, has a F-equivariant fixed-point-
free anti-holomorphic involution r preserving the fibres, which extends to
a r-equivariant anti-holomorphic involution of P3. The normal bundle N
of a fibre C is H\ (B H\, where Hk denotes the hyperplane bundle on P^.

By the short exact sequence
o -^ TC -^ rp3!^ -> N -^ o

on (7, we have

4ci(^3|^) = c^TP^C) == ci(rC) 4- ci(7v) = 2ci(^i) 4- 2ci(^-i)
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in ^(C.Z) = Z, so degC = deg(H3\C) = 1, and C is a line.

Let P = {2^3 = 0} be the unique Po-invariant plane in P3 containing
E. Now r{z) = (p(z) for some y? € Aut P3, so rP is a plane in P3 containing
rE = E, invariant under TFoT"'1 == Po, so rP = P.

Let (7 be a fibre in fl.. Clearly, C (jL P^ so C intersects P in a single
point x. Since C and P are r-invariant, rx = a-, which is absurd. D

4. The 3-dimensional case.

In conclusion, we will make some remarks on the general 3-dimen-
sional case. Let us make the following definition, motivated by [Kat2]. A
3-dimensional compact complex manifold M is called a Kato manifold if

(1) the universal covering space of M is a domain ^2 in P3 such that
every connected component of the complement P3 \ f2 is a line,

(2) the fundamental group of M has a torsion-free subgroup of finite
index, and

(3) M contains a domain which is biholomorphic to a neighbourhood
of a line in P3.

The following main result of [Kat2] classifies Kato manifolds and
describes their fundamental groups. For terms left undefined here, we refer
the reader to [Kat2].

4.1. THEOREM (Kato). — Let M be a Kato manifold and let FQ be
a torsion-free subgroup of finite index in 71-1 (M). Then FQ is isomorphic to
the free product

FI * . . . * iv * iv+i * . . . * r^,
where 0 < r <, s, Fi, . . . ,1V are infinite cyclic, and r^+i,. . . ,Fs contain
Z4 as a subgroup of finite index. Also, the finite covering of M with
fundamental group FQ is a Klein combination ofr primary L-Hopf manifolds
and s — r Blanchard manifolds.

Now we let M be a compact complex manifold whose universal
covering space is a domain ^ in P3, such that the complement E = P3 \ f2
is non-empty with A^E) = 0. The covering map is TT : f^ —> M.

By Proposition 1.2 and Selberg's Theorem, M satisfies (2). As for
(3), by the proof of Proposition 1.5, there is a line L in fl, such that 7r[L
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is injective. If TT is not injective on any neighbourhood of L, then there are
Pn -> P ^ L and qn —^ q € L with p^ 7^ qn such that 7r(pn) = ^(^n)? so
7r(p) = Tr(^) and p = ^, but this is absurd because TT is locally injective.
Hence, M satisfies (3).

This shows that M is a Kato manifold if and only if all the connected
components of E are lines. Recall that in the proof of Corollary 1.8, we
observed that every connected component of E contains a line, so roughly
speaking, M is a Kato manifold if the connected components of E are as
small as they can possibly be.

If M is Blanchard or Schottky, then M is Kato. However, M need
not be Kato. Kato [Kat3] has constructed examples where E is a smooth
submanifold of P3 of real dimension 3 (in fact, E is a circle of projective
lines), and F is the fundamental group of a hyperbolic compact Riemann
surface. These examples are twistor spaces of algebraic dimension zero.

All the examples of compact manifolds covered by "large" domains in
projective space that I know of have been mentioned in this paper. There
are clearly very few of them, especially in dimensions greater than 3, and
they do not seem to give any clues to a possible classification. In particular,
we have seen that although the class of these manifolds intersects the classes
of twistor spaces and Kato manifolds, it is not contained in either of them.
The work that has been done to date gives a glimpse of a rich and varied
theory, but it is only a beginning.
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