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AREA PRESERVING pi HOMEOMORPHISMS
AND RELATIONS IN Ka

by Peter GREENBERG

Peter Greenberg (1956-1993) came to Grenoble in 1991. He
graduated in M.I.T., next holding positions at Forgo, North
Dakota and at I.P.N., Mexico City.
He was appreciated everywhere by his students and colleagues.
The present paper is quite representative of the inspired mixture
of geometry, algebra and arithmetic one encounters in his work.
It was completed a few weeks before his bike-accident.
Therefore, we feel that this journal is the right place to publish it.

1. Introduction.

This work is part of an effort to get a geometric understanding of
the algebraic K-theory of real fields, using an approach not unrelated to
those of Lichtenbaum [Li] (involving scissors congruence) and Goncharov
and others [BGSV], [G] (using configurations in geometry). Our aim, more
or less accomplished here for K^, is to reproduce a situation in dimension 1,
which we now describe.

1.1. The idea of a "derivative".

Let PLc R be the group of all piecewise-linear, compactly supported
homeomorphisms of the real line, which are C1 except at a finite number
of points.

Key words: Algebraic K-theory — K^ — Piecewise linear homeomorphisms — Torsion.
Math. classification: 19C20 - 57Q99 - 52B45.
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PROPOSITION 1. — For every g G PLcR there is a function
Dg = R -^ R4- such that

(1) Dg(x) = 1 except for a finite set ofx e R;

(2) Ifg, h C PLcM, a; e R then D{gh)(x) = Dg(hx) • Dh(x) ;

(3) Y[Dg(x)=l.
a;eK

Proof. — Let
lim. g ' ( y )

Dg(x) = ̂  . . Dlim g^y)
y—^x~

Remark 2. — (a) Let k be a subfield of R, and let PLc k be the
subgroup of g € PLcM such that if Dg(x) -^ 1 then x,g(x) € /c; thus ^'
where defined, is an element of k^. Then we consider Dg \k —> k^ and we
note:

(b) k^ = ker(K^k) -^ 7To(GL(]R))).

(c) The function D arises from a homomorphism 6: plo —> k^, where
pig is the group of germs of PLc A;-homeomorphisms at 0; indeed plo is just
k^~ x k^~ and 6(s^ t) = s / t . Thus the log function composed with 6 gives an
element Log € ^(plo ;K).

(d) Relations in k^ arise from Proposition 1, part (3). For example, let
0', y € (0,1), re, y € k. Then there is a unique g € PLc k such that g(0) == 0,
g(l) = 1, g(x) = 2/ and such that Dg(t) = 1, t -^ 0,a;,l. The relation in
Proposition 1, part (3) is then:

y_ x(l -y) 1 - x ^
x y ( l - x ) 1 - y

Our aim is to mimic Proposition 1, and the accompanying remarks, in
higher dimensions. In dimension 2 we have the following:

THEOREM 3. — Let SPLc M2 be the group of compactly supported,
area preserving, piecewise-linear homeomorphisms of the real plane. For
each g e SPLc M2 there is a function Dg : R2 —^ K^(R) such that

(1) Dg(v) -^ 1 for only a finite subset ofv G M2 ;

(2) for g , h € SPLc M2, v e R2 we have

D(gh)(v) = Dg{hv)Dh(v);
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(3) for all g e SPLc R2 we have

nD^ = L
v€R2

Further, parallel to the remarks above we have:

Remark 4. — (a) If g € SPLcR2, the set sing(^) of points where g
is not affine is a finite graph linearly embedded in the plane. Let supp(^)
denote the set of vertices ofsing(^). Let k be a subfield ofR, and let SPLc k2

be the subgroup of g e SPLcR2 such that supp(^), g(supp(g)) C fc2. Then
for g e SPLc k2.

(b) Dg takes values in ker^W -^ 7Ti(GL(R))) if k = R, more
generally in the subgroup of K^{k) generated by Steinberg symbols {s,t}
where at least one of s, t is positive.

(c) The definition of D arises from a homomorphism w: spig k —>
K^(k)^ where spig is the group of germs of SPLcfc2 homeomorphisms at
the origin. This was described in joint work with Vlad Sergiescu [GS];
its definition and properties will be described below. After Dupont and
Parry-Sah [Du], [PS] the dilogarithm appears as a class in .^(SLaM;]!^)
which by [Gl] is isomorphic to H^(sp\Q ;R).

(d) Relations in K^k) arise from Theorem 3, (3); we now consider
some examples. It seems reasonable to conjecture that the reciprocity
relation for triangles (Corollary 5 below) provides enough relations to
define K^ (k).

1.2. Examples.

Applications of Theorem 3, part (3) to various families of SPL
transformations give relations in K^ of various fields of functions, as will be
explained later in the paper. For now we give some sample results.

The first example concerns triangles in the plane.

So let r\5\ i = 0,1,2 be six points in the real plane, and let r^
(resp. s1) be the barycentric coordinates of the points r^ with respect to
the triple s3 (resp. ^ with respect to the r3). Let

Xi = y-H + y-M + r{r^ i ^ j ^ k .

Then we have:
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COROLLARY 5. — In K^ of the field of rational functions in the r^ the
following relation holds:

^1 - ri rw ' ri . xw} = (same expression with the ^.)-1.
i ^it^i ^+1^ J 3

(We note that \i = R(s^s^ 4- s^s^ -h s^), where R is the determinant
of the matrix of r1.)

Figure 1: Partial twist of a pentagon in another

Here, and in the following example, the expressions in brackets are
Steinberg symbols. SPL maps with symmetries produce, via Theorem 3,
part (3), elements of torsion in K^. For example a "partial twist" of an
N-gon inside another TV-gon (see figure 1) yields the:

COROLLARY 6. — Let N > 2 and let TN = 27T/7V. Let

_ -Asin(TTv) - Rsm{(f>) + Rsm(TN + (^>)
~ Asin(r^) - Rsm((f)) -^ Rsm{(f) - T^)

-Asin(r^) 4- Rsm(<f)) - Rsm((/) - Tyy)y= Asin(r?v) - fisin(0 - TN) + Rsm((t) - 2^)

_ Rsm(TN) + Asin(0) - Asin(T^v + 0)
Oi —

Rsm(TN) - Asin(^) + Asin(<^ - T^)
Rsm(TN) - Asin(2T^ -<?'))- Asin((^ - Tjv)

Rsm(TN) - Asin(^) 4- Asin(0 - TN)
b=

Then the expression

{i-^}-{i-^"}
is an element of order TV, if TV is even, 2N ifN is odd, in K^ of the field of
rational functions in A, R, sin(T^v), cos(T^), sin(^), cos(^). (Note that all of
the sin functions in the expressions for x, y , a, b are elements of this Gold.)
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We can see that the result is nontrivial as follows: set N = 4,
A = R = 1, and t = tan(<^). Then in the field of rational functions in t, the
expression

^t-t2-! (t - I)2 -> ( 4(f - I)2 3f2 - 1 -(
i 4 ' 2 f \ ( 4 t - t 2 - l)(3t2 - 1)5 4t - ̂ 2 - 1 J

is an element of order 4. Now set t = 8/15 and take the same symbol at the
prime 17; one finds —4, which is indeed an element of order 4, but not 2,
in (Z/17)*. It is also not hard to see that neither Steinberg symbol is trivial
in K^.

The organization of this paper is as follows: in the following section,
the map w and the function D are defined, after a brief review on ^2(2, k).
In Section 3, the three unit formula of Jun Morita [Mor] is applied to
evaluate w, in the simplest nontrivial cases, in terms of Steinberg symbols.
This leads to the calculations of Corollaries 5 and 6 in Section 4. Finally,
Section 5 contains a conjecture in piecewise SL2(Z) geometry. This work
has profited from discussions with J. Helmstetter, R. Kenyon, A. Martin,
N. Moser, G. Robert and V. Sergiescu, to whom I am very grateful.

2. Definition ofw and D.

The definition of w given here is joint work with Vlad Sergiescu [GS].

2.1. Background of .K-theory.

Let A: be a subfield of the real numbers. The group SL^(k) acts
transitively on the circle

Sk={k2-^0))/k+

of rays from the origin. The stabilizer of the ray through (s, 1) (as well as
that through (—s, —1) is called Ps and is isomorphic to k\ explicitly

'{C.;; i".).^}-Ps= t/s

Further, the stabilizer of the rays through (1,0) and (—1,0) is denoted and
given by

^{(o ^ t e t}
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and the stabilizer of the rays through (0,1) and (0,—1) is denoted and
given by

^-{C ;).'^}-
In fact Po and Poo generated SL»2 k and, setting for r € fc, t € A;*,

r / 1 n ^ _ / 1 0\ t _ ( 0 iH^
^"lo lJ' ^"Ir J5 ^-1=^1 0 )'

where, (see [Mor]), a and —a are the roots in the Weyl system for SLs fc,
we have

^±0=0^ and t;L4o ;̂ = ̂ -2r.

The Steinberg group St2 fc is denned to be the group generated
by x^a^)-) y € fc, with the relations

X±a{s) X^a(t) = X^a(s + t), W^ X^a{r) W^ = X^-U^r),

where w^ = x-^a{^) ̂ =Fa(—'^~-l) ^±0(^)5 there is an evident surjection

St2 k —> SL2 fc,

whose kernel is called ^2(2, k).

Now set ha(u) = w^w^1 € St2 (A;), and set

C(s,t) = ha(uv)ha(u)~lha(v)~l'',

one verifies that c(5, ^) e ^2(2, k).

As it happens [Mil], [Mor], for k a field, K^^^k) is central in St2 A;
and surjects onto the group K^(k\ defined via a stable version of the
above; by Matsumoto's theorem we can take K^{k) to be the abelian group
generated by the images of the c(5, t). These are the antisymmetric, bilinear
Steinberg symbols {s, t}, s, t € A;*, with the relations {t, 1 — t} = 1, t -^ 0,1
see [Mor], [Mil].

The following lemma is crucial to the definition of w.

LEMMA 7. — Let PQ C St2 k be the subgroup isomorphic to A;,
consisting of the Xa(t). Then for each s € k there is a unique conjugate Ps
of Po lying over Ps, which consists of the x-a(l/s) Xa(t) x-a(—l/s).
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Proof. — This is a consequence of the definitions, and of the centrality
ofjf2(2,/c). D

Remark 8. — It is perhaps helpful, as regards the lemma, to consider
the well-defined lifts of the Ps to the topological cover of SL2(A;) (that
is, the set of periodic lifts of elements of SL2(A;) to R = 5'p). These are
just the lifts whose elements have fixed points.

With Lemma 7 in place, we now define, following joint work with
Sergiescu [GS] the homomorphism

w: spio k —> K^{k),

and then the functions Dg. Let 7 € splo. Then (see figure 2), 7 is determined
by a finite set of ordered pairs (^,<7i), i == 1,... ,n where the ri € Sk are
in counterclockwise order and where 7 = ^ 6 SLs k in the sector from TI
tor,+i.

r2
9i

,7(^2)

7(n)

Figure 2. A germ

Now pi = g^Qi-\ € Pn, and of course pnPn-i • • • Pi = 1 m SL2 k. We
define

^(7) = P n ' - P l ,

where pi is the lift by Lemma 7; evidently ^(7) € ^2(2, k) and we set w(^)
to be its image in K^{k).

As it happens (see [GS], [G]), w is an isomorphism

H^sp\ok) —> H^SL^k) ̂  K^(k,2).

We define then, for g € SPLc k,v = (x, y) G K2, Dg{v) = w(7), where

7(s, .fc) = ^((5, ^) + (x, y)) - g(x, y),

and now proceed to the:
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Proof of Theorem 3. — We first show part (1), that Dg has support
in the set supp(^) of vertices of the singular graph smg(g) of g\ in fact if
v € R2 — sing(^), Dg(v) is evidently trivial, and if v G sing(^) — supp(^),
then w has the form p"1? and so is trivial.

The part (2), Dgh(v) = Dg(hv)Dh(v), follows from the fact (see [GS])
that w is a homomorphism.

The proof of part (3), that

n D ^ = ^
veR2

turns on the fact that K(2^ k) is central in St2 k. That is if 7 6 spig then
w(7) = pn • • ' p i = p n - i ' ' 'PiPm and so on. We formulate the proof as
follows:

Let g € SPLc, and let * G R2 be a point far from sing(^). We define a
homomorphism

P:7ri(R2-supp(^),*) —^2 (2, A:).

Let a € 71-1 (R2 — supp(p)) be represented by a path a transverse to sing(^).
Let c i , . . . , C y n denote the connected components of R2 — sing(^) which
are traversed by the curve a, in the order in which a crosses them (thus,
a component, such as the unbounded one, may occur twice in the list).
Let j i , . . . ̂ jm € SLs k be the linear parts of the restriction of g to the c^,
let pi = j^1^-!, let pi e St2 k be its lift, and set P(a) = p m ' " P i - Then
V is a homomorphism, and if a encloses just one vertex v C supp(^),
we have T>(a) == D(g) by the centrality remarked above. Then if A is a
curve contained in the unbounded component of R2 — sing(^), the fact
that P(A) = 1 concludes the proof.

3. Calculations with Jun Morita^s formula.

In this section, the "three unit formula" of J. Morita [Mor] is applied
to calculate w(7), in terms of Steinberg symbols, in the simplest nontrivial
cases.

We begin by recalling the notation of the previous section; thus a
germ 7 € spio is described by a finite set of pairs (r^,^) € Sjc x SLsfc,
i = 1,... ,n with the TI in counterclockwise order, and with gi -^ 9i-\-i- As
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remarked in the proof of Theorem 3, part (1), w(^) = 1 if n = 1 or if n = 2.
It is not hard to see that there are no examples with n = 3, so we will
calculate ^(7) in the cases where n = 4.

We distinguish two cases (see figure 3). Indeed, after composition with
elements of SL»2 k (on which w is trivial) we can assume that pi = id and
that 7 is supported (case (a)) in the lower-right quarter circle from (0, -1)
to (1,0) (in rectilinear coordinates), or (case (b)) in the exterior of the
upper-right quarter circle from (1,0) to (0,1). In case (b), we also assume
that the angle from r^ to r^+i is less than TT. In the calculations, we will
refer to the notations in the figure.

Recalling Lemma 7 and the definition of w in the previous section,
it is evident that our task is to translate strings of x^a,s into Steinberg
symbols. The three unit formula of J. Morita [Mor], applied to fields, is
exactly what is needed for the cases we consider. We recall the statement
(in the case of a field):

THEOREM 9 (see Morita [Mor], Theorem 3). — Let t, u, v C k* and set
A = u -h v — t. Then we have

X^a{A) X±a{-^/u) X^a(Au/v) X^a(v/tu) X^a(-At/v) X±a{^/t)

= { t / v ^ u } ' { t ^ - v } - l e K ^ k ) .

We now apply the three unit formula to calculate:

COROLLARY 10.

(a) Let 7 € spio as in case (a). Then xt = yz and

,.M»{i-^}.x_ y_
y ' z

(b) Let 7 e spio as in case (b). Then ab = a/3 < 1 and

w(7)={l-a6,a/3}.

Consequently^ the image of w is the subgroup of K^(k) generated by
symbols {5, t} where at least one ofs,t, is positive.
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7 = id

case (a)

(1^) '(1^)

case (b)

(-l,a)
— 7 = id

?-1)

(-l,a)

(/^-l)

Figure 3. Notation for Corollary 10 — application
of the Morita formula — cases (a) and (b)

Proof. — We prove the corollary for case (a), a similar computation
establishes case (b). Note first that

92=0^^ g,=e^-y~\

Thus

^3(1, x) = (i, z), ^3(1, y) = Q/A, y)
and so since ^3 preserves area, xt = yz . We now calculate

1 0-
Pi =

/1 - a a/x \ ( 1 - r r/2/
^3=(_^ i+J. P^[,ry 1+r). -C-;; î )ry 1 + r,

with <7, r € fc. Recalling now that

/ !-<? g/s \ _ / _,
I -qs l + q ) ~ - a a -a1

)• -(/, i)
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we see that

W(^) = Xa(t~1 - y~1) X-a{y) Xa(T/y) X-a(-V) X-a(x)

Xa((T/x) X-a{-x} X-a{x - z)

== X-a(-z) Xa(t~1 - y~1) X-a(y) Xa(r/y) X-a{x - y) Xa((T/x)

and, since we know a priori that w(^/) € K^(k)^ we can apply the three unit
formula. One calculates, in the notation above, that

A = -z, -1/u = t~1 - y~1, Au/v = y, v/tu = r/y

and then finds

A==-z , u = t y / ( t - y ) , v = - z 2 / ( z - x ) , t = z(y - x ) / ( z - x).

Now the three unit formula gives

^^^.J^Ll.J^-^^Ll-1

I z z — x ) I z — x z — x )

and it suffices to apply bilinearity and the identity {—5,5} = 1 several
times to arrive at the stated result.

In the examples below, we need to calculate the value of w for germs
with only four singular rays, but not, necessarily in the form of case (a)
or (b). This is done (see (b) of figure below) by pre- and post-composing
the germ in question with affine transformations, on which w vanishes.

4. Examples for function fields.

The purpose of this section is to give some of the details in the
calculations in Corollaries 5 and 6, and to show why the relations obtained
hold in J<2 of fields of functions. In fact, for each corollary we will provide
a family of examples which contains a generic point (in the sense that the
values of the relevant variables are algebraically independent); thus the
result at this point lifts to a result for the field of functions of the family.

It is then of interest to look at how the geometry of singular points of
the family is reflected in the value of the tame symbol at such points.

4.1. Corollary 6; twists oflV-gons and torsion.

Consider figure 4 next page, showing a regular TV-gon, inscribed in a
circle of radius R, twisting by an angle of 27T/N — 20 in a regular TV-gon
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inscribed in a circle of radius A; the transformation leaves the exterior of
the larger N-gon fixed. We note that such examples exist for an open set
of values of A, R, (f) and thus the relation of Theorem 3, part (3) holds in
the function field of rational functions in variables A, 7?cos(</)), sin(0) with
coefficients in Q with cos(27r/W), sin(27r/7V) adjoined.

(A,0)

Figure 4. Twisting N-gon

Note that the figure has TV-fold rotational symmetry; thus the value of
Dg at points A(cos(27rA;/W), sm(27rk/N)) is independent of k, and likewise
at points R(cos((f) + 2 ^ k / N ) , sin(0 4- l^k/N)). In fact, the calculations
show that

Dg(A,0) = { l - x / y , y } 2 , Dg(Rcos(/),Rsm(l)) ={l-ab,a}2

where x^ y , a, b are as given in the statement of Corollary 6 which explains
the exponent 27V in the statement; we only get N for N even because of
considerations involving the fact that — Id is in the centre of SLa M.

The "twists" of Corollary 6 can be considered as involutions defined
on an open subset of the variety of pairs of regular TV-gons centered at
the origin. An involution on the variety of pairs of triangles in the plane
provides the transformation from which Corollary 6 is calculated.

4.2. Corollary 5; triangle reciprocity.

Richard Kenyon encouraged the author to consider this family of
examples, and Michel Brion and Jacques Helmstetter made very helpful
suggestions which lead to the (more-or-less) reasonable statement of the
corollary.
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We consider, as in the statement of the corollary triangles r\s1,
i = 0,1,2 where we impose the circular order 0 < l , l < 2 , 2 < 0 o n
the i. Let r^ (resp. s^) be the j'-th barycentric coordinate of r^ with respect
to (^s1,^2) (resp. for the ^). We recall that the matrices (s^-),(rp are
inverse.

Now (see figure 5) there is an open set of s^, r^ so that the indicated
areas are positive, and we search for an SPLc transformation ^, fixing the
outside of triangle s'1. Such a transformation is completely described by a
new triangle p1 so that (see figure 5)

area(Ap) = area(Ar), area(J) = area(Z'), . . . , area(yJ) = a^ea(yJ/).

Figure 5

The areas of the regions in question are (up to a multiple of the area of
triangle s'1 or r'1) the barycentric coordinates r|, s\ and with a little algebra
one arrives at the following necessary and sufficient conditions on the p1:

^ ___ ^ ^^ ___ y.̂ J ^ 1 ^ ___ y.Z , ..i

Pz ~ ' ti Pj Pi ~ ' j ' i ? Pj ' Pk ~ ' j ' ' k'

This leads a quadratic problem, for which the r^ is one (trivial) solution
(that is p = id is a SPLc transformation as required), the other being

p l j = r ^ j~^ ^=^+ A ' x<^\,i \.j

where

A - yJy.2 0 1 0 2
Z-\ — ^2r0rl — rQr2rl•>

Xi = rir^ + r^ + r^f, i ̂  j + k,
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and where we note as well the helpful relation (recall the circular order
0 < 1, 1 < 2, 2 < O):

A=r}^-r^z, i < j .

Using coordinates with respect to the points sk, we proceed to
calculate the Dg{sk). In the notation of case (a) of the corollary to Morita's
formula we find (for s2 for example) x = -r§/r?, y = -r^/r^, z = -p^/p^
and finally:

^^-^N}'
the product of these gives the left hand side of the relation of the corollary.

In order to calculate the value of Dg at the points r\ which is easier
in coordinates with respect to these points, let (a? be the inverse of the
matrix p^. One finds that

a^ = 5} + det(s}) —» a{ = '̂ - det(^) —. % < j;
Xi Xi

Xk = ̂ ^y (4^ + ̂  + 4^), i+ j ̂  k',

^det^)^-^5 i<r-

and so that, in the notation of case (b) of the corollary, at the point r2

(for example) we have a = -s?/s§, b = —s^/s^, (3 = —ff^/a\; one calculates:

sH s^Xi
^)={l-%-2-}-1 S^ -̂ ^Y^s!^ ^iXj

The product of these terms gives the right-hand side of the equation in
Corollary 5.

5. Conjecture in PZ geometry.

The investigations in this paper are partially motivated by one of
a collection of "rigidity" conjectures in PZ geometry. To explain the
conjecture, we recall some aspects of this geometry (see [G2]; especially
conjecture after Theorem 2.4), which is, in effect, area-preserving pi
geometry over Z.
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We fix attention on Z2 C R2, and define A to be the group of affine
transformations of the form

v i—> Av + 6, v e R2, A e SL2 Z, 6 € Z2.

An integral line is a line passing through at least two points in Z2, a polygon
is a polygon whose vertices are in Z2; these notions are preserved by the
group A.

A homeomorphism between (the closures of the interiors of) two
polygons g : P —> Q is PZ if there is a finite set of integral line i\,..., £n
such that the restriction of g to any connected component of P — ]_[ ti is
in A. We denote by PZ(P) (resp. PZ(P, 9) the set of PZ homeomorphisms
of the polygon P (resp. the set of PZ homeomorphisms of P which fix the
boundary pointwise).

A weak form of the conjecture in [G2] is:

CONJECTURE 1. — Let T be the triangle with vertices (0,0), (1,0),
(0,1). ThenPZ(r,<9)={id}.

(On the other hand, if P is the polygon with vertices (0,0), (2,0),
(1,1), (0,1) then PZ(P<9) contains a copy of Z.)

Some other conjectures are that PZ(P) is finitely presented for any
polygon P, and that given a genus g , and a positive integer TV, the number
of PZ surfaces (that is, 2-manifolds whose charts are PZ) of genus g with
area less than N is finite. Richard Kenyon has constructed a PZ sphere of
area 1 — is there more than one with this area?

To state the conjecture related to this paper a little more notation is
required. Let

L^={(a/TV,&/7v); ((a,6),7v)=l}.

It is not hard to show that the L^v, n > 1, are the orbits of the action
of A on Q2. Let GN be the group of germs of PZ homeomorphisms
at the point (1,1 / N ) , and let A^y be its abelianization. Then if g is a
PZ homeomorphism, and v 6 LN there is a well defined "derivative"
Dg(y) € AN.

Let PZc be the union, over all polygons P, of the groups PZ(P, 9).
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CONJECTURE 2. — Let g e PZc. Then ̂ Dg(v) = 0, where the sum
is over all v € LN and the equation is in the group A^y.

As it happens this conjecture is a consequence of the conjecture
of[G2].

Notice that the proof of Theorem 3 does not apply.
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