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ON INDEX THEOREMS FOR LINEAR
ORDINARY DIFFERENTIAL OPERATORS

by M. LODAY-RICHAUD and G. POURCIN

d71 d71"1 d
Let D = dn —,— +0^-1 ———T + • • • +ai — +ao be a linear differentialdx71 d.r72-1 dx

operator with analytic coefficients in the neighborhood of the origin in C
(in short, D a differential operator).

In [M74] (see also [K71]), B. Malgrange proved that D has an index
as a linear operator both in the vector space C[[x}} of formal power series
at the origin, and in the subspace C{x} of the convergent ones. The values
of the corresponding indices are also given. Recall that an endomorphism
D: E —^ E of a vector space E has an index if it has finite dimensional
kernel and cokernel, the index being then defined by

^(D, £") = dim ker-D — dim cokerD.

Later, J.-P. Ramis [R84] proved similar results in the spaces C[[a*]]s of
power series of Gevrey order s and the subspaces C[[a;]]s^+ and C[[a;]]s^-
of those series of type greater or smaller than (7, for all positive s and C.
Recall

w}s = U w^c,
00

w}^ = n wkc+.,
£>0

W}^C- = U W^C-e
£>0

Key words: Linear ordinary differential operator — Index — Gevrey series — Multisum-
mability.
Math. classification: 34A20 - 34A30 - 34E05 - 55N30.
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where

W}s,c = { ̂  anxn € C[[x]] I 3K > 0, Vn > 0, |aJ < ̂ (n!)^5}.
n^O

Their method relies on functional analysis, mainly limits of Banach spaces
and compact perturbations of operators.

Next, P. Deligne suggested in a letter to J.-P. Ramis (see [D86])
to describe singular points -here the origin 0- of differential operators by
means of a suitable space equipped with a sheaf which take into account the
exponential rate of growth and decay of solutions in each direction around 0.
A somewhat close viewpoint has already been used by B. Malgrange and
J.-P. Ramis [MR92] to build a theory of multisummability fitting to formal
solutions of linear ordinary differential equations and by J.-P. Ramis in his
wild TTi theory towards the Riemann problem.

In this paper, we investigate the sheaf of Deligne with an application
to index theorems for D acting on spaces of sections of this sheaf over
various sets. Our method relies on homological algebra. We first show that
index theorems over small sets, small discs and narrow sectors, follow easily
from normal form considerations. Over large sets, we prove index theorems
using suitable Mayer-Vietoris sequences. This latter technique depends on
an isomorphism theorem for D acting on cohomology groups H1 and H2.
The proof of such an isomorphism theorem (Theorems 2.1 and 4.2) is a
central part of this paper.

We obtain, in particular, the index theorems by B. Malgrange
and J.-P. Ramis mentioned above and index theorems in the spaces of
multisummable series. Moreover, we relate these indices to the singular big
points (Definition 2.11) ofD {cf. Tables 3.1 and 4.1).

Aknowledgments. We wish to thank J.-P. Ramis for many conversa-
tions on the subject.
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7. Appendix
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1. Preliminaries.

In this section we recall some definitions and basic results of the local
theory of linear differential equations. A reader familiar to this theory should
begin at Section 2. Mostly we adopt the notations of [Mal] and [MR92].

We fix

d71 d71-1 d
D-an^^an-l-dxr^+''^al~dx^ao

a linear differential operator with analytic coefficients in the neighborhood
of the origin in C.

It is quite often more convenient to consider differential systems
instead of differential equations. Recall that the correspondence between
systems and equations is meromorphic: to an equation corresponds its
companion system; conversely, any system dY/ dx = AY can be put in a
companion form by means of a meromorphic transformation Y \—> MY,
M C GL(n,C{x}[^}) {cf. [R78], Th. 1.6.16 for instance). We shall use both
viewpoints and denote by A a system meromorphically equivalent to the
companion system of D.

Formal invariants.

To the differential system AY = 0 there is a normal form, a
fundamental solution matrix of which reads

^Q(l/.)

where L is a constant n x ?7-matrix and Q = diag(^i,... ,9^) is diagonal
with diagonal entries q\,..., qn which are polynomials in a fractional power
\/t = rr"1^ of x without constant term. Moreover, one can choose L and Q
simultaneously decomposed into a direct sum of diagonal blocks

L=(^L^ and Q=@Q^

such that the q^s occuring in a same block are either all zero or all of the
same degree (see [BJL79], Thm I). Though the normal form is not unique,
the qj 's and the blocks of a Jordan form of L are uniquely determined up to
a permutation. They thus provide a complete set of formal (meromorphic)
invariants.

The smallest possible p is the degree of ramification of A and D. The
case when p = 1 is said the unramified case', the case when p > 1, the
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ramified case. The qj's are called the determining polynomials of A or of D.
The degrees of the non zero ones with respect to 1/x are levels of A and D.
The levels are positive integers in the unramified case and positive rational
numbers in the ramified case. They are precisely the positive slopes of the
Newton polygon N(D) of D (see [R78], I.I). We denote them by

k\ < k^ < • • • < ky.

By convention, if a qj is the null polynomial, we say that it has degree
fco = 0. Notice that we consider here the degrees of the qj's themselves and
not the degrees of the (qj — q^'s for any pair qj ^ q^ like it has to be done
sometimes.

To the edge of slope kj of N(D) there is a ^-characteristic polynomial
and there is a one-to-one correspondence between ^-characteristic roots
and determining polynomials of level kj. More precisely, to each kj-
characteristic root a with multiplicity m there are m determining
polynomials q of the form (see [R78])

'©'-^f1^^'))-j X ^ J

\a\
The numbers c = — for the different ^-characteristic roots a are called

n/i

kj-characteristic constants.

Gevrey series spaces.

The spaces of series of Gevrey type are defined as C-linear subspaces
of C[[:r]], the space of formal power series in one variable x at the origin, as
follows: for s > 0 and C > 0,

W}s,c = { ̂ ^n € C[[x}} | 3K > 0, Vn > 0, |aJ < K^.YC^
n>0

W}s = |j C[[^,c; C[[x]}^ = n C[[^,c;
c>o c>o

W}^ - n C[[x}}^ C[[x}},- = \J C[[x}}^
£>0 £>0

C=<C[[x}}^-= \JC[[x}}^
s'>0

C[ML,c+ = r) C[[x}}s,c+e and C[{x}]^c- = U W}s,c-e.
£>0 £>0
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With these definitions, the equality C[[.r]]^_^ = C[[x}} holds.

For all s and C, D preserves the spaces C[[a;]]s, C[[a-]]s+, C^]],,-,
^[ML,c+ ? HNUc- and C. It does not preserve a space C[[.r]]s,c in general;
however, x^D does for a suitable m e N.

Asymptotics.

It is well known that formal solutions of the equation Dy = 0 are
related to actual analytic solutions through ordinary asymptotics (c/. [Was],
Main Asymptotic Existence Theorem) and that, to better understand this
relation, one must consider special kinds of asymptotics such as asymptotic
expansions of Gevrey type. The sheaves A, A(s), . . . , the definition of which
we recall below, are adequate to this purpose.

Making a real blow up of 0 in C, z.e., using polar coordinates (0, p) one
identifies C* to ]R/27rZ x ]0, +oo[ and one replaces 0 by S1 = R/27rZ x {0}.

With this identification, an open sector (with vertex at 0) in C is a set

S = [(0,p} | (9i < 0 < 6>2, 0 < p < e}.

An open interval I = ]0i, 0'z[ of S1 defines a germ of open sector in C. Let
|J| = 1̂  - Q^\ denote the length of I .

One defines on S1 the following sheaves (see [M95], [MR92], [Mal],
[R78]):

• A is the sheaf of germs of holomorphic functions having an
asymptotic expansion at 0: for all 0 e 51, a germ of A at 0 is defined
by a function / analytic on an open sector S = I x ]0,r[ with 6 C I and
satisfying the asymptotic condition

weN' î o ^(•^-E^h0-
a;GE n=0

• For all s > 0, A^. is the subsheaf of A made of germs having local
Gevrey asymptotics of order k = 1/s:

N-l

3K, C > 0, \/N G N, f(x) - ̂  anxn < K^Y^C1^8.
n=0

Necessarily, / = ^ dn^ belongs to C[[rr]]s.
n>o
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• A^ is the subsheaf of A made of flat germs, z.e., germs the
asymptotic expansion of which is 0.

• For all k > 0, A~ is the sheaf of germs of holomorphic functions
having local exponential growth of order at most k at 0:

3K>0, A > 0 , \f(x)\ <^exp-4

I

• For all k > 0, A~ is the sheaf of germs of holomorphic functions
having local exponential decay of order at least A; at 0:

3^>0, A > 0 , |/^)|<^exp--4

I

• We shall also use the sheaves A~ and A~ defined as follows.
For all k > 0, A~ is the subsheaf lim.4" £ of A~ : a germ / belongs to

£>0

AQ if 3 E containing OQ, 3 e > 0, 3 K and C > 0 such that

V^C S, |/(^| <^exp———.
j«z'

<-fc+
The definition of A~ is obtained by changing k in —A; and e in —£.

Given a sheaf morphism D: (j —^ (j we denote by So£(D, (j) and
Coker(D, jj) the corresponding kernel and cokernel sheaves. When H = A1'
denotes one of the sheaves above, we denote V^ instead of So£{D, A^). The
following equality holds:

( V^1 i!k<k^

^-fe = V^3^ i i k j < k < k j ^ ,

0 if ky < k.

For the convenience of the reader, we state below some of the by now
classical theorems which are central in our purpose. And we give references
for more details. We first consider the case of Gevrey conditions relative to
a given order k. Sections 2 and 3 are only concerned with this case.

From now, we use systematically the correspondence of notations

1 1
s=^ SJ=^'"
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Basic theorems: case of a given order k.

THEOREM OF BOREL-RITT (see [M95], Thm 1.1.4.1). — The sequence
of sheaves on S1

0 -^ A"0 — A -^ C[[x}} -^ 0

where T denotes the Taylor map at 0 and, by abuse, C[[x}} denotes the
constant sheaf with stalk C[[x}} is exact.

THEOREM OF CAUCHY-HEINE (see [M95], Thm 1.3.2.1.i and ii). — The
natural map

H^S^A^)—H^S^A)

is the null map.

Consequently,

H^S^A/A^) = C[[x}} and H^S^A^) = C[[x]]/C{x}.

THEOREM OF BOREL-RITT WITH GEVREY CONDITIONS (see [M95],
Thm 2.1.2.3, 2.1.3.U and 2.4.1.4). — The sequence of sheaves on S1

o-^-'-^^q^-o
is exact.

THEOREM OF RAMIS-SIBUYA (see [M95], Thm 2.1.4.2, Cor. 2.1.4.3 and
2.1.4.4). — For all k > 0, the natural map

j^1^"')^^1^1,^)

is the null map.

Consequently,

H^S^A^/A^") = H^S^A/A^") = C[[x}},,

H\Sl,A<~k)=C[[x}^/C{x}.
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MAIN ASYMPTOTIC EXISTENCE THEOREM (see [Mal], Append. 1,
Th. 1). — The sequences of sheaves on S1

0 ̂  V^ — A"0 -^ A"0 -^ 0

and, for all k ̂  0,

O^V^^A^^A^^O

are exact.

Note however that the map A -D-^ A is not onto in general.

The Theorem of Borel-Ritt and the previous statement imply the
Main Asymptotic Existence Theorem in its classical and its Gevrey forms
(see [Was], [MR92] section 4 ii):

Given f e C[[x}} {resp. C[[x]]s) such that Df = 0 and 6 e S1 there
exist an open sector V = I x ]0,r[ with 0 e I and a function f e A(V)
(resp. f e A^{V)) such that

Tf = / and Df = 0 on V.

Moreover, it is always possible to choose I bisected by 6 and of length

i^r-i"y

MALGRANGE LEMMA (see [Mal], Lemme 5.3).

Forallk>0, ^(S1^^) =0.

We shall use the weaker following form of this lemma:

Forallk>0, ^^l(51,^<fc~) = 0.

We further consider the case of Gevrey conditions relative to an
order k and a type c. Sections 4 and 5 are concerned with this case.
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Basic theorems: case of a given type c.

One can define the sheaves A~ ° and A~ ° as follows:

• a germ of A~ ' c at 0o is an / € A^ satisfying the condition

3 S = I x ]0, r[ an open sector with OQ € J, 3 ̂  > 0 and ̂  > 0 such
that,

Va;eE, |/(a.)|^exp——^;
I

<^_^ ^-(~ <^_^

• a germ of A~ ' at OQ is an / e A^ satisfying the condition

3S = J x ]0,r[ an open sector with 0o e J, 3s: > 0 and JC > 0 such
that,

va;eS, |/(a:)| ^^exp-0^—.

The basic theorems above can be extended in the following form:

PROPOSITION 1.1. — For all k > 0 and c > 0, one has :

(i) the sequence of sheaves

O^A^ ̂ A^_ —^C[[<^_ -0

where T is the Taylor map, is exact;

(ii) for all k > 0, the natural map

^l,^-fc•c+)^l(51,^_)
is the null map;

(iii) (Main Asymptotic Existence Theorem with a given type) for all
k > 0, the sequences of sheaves

0 -. v^ -^ A^~ -^ A^' -. 0,

0 -. y^ -^ A^ -^ A^ -. 0,

are exact;

(iv) Hl(Sl,A<sk'':~)=0.
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Proof.

(i) and (ii) are obtained by an easy adaptation of the proofs of
their analogs in the ordinary Gevrey case which can be found for instance
in [M95].

(iii) To prove the surjectivity of D in the first sequence let / be a
germ of A~ '° at OQ. Let e > 0 and the sector E containing the direction 0o
satisfy, for some constant K,

VrreS, |/(^)|<^exp——^
\x\

There exists S' C S, S' containing 0o^ such that

c-^e -^e
Vrr € I/, fix) exp - -.————r < K exp —2-v / {xe-^Y ~ 1^

which proves that f(x) exp — -,——4 belongs to A~ . Let
- - v / (XG~ ° } °

c-\e _ c-\e
D\ = exp — -——4 ., D exp -——^—.,(xe-^^ (xe-'1'90^

c-\e
be the operator conjugated to D by exp — -———r. The Main Asymptotic

(rce'"^0)^

Existence Theorem in A~ applied to D^ and f(x) exp — -———L: at ^o(^e"1170)-
.<-k , , , , . . . . .̂  c-kprovides a germ ^ e A^ such that D\g(x) = f{x} exp — -—_^ ^ . The

germ h = ^exp -—_^ belongs to A^ > c and satisfies Dh = /.

To prove the surjectivity of D in the second sequence, consider
<-k c+.<-k,c+

'QO
f € A~ ' and suppose that £, S and J<T satisfy

C -\- £
Va-€S, \f{x)\^Kexp-——.

\x\

Then, there exist S' C S, S' containing 0, and K ' > 0 such that

c + 3 ^ ^-e
V.z;€S', /(a;) exp————,: <^/exp-^-.:v / (^e-^o)^ ~ ^A ;
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0

which proves that / exp -—_j belongs to A^ ' E . The previous result

applied to this germ and to the adjoint operator

- c+ ^e c+ ^eD^ = exp -————r D exp - -————
(xe''160^ {xe''100)^

o

of D provides a o € A" > £ such that D^q(x) = ffaQexp -——^—r. The-3 QO ^ \ / ^ \ / i- (o-e"^0)^
0

germ h = g exp — -——2—, belongs to A" > c and satisfies Dh = f.
\XQ~ ° ) °

(iv) The nullity of H1^1^' ) is proved in [Mal], Lemme 5.3. An
adaption of this proof gives the nullity of H1 (51, A~ >c ). D

Irregularity after Deligne-Malgrange and Gevrey index theorems.

Recall that an endomorphism D: E —> E of a vector space E has an
index if it has finite dimensional kernel ker(D, E) and cokernel coker(Z), -E),
the index being then the number

\(D, E) = dim ker(D, E) - dim coker(D, E).

The index of D is thus the Euler characteristic of the complex

... — , 0 — > 0 — > E -^E—>0—>0—>"•

where D is placed in degree 0 (or even).

In [M74], B.Malgrange defines the irregularity irro(-D) of D at 0 as
being the index of D in the quotient space C[[a;]]/C{.r}. He proves that D
has an index both in C[[a;]] and in C{o*}, implying thus, that

irro(D) =x(^C[[^]])-x(^CM).

He also gives a value of these indices in terms of the coefficients of D.
The proof in C[[x}} is elementary computational. The proof in C{x} is
based on functional analysis using limits of Banach spaces and compact
perturbations of operators.

Another, more algebraic proof, of these facts is due to B. Malgrange
and P. Deligne (see [M79] and [D77], see also [BV89]). We add this proof in
the Appendix. The analog with asymptotic conditions of exponential type
provides index theorems in Gevrey series spaces. No use of these proofs is
made in the following.
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2. The sheaf of Deligne T.

For the local study of a differential operator D at 0 when 0 is a
singularity of D^ it is not sufficient to endow C with the sheaf of germs of
holomorphic functions. In an unpublished letter to J.-P. Ramis (see [D86]),
P. Deligne suggests to replace {0} by a closed disc X and to endow X with
a suitable sheaf, allowing to take into account the rate of growth or decay
of the solutions of D in each direction around 0. Moreover, the set of global
sections of this sheaf on X is isomorphic to C{x}^ that is, to the stalk at 0
of the sheaf of germs of holomorphic functions in C.

We introduce such a sheaf step by step considering first all possible
exponential orders of growth and decay (sheaf .77), then all possible types
relative to a given order (sheaves J:'k) and, finally, types relative to
finitely many orders (sheaves F^). To each step, will correspond new
index theorems. Considering the types relative to infinitely many orders is
not relevant here.

The closed disc X .
The space X is the topological space obtained by compactifying C

with a circle: it is the union of C and S1 x]0, +00] where C* and S1 x]0, +oo[
are identified via polar coordinates.

NOTATIONS. — For all k > 0, we denote by B(0, k) the open disc of
radius k centered at 0 in X and by B(0, k) its closure. We write (A/, k") to
denote an interval either open or closed at each endpoint.

The sheaf T over X .

The sheaf F is the sheaf corresponding to the presheaf F defined by
the following conditions:

• for all k > 0, ^(B(0, k)) = C[[x]], (recall s = 1/fc);

• for all interval / of S1 and all k ' , k " , 0 < k ' < k " ,

^Ix}kf^ff[)=HO(I^A<kf/A<~kff)^
J ^ ( I x } k f , o o } ) = H O ( I , A ' k f ) .

The Theorem of Borel-Ritt makes the definition consistent.

The sheaf T is a sheaf of C-algebras. Its stalk FQ at 0 is C. In
restriction to a circle S1 x {fe}, it is the quotient

;_ A^" / A^"''"1"

^\Slx{k}=A I A
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Moreover, the Theorems of Cauchy-Heine and of Ramis-Sibuya imply the
following equalities:

H°(X^)=C{x}^

\/k=s~1 >0, H°(B(0,k),:F) =C[[x]],+,

VA;=s-1 >0, H°(B(0,k),:F) =C[[x}},-.

With F we shall prove, in particular, index theorems of D in the
spaces C, C[[a;]]s+, C[[.r]]g- and C{x}.

A typical section of the sheaf T : exp q ( — } .
\x/

The definition set of the exponential function exp q ( — ) as a section

of F when deg q = k is an integer is likely the open shadowed subset in
Figure 2.1.

The disc B(0, k) is partitioned into sectors: on one over two sectors
exp q equals 0, on the others expg is undefined. The support of exp q is
precisely the intersection of its definition set with X \ £?(0, k). The closure
of the arcs of S1 x {k} limiting the sectors where exp q vanishes are the
singular big points of q (cf. Definitions 2.11 and 2.12). The singular big
points of the determining polynomials of D will play a central role with
respect to the indices of D.

Figure 2.1. (Here k = 4)

ASSUMPTION 2.1. — From now and without further mention, we make
the following assumptions:

1) Sectors (resp. annuli) are subsets ofX of the form I x [A;', A/') (resp.
S1 x [A/, A/')), z.e., they are closed on the lower edge.
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2) Multisectors are finite connected unions of a disc centered at 0
(either open or closed and possibly empty) and of sectors Tij = Ij x [k- A*"),
satisfying the conditions Jj+i C Ij and k^ < k'j^ < k'^ < k'^^ for all j.

3) Sectors are not multivalued. This implies for instance that,
when considering ( A ; i , . . . , A^)-multisectors (see Definition 2.11), we assume
k\ > ^ . Note that, most of the time, an argument of ramified covering
allows to fulfil this condition and even to assume that levels are integers.

The action of D on the cohomology of T.

The differential operator D induces a sheaf morphism on T and then
also on its cohomology groups. The remainder of this section is devoted to
the proof of the following result:

THEOREM 2.1. — The linear maps

D : H\U, :F) —> H\U, :F) for i > 1

are isomorphisms when U is a disc, a sector, a multisector or an annulus
{recall that sectors and annuli are supposed to satisfy Assumption 2.1).

The proof is organized as follows: using elementary homological
algebra and basic properties of the sheaf Coker^D^F) we reduce the
problem to the two conditions in Corollary 2.7. Next, we prove that these
two conditions are satisfied using coverings which are acyclic for So£(D, T\
Before we turn to the proof of Theorem 2.1, we show the existence of acyclic
coverings (Proposition 2.5) which are used in the proof.

• AcyclicityforSoe{D,:F).

We are now going to prove that the small discs and the narrow sectors
introduced in Definition 2.2 below are acyclic for So£(D^). The proof
is based on the existence over such sets of a sheaf isomorphism between
So£{D, :F) and Soi{D', :F) when D' is a normal form of D.

It is enlightening to notice the following facts about the sheaf
So£(D,:F).

In restriction to the circle S'1 x {+00} at infinity in X, the sheaf
So£(D, :F) is the sheaf V.

Because D: A~ —> A~ is onto for all k 7^ 0 the equality of sheaves
over S1

<^L.^ <_1.11 < ' k / <'—k^

So£(D,A^ IA^ )=V< /V^
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holds for all k ' , k " , 0 < k' < k" and also

So^A<k~/A^k+)=V<-k~/V<-k+.

Then, the restriction of<?o^(D, J") to a circle S'1 x {A}, when k -^ 0, satisfies

wrn ^ rv^'/v'-^1 if k,<k< k^
^'^^{v^/V-- if.^,,

where, by convention, ko = 0, A^+i = +00 and y^"^4-1 = Q. Moreover, it is
straightforward to prove that, for all interval I and all k ' ' , k " ,

HO(Ix}k\kff[^o£(D^))=HO(I^kf/V<~kff),

H°(I x ]A/,+oo],<S<D,.F)) == ^(J.V^).

DEFINITION 2.2.

• By small disc we mean a disc B centered at 0, either open or closed
and included in B(0, fci).

• By narrow sector we mean a sector I x [k^ k") contained in a sector
J x [0, +oo] where J is an open interval of length |J|= —.

r!iy

LEMMA 2.3. — Let U be a small disc or a narrow sector and D'
be a normal form of D. Then, the sheaves So£{D,!F) and <Sc^(D',.F) are
isomorphic on U \ {0}.

Notice that the isomorphism cannot hold at 0 in general since a
normal form is defined up to a meromorphic transformation.

Proof. — Up to a meromorphic transformation it is equivalent to
consider the case of a differential system A with a fundamental matrix of
formal solutions FY' where F € GL(n, C[[x]}) and where Y ' = ̂ L e^/^ is
a fundamental solution of a normal form A' satisfying the blocks condition
mentionned in Section 1 (Formal invariants).

In the case of a narrow sector U choose a determination of the
argument of x in Y ' and an asymptotic lift F of F to U. The map
Y ' \—^ FY' provides the followed isomorphism.

In the case of a small disc £/, locally, that is, on a narrow sector V
the previous isomorphism Y ' \-^ FY' holds. But now, the support of the ^th
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column as well in Y ' as in FY' is empty as soon as q^ ^ 0. Moreover, when
qn = 0, the ^th column F^ of F belongs to C^.r]]^ or, equivalently, defines

^ sl

a global section of ^rn over U. The map Y ' i—> FY' provides the followed
isomorphism.

For a proof of the fact that F^ belongs to C^.r]]^ when qe = 0<sl
we refer to [MR92], 4.iv: consider a covering U = {U\} of U by narrow
sectors where the intersection of any three sectors is {0}; and consider
asymptotic lifts F^ of F^. The abelian cocycle (-^x) + F^) being
made of isotropies of A' in flat exp(gj — q^) terms has entries in A" 1.
Each -F^ + F^ induces then a null section of ^n over U\ D £/A+I and/ p\ ^^
the F^ 's define a continuation of F to U.

Nota Bene. — Applying the isomorphism over ?7\{0} one sees that the
set H°(U \ {O},^^!),.?")) is made of the formal meromorphic solutions
of D. Consequently, the subset ^(U^Soi^D^)) is made of the formal
meromorphic solutions of D which can be continued at 0, that is, the
solutions belonging to C[[^]].

Actually, it is well known that the F^^s belong even to C[[a']]^ and
that ker(D,C[[a;]]) = ker(D,C[[a;]]sJ holds (see [MR92] 4.iv for instance).
The proof above in the sheaf T^ (Section 4) would give this result. D

COROLLARY 2.4.

(i) When I x [A;', k") is a narrow sector, the restriction map

H°(I x [A/,+oo],5o^D,.F)) —> H°(l x [^A//),5^(D,.F))

is onto.

(ii) When U is a small disc, H°(U, So£{D, ̂ )) = ker(D, C[[x]\).

Proof.

(i) Applying the previous isomorphism over I x [A/, +00] one can suppose
that D is a normal form in which case the assertion is clearly true.

(ii) For 5 > «i the equality ker(D, C[[a;]]5+) = ker(D, C[[x}}) holds. Then
assertion (ii) follows from the relation H°{B{0, ^),^) = C[[.r]]5+. D

Notations. — Given a sector £7, we denote by C771 the constant sheaf
with stalk C771 over £7; for A an open subset of U, we denote by J A '- A <-^ U
and ZU\A '.U\A^U the canonical inclusions.
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As usually, JA\ C771 denotes the constant sheaf with stalk C771 over A
continued by zero over U\A and ^(L^A)*^771 ̂ ne direct image of the sheaf C771

by the canonical inclusion ijj\A'

PROPOSITION 2.5 (Acyclicity). — Let U be a narrow sector or a small
disc. Then,

H1 (U, So£(D, :F)) =0 for i > 1.

Proof. — We note first that, given A an open subset of U not equal
to £7, the cohomology sequence corresponding to the short exact sequence
(see [Ive], Prop. 6.3)

0 /p<7Ti ^rn „' /F'771 n—^A!^ —^L —^{U\AY^ — ^ 0

implies that, when U \ A is connected, ^(U^JAI C771) = 0 and, when U \ A
is simply connected, ^(L^'A! C771) == 0.

Suppose now that U is small, z.e., either a small disc or a narrow
sector contained in B(0, A;i). Then, by Lemma 2.3, the sheaf So£(D^) is
isomorphic over U to a direct sum

c^ej^wv.s
where £ is a local system and it suffices to consider the case when no == 0.
The case of a narrow sector is trivial {E ^ C711 and U \ {0} is connected
and simply connected). In the case when U is a small disc, consider any
covering U = {U\} of U by closed narrow sectors all containing 0. For any
intersection N of U^s (and for the U\s themselves) H°{N, So£(D, :F)) = 0.
Hence the result.

Suppose further that U is a narrow sector not contained in B(0, /ci).
Then, in addition to solutions with moderate growth, Soi(D^ F) can contain
solutions of exponential type. Using Lemma 2.3 and splitting So£(D^)
into a direct sum, it suffices to consider the case of a sheaf S generated
by one exponential function exp q{ ̂ ) when its open set of definition A is
a proper subset of U. Let B denote the open, possibly empty, subset of U
where exp q{ ̂ ) vanishes.

Under the narrowness assumption U \ A is connected, U \ A and U \ B
are simply connected. The preliminary remark applied to the open subsets A
and B of U and the constant sheaf C implies that H'2(U^jB\Q = 0 and
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Stokes direction for exp q

/. ^ = the shadowed part
^•Nlj^pF^ k = deg q B = the lower right part

Figure 2.2

H ' ' ' ( U ^ J A \ Q = 0 for i > 1. The result follows then from the cohomology
sequence corresponding to the exact sequence of sheaves

Q-^JB\C——JA\C——5^0.
This ends the proof. D

• Proof of Theorem 2.1.
Consider the exact sequence of sheaves

(1) 0 -> So£(D, F} —> F -D-^ F -^ Coker(D, f) -^ 0

and split it into the two short exact sequences

(2) 0 -^ So£{D, F) —> F -D-^ Tm{D, F} -^ 0

and

(3) 0 -> Im(D, f} ——^ F —^ Coker{D, F} -> 0.

There correspond the long exact sequences of cohomology

(4) 0 ̂  H^U^So^D^)) —— H°(U,:F) -^ H°(U,Im(D^))

—6-^ H\U,Soe(D,:F)) —> H\U,:F) -D-^ H^U.Im^D^))

—> H2(U,So£(D,:F)) —> H^dJ^) -D^ ^(U.Tm^D,:?)} -. 0

and

(5) 0 -^ H°(U,Im{D,:F)) -^ H°(U,:F) —> HQ(U,Coker{D,:F)}

— H^U^Im^D^)) ̂  H\U,:F) — H^U.Coker^D^))

—> ̂ (^Zm^,^)) -l-> H2^:?) —> ^(U.Coker^D^)) -^ 0.

The lemma below gathers properties of the sheaf Coker(D, F).
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LEMMA 2.6.

(i) coker(D,C)=coker(i9,C[[a;]]).

(ii) The sheaf Coker{D^ f) has its support in {0}.

(iii) Let U C X. If 0 belongs to U then

H°(U,Coker{D,:F)) = coker(D,C[[^]]).

(iv) For all U C X the canonical map

H°(U,:F) —> H°(U,Coker(D,:F))

is onto.

(v) The natural maps

H^U.Imf.D^)) ——^H^U^)

H^U.Im^D^)) ——.H2^^)

are isomorphisms.

Proof.

(i) By exactness of the direct limit functor,

coker(D,C) = hm coker(D,C[[a;]]s).
s>0

It is then enough to prove that,

V5 ^ 5i, cokev(D,C[[x}}s) = coker(.D,C[[^]]).

More precisely, applying the Snake Lemma to D acting on each term of the
exact sequence 0 -> C[[x]]s -^ C[[x}] -> C^/C^]],, -> 0 it is enough to
prove that, for all s > 5i,

(a) ker^C^/q^L)^,

(b) coker(D,C[[^]]/C[[rc]],)=0.

For this, consider the Snake Lemma exact sequence corresponding
to D acting on each term of the exact sequence

0 - C[[x}},/C{x} — C[[x]]/C{x} -^ C[[x}]/C[[x]], -. 0.
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Equality (b) results trivially from the nullity ofcoker(D, C[[a;]]/C{a*})
(see [M74], Th. 1.4.1). It is proved in [MR92], 4.iv that, for s > si,
the natural map kei{D,C[[x}}s/C{x}) -> ker(D,C[[x]}/C{x}) is bijective.
Considering the long exact sequence corresponding to the short exact
sequence 0 —> V^"^ —> A^ k -D-^ A^ k —> 0 (Main Asymptotic Existence
Theorem) and the equality H1^1^^) = C[[x}}s/C{x} (Theorem of
Ramis-Sibuya) one sees that coker(D,C[[a:]]s/C{a;}) = 0. Hence (a).

(ii) results from the Main Asymptotic Existence Theorem.

(iii) Due to (ii), H°(U, Coker(D, :F)) is the stalk Coker(D, :F)o of the sheaf
Coker(D,f) at 0. Then the result follows from FQ = C and Assertion (i).

(iv) Since coker(P,C[[;r]]/C{.r}) = 0 (see [M74], Theoreme 1.4.1)),
coker(2^,C[[^]]) has representatives in C{x} hence in H0^^).

(v) In the sequence (5), since the support of Coker(D^F) is at most a
point, the terms ^(U.Coker^D^)) and ^(U.Coker^D.r)) are 0. The
assertion follows then from (iv). Q

Taking into account Lemma 2.6 in the sequences (4) and (5) we can
state:

COROLLARY 2.7. — The linear maps D : H^U^f) -^ H^U,:?), for
i = 1,2 are isomorphisms if and only if the following conditions are satisfied:

(i) the coboundary map 6 : H°(U^m(D,:F)) -^ H^U^So^D^)) is
onto;

(ii) H2(U,So^D,:F))=Q.

We are now going to check that conditions (i) and (ii) of Corollary 2.7
are satisfied.

. The coboundary map 6 :H° (£7, Im{D,:F))-^ H^U.So^D^)).

We prove here that 6 is a surjective map when U is a disc or a
multisector and when U is an annulus or a large sector.

PROPOSITION 2.8. — When U is a disc or a multisector the coboundary
map _ _

6 : H°(U,Im(D^)) — H^U.So^D^))
is onto.

Proof. — Let [/] be a cohomology class in H^(U,So^{D,:F))
and U = {^}Aez/AZ be a covering of U by closed narrow sectors
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U\ = I\ x [0, p\) all containing 0 and such that the intersection of any three
sectors is {0}. This covering being acyclic for Soi{D^\ the cohomology
class [/] can be represented as a 1-cocycle / = (/A,A+i) on U.

To prove the proposition it suffices to find a family g\ e HO(U\^J^),
X e Z/AZ, such that

(i) the local sections h\ = Dg\ patch into a global section h € H° (£/, .F);

(ii) the 1-cocycle {g\ — g^)(\^\ be cohomologous to the 1-cocycle / in
H^U.So^D^)).

We claim first that / is cohomologous to a 1-cocycle y? = (<^^^+i)
which is zero in restriction to {0}. Indeed, the restriction (/A,A+I|{O}) °f /
to {0} is a 1-cocycle of H^({Q},Soi{D,:F)) which is trivial. Then, there
exist series f\ solutions of D such that

/A,A+I|{O} = ~f\ + A+i V^-

Because of the narrowness of U\, the Main Asymptotic Existence Theorem
allows to lift /A into an element f\ of H°{IX x [0,+oo],<S^(D,^)) and, a
fortiori, of H°{U\,So£{D,:F)). The cocycle ̂  = (^A,A+i) defined by

^A,A+1 = A,A+1 + fx - A+l OH ^A,A+1

fullfils the claim.

Now, for all A, continue /A,A+I mto an element of

H°{lxnlx^i x [0,+oo],5o^D,.F))

(Corollary 2.4.1) and consider its restriction to I\ D JA+I x {+00}. This
provides a 1-cocycle ofJ^^JAL^0) and, afortiori, of ^({^L^0). By
the Cauchy-Heine Theorem, there exist g\ € H°{I\,A) such that

<^A,A+1 = -^A+PA+l-

Keep denoting g\ the element of H° (U\^F) naturally induced by g\ and
let h\ = Dg\. This achieves the proof. D

PROPOSITION 2.9. — When U is an annulus or a (possibly wide) sector
the coboundary map

S : H°(U,Im(D,:F)) — H^U.So^D^))

is onto.
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Proof. — We proceed like in the previous proof. The case when U is
a disc or a sector containing 0 has been proved there.

Suppose now U is an annulus S1 x [ k ' , k") and not a disc. Take a
2-finite covering U of U by narrow closed sectors U\ = I\ x [ k ' k " ) and
represent [/] as a 1-cocycle of H1 (U,SoC,{D,F)) (recall that 2-finite means
that the intersection of any three sectors is empty). The restriction of this
cocycle to (I\ x {+00}) defines a 1-cocycle of H1^1, A^' ). However, due
to Malgrange Lemma, H^^.A^' ) is trivial. Up to a refinement of U
this allows to write, for all A,

A,A+I = ~9\ + <7A+i

where gx e HQ(I^A<kl~) and then gx € H°(U^:F).

The case when U is a sector not containing 0 is similar. D

• Nullity of the second cohomology group H2^, So£(D^ F)).

PROPOSITION 2.10. — H2(U,So£{D,:F)) = 0 whenever U is a disc, a
multisector, a sector or an annulus.

Proof. — We already saw that small discs and narrow sectors are
acyclic for So£(D,:F).

When U is a sector, a multisector or an annulus not containing 0,
U admits a 2-finite covering U by small closed sectors. Trivially,
H^'^.So^D.F)) = 0 and the Theorem of Leray (see [God], Corollaire
du theoreme 5.2.4.) implies H2(U,Soe(D,F)) = 0.

When U is a disc or a multisector containing 0, take a covering U by
small closed sectors containing 0 which is 2-finite in restriction to U \ {0}.
The restriction to {0} of a 2-cocycle (f\^) of H2(U,So£(D,F)) is a 2-
cocycle of ^({O},^^^,!7')) which is trivial. There exist then formal
solutions (f\p,) of D such that

fx^iy = A^+^+^A on u\r\u^,nu^ \/\^.

Let f\^ be an asymptotic lift of f\^ on U\ D U^ (Main Asymptotic
Existence Theorem). Thus, (f\^) is the coboundary of the 1-cochain (/^)
of H^U.So^D,^)). This proves that H^^So^D,:?)) = 0 and the
Theorem of Leray implies that H2^, Soi{D, JF)) =0. D

This ends the proof of Theorem 2.1.
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Big points and some remarks.

Among the subsets of X naturally related to D important are big
points and multisectors built on them. They are defined as follows:

DEFINITION 2.11.

1) A k- big point in X is an arc I x {k} where the interval I is closed and
of length Tr/fc. It is said to support a polynomial q( — } = — r ( l + ofx'1^))\ x / x^
of degree k if it is centered at an anti-Stokes direction a of q. In the
unramified case (p G N), this means that a € S'1 is such that ae~^koi

is real negative. In the ramified case, we previously make a choice of a
determination of the argument on S1.

2) A ( A ; i , . . . , ky)-multisector is a multisector

v-i
U = B(0, k,) U |j (J, x [0, fc,+i[) U (J, x [0, +oo])

j'=i

where, for all j, Ij x {kj} is a A;j-big point. Notice that the intervals [0, kj^[
are chosen open in [0, +oo].

Like determining polynomials, singular big points of D will be
considered with multiplicity and they are formal invariants of D. Naturally,
in the ramified case, the multiplicity has to be counted with the same choice
of a determination of the argument for all the q^s and it does not depend
on such a choice.

DEFINITION 2.12. — A subset U of X is said generic for q if it contains
no big point supporting q. It is said generic for D if it is generic for all (non
zero) determining polynomial ^j, j = 1,. . . , v of -D. Otherwise, it is said
singular for q or for D.

• Let k = (A; i , . . . , ky) and U be a fc-multisector in X. A k-multisum
(/i? • • • 5 fv) °f a series / on (Ji,.. . , 1^) in the sense of [MR92], Def. 2.2,
induces an element of H° (U^). However, HQ(U^J::) is possibly larger
than the space of the series which are ^-multisummable on (Ji , . . . ,J^)
since, as an element of ^(U',.?7), / is only required to belong to C[[a*]]^+,

<- fe~ , i 1

not to C[[;c]]si, and, the f^s are required to belong to A / A 3 , not
to A/A~ J+l. We shall see in Section 5 which set U and which sheaf
correspond to fc-multisummable series on (7 i , . . . , I y ) .
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• The wild monodromy group of D relative to a formal fundamental
solution Fx1' e^ {cf. Section 1) in the sense of Ramis wild TTI is the
monodromy group denned as follows: fix a base point XQ close to 0 in X;
consider the C-vector subspace E of (^co)71 generated by the columns
of F and let loops act on E by "wild analytic continuation". This means
continuation as sections of (.F)71 along a set made of all the big points
centered on the loop, in other words, continuation by fc-multisums. The
wild monodromy group of D is generated by the actions of the loops turning
once around appropriate big points including 0. The appropriate big points
are not the singular big points of D but are precisely the singular big points
of the differential operator End-D. For more detail on how these actions are
related to the Stokes multipliers of D we refer to [L-R94], Thm III.2.14.

• We turn to acyclicity for Sot{D^ F\

Using the Main Asymptotic Existence Theorem we have proved that
small discs and narrow sectors are acyclic for So£(D,y). This result is not
the sharpest one but is sufficient for the application to index theorems we
have in mind.

Actually, it will result from our index theorems and assuming the
unicity of ^-multisums of solutions over generic ^-multisectors (cf. [MR92])
that generic ^-multisectors are acyclic for Soi(D^). It will also result
(cf. Theorem 3.1 and Proposition 3.9) that singular big points are not
acyclic for Soi{D^F) in general. More precisely, when U is a big point,
Jfl(£/,<?^(D,.F)) = j({^ | qe is supported by U}. We call this quantity the
multiplicity of U with respect to -D.

3. Application to index theorems of D.

In this section we apply the preceding properties of the sheaf F to
prove index theorems of D acting in the spaces H°(U^) when U is a
disc, a sector, a multisector or an annulus satisfying Assumption 2.1. This
includes the case of arcs, z.e., of closed sectors I x {k} of height 0 and, in
particular, of big points (c/. Definition 2.11).

The computation of the indices is done as follows: we compute first
the indices of D in the case of small discs and narrow sectors where the
computation is easy especially because of the isomorphism in Lemma 2.3.
Then, we deduce the case of general U from suitable Mayer-Vietoris
sequences using the isomorphism in Theorem 2.1.
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THEOREM 3.1 (General Index Theorem). — Let U be a disc, a sector,
a multisector or an annulus satisfying Assumption 2.1. Then, D has an
index in H°(U, F) given by

X{D,H°(U^)) =dlmHO(U,Soe(D,:F))-d[mHl(U,Soe{D,:F))

- dim H° (U, Coker(D, :F)).
Recall that

H°(U,Coker(D^)=i0 if ° i u-
v / lcoker(D,C[[a;]]) if 0 € U.

Proof. — Applying Propositions 2.8 and 2.9 and Lemma 2.6 (iv) to
the sequences (4) and (5) we obtain the exact sequences

0 -^ H°(U,So£(D,:F)) —— H°{U,:F) -^ H°{U,Im{D,:F))

-^H^U.So^D^))-^^

0 -^ H°(U,Im{D,:F)) -^ H°{U,:F) —— H°(U,Coker(D,:F)) -^ 0.

The spaces H°{U, So£(D, :F)) and H1^, So£(D, :F)) are finite dimen-
sional (cf. Proposition 2.5). Moreover, ^(U.Coker^D^)) is either equal
to coker(D,C[[a;]]) or to 0 depending on whether 0 belongs to U or not
(Lemma 2.6 (ii) and (iii)). Hence the result. D

The remainder of this section is devoted to computing these indices
in terms of the formal invariants of D, namely, in terms of the singular big
points of D.

Recall that k^ < k^ < - • • < ky denote the levels of D.
We begin by the case of small U\

PROPOSITION 3.2 (Index over small open discs). — Let

k = 1 < A;i = -^
s «i

and let U = B(0, k) be the open disc of radius k centered at 0. Then,

H°(U^)=C[[x}}^ and x(D^C[[x}}^) = x(D,C[[x}}).
Moreover,

ker^.C^^+y^^^^^D.^^ker^.C^]]),

coker(D,C[[rr]],+) = H°(U,Coker(D,:F)) = coker(D,C[[a;]]).
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Proof. — In this ca^e, H^U.So^D^)) = 0 (Proposition 2.5). The
two sequences in the proof of the previous theorem merge into the exact
sequence:

Q^H^U^So^D^^H^U^^^H^U.^^H^U^Coke^^^

II II
(6) W]^ C[[x}}^

Moreover,

H°(U^o£(D^)) = ker(D,C[[^]]) (Lemma 2.3),

H°(U,Coker(D,:F)) = coker(D,C[[.r]]) (Lemma 2.6 (iii)). D

Similarly, considering small closed discs we can state:

PROPOSITION 3.3 (Index over small closed discs). — Let

k = - < ki = —
S 5i

and let U = J3(0, k) be the closed disc of radius k centered at 0. Then,

H°{U^)=C[[x^- and x(^C[[rr]],-) = x(D,C[[x]]).
Moreover,

ker(D,C[[rr]L-) = H°(U,So£(D^)) = ker(D,C[[^]]),

coker(^C[[^]],_) = H°(U^Coker{D^:F)) = coker(D,C[[.r]]).

Recall that the computation of ^(D,C[[a;]]) can be found in [M74].
A direct identification method provides the dimensions of the kernel and
the cokernel. The value of the index is up to sign the lower ordinate of
points on the Newton polygon of D.

Recall also that a k- big point in X is an arc I x {k} where the interval I
is closed of length TT/A;. It is a singular big point of D if it supports a non
zero determining polynomial of D (cf. Definition 2.11).

PROPOSITION 3.4 (Index over narrow sectors). — Let U = I x [A-', fc"),
k' > 0, be a narrow sector and D/ a normal form ofD. Then,

x(D,HO(U,:F))=dlmHO{U,So£(Df,:F)).
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More precisely^

x(D^HO(U^))=^{j\degq,<kf}
+ jj{j | degqj e [A/, k") and expqj is flat on 1}

=HJ I deg^- <kf}
+ ^{singular k-big points ofD

overlapping U on both sides}.

By convention, q == 0 has degree ko = 0. In the ramified case, in
order that this latter expression make sense, we assume that a choice of
a determination of the argument of x has been done. The result does not
depend on such a choice.

Proof. — In this case again ^(U.So^D^)) = 0. Moreover,
H^dJ.Coker^D.F)) = 0 (Lemma 2.6 (ii)) and So£(D,:F) is isomorphic
to Soi{D',r) (Lemma 2.3). Then, Theorem 3.1 implies the first equality.
The second one is obtained by counting the non zero solutions living on
all of U. 0

We further deduce the index of D for large U from the previous
"local" ones using the following technique of Mayer-Vietoris sequences.

LEMMA 3.5 (Mayer-Vietoris Technique). — Let U = £/i U U^ where
U\^UCl are either open or closed subsets ofU.

IfD is an isomorphism in H^U^f), H^U^f), H^U^F} and in
H^U^ H U^F) for i> 1 and if D has an index in HQ{U^J::),HQ(U'2,:F)
and in H°(U^ U U^ 7} then it has an index in H°{U, T} satisfying

X(D^H°(U^)) =x^°(^)) +x(A^°(^))
-x{D,H°(u,nu^:F)).

Proof. — Write the Mayer-Vietoris sequence of cohomology (see [Ive],
Prop. 5.3 and 5.4):

O^H°{U^)-^ (3) H^U^^^H^U^U^F}
A=l,2

^H\U^)-^ Q) H\U^^^H\U^U^^
A=l,2

^H\U^)-^ (9 H^u^^—H^u.nu^^-.o.
A=l,2

And apply the additivity of the Euler characteristic. D
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The lemma below will also be useful to achieve the ramified case.

Consider a second copy Xt, ^t,... of X , ^ F , . . . where the variable
is t and denote by D* = TT*D (resp. D^ = TT*P') the pull back of D (resp.
of D ' ) by the p-fold ramified covering TT : Xt —> X, t \—> x = tp.

LEMMA 3.6 (Ramification). — Let U be a narrow sector not
containing 0. Then Dt has an index on Tr"1^) satisfying

x(Dt,HO{7^-l(U),^t))=px(D,HO(U,^).

Proof. — In this cose, \(D, H°(U, F)) = dim H°(U, Soi{D1', F)). The
inverse image 7^~1(U) of U being made of the disjoint union of p narrow
sectors U"1 for % = 1,... ,p,

X^.H^Tr-^U),^)) = J^dimH^U^So^,^)).
i=l

The result follows from the fact that TT induces an isomorphism between
So£(Dft,J^t)\^Ji and So£(D/^)\^ for all i (choose a determination of the
argument of a*). D

PROPOSITION 3.7 (Index over annuli). — Let 0 < k' < k ' 1 < +00 and
let U = S1 x [A/, fc") be an annulus. Then,

X{D,H°(U^)) = ^ -k^{i\^gq,=k,}
kj^k1^')

= —^{singular big points of D in U
counted with multiplicity}.

In particular, when U is generic, \(D,H°(U,^F)) = 0 and, when
U = S1 x [k,-\-oo], then 2\(D,H°(U,:F)) is the variation of the function
O^dimV^.

Proof. — Let U = {U\}\^/\^ be a 2-finite covering of U by narrow
sectors. The Mayer-Vietoris technique applied recursively to the U\s
(Lemma 3.5) gives

(7) x{D,H°(U,^)= ^ {x{D,H°(U^^)
Aez/AZ -x[D,H\U^U^,F))}.
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There are as many U\^s and U\ D I/A+I'S. Then, when U is generic, %.e.,
when no level of D belongs to [A;', A/'), trivially, Proposition 3.4 implies
X(D^H°(U^))=0.

When a unique level k = kj belongs to [fc', A/') the computation is
a little more involved: suppose for the moment that kj is an integer and
consider the singular big points Ai for % = 1,... ,fcj of a determining
polynomial q^ of degree kj. For each A^, consider the non empty
intervals I\^ = U\ H Ai. The exponential function exp^ is flat on one
more I\^ D JA+M than I\^. It thus contributes —1 to the value of the index
at each of the kj singular big points. Hence the result.

T '
If, now, kj = -7-, the Ramification Lemma 3.6 and the Formula (7)

above imply that

x(D\HO{7^-l(U)^))=px{D^HO(U^)).

The annulus Tr"1^) is r-singular for D1' for the unique level r = rj. The
previous computation applies to Dt'. The number of singular big points
of Dt in 7^~1{U) is p times the number of singular big points of D in U.
Recall that, in the ramified case, the singular big points are counted in a
given sheet of the Riemann surface of the logarithm. Hence the result.

The general case results from Theorem 2.1 and Lemma 3.5 applied
recursively to a suitable union of annuli of the previous types. D

Similarly, writing any disc as a suitable union of a disc and of annuli,
Propositions 3.2 or 3.3 and 3.7 imply the following statement.

COROLLARY 3.8 (Index over discs). — Let 0 < k = - < +00 and let Us
be a disc either open or closed of radius k. Then,

( C{x} ifU=X,

H°(U .U = c[[x}}s+ if u = JB(0? ̂  ° + k + +oc5

C[[x}},- if U = .0(0, k), 0 i- k + +00,
I C if U= {0},

and

\{D, HQ(U, :F)) = \{D, C[[x}}) - ({singular big points ofD in U
counted with multiplicity}.
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The function s \—> ^(D, C[[a:]]5+) is piecewise constant, increasing and
upper semicontinuous; it satisfies

{ x(D,C{x}) ifs<s^,
x{D,C[[x}}^) = x(D,C[[x}}^) ifs, < s < ̂ _i for j = ̂ ... ,2,

x{D,C[[x]}) ifs^s,
and the discontinuities are given by

x(D,C[[x}]^) -x(D,C[[x}}^) = k^{£ | degq, = k,}.
" j + l '

The function s i—^ ^(D, C[[a;]]g-) is piecewise constant^ increasing and
lower semicontinuous: it satisfies

x{D^C{x}) ifs <: 5^,
x{D^C[[x}],-) = { x{D^C[[x}],- ) its, < s ^ ̂ -i for j = ^ . . . ,2 ,j-i

.x(D^C[[x}}) ifsi< s.

Moreover, x{D, C[[x}},- ) = x(D, C[[x}},+) fo r j=^ . . . , 2 and then,
"j-i

X{D, C[[x}}s-) = x(D, C[[x]}s+) whenever s + s^..., Sy.

Recall that k\ < ' • ' < ky are the levels of D and that 5i = — ^ " " >
ki

Symmetric of the
Newton polygon of D s^x(D,C[[x}]^)

Figure 3.1

s^x{D,C[[x}],-

PROPOSITION 3.9 (Index over big points). — Let k > 0 and let U be a
k-big point I x {k} or a sector closely neighboring it. Let mult^(?7) denote
the multiplicity of U as a singular big point of D. Then,

X(D,H°(U^)) = HJ | degg, < k} -multp(£/).

In particular, when U is generic, ̂ (D, H°(U, F)) = (t { j \ deg qj < k}.
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Proof. — We proceed like in Proposition 3.7. Suppose first that k is
an integer. To the covering U = {^}A=I,..,A there is the equality

x(D,H\U,y))=^^D\H\U^^)-^^D/,HO(U,nU^,^).
A=l A=l

There is one more U\ than U\ D £/A+I and then, each exp<^ of
degree < k contributes +1 to the value of the index; hence the term
t({ j | degqj < k}. For the second term we only have to count the
determining exponentials of level k which are flat on each I\ and I\ D JA+I
(recall the notations Ux = I\ x {k} or U\ = JA x W.k")). Now, if an
exponential of level k is not supported by U, it is flat on as many I\s and
I\ H JA+I'S. The balance is 0. Differently, if it is supported by U it is flat on
one more I\ D JA+I than I\. Hence the result.

The case when k is rational is proved like in Proposition 3.7. D

At last, writing a ( A ; i , . . . , A^)-multisector as a suitable union of a disc
and of A;j-sectors, j = 1,... , ̂ , we prove:

COROLLARY 3.10 (Index over multisectors). — Let k = ( f c i , . . . ,k^)
and let U be a k-multisector. Then, D has an index in H°(U, f) satisfying

X(D, HQ(U,.?)) = ^(D, C[[x}}) - ft {singular big points ofD in U
counted with multiplicity}.

In particular, when U is generic, \{D, H°(U, F)) = \{D, C[[.r]]).

We leave to the reader the formulation of the index of D over an
arbitrary sector or multisector.

We list the values of the previous indices in the Table 3.1 next page.

We end this section by noticing that, because Lemma 3.6 is true for
small discs and narrow sectors, it is also true for all the U considered above
and we can state:

PROPOSITION 3.11. — Let U be a, disc, a sector, an annulus or a
multisector in X. With the notations of Lemma 3.6, Dt has an index over
Tr"1^) satisfying

x(Dt,HO{7^-l(U),^))=px(D,HO(U,J^)).
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U CX

In general

Small disc

Narrow sector

£/=Jx[A/,A/')

fc-big point

Annulus

Disc, Multisector

l-adex^(D,H°(U,:F))

dimH°(U,Soe(D,:F)) - dimH^U^o^D,^))
-dimH°(U,Coker(D,:F))

x(D,C[[x}})

dimH°{U,Soe(D,:F)) = t{j | deg<?j < k ' }
+jj{singular big points of .D overlapping t7on both sides}

t({j degqj < k} - multn^)

—({singular big points of D in U}

\{D, C[[a;]]) - ̂ singular big points of D in U}

Table 3.1

Note. — All singular big points are counted with multiplicity.

4. The sheaf ̂ k and its application to index theorems of D.

In this section, we introduce a topological space X1^ and a sheaf ̂
over X^ which takes into account the exponential types of growth and
decay corresponding to a given exponential order k. Then, applying the
technique developed in Section 3, we prove index theorems in this space.
In particular, we obtain the index theorems in the Gevrey series spaces
C[[x}}^ C[[x}}^± and C[[x}}^ due to J.-P. Ramis.

The spaces Xk.

Let k > 0 and V^ be a copy of the annulus S1 x ]0, +oo[.

The space X1^ is the topological space obtained from X by substituting
the "closed" annulus F^ = 5'1 x [0,+oo] to the circle S'1 x {k}. More
precisely, one identifies, on one side, the boundary S1 x {k} of the open
disk B(0, k) of X to the boundary S1 x {0} of Y , and, on the other side,
the boundary S1 x {4-00} of F^ to the boundary 5'1 x {k} of X \ B(0, k).

As a topological space, the space X1^ is isomorphic to X. However,
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the forthcoming definition of the presheaf Fk over an open U depends on
whether the open U is outside the annulus V^, inside V^ or across any of
the two boundary circles of Y k .

Let (0, {k,p}) denote the polar coordinates in V^ and TT^ '.X1^ —> X
denote the canonical surjection.

For all k' > 0, we call open disc of radius k' in X^, and we keep
denoting B(Q,k'), the inverse image ^^(B^O.k')) of the open disc of
radius k ' centered at 0 in X. For c G [0, +oo], we call open disc (resp. closed
disc) of "radius" {k, c} the union ofB(0, k) and of6'1 x [0, c[ (resp. S1 x [0, c]).
The definition of a sector I x ]A/, {k, c}[, and so on ... is similar.

Open discs and open sectors form a basis of open sets in X^.

The sheaf ̂  over X\

Let k > 0. The sheaf ^ corresponds to the presheaf Fk defined as
follows:

• inside X^, let ̂  = F\

• inside V^, define

^ (I x }{k, c'}, {k, c"}[) = H° (I , A^'/A^^);

• across the boundary of Yk patch these two definitions by setting

yk(Ix}k',{k,c}[)=HO{I,A^/A<~k•c+),

^(Jx]{fc,c},^[) = ̂ {I^^/A^").

Proposition 1.1 (i) makes this definition consistent.

The sheaf Fk is a sheaf of C{a-}-modules and no more a sheaf of
C-algebras. In restriction to the circles S'1 x {k, c}, 0 < c < +oo, it satisfies

,<fc- . ,<-/c1 A- /A if c = 0,
T-fc , .<k,c~ , ,<-fe,c+J~ \slx{k,c}= A~ J A ~ i f 0 < c < + o o ,

<k , ,<-fe+
A / A ii c = +oo.

Moreover, Proposition 1.1 (i) (ii) implies the equalities

(C[[x]}^ i f c = 0 ,
^°(B(0,{A;,c}),^) = ̂  C[[x}}^^ if 0 < c < + o o ,

[c[[rr]](,) if c=+oo,
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r C[[x]], if c = 0,
H°(B^{A;,c}),^) = ^ C[^]]^)- if 0 < c < +00,

I W},- if c = +00,

and if I is an interval of S1

( H ^ I ^ A / A ^ ) i f c = 0 ,
^°(Jx[0,{A:,c}],^)= ^^<-^ ^^^

l^Z,^/^^) if c=+oo.

With ̂  we shall prove, in particular, index theorems of D in the
spaces C[[^]],, C[[^]](,), C[[^]^i/,)+ and C[[x}]^/^-.

NOTATIONS. — Similarly to the notations in Sections 2 and 3, we
denote by B(0, {fc, c}) the open disc in Xk centered at 0, union of the disc
B(0, k) and of the annulus S1 x [{k, 0}, {k, c}[ and we denote by B(0, {k, c})
its closure.

Recall that we denote by (0, {fc, p}) the polar coordinates in F^.

A typical section of the sheaf ̂ : expg(^) when degq = fc.

The definition set of the exponential function expq(-^ as a section
~- \ x /

of T when deg ̂  = k is an integer is likely the open shadowed subset in
Figure 4.1.

Figure 4.1 (Here k = 4)

Sectors are now replaced by petals. The complement of the support is
likely a daisy and exp q equals 0 on one petal over two. The closure of the
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pieces of petals in V^ where exp q vanishes are the singular big points of q
in X^. Like in the case of (X,^) they will play a central role with respect
to the indices of D.

ASSUMPTION 4.1. — Prom now and without further mention we
assume that sectors and multisectors in (X^,^) satisfy conditions similar
to those of Assumption 2.1 in (X, F).

DEFINITION 4.1.

1) A k- big point in X1^ is the closure of a connected component of
Ae^ —the set where an exponential function exp——,—, A > 0 vanishes in Yk.x

(1 \ A e10 / 1 \It is then said to support the polynomials q — ) = — —,— + o ( —, ) . Wex / x \ x /
also consider the limit case when A tends to 0 and, in the ramified case, we
choose a determination a of the argument a.

A fc-big point has a polar equation in V^ of the form

p<Acos(fc(a-0)) , k{a-0) € [- ^7r+2^7r, ^7r4-2^7r], i € Z.

When k1 ̂  k we define k'-big points in Xk like in X (Definition 2.11).
2) The top point a = (a, {k, A}) e V^ of a A;-big point supporting q

is called a k-anti- Stokes point of q. We denote by sing^^) the set of all
A;-anti-Stokes points of q. If degg 7^ k then sing^^) = 0.

3) A subset U of Xk is said generic for q if it contains no big point
supporting q. It is said generic for D if it is generic for all (non zero)
determining polynomial q^; for j = 1,... ,^ of D. Otherwise, it is said
singular for q or for D.

The action ofD on the cohomology of ̂ k.
The differential operator D induces a sheaf morphism on ^ and

then also on its cohomology groups. The statements in Section 2 have
their analogs in (Xk,J^k)', in particular, the following isomorphism theorem
holds:

THEOREM 4.2. — The linear maps

D : H\U, ̂ ) — H\U, F^ for i > 1
are isomorphisms when U is a disc, a sector, a multisector or an annulus
(satisfying Assumption 4.1).



1414 M. LODAY-RICHAUD AND G. POURCIN

The proofs are similar to those in Section 2 by changing, when
necessary, the basic theorems relative to a given order by Proposition 1.1
relative to a given type. We only point out some specificity.

• To prove that narrow sectors are acyclic for So^D^^) (cf.
Proposition 2.5) Figure 2.2 has to be changed into Figure 4.2; however,
again, U \ A is connected, U \A and U \ B are simply connected.

M

, <»,,̂ ::B:Bi:::,».aii.;S;:::;i:5S:;:5y'k /'^ir^
k'

Figure 4.2

• To prove that the coboundary map

^:^°(£/,Zm(D,^)) ——H^U^o^D^^)

is onto when U is an annulus or a sector not containing 0 we require the
triviality of ^(S1^^'' ) if c G ]0,+oo[ (Proposition 1.1 (iv)) and
the triviality of H^^S^^A' ) if c = +00 (Malgrange Lemma).

Index theorems for D in (X^^).

The General Index Theorem (Theorem 3.1) has its analog in (X^, J:k)'.

THEOREM 4.3 (General Index Theorem in (X^,^)). — Let U1^ be a
disc, a sector, a multisector or an annulus satisfying Assumption 4.1. Then,
D has an index in ̂ (L^, ̂ k) given by

x{D,HQ(Uk,:Fk)} =dlmHO(Uk,So£(D,:Fk))-d[mHl{Uk,So£(D,:Fk))

-d\mHQ(Uk,Coker(D,:Fk))

where r ,
H^,Coker(D,J-^=(0 i fo^'

v ' [coker(£»,C[[a;]]) i fOe^.

Moreover, Theorem 4.2 implies that the Mayer-Vietoris Technique is
valid in (X1',^) allowing thus to deduce index theorems over large discs,
sectors, ..., from index theorems over small discs and narrow sectors like
•m(X,J-).
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Over small discs, here, discs of radius less than k and k\, the sheaf ^k

is f'. Over narrow sectors, the analog of Proposition 3.4 holds:

PROPOSITION 4.4 (Index over narrow sectors of X^). — Let U1^ be a
narrow sector in Xk and D' be a normal form of D. Then,

x{D,HQ(Uk,:Fk)) = dim^^^D',^)).

However, the computation of (^mHQ(Uk,So^DI^,^)) when ̂  == I x
[K^ {A;, c}) and c is a ̂ -characteristic constant ofD requires some attention:
let S be the subsheaf of Fk generated by one exp qn with deg qe = k and
suppose that a singular point a € smgk(q^) (c/. Definition 4.1) belongs to
the interior of the boundary arc I x {A;, c} as shown in Figure 4.3.

{^}

Notice that, because of the narrowness of J, such a singular point
is necessarily unique. Then, Uk \ B has one connected component when
a € Uk (case Uk closed for instance) and two when a ^ Uk. If, in addition,
we assume that Vk is very narrow (|J| < 7r/2A^) then, we can state:

LEMMA 4.5. — Under the preceding conditions

dim^(^)={1 ̂ -^^
[2 if U k = Ix [ k ' , { k , c } [ .

This phenomenon does not occur when c is not a ^-characteristic
constant of D.

We now formulate the values of the indices of D corresponding to
large V^''.
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PROPOSITION 4.6 (Index over annuli ofX^).— Let Uk = Slx [K1, K " )
be an annulus in Xk.

(i) Let 0 < c' < c" < +GX) and K ' = {k, c'}, K" = {k, c"}. Then,

x(D^HO(Uk^k))=-^{Uknsmgk{q,)}
£=1

= —^k-anti-Stokes points ofD in U1^
counted with multiplicity}.

(ii) For general K ' and K " ,

x(^^°(^,^))
== "It U {sin^a^ k-big points in [/fc with multiplicity}

k^k
— ^{k-anti-Stokes points in Uk with multiplicity}.

PROPOSITION 4.7 (Index over discs of X^). — Let Uk be a disc of
radius K in X1^.

(i) LetK = {k,c}. Then,

'W]^ if^=B(0,{A;,0}),

C[[x}], if^=B(0,{A;,0}),

H^^ ^) = < W^W^ if uk = ̂  ̂  c})' 0 + c^ +oc^
W]^/c)- if ̂  = 5(0, {A, c}), 0 ̂  c ̂  +00,
C[[x]]^ if^=B(0,{A;,+oo}),

.C[[^]],- if^==B(0,{/c,+oo}),

and

x{D^HO(Uk^k))=x{D,C[[x}}^)
— ^{singular k-big points of Din Uk with multiplicity}

=x{D^C[[x}})
— ^{singular big points of Din Uk with multiplicity}.

In particular,

. x{D,C[[x}}^)=x(D,C[[x}],)

= x{D, G^s^/o)^ when c is small;
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• x(D^[[x]}s^l /c)+) = x(D,C[[x]]s^i/c~)-) when c is not a k-charac-
teristic constant of D;

. x(D,C[[x]]^)=^D,C[[x}},-)

=x{D,C[[x}]^/c)±) when c is large.

The function C = - ^ x(JD5(C[[^]L,c+) is increasing and upper
semicontinuous.

The function C = - ^ ^(^^[[a;]]^-) is increasing and lower
semicontinuous.

(ii) Let K < k or K > k and let U = ̂ (U^ denote the disc of
radius K induced by Uk in X. Then,

X(A^W^)) =x(D,H°(U^)).

PROPOSITION 4.8 (Index over fc-big points). — Let ̂  be a k-big point
and L^ be the smallest closed sector containing U. Let multj^L^) denote
the multiplicity ofUk as a singular k-big point ofD in X1^. Then,

x{D,H\Uk^k)}=x{D,H\Uk^k)}

= jt {j | degqj <k}- mult^^).
In particular, when U1^ is generic,

^D.H0^,^)) = ̂ {j | degq, < k}.

We end this section extending Lemma 4.5 to various arcs and
summarizing the results in Figure 4.4.

J)

Figure 4.4

The petals are those of a determining exponential exp q^. The number
beside each arc represents the contribution of exp qn to the value of the
index.
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jjk ^^k

In general

Small disc

fc-big point

Annulus

Disc, Multisector

Index ̂ (D,^0^,^))

dim^^U^So^D,^)) - dim^^.So^D,^))

-dim^^.Coker^D,^))

x(D^C[[x}])

Hj\degqj<k}-mM\tD{Uk)

— J J U {singular k-b'ig points in L^}
k^k

—({fc-anti-Stokes points m L^}

\{D, C[[x}}) - jj {singular big points of D in L^}

Table 4.1

Note. — All singular big points are counted with multiplicity.

5. The sheaf.^-, multisummability and index theorems of D.

In this section, we denote by k a multi-index k = ( f c i , . . . , k y ) satisfying

0 < fci < fc2 < • • • < ky < +00.

Repeating at A ; i , . . . , ky the construction made from (X,F) at k to
build (X^, ̂ 'fc) gives rise to a topological space X^ and to a sheaf F^ which
takes into account the exponential types of growth and decay corresponding
to the finitely many exponential orders A ; i , . . . , ky.

Gathering in (X^,^) the local properties of the sheaves (X^,^)
for k = k\,..., ky we are now able to formulate the ^-multisummability
condition in the sense of [MR92] in terms of sections of ̂  over multisectors
mX^.

DEFINITION 5.1. — A k-multisector U in X^ is a finite union
i/

l/=B(0,{fci,0})u(J(J,x[0,{fe,+i,0}])
j=i

where, for j = 1,..., v, Ij is a closed interval of length \Ij\ = v / k j and
II D • • • D I y .
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By convention, {A^-(-I,O} = +00.

Notice that a multisector U in X^ is a closed subset of X^.

The definition of k-big points in X1^ is the obvious one.

With the previous definition and the same notations one has the
following correspondence:

PROPOSITION 5.2. — Let U be a k-multisector in X^. Then, H°(U, ̂ fc)
is the space of the series which are k-multisummable on (Ji , . . . , I y ) in the
sense of[MR92], Def. 2.2.

Moreover, the previous properties of ^ can be brought to F^.
Thus, using again the technique of Mayer-Vietoris sequences developed in
Sections 3 and 4, we are able to prove index theorems in H°(U, F^) when U
is a disc, a multisector, an annulus, a sector or a big point. Let formulate
the following one:

THEOREM 5.3. — Let U be a k-multisector in X^. Then, D has an
index in the space of multisummable series H°(U, F^-) and

X^D.H^U,^))
= ^(D,C[[a;]]) — ^{singular big points ofD in U with multiplicity}

In particular, ifU is generic, i.e., ifU contains no singular big point of D,
then

x(D,HO{U,yk))=x(D,C[[x}}).

This result shows in particular that, in case a Stokes multiplier of D
vanishes, the cokernel of D increases as much as the kernel. It shows that
generic fc-multisectors are acyclic for Soi(D,F). Compare to Theorem 3.1
and Theorem 4.3.

We end in noticing that the index formulae stated in Sections 3, 4
and 5 prove that all the indices considered here are, modulo ^(-D,C[[a;]]),
formal meromorphic invariants of D.



1420 M. LODAY-RICHAUD AND G. POURCIN

6. Conclusion.

Using a general procedure we have stated index theorems for a
differential operator D over large sets from index theorems over small ones
in the spaces (X,.?), (X^,^) and (X^,^).

The index of D over a small disc centered at 0 is proved to be its index
in the space of formal power series C[[.r]] and this latter index has been
computed by B. Malgrange in [M74]. Over a small sector, the index of D
is the index of a normal form D' of D and equals the number of solutions
of D' denned on all of the sector.

The procedure applied over discs in the space (X^) provides, in
particular, the index of D in the spaces C[[rc]]5+, C[[a:]]s- and C{.r}.
The index in C{x} has already received (at least) two proofs, one quite
different and based on functional analysis by B. Malgrange (see [M74])
and another one by P. Deligne and B. Malgrange (cf. Appendix) which is
somewhat similar to ours. The indices in C[[a:]]s+ and C[[.r]]s-, although
not explicitely formulated by J.-P. Ramis in [R84], are an easy consequence
of the index theorems in Gevrey spaces stated there.

The procedure applied over discs in the spaces (X^,^) provides, in
particular, the index of D in the spaces C[[^]]s, C[[a;]](s), C[[.r]]s,(i/c)+,
C[[rc]]^(i/c)-. These indices are those stated by J.-P. Ramis in [R84]
using the quite different approach of functional analysis initiated by
B. Malgrange in [M74]. Let us mention that a differential operator D
does not have an index in C[[;r]]^i/c in general. Take, for instance, the

Euler operator D == x2— — 1. It is an operator in C[[a']]i i and the series
dx '

^ (n — 1)!^^ for 0 < a < 1 generate an infinite dimensional subspace
n>l
of coker(D, C[[rr]]i,i). Thus, D does not have an index in C[[a;]]ij.

The procedure applied over fc-multisectors in the spaces (X^-,^)
where k = (A ; i , . . . ,A^) such that 0 < k\ < • - • < ky provides index
theorems for D acting in the spaces of ^-multisummable series.

The procedure has also been applied over annuli, large sectors and
multisectors and big points.

The values of these indices have been computed in terms of formal
meromorphic invariants of D and, especially, in terms of singular big
points of D.
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7. Appendix.

We give here the computation of the irregularity irro(D) after Deligne
(letter to Malgrange [D77]) and Malgrange ([M79]). See also [BV89], Prop.
3.3.1, 3.3.2 and 3.3.3.

PROPOSITION 7.1 (Deligne-Malgrange). — Let N(0) denote the
dimension of the stalk VQ° ofV^ at 0 e S1 and varTV denote the variation
of the function 0 ̂  N(0) on S1. Then,

(i) iTTo{D)=d[mHl{S\V<o),

(ii) dlmHl(S\V<o)= jvar^.

Proof.

(i) Writing the long exact sequence of cohomology corresponding to

0 ̂  ̂ <0 — A — A/A^ -^ 0

and using the Theorems of Borel-Ritt and Cauchy-Heine give an exact
diagram

0 -^ H°(S\A) — H^S^A/A^) —— H^S^A^) —— H^S^A)
II II \ /

C{x} C[[x}} 0

Therefore, H^S^A^) = C[[x}]/C{x}.

Then, the long exact sequence of cohomology

0 ̂  H^S1^0) — ^^1(51,A<0) -D^ H^S^A^) -^ 0

II II
W]/C{x} C[[x}]/C{x}

corresponding to the short exact sequence 0 —> V<o —^ A<o —D-^ A<o -^ 0
implies

ker(D,C[^]]/CM)=^l(51,V<o),

coker(D,C[[rK]]/C{^}) =0.

(ii) The computation of dim H1^1, V0) by P. Deligne relies on the fact
that V^0 is piecewise constant (discontinuities occur at the finitely many
Stokes directions) and that the function 0 ̂  N(0) is lower semicontinuous.



1422 M. LODAY-RICHAUD AND G. POURCIN

Let OL^ with £ e Z//^Z, denote the Stokes directions of D in a cyclic
order and let ^: {a^} ̂  S1 and ^: ]a^o^+i[ ̂  S'1 denote the natural
inclusions. The sequence

0 —^ (B^0 — v — (B^v0 — o^ ^
is an exact sequence of sheaves on S1. This implies in between the Euler
characteristics on S'1 the relation

^<")=^(^,V<0)+^v<o^
t

By definition, ^(V<°) = dimff0^1,^0) - dimfi-1^1,^0) and
H^S1^0) = 0. Then,

dimff1^1,^0) = -^(^,V<0) +^y<0)).
^

Moreover,

XO'^V^) = - dim^ l(^ l,^,V<o) (^o = o since the support
]o^, o^+i[ is not closed in S'1)

= -dim^Oa^a^+il,^0) (V^ is constant on ]a^a^+i[)

=-dim^° Va'ela^a^il
and

^(^V<°) = dimH^S^i^0) (H1 = 0 since the support
{c^} is reduced to one point)

=dimV^°.

Now, using the fact that T/^0 is locally isomorphic to the sheaf V^0 of flat
solutions of a normal form D/ of D (Main Asymptotic Existence Theorem)
its results that

dim V^ - dim V^° = dim V^° - dim V^°

and the claim follows from the fact that at any point a e 5'1, dim V^° is the
number of exponentials exp% which are flat at a. The \ coefficient comes
from the fact that an exponential exp^ increases dimV^0 - dimV^0

by one only when a^ is a Stokes direction of ^ such that exp^- be
flat on ]a^,a^+i[; thus, it contributes at only one over two of its Stokes
directions. Q
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Replacing ^<0 by A~~k, V^ by V^^ and so on and using the
Theorem of Ramis-Sibuya instead of the Theorem of Borel-Ritt give the
similar result with Gevrey conditions.

PROPOSITION 7.2. — Let N<~k(0) denote the dimension of the stalk
V^ of V^-^ at 6 € S1. Recall s = 1/k. Then, D has an index in
C[[x}}s/C{x} satisfying

x{D^C[[x}},/C{x})=dlmHl{S\V<~k) = ^varTV^.

Notice that, again, the function 0 i—^ N^1^^) is lower semicontinuous.
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