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DYNAMICS OF QUADRATIC POLYNOMIALS:
COMPLEX BOUNDS FOR REAL MAPS

by M. LYUBICH and M. YAMPOLSKY

1. INTRODUCTION

Complex a priori bounds proved to be a key analytic issue of the
Renormalization Theory. They lead to rigidity results, local connectivity
of Julia sets and the Mandelbrot set, and convergence of the renormalized
maps (see [HJ], [L2], [McMl], [McM2], [MS], [R], [S]). By definition, an
infinitely renormalizable map / has complex bounds if all its renorma-
lizations R^ f extend to quadratic-like maps with definite moduli of the
fundamental annuli. Sullivan established this property for real infinitely
renormalizable maps with bounded combinatorics (see [S] and [MS]). On
the other hand, it was shown in [LI], [L2] that the map fi71/ has a big
modulus provided the "essential period" pe(Rn~lf) (see §3 for the precise
definition) is big. Thus the gap between [S] and [L2] consists of quadratics of
"essentially bounded but unbounded type". Loosely speaking for such maps
the high renormalization periods are due to saddle-node behavior of the
return maps. The goal of this paper is to analyze this specific phenomenon.

Given a quadratic-like map /, denote by mod(/) the supremum of the
moduli of various fundamental annuli of /. We say that a real quadratic-
like map / is close to the cusp if it has an attracting fixed point with
the multiplier greater than ^ (one can replace ^ with 1 — e for a fixed
but otherwise arbitrary e > 0). Note that a renormalizable map has no
attracting fixed points and therefore is not close to the cusp.

Key words: One-dimensional dynamics - Renormalization - Quadratic polynomials -
Complex bounds - Local connectivity.
Math. classification: 58F03 - 58F23 - 30D05.
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THEOREM 1.1. — Let f : z \—> z2 + c, c € R, be any n times renor-
malizable real quadratic polynomial. Let

max pe(^7)<Pe.
l^fc^n—l

Then

mod^/) > p.(pe) > 0,

unless the last renormalization is of doubling type and ^f is close to
the cusp.

This fills the above mentioned gap:

COMPLEX BOUNDS THEOREM. — There exists a universal constant
ji > 0 with the following property. Let f be any n times renormalizable real
quadratic. Then

mod(Jr7) ^ ̂

unless the last renormalization is of doubling type and jR71/ is close to the
cusp. In particular, infinitely renormalizable real quadratics have universal
complex a priori bounds.

Let us mention here only one consequence of this result. By work
of Hu and Jiang [HJ], [J] and McMullen [McM2], "unbranched" complex
a priori bounds imply local connectivity of the Julia set J(f). (In §3 we
will give the definition of "unbranched" bounds and will show that this
property is indeed satisfied for real maps.) On the other hand, the Yoccoz
Theorem gives local connectivity of J(f) for at most finitely renormalizable
quadratic maps (see [H], [Ml]). Thus we have:

LOCAL CONNECTIVITY THEOREM. — The Julia set of any real
quadratic map z i—^ z2 + c, c € [—2, ^] , is locally connected.

The proof of Theorem 1.1 is closer to [S] rather than to [L2]. It turns
out, however, that Sullivan's Sector Lemma (see [MS]) is not valid for
essentially bounded (but unbounded) combinatorics; the pullback of the
plane with two slits is not necessarily contained in a definite sector. What
turns out to be true instead is that the little Julia sets J^^f) are contained
in a definite sector.

We will derive Theorem 1.1 from the following quadratic estimate for
the renormalizations (appropriately normalized):

(i.i) |jrv(^c|4
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with some c > 0 depending on the bound on the essential period. The main
technical point of this work is to prove (1.1). In particular, this estimate
implies that the diameters of the little Julia sets J(J?71/) shrink to zero (see
the discussion in §4), which already yields local connectivity of J{f) at the
critical point.

A quadratic-like map with a big modulus is close to a quadratic
polynomial which is one of the reasons why it is important to analyze when
the renormalizations have big moduli. It was proven in [L2] that mod(-R/)
is big if and only if / has a big essential period, which together with
Theorem 1.1 implies:

BIG SPACE CRITERION. — There is a universal constant 7 > 0 and two
functions ^(p) > v(p) > 7 > 0 tending to oo as p —^ oo with the following
property. For an n times renormalizable quadratic polynomial /,

^(pe(^-1/)) < mod(7r/) < ̂ (pe^-V)),

unless the n-th renormalization is of doubling type and R71/ is close to the
cusp.

Let us briefly outline the structure of the paper. The next section, §2,
contains some background and technical preliminaries. In §3 and §6 we
describe the essentially bounded combinatorics and the related saddle-node
phenomenon. In §4 we state the main technical lemmas, and derive from
them our results. In §5 we give a quite simple proof of complex bounds in the
case of bounded combinatorics, which will model the following argument.
The proofs of the main lemmas are given in the final section, §7.

Remarks:

1. The key estimates for the moduli for maps with essentially high
periods appeared in [LI], §4, while in [L2], §8, they were appropriately
refined and interpreted.

2. When Theorem 1.1 was proven the authors received a manuscript
by Levin and van Strien [LS] with an independent proof of the Complex
Bounds Theorem. The method of [LS] is quite different; instead of a detailed
combinatorial analysis it is based on specific numerical estimates for the
real geometry. It does not address the phenomenon of big space.

Also, the gap between [S] and [L2] was independently filled by Graczyk
and Swiatek [GS2]. The method of the latter work is specifically adopted to
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essentially bounded but unbounded combinatorics. Note also that a related
analysis of the big space phenomenon for real quadratics was independently
carried out in [GS1].

3. We were primarily concerned with the dynamics of quadratic maps,
so we will only briefly dwell on the higher degree case. By replacing 2 to d,
Theorem 1.1 extends to higher degree unimodal polynomials z ̂  zd^-c. On
the other hand, by an appropriate adjustment of logic (see §8 of [L2]), the
results of [L2] concerning a priori bounds also extend to the higher degree
case (the first author noticed this after receiving a manuscript [LS] where
the complex bounds for higher degree maps were proven in an essentially
different manner). Thus the whole above discussion except growing of ^(p)
is still valid for higher degrees.

4. All the above results will actually be proven for maps ofEpstein class
£\ (see §4). In this case the quadratic-like extension with a definite modulus
(independent of A) appears after skipping first N = N{\) renormalization
levels.

5. Unimodal maps with essentially bounded combinatorics studied
in this paper are closely related to critical circle maps. Indeed, high
combinatorics for circle maps is always associated to saddle-node behavior
(see [He]). Our method is well suited for the circle dynamics, and it
was transferred to that setting by the second author [Y], who proved
complex bounds for all critical circle maps. This complements the work of
de Faria [F] where complex bounds were established for circle maps with
bounded combinatorics.

Acknowledgments. — The authors thank the referee for careful
reading the manuscript and making many useful comments which led
to a cleaner exposition. We also thank MSRI where part of this paper was
written during the Hyperbolic Geometry and Dynamics spring term (1995)
for its hospitality. This work was supported in part by the Sloan Research
Fellowship and NSF grants DMS-8920768 (MSRI) and DMS-9022140.

2. PRELIMINARIES

2.1. General notations and terminology.

LetDy. = {z: \z\ <r}.

We use |J| for the length of an interval J, dist and diam for the
Euclidean distance and diameter in C. Notation [a, b] stands for the (closed)
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interval with endpoints a and b without specifying their order.

Two sets X in Y in C are called K-commensurable or simply
commensurable if

K~1 < diamX/diamY < K
with a constant K > 0 which may depend only on the specified
combinatorial bounds.

Given a univalent function (f) in a domain U C C, the distortion of (f)
is defined as sup^^ log \(j)'{z) / (f)'(C,)\.

We say that an annulus A has a definite modulus if mod A >_ 6 > 0,
where 6 may also depend only on the specified combinatorial bounds.

For a pair of intervals I C J we say that I is contained well inside
of J if for any of the components L of J \ I , \L\ > K\I\ where the constant
K > 0 may depend only on the specified quantifiers.

A smooth interval map /: I —> I is called unimodal if it has a single
critical point, and this point is an extremum. A C3 unimodal map is called
quasi-quadratic if it has negative Schwarzian derivative, and its critical
point is non-degenerate.

Given a unimodal map / and a point x € J, x ' will denote the
dynamically symmetric point, that is, such that fx' = fx. Notation
uj[z) = uJf(z) means as usual the limit set of the forward orbit {f^z}^^.

Set Qc(z) = z2 + c.

2.2. Hyperbolic disks.

Given an interval J C R, let Cj = C\(M\J) denote the plane slit
along two rays. Let Cj denote the completion of this domain in the path
metric in Cj (which means that we add to Cj the banks of the slits).

By symmetry, J is a hyperbolic geodesic in Cj. The geodesic
neighborhood of J of radius r is the set of all points in Cj whose hyperbolic
distance to J is less than r. It is easy to see that such a neighborhood is
the union of two M-symmetric segments of Euclidean disks based on J and
having angle 6 = 0(r) with R. We will denote this hyperbolic disk by De(J)
(see Figure 1). A particular example of a geodesic neighborhood of J is the
Euclidean disk D(J) = D^/^{J).

These hyperbolic neighborhoods were introduced into the subject by
Sullivan [S]. They are a key tool for getting complex bounds due to the
following version of the Schwarz Lemma:
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SCHWARZ LEMMA. — Let us consider two intervals J ' C R, J C R.
Let (f) : Cj —> Cjf be an analytic map such that (j){J) C J'. Then for any
^(O.TO.^D^cW').

Let J = [a,&], a < b. For a point ^ € Cj, the an^/e between z
and J, (2:, J) is the least of the angles between the intervals [a, z\^ [&, ^] and
the corresponding rays (-00, a], [b, +00) of the real line, measured in the
range 0 < 0 <, TT.

The following consequence of the Schwarz Lemma will provide us a
key to control the inverse branches expansion.

LEMMA 2.1. — Under the circumstances of the Schwarz Lemma,
assume that (j) admits a univalent extension (Cr,T) —^ (Cr^T'), where
both components ofT \ J have length 2p|J|. Let us consider a point z € Cj
such that (z, J ) > e. Then

dist(<^, J ' ) dist(^J)
—j1—<C^J^

for some constant C = (7(p, e).

Proof. — Let us normalize the situation in such a way: J = J ' = [0,1].
Since the space of univalent maps normalized at two points is compact (by
the Koebe Theorem), the statement is true if dist(^, J) < p. So assume that
dist(^, J ) > p.

W)

Figure 1

Observe that the smallest (closed) geodesic neighborhood clDe(J)
enclosing z satisfies: diamD^J) < C{e) dist(^, J ) (cf. Figure 1). Indeed, if
6 > ^e then diam-D^(J) < (7(e), which is fine since dist(z, J) > p.
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Otherwise the intervals [0, z] and [1, z] cut out segments of angle size
at least e on the appropriate circle arc of 9Do(J). Hence the lengths of these
intervals are commensurable with diamD^J) (with a constant depending
on e). On the other hand, these lengths are at most (1 + p-l)dist(^,J),
provided that dist(^, J) > p\J\.

Together with the Schwarz Lemma this yields:

dist((^,J') ^ dlam(De(Jf)) = diam(^(J)) < C(p,e)dist(^J),

and the claim follows. D

2.3. Square root.

In the next lemma we collect for further reference some elementary
properties of the square root map. Let (f){z) = ^/z be the branch of the
square root mapping the slit plane C \ R_ into itself.

LEMMA 2.2. — Let K > 1, 6 > 0, K~1 < a ^ K, T = [-a, I],
^=[0,1]. Then:

• (t){De{T) \ R-) C D e ' ( T ' ) , with 6' depending on 0 and K only.

• I f z ' C (f>D(T) \ D([-6,1 + 6]), then

(z^T") > e(6) > 0 and C(K,6)~1 < dist(^,T') < C(K,6).

LEMMA 2.3. — Let C e C, J = [a, b} C [0,+oo), C' = (f)(Q and
J ' = [ a / , b / } = ( t > J ' Then:

• Jfdist(C,J) >6\J\ then

dist^CQ , dist(J,Q-^——<C(6)——^—.

• Let 0 denote the angle between [^, a] and the ray of the real line
which does not contain J \ ?/ denote the angle between [C'?^7] ^d the
corresponding ray of the real line. If0< ^ TT then r ] ' > ^ TT.

(According to our convention, in the last statement we don't assume
that a < b.)
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2.4. Branched coverings.

Let 0 G U ' C U C C be two topological disks different from the
whole plane, and /: U' —> U be an analytic double branched covering map
with critical point at 0. Let B denote the space of such double branched
coverings.

For / e B, the filled Julia set K(f) is naturally defined as the set of
non-escaping points of /, K(f) = Q f^U, and the Julia set is defined

n>0
as its boundary, J(f) = 9K(f). These sets are not necessarily compact
and may change as the map is restricted to a smaller topological disk V
(such that this restriction is still a map of class B). The Julia set (and
the filled Julia set) are connected if and only if the critical point itself is
non-escaping, 0 G K(f).

If additionally cl U ' C U then the map / is called quadratic-like. If
the Julia set J(f) of a quadratic-like map is connected then it does not
change as the map is restricted to a smaller domain V (such that this
restriction is still quadratic-like), see [McM], Thm 5.11. Moreover, the Julia
set of a quadratic-like map is compact, and this is actually the criterion for
admitting a quadratic-like restriction:

LEMMA 2.4 (compare [McM2], Prop. 4.10). — Let U' C U be two
topological disks^ and f : V —»• U be a double branched covering with non-
escaping critical point and compact Julia set. Then there are topological
discs U D V D V D K(f) such that the restriction g : V —^ V is quadratic-
like. Moreover, ifmod(U \ K(f)) > e > 0 then mod(V \ V) ̂  6{e) > 0.

Proof. — Let us consider the topological annulus A = U \ K(g). Let
0: A —> R = {z: 1 < \z\ < r} be its uniformization by a round annulus. It
conjugates g to a map G: R' —>• R where R' is a subannulus of R with the
same inner boundary, unit circle S1. As G is proper near the unit circle, it
is continuously extended to it, and then can be reflected to the symmetric
annulus. We obtain a double covering map G: R' —> R of the symmetric
annuli preserving the circle. Moreover R is a round annulus of modulus at
least 2c.

Let {. denote the hyperbolic metric on R, V denote the hyperbolic
1-neighborhood of 51, and V = G-^V C V. As G:S1 -^ S1 is a double
covering, we have:

<2e(Sl)= f \\Df(z)\\d£<max\\Df(z)\\e(S1),
JS1 s
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so that max^i ||^/(^)|| > 2. As modfi ^ 2c, i(S1) < L(e). Hence
||^/(^)|| > p(c) > 1 for all z € V. It follows that V is contained in
(l/p(e))-neighborhood of S1. But then each component of V \ V is an
annulus of modulus at least 6(e) > 0.

We obtain now the desired domains by going back to U'. V =
^V U K(f), V = ̂ V U K(f). D

Let us supply the space B of double branched coverings with
the Caratheodory topology (see [McMl]). Convergence of a sequence
fn'- U^ —>• Un in this topology means Caratheodory convergence of (£/n,0)
and (£7^, 0), and compact-open convergence of fn'

2.5. Epstein class.

Let us consider a quasi-quadratic interval map /: I = [/3, /3'] —>• J with
/(/3') = /(/?) == /?, where /? is a non-attracting fixed point: /'(/3) ^ 1. By
definition, / belongs to Epstein class (see [E], [S]) if it admits an analytic
extension to a double branched covering /: U ' —>• U such that U = CT
and V is an R-symmetric topological disk meeting the real line along
an interval T ' containing I . (For reasons which will become clear in §2.6
we do not assume that T ' C T.) Any map / in Epstein class admits a
representation

(2.1) ^)=(^))2+c=Q,o0,

where (f): U ' —^ A(<^) is a univalent map onto the complex plane with four
slits, which double covers Cr under the quadratic map Qc :z »—> z2 + c. As
the range A(0) is determined by T and c, we will also denote it as A^c-

For purely notational convenience we will also assume the maps / of
the Epstein class to be even: f{z) = f(—z). Then the map (j) is odd, and the
intervals J, T ' and the domain U9 are symmetric about 0. Moreover, the
interval T and hence the domain U = Cr can also be assumed symmetric:
just shrink T to make it symmetric and adjust T ' accordingly.

Remark. — Of course, all the maps of Epstein class associated to a
quadratic map (restricted iterates of a quadratic map) are automatically
symmetric. To carry the argument through in the non-symmetric case, one
should just observe that the dynamical involution z I—?- 2/5 f(z) = f{z'\ has
bounded distortion on compact subsets of U.

Let £ stand for the Epstein class modulo affine conjugacy (that is,
rescaling of Z). We will always normalize / G £ so that 0 is its critical point.
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Given a p > 1, let ^p C £ denote the space of maps of Epstein class modulo
affine conjugacy such that |T| > p\I\.

LEMMA 2.5. — For any p > 0, the space £p is Caratheodory compact.

Proof. — Let us normalize a map / in £p so that I = [—1,1], /? = 1.
Then T D [—Pip}- Moreover, since the modulus of the topological annulus
CT \ I is at most twice the modulus of Cy/ \ J, T" D [-p', p ' } with p ' > 1
depending only on p. Since the critical value c divides T into two intervals
of length at least p — 1, the range A(0) = Aj^c covers the disk D^ with

Let us now have a sequence fn = Qcn ° ̂ n of normalized maps of
Epstein class (2.1). Clearly we can select a subsequence such that the slit
domains CT^ and A(<^n) Caratheodory converge respectively to some Cr
and Ar,c, where T D [—p, p] and Ar,c ^ ̂ r'

Moreover, since Qc(<f>nl) C [—1,1], we have: \(f)nl\ <: 2\/2, so that
we can make (f)nl converge to some interval J = [—a, a]. This interval is
contained in AT,C, since the intervals <^J are well inside A((^).

Since 0n(/3) ^ \/2 and /^(/3) > 1, <^(/3) stays away from 0. So, the
points 0n/3 -^ a stay definite distance from the boundary of Ar,c and
(^n1)'^^) are bounded from above. By the Koebe Theorem, the family
of univalent maps 0^1 is normal on A^c-

Let us select a subsequence 0^1 uniformly converging on compact
subsets of Aj^c- Since (f)nl are intervals of bounded length staying away
from the boundary of Aj^c, the limit of the (f>^1 is non-constant, and hence
is a univalent function (f)~1. It follows that the domains U'^ of the maps (f)n
Caratheodory converge to V = (^A^c-

Let us now observe that by the Koebe Theorem, the sequence of
direct functions (f)n is normal on any domain fl, D I compactly contained
in U ' . Indeed, this is a family of univalent functions bounded on J, with the
derivatives <^(/?) bounded away from 0. It follows that (f)n —^ (f> uniformly
on compact sets of V.

Since Cn —>• c, we conclude that fn —f- Qc ° <t>- D

The above proof also yields:

LEMMA 2.6. — Given a p > 1, there is a domain Op D [—1,1 ] with
the following property. For any f € £p normalized so that I = [—1,1] , the
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univalent map ^ in (2.1) is well-defined and has bounded distortion on Op.
Moreover^ in scale e the distortion oKf) is bounded by C(p)e.

We will refer to the above property by saying that / is a quadratic
map up to bounded distortion. The last statement (which certainly follows
from the Koebe Distortion Theorem) shows, in particular, that in some
scale e depending only on p the distortion of 0 is bounded by 2.

We will mostly be concerned with a subset of Epstein maps specified
by a stronger condition. Given a A E (0,1), let £\ C £ be space of maps
of Epstein class modulo affine conjugacy such that T ' C T and each
component J of T \ T ' is A-1-commensurable with T ' . Note that there
exists A C (0,1), such that all real quadratics Qc, c € [—2, ^] , belong to
the Epstein class £\ (with T selected as a fixed large 0-symmetric interval).

LEMMA 2.7. — Given a A € (0,1), let f C £\ and [-1,1] = I C T" C T
be as above:

• the space £\ is Caratheodory compact;

• both T and T ' are K(\)—commensurable with J, and I is contained
well inside T ' ;

• denote by JJ1, i = 1,2, the components of (/^^(T \ T'). Iff is
not close to the cusp then \J^\ is K(X)-commensurable with dist(J^, 91).

Proof. — As £\ is a closed subset of some £p^x\ the first property
follows from Lemma 2.5.

Furthermore, there exists JLA = /^(A) > 0 such that the annulus
A = D(T) \ D(T') has modulus at least u,. Since mod^^A) = 2-n/A(A),
there exist Kn = Kn(\) such that |J?|> Kn\T\T/\. Using the fact that
both components of T \ T ' are A-1-commensurable with \T'\ we have
|Jf| > Ln\T'\. As J,1 are contained in T ' \ I , \I\/\T'\ is bounded from above.

Set T" = [7', 7] = (/IR)"^' where 7 lies on the same side of 0 as
the fixed point f3 = 1. Commensurability of the J^ with T ' and Koebe
Distortion Theorem imply that (f) in (2.1) has a (7(A)-bounded distortion
on this interval. Hence [T'l > |/r"| x \T"\2. It follows that |^'/|/|^/| -^ 0
as | T" | —f oo. Since Jf is commensurable with T", the length of T ' must be
bounded. Thus I is commensurable with T" (and T).

To prove the last statement, let us consider the interval S =[-/?, 7].
Bounded distortion of (j)\S and elementary distortion properties of the
quadratic map imply that / has bounded distortion on 6'.
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By compactness of £\, for f C £\ which is not close to the cusp
the multiplier of /? is bounded away from 1. Moreover, we can take a
point a e (/?, 7) which divides (/?, 7) into J<r(A)-commensurable parts and
such that f(x) > q = q(X) > 1 for x € (/?,a). Let J71 = J? stand for
the intervals lying on the side of the fixed point {3 C 91. Then only
bounded number of intervals J71 may be outside (/?, a). For the rest of them,
\Jn\^(q-l) dist(J71, (3) which finishes the proof of the lemma. D

All maps in this paper will be assumed to belong to the Epstein class £.

2.6. Renormalization.

We assume that the reader is familiar with the notion of renormaliza-
tion in one-dimensional dynamics (see e.g., [MS]).

Let / be k times renormalizable quasi-quadratic map, 0 <: k <_ oo.
For t <, fc, let the closed interval P^ 3 0 be a central periodic
interval corresponding to the ^-fold renormalization R^f of /, ne be its
period: ji •= f^'.P^ -^ P^. Let Pf be the component of f-^-^p^
containing f'Q. These intervals always have disjoint interiors. We say that
the intervals Pf, i = 0,1,... ,n^ - 1, form the cycle of level i. Note that
the periodic interval P^ is not canonically defined. Possible choices are
p^ = B^ = [/3e,f3^\ where /^ is the an appropriate fixed point of /^;
andP^=[/,0,/M

By definition, the ^-fold renormalization R^f is equal to f^P^ up to
the choice of Pt and rescaling. To be definite, we will assume that it is
normalized so that B^ is rescaled to [—1,1]:

R'f(z) = <T1/^), where q = ̂ |.

Let pi = 7^/7^-1 be the relative periods, pk(f) = max pi. We say that an
K(.<k

infinitely renormalizable map / has bounded combinatorics if the sequence
of relative periods is bounded.

If HI = 2 then / is called immediately renormalizable, and the
corresponding renormalization is called doubling. In this case the maximal
periodic intervals P1 = [/?i, f3[] and P^ touch at their common fixed point /3i
(which coincides with the fixed point a of / with negative multiplier). In
all other cases the periodic intervals P^ are disjoint.

Besides /3^, the quasi-quadratic map ff, has one more fixed point on B^
which will be denoted by o^. At the cusp {i.e., when fi(f3e) = 1) these two
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points coincide. Note that if i < k (so that R^f is renormalizable), then
f'^i) < -1-

Let S[ D Pf be the maximal interval such that the restriction of
/n^-1 to it is monotone. Set T^ = f^-^Si) and S^ = f-^Si). Then
ji: S^ —>• T^ is a unimodal map.

Let us now state some basic geometric properties of infinitely
renormalizable maps usually referred to as real bounds (see [G], [BL1],
[BL2], [S], [MS] for the proofs). Below we assume that / is a k times
renormalizable quasi-quadratic map of Epstein class £\, 0 < k < oo.

LEMMA 2.8. — For a quasi-quadratic map f € £\ as above:

• The interval Pk is well inside T^ and 5^. Moreover, after skipping
initial N(\) levels^ the space in between these intervals becomes absolute
(i.e., independent of A).

• The renormalizations R1^ f belong to some class E7' with r = r^(A) <
r(A) < 1 which becomes absolute after skipping the initial N{\) levels.

• If Ok has negative multiplier then 5^ C T^.

• If f'(ak) <: -e < 0 then 5^ is well inside Tk (with the space
depending on e).

Proof. — The first statement is proven in the above quoted works
(see e.g., [MS], Lemma VI.2.1). The second statement is the consequence
of the first one.

Let us consider the component J of Sk \ (/3,/3') containing f3. If
gk ^ rpk ^^ j-^ monotonically maps J into itself. Hence it has an
attracting fixed point 7 € J with positive multiplier. Since the critical
point is attracted by the cycle of 7, 7 belongs to some interval P^. It
follows that Rkf also has an attracting fixed point with positive multiplier
contradicting the assumption. This proves the third statement.

The last statement follows by compactness of £ p . D

LEMMA 2.9. — The map /nfc-l : P^ -^ Pk, 0 < i < n^, of a non-
central interval onto the central one is a diffeomorphism whose distortion
is bounded by an absolute constant.

Let G^ be the gaps of level fc, that is the components of P^~1 \ UP^.
Geometry of / is said to be 6-bounded (up to level n) if there is a choice
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of periodic intervals P^, such that for any intervals P^, G^ C P^~1, we
have: IP^I/I?^"1! > S and |G^|/|P^-1! > ^ A; = 1,... ,n. In other words,
all the intervals and the gaps of level k contained in some interval of level
k — 1 are commensurable with the latter.

Let p be an upper bound on the essential periods of the first k
renormalizations of /: pi(f) < p, i = 0,1, . . . , A;.

THEOREM 2.10. — Any map f as above has a 6-bounded geometry,
where 8 depends only on p. In particular, infinitely renormalizable maps
with bounded combinatorics have bounded geometry.

COROLLARY 2.11. — Let P^ be a non-central interval which belongs to
the central interval P^"1. Then the map fnk~^: P^ —> Pk has a derivative
bounded away from 0 and oo by constants depending on p only.

Proof. — Indeed, by Theorem 2.10, the intervals P^ and P^ are
commensurable, while by Lemma 2.9, the map between them has a bounded
distortion. D

COROLLARY 2.12. — Let f(ak) ^ -e < 0. Then 6^ is K(p)-
commensurable with T^, and the renormalization R^^f belongs to some
class <?^, with ^ depending only on A, p and e.

Proof. — Given the last statement of Lemma 2.8, we only need to
show that IS^I/IT^I is bounded from below. But 5^ C P^"1, since the
map fk = /^_i is 0-symmetric and at least 3-modal on P^"1. As P^-1 is
/A-invariant, T^ C P^"1 as well. As by Theorem 2.10 P^ and P^"1 are
K (^-commensurable, we are done. D

2.7. Bounds and unbranching.

Let us state a result which gives an estimate of the modulus of a
quadratic-like map after one renormalization:

THEOREM 2.13 (see [L2], Cor. 5.6). — Let f be a renormalizable
quadratic-like map with mod/ > p > 0. Then Rf is also quadratic-like,
and

mod Rf > 6(p) > 0

unless the renormalization is a doubling and Rf is close to the cusp.
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A fundamental annulus A of a renormalization R^^f is called
unbranched if A n o;y(0) = 0.

LEMMA 2.14 (see [L2], Lemma 9.3). — Let f be an infinitely
renormalizable R-symmetric quadratic-like map with a priori bounds. Then
every other renormalization R71/ has an unbranched fundamental annulus
with a definite modulus {depending on a priori bounds only).

3. ESSENTIALLY BOUNDED COMBINATORICS AND
GEOMETRY

Let / be a renormalizable quasi-quadratic map.

Recall that (3 = /?o and a stand for the fixed points of / with
positive and negative multipliers correspondingly. Let B = B(f) = [/?,/?'],
A=A(f)=[^a/]cB.

If / is immediately renormalizable then A is a periodic interval
with period 2. Otherwise let us consider the principal nest A = 1° =
I°(f) D I1 = J^/) D ... of intervals of / (see [LI]). It is defined in the
following way. Let t[m) be the first return time of the orbit of 0 back
to J^-1. Then 1^ is defined as the component of f-Wjm-i containing 0.
Moreover ̂ \Im = BW)'

For m > 1, let

n ' I I /'m —). r71-1
9m ' ^J1! ^ 1

be the generalized renormalization of / on the interval J771"1, that is, the
first return map restricted onto the intervals intersecting the postcritical
set (here /m = J^)- Note that gm = /t(m): 1^ -^ I171'1 is unimodal with
^(ar71) C QI171-1, while gm : 1^ -^ ^m-l is a diffeomorphism for all i ̂  0.

Let us consider the following set of levels:

X = X{f) = {m: t(m + 1) > t(m)} U {0}
= {0 = m(0) < m(l) < m(2) < • • • < m(^)}.

A level m = m(k) belongs to X iff the return to level (m — 1) is non-
central^ that is gm0 ^ J7n-l\Jm. For such a moment the map ^m+ilj7^1 is
essentially different from ^ml^ (that is not just the restriction of the latter
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to a smaller domain). Let us use the notation hk = ^m(fc)+i5 ^ = ^ • • • X-
The number \ = ^(/) is called the height of /. (In the immediately
renormalizable case set \ = —1.)

The nest of intervals
/o i\ 7-m(fc)+l —) jm(A;)+2 -^ ^ ̂  -^ rm(fc+l)

is called a central cascade. The length £k of the cascade is defined as
m(fc 4- 1) — m(k). Note that a cascade of length 1 corresponds to a non-
central return to level m(k).

m(fc) m(fe)+l m(fc+l)-l m(fc+l)

i i ^ /

Figure 2. A long saddle-node cascade

A cascade (3.1) is called saddle-node if h^^^ ^ 0 (see Figure 2).
Otherwise it is called Ulam-Neumann. For a long saddle-node cascade the
map hk is combinatorially close to z »—>• z2 + ^. For a long Ulam-Neumann
cascade it is close to z i—^ z2 — 2.

Given a cascade (3.1), let

(3.2) ^(^ c I77^^-1 \ r^)+^ z = 1,..., m(fc + 1) - m(k),

denote the pullbacks of I ' under h]^~1 (i.e., the connected components
of the preimage of I ' under the corresponding inverse map). Clearly,
^jn(fc)+z+i ̂  mapped by hk onto ^m(fe)+l, i = 1,..., m(k +1) - m(k) -1,
while ̂ m^+l = j^^1 are mapped onto the whole J^). This family of
intervals is called the Markov family associated with the central cascade.

For x (E o;(0) H (J^) \ J^^1) set

• d{x) = min{j — m(k}^ m(k + 1) — j'},

if hkX C I3 \ P^1 for m(k) <j< m{k + 1) - 1 and

• d[x) = 0 otherwise {i.e., when hkX € Jm(fc+l)).

This parameter shows how deep the orbit of x lands inside the
cascade. Let us now define dk as the maximum of d{x) over all
^e^n^Wv771^1).
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Given a saddle-node cascade (3.1), let us call neglectable all levels
m{k) + dk < t < m(k + 1) - dk.

Let us now define the essential period pe = Pe(f)- Let p be the period
of the periodic interval J = B{Rf). Let us remove from the orbit {fkJ}Jk^
all the intervals whose first return to some I^W belongs to a neglectable
level. The essential period is the number of the intervals which are left.

We say that an infinitely renormalizable map / has essentially bounded
combinatorics if sup^pg^71/) < oo.

Remark. — Bounded essential period is equivalent to a bound on the
following combinatorial factors: the height, the return times of the J^1 to
jm-i m^er iterates of gm-i^ the lengths of the Ulam-Neumann cascades,
and the depths dk of landing at the saddle-node cascades.

THEOREM 3.1 (see [L2], Thm V). — Let f € £\ be a renormalizable
quasi-quadratic map of Epstein class. There is p\ > 0 and a function
^\(p) —> oo as p —^ oo with the following property. Ifpe(f) > pe >. p\ then
Rf has an unbranched fundamental annulus A such that mod(A) ^ y\(pe)'

Let a(f) = \B(Rf)\/\B(f)\. Let us say that / has essentially bounded
geometry if inf^ a^R1'1/) > 0.

By the gaps G^ of level m we mean the components ofIlm~l\ UJJ71. We
say that a level m is deep inside the cascade if m(k}-{-pe < m < m(k-{-l)—pe.
The following lemma says that the maps with essentially bounded
combinatorics have essentially bounded geometry (the inverse is true by
Theorem 3.1).

LEMMA 3.2 (see [L2], Lemma 8.8). — Let f C £\ be a renormalizable
quasi-quadratic map with pe{f) <: Pe' Then all the intervals I171 in the
principal nest off are C{pe, \)-commensurable. Moreover, the non-central
intervals J^, i -^ 0, and the gaps G^ of level m are G(pe? \)-commensurable
with J771-1 \ J771. This is also true for the central interval J771, provided m is
not deep inside the cascade.

Note that the last statement of the lemma is definitely false when m
is deep inside a cascade: then J771 occupies almost the whole of I771'1. So
we observe commensurable intervals in the beginning and in the end of the
cascade, but not in the middle. This is the saddle-node phenomenon which
is in the focus of this work.
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COROLLARY 3.3. — Let f e £\ be a renormalizable quasi-quadratic
map with pe{f) < pe such that Rf is not close to the cusp. Then Rf e ̂
with p = p(A,pg). If Rf has no attracting fixed points then Rf e S^, with
^=/^(A,pe).

Proof. — In view of Lemmas 2.8 and 3.2 it is enough to notice that
jm(x-i) 3 r1 D S1-^ J^^1 where x = x{f) is the height of / (compare
Corollary 2.12). D

The following important distortion result will replace Lemma 2.9 in
the case of unbounded combinatorics:

THEOREM 3.4 (see [GJ], [Ma]). — For any quasi-quadratic map /, the
return map gm : ̂ m+l —> I171 is a composition of the quadratic map z ̂  z2

and a map h with bounded distortion. Moreover^ h~1 has a definite Koebe
extension around J771.

The following two statements extend Corollary 2.11 to the case of
essentially bounded combinatorics.

COROLLARY 3.5. — Let f be a quasi-quadratic map with pe(f) < p e '
• For a non-central interval ij1^1 c I^W \ J^^1 the derivative

of the restriction h^rmw+i is bounded away from 0 and oo.

• For any m{k) < £ < s < m(k + 1), which are not deep inside the
cascade, the derivative of the transition map

h^'.I^I^1^!^!^1

is bounded away from 0 and oo.

The constants depend only on pe.

Proof. — By Lemma 3.2, any non-central interval /m(A;)+l is
commensurable to its distance to 0. Hence the quadratic map has bounded
distortion on jj7^^1. By Theorem 3.4, the return map gm : ̂ m+l -^ 1^ has
bounded distortion as well. Since its domain and range are commensurable
(by Lemma 3.2 again), we see that its derivative is bounded away from 0
and oo.

Furthermore, the Koebe Principle easily implies that the transition
map along the cascade has bounded distortion. Hence by essentially
bounded geometry, it must have bounded derivative. D
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COROLLARY 3.6. — Under the assumptions of the previous corollary,
let f be renormalizable. Let Pi C r^+i)\j"^+2) be a non-central periodic
interval. Consider its first return /"P, = P^s bade to J^^1). Then P^s
is K(pe)-commensurable with Pi.

This is also true for the intermediate returns to I^W^ that is
the intervals P^j satisfying 0 < j < s and P^j C I171 \ I^1 with
m(k) <m<_ m(k +!)+!, provided m is not deep inside the cascade.

Proof. — The first statement follows from the previous lemma.

The second statement follows in a similar way from Theorem 3.4 and
the second part of Corollary 3.5. D

4. REDUCTIONS TO THE MAIN LEMMAS

In this section we will state the Main Lemmas and will derive all the
results from them. The lemmas will be proven in the following sections. As
everything will be done in the setting of the Epstein class, let us start with
the corresponding version of Theorem 1.1.

THEOREM 4.1. — For any \ € (0,1) there exists N = N(\) with
the following property. Let f € £\ be an n—times renormalizable map,
N <, n < oo. Let

max pe^f) <Pe.
KA;<n—l

Then R'^f has a quadratic-like extension with

mod(JR71/) > ii{pe) > 0,

unless the last renormalization is of doubling type and R^f is close to the
cusp.

4.1. Main Lemmas.

Let P^, fk = /nfc, etc. be as in §2.6. Set S = 5°, T = T°, so that
/: S —> T is unimodal. Let us consider the decomposition:

(4.1) A = ^ o / ,

where ̂  is a univalent map from a neighborhood U1^ of Pf onto Cyfc.
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LEMMA 4.2. — Let f : [-1,1] -^ [-1,1] be ak times renormalizable
quasi-quadratic map of Epstein class £\. Assume that pe(Rif) <: pe for
£ = 0,1,. . . , k - 1. Then there exist C = C(pe) > 0 and t = t(\,pe) C N,
such that for all z € P(r*) H Cyfc the following estimate holds:

( A ^ dist^.P^) dist^)
( ) ———Pf———^"W-

Thus the maps ̂ 1 after appropriate rescaling (that is normalizing
jpfe j ^ jp^cj ^ ^ ̂ ^ ̂  j^g^ linear growth depending on A and p only.
This implies, in particular, that for sufficiently big £ (depending on A and pe
only), ^^(DiT^)) is contained in the range where /-1 is the square root
map up to bounded distortion (see Lemma 2.6). This yields the quadratic
estimate (1.1) stated in the Introduction:

(«) ̂ y ><^p)2. .^.rw^,

where c and £ depend only on p and A.

COROLLARY 4.3. — Under the circumstances of Lemma 4.2, there
exists N == 7V(A,pe) with the following property. For any k > N ,
fk : P^ —> P^ admits a quadratic-like extension whose little Julia set
is K(pe) -commensurable with the interval P^.

Proof. — The above estimate (4.3) implies that for a sufficiently large r
we have 1/^(^)1 > 2|^|, provided dist^^),?^ > rIP^. By real bounds
there exists s depending only on A and pe, such that dist(C, P^) > P-IP^ for
k > s + t and any < e QD^-8).

Set Vk = D^-8) HC^, A^ = (M^)-1^. Then by the above
estimate, 9^ cannot touch QD^T^8). Neither can it touch T^8 \ Tk

since 9^ nR= Sk. Hence A^ is compactly contained in Vk, so that the
restriction /nfe: A^ —^ V^ is quadratic-like. Its little Julia set is contained
in DiT^8) which is commensurable with Pk. D

Carrying the argument for Lemma 4.2 further, we will prove the
following result:
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LEMMA 4.4. — Under the circumstances of the previous lemma^ the
little Julia set J(fk) (for the quadratic-like extension of fk : P^ —^ P^) is
contained in the hyperbolic disk D^B1^)^ where e > 0 depends only on pg,
unless the k-th renormalization is of doubling type and Rkf is close to the
cusp.

4.2. Proof of the main results.

Proof of Theorem 4.1. — Choose N as in Corollary 4.3. Let us assume
first that Rkf does not have an attracting fixed point. Then by Lemma 2.8,
B1^ is well inside of Tk. Hence the hyperbolic disk D^B^ is well inside the
slit plane C^k. By Lemma 4.4, the Julia set J(I?71/) is also well inside C^k,
and the desired follows from Lemma 2.4.

If Rkf has an attracting cycle, let us go one level up. As -R^"1/ does
not have attracting points, it has a definite modulus. By Theorem 2.13
its first renormalization, Rkf^ also has a definite modulus, unless it is of
doubling type and close to the cusp. D

Proof of Theorem 1.1. — For n > N the claim follows from
Theorem 4.1. As mod/ = oo for any quadratic polynomial /, for all
preceding levels n <^ N we have bounds by Theorem 2.13. D

The statement of the Complex Bounds Theorem needs an obvious
adjustment for maps of Epstein class (where one should skip first N(\)
levels), or for quadratic-like maps (where the bounds depend on mod(/)).
Note also that due to the Straightening Theorem (see [DH], [McMl]), the
latter case follows from the quadratic one.

Proof of the Complex Bounds Theorem. — By Lemma 2.8, all the
renormalizations -R171/, N(\) <: m < fc, belong to a class £e with an
absolute 6. Without loss of generality we can assume that N(\) = 0 (taking
into account Theorem 2.13 in the quadratic-like case).

Take a /^ > 0, e.g. u, = 1. By Theorem 3.1, there is a p = p{p) such
that mod(.R/) > fi for all renormalizable maps / of Epstein class £e with
Pe(f) ^ P ' So we have complex bounds for all renormalizations R^^f
such that pe^R^f) > P- For all intermediate levels we have bounds by
Theorem 2.13 and Theorem 4.1 (except perhaps for the first N levels with
an absolute N = N{0)).

The latter bounds depend on p. But with the choice ji = 1, p and
hence the bounds are absolute. D
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Now the Complex Bounds Theorem and Lemma 2.14 yield:

LEMMA 4.5. — Let f e £\. Then for every other level k > N(\),
the renormalization J?^/ has an unbranched fundamental annulus with a
definite modulus.

By a puzzle piece we mean a topological disk bounded by rational
external rays and equipotentials (compare [H], [L2], [Ml]).

Proof of the Local Connectivity Theorem. — By [HJ], [J], [McM2],
unbranched a priori bounds imply local connectivity of the Julia set. For
the sake of completeness we will supply the argument below.

For now, / is an infinitely renormalizable map of class £\. Since
quadratic-like maps (considered up to rescaling) with a priori bounds form
a compact family, the Julia set K(g) depends upper semi-continuously on g ,
and the /^fixed point depends continuously on the map (see [McMl], §4, for
all these properties), the little Julia sets J(fk) are commensurable with the
intervals Bk. Hence the J(fk) shrink to the critical point. By the Douady
and Hubbard renormalization construction (see [D], [L2], [McM2]), each
little Julia set is the intersection of a nest of puzzle pieces. As each of these
pieces contains a connected part of the Julia set, J{f) is locally connected
at the critical point.

Let us now prove local connectivity at any other point z € J(f) (by
a standard "spreading around" argument). Take a puzzle piece V 3 0.
The set of points which never visit V, Yy = [C,: ^C, ^ V, n = 0,1,...},
is expanding. (Cover this set by finitely many non-critical puzzle pieces,
thicken them a bit, and use the fact the branches of the inverse map are
contracting with respect to the Poincare metric in these pieces.) It follows
that if z € Yy then there is a nest of puzzle pieces shrinking to z, and we
are done.

Let now z ^ Yy, for any critical puzzle piece V. Take an unbranched
level k. Then there is a puzzle piece Vk D J(fk) with a definite space in
between it and the rest of the postcritical set. Take the first moment ^
such that f^z € V1^. Then there exists a single-valued inverse branch
/"^ : C(i_(_g)j3fc —f C whose image contains z (where e depends on A only).

Furthermore, there is an r C (0,1) depending on A only such that the
hyperbolic disk ^k in C^^k of radius r (centered at 0) contains V k .
Moreover, by the Koebe Theorem this disk has a bounded shape.
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Using the Koebe Theorem once more, we see that the f~e'k have
a bounded distortion on f^. Hence the pullbacks Vk = /"^f^ have a
bounded distortion as well. As they cannot contain a disk of a definite
radius (as any disk B{z, e) must cover the whole Julia set under some
iterate of /), we conclude that diam [/fe —^ 0. All the more, the pullbacks of
the Vk under /"^ shrink. This is the desired nest of puzzle pieces about z.

D

Proof of the Big Space Criterion. — It follows from Theorem 3.1 and
Theorem 1.1. D

5. BOUNDED COMBINATORICS

We first prove the complex bounds in the case when the map / has
bounded combinatorics. The result is well-known in this case [MS], [S], but
we give a quite simple proof which will be then generalized onto the case of
essentially bounded combinatorics.

5.1. The 6-jumping points.

Given an interval T C R let /: U ' —^ CT be a map of Epstein class.
For a point x € RfW which is not critical for /n, let Vn(x) = Vn(x, f)

denote the maximal domain containing x which is univalently mapped by /n

onto Or. Its intersection with the real line is the monotonicity interval
Hn{x) = Hn(x,f) of /n containing x. Let f^'.CT —^ Vn(x) denote the
corresponding inverse branch of /-n (continuous up to the boundary of the
slits, with different values on the different banks). If J is an interval on
which /n is monotone, then the notations Vn(J) and Hn(J) and /J71 make
an obvious sense.

Take an x € R and a z € Cr. If we have a backward orbit of
x = a;o,^-i,... ̂ x-(. of x which does not contain 0, the corresponding
backward orbit z = ZQ^ ^-i,..., z-i is obtained by applying the appropriate
branches of the inverse functions: z-n = fx^' ^ne same terminology is
applied when we have a monotone pullback J = Jo? • • • 5 J-£ of an interval J .

Let H D J be two intervals. Let Se^{H^ J ) denote the union of two
2e-wedges with vertices at 9J (symmetric with respect to the real line) cut
off by the neighborhood De(H) (see Figure 3).

Let Ce(J) denote the complement of the above two wedges (that is,
the set of points looking at J at an angle at least e).
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De(H)

S e ^ H ^ J )

Figure 3

LEMMA 5.1. — Let f be a quadratic map. Let J = Jo 5 J-ii • ' - 5 J-e =
J ' be a monotone pullback of an interval J, z = ZQ, z - i ^ . . . , z-t = z ' be the
corresponding backward orbit of a point z € Or. Then for all sufficiently
small e > 0 (independent of f), either z-k C Ce(J-k) at some moment
k ^ £, or z ' e Se^H^J'), J ' ) with Q = JTT - 0(e).

If the first possibility of the lemma occurs we say that the backward
orbit of z e-jumps.

Proof. — Assume that the backward orbit of z does not "e-jump",
that is, z-k belongs to an M-symmetric 2e-wedge centered at a-k € 9J-k,
k = 0,1... ,£. By the second statement of Lemma 2.3, /a-^+i) = a-k.
Let M-k = /^"^^(J7), and b-k be the boundary point of M-k on the
same side of J-k as a-k. Let us take the moment k when b-k = 0. At this
moment the point z-k belongs to a right triangle based upon [a-k, b-k}
with the e-angle at a-k and the right angle at b-k. Hence z-k € De(M-k)
with 0 = JTT - 0(e). It follows by Schwarz Lemma that z ' e De{Ht{J')),
and we are done. D

In view of Lemma 2.6, the above lemma admits the following
straightforward extension onto the Epstein class:

LEMMA 5.2. — The conclusion of Lemma 5.1 still holds, provided f
is a map of Epstein class £\, and the backward orbit ofz stays sufficiently
close to the real line (depending on A).

5.2. Proof of Lemma 4.2 (for bounded combinatorics).

For technical reasons we consider a new family of intervals 6^ and Tk^
for which P^ C 5'̂  C 5^ C T^ C T^, each of the intervals is commensurable
with the others and contained well inside the next one, and fk(Sk) = Tk.
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Let us fix a level A;, and set n = n^,

(5.1) Jo = PO^ ^-1 = ̂ -1. • • • . ̂ -(n-l) = ̂ .«^0 = PO ? ^-1 = ̂ Ti-1 ? • • • ? ̂ -(n-1) = ̂ 1 •
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Take now any point ZQ € I^T*) D Cyfc with sufficiently big t == t(A). Let
2 ;_ i , . . . , ^_(yi_i) be its backward orbit corresponding to the above backward
orbit of Jo- Our goal is to prove that

(5.2)
dist(z_(^_i),J_(^_i)) dist(^o,Jo)
————r.———————— S ^(P)——r-r-,——•

|J-(n-i)l \Jo\

Take a big quantifier K > 0. Let us say that s is a "good" moment
of time if J-s is ^-commensurable with Jo. For example, let J-s C P^
and s < n^+i, that is s is a moment of backward return to P^ preceding
the first return to P^. Thus J-s is contained in one of the non-central
intervals Pf~^1 C P^. By Corollary 2.11 we see that the moment s is good,
provided K is selected sufficiently big.

We proceed inductively:

LEMMA 5.3. — Let J = J-s and J ' = J_(s+^) be two consecutive
returns of the backward orbit (5.1) to a periodic interval P^, H < k.
Let z and z ' be the corresponding points of the backward orbit of ZQ.
If z C D(T^ then dist^'.J') < C(p)|r^|. Moreover, either z1 € D(r^),
or^'.J') >e(p)>0 .

/-n<

Figure 4

Proof. — Let us consider the decomposition (4.1). By Lemma 2.8
the space between the intervals T and T depends only on p. Applying
the Koebe Distortion Theorem to the map ̂ 1 we see that its distortion
on f^ is <7(p)-bounded. Set Z^ = ̂ T^. By bounded geometry, the
point f^O divides T^ into commensurable parts. Hence the critical value
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/O = ^^(y^O) divides Z^- into commensurable parts; let A = A(p) stand
for a bound of the ratio of these parts.

By the Schwarz Lemma, domain V = ̂ 1(D(T£)) is contained in
D{Z^). By Lemma 2.6 and Lemma 2.2 its pullback, f~lV is contained
in a domain W = f~lD(Ze) intersecting the real line by 5^, with
diamW < ^(p)|5^|; moreover, W \ D(f£) is contained in a sector Ce(S^)
with e depending only on A (see Figure 3), and thus the proof is completed.

D

Let us now give a more precise statement:

LEMMA 5.4. — Let J = J-s and J' = J-s' be two returns of the
backward orbit (5.1) to P^, where 5' = s + in^. Let z and z/ be the
corresponding points of the backward orbit ofzQ. Assume z C D(T^). Then
either for some 0 < i < t, a point z^^in^ c-jumpsand \z-fs-^-in^\ <: C\T£\^
or z-s' ^ DQ^H')^ where H' is the monotonicity interval of /tn< containing
J/,and0/ = J7r-0(e).

Proof. — Assume that the above points do not e-jump. Then by
Lemma 5.3 they belong to the disk jD(T^). As the map ̂ 1 from (4.1) has
bounded distortion, none of the points z-m ^-jumps for s < m < s', where
6 = 0(e) as e —> 0. Now the claim follows from Lemma 5.1. D

The following lemma will allow us to make an inductive step:

COROLLARY 5.5. — Let J = J-m, J ' == J-ne+i^ an^ z ^ z ' be the
corresponding points of the backward orbit of ZQ. Assume z € D(r^~1).
Then either there is a good moment —m € (—^, —n^+i) when the point
z-m e-jumps and \z-m < C'|r^|, or z ' C D(T^).

Proof. — Note that by bounded geometry (Corollary 2.11) all the
moments

-Hi, -(ni + n^-i), -(un + 2n^_i),..., -n^+i,

when the intervals of (5.1) return to P^"1 before the first return to P^,
are good (provided the quantifier K is selected sufficiently big). Hence by
Lemma 5.4 either the first possibility of the claim occurs, or z ' € 2^/(Z/),
where L' is the monotonicity interval of ^+1-^ containing J', and
Q' = JTT — 0(e). As TT^+I — Ha > n^, L' is contained in 5^, which is well
inside T^. Thus De'{L') C D(f^, provided e is sufficiently small. D
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We are ready to carry out the inductive proof of (5.2). Let j be the
smallest level for which

(5.3) ZQ € D(f3).

By Lemma 5.3, either z-n, e D^f3), or z-n, e-jumps. Moreover, in the
latter case |^-nJ < C\ZQ\, and the map ̂ -1 from (4.1) admits a univalent
extension to Cyj. So Lemma 2.1 yields (5.2).

In the former case we will proceed inductively. Assume that either
z-m € Z)(T^'~1), or z-t e-jumps at some good moment —t ^ —un. If the
latter happens, we are done. If the former happens, we pass to t + 1 by
Corollary 5.5. Lemma 4.2 is proved (for bounded combinatorics). D

5.3. Proof of Lemma 4.4 (for bounded combinatorics).

We will show here that J(fk) C De^) which is sufficient for
applications (see also §7.2).

By Corollary 4.3, diamJ(/fc) < Cl^l, with a C = C{p). Hence
J(fk) C D(r^), where i > k - N(p). Let C' € J(A), C = AC', and
^ = ^o,C-i, . . . ,C-n = C7 be the corresponding backward orbit under
iterates of/^.

By Lemma 5.3, either C-j e-jumps at some moment, or C7 € D^T^.
If the former happens then (-j e De(J-jne), where 6 = 0{e) > 0, and J-rn
are the intervals from (5.1). But then by the Schwarz Lemma C' ^ De'^)
with some 0' depending on A and p only. Thus J(fk) C De^P^ U D^),
and we are done.

6. SADDLE-NODE CASCADES

Let / € £\ be a map of Epstein class.

Let us note first that for a long saddle-node cascade (3.1), the map
hk: r71^)4"1 —^ j^i(^) is a small perturbation of a map with a parabolic
fixed point.

LEMMA 6.1 (see [L2]). — Let hk be a sequence of maps of Epstein
class E\ having saddle-node cascades of length ̂  —^ oo. Then any limit
point f : I ' —^ I of this sequence (in the Caratheodory topology) has on
the real line topological type ofz^z2-^ \, and thus has a parabolic fixed
point.
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Proof. — It takes £k iterates for the critical point to escape r71^)-^1

under iterates of hk. Hence the critical point does not escape I ' under
iterates of /. By the kneading theory [MT], / has on the real line topological
type of z2 +c with -2 < c < \. Since small perturbations of / have escaping
critical point, the choice for c boils down to only two boundary parameter
values, ^ and -2. Since the cascades of hk are of saddle-node type, f l ' ^ 0,
which rules out c == —2. Q

Remark 6.1. — Thus the plane dynamics of hk with a long saddle
node cascade resembles the dynamics of a map with a parabolic fixed point:
the orbits follow horocycles (see Figure 5).

\ i
\ "f /

^ . ̂

Figure 5. The backward trajectory of a point
corresponding to a saddle-node cascade

LEMMA 6.2. — Let us consider a saddle-node cascade (3.1) generated
by a return map hk' Let us also consider a backward orbit of an interval
E c J^) \ I^W^ under iterates ofhk:

E = EQ, ^-i c r^^1 \ j^w+2^.. . ̂ _. ̂  ̂ ' c r^^' \ r^+j'+i
where m(k) + j + 1 < m{k + 1). Let z = ZQ, ̂ -1,^-2, • • . , z-j = z ' be the
corresponding backward orbit of a point z e D^^). If the length of the
cascade is sufficiently big, then either z ' G D^I171^), or (z'^J1) > e and
dist(^JQ< (7(^)17^) |.

Proof. — To be definite, let us assume that the intervals E-i lie on
the left of 0 (see Figure 2). Without loss of generality, we can assume that
z € HI. Let (f) = h^1 be the inverse branch of hk for which (f)E-i = £_^n.
As 0 is orientation preserving on (-00, fa^O], it maps the upper half-plane HI
into itself: <^(HI) c {z = re'0 \ r > 0, TT > 0 > JTI-}.
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By Lemma 6.1, if the cascade (3.1) is sufficiently long, the map <f) has
an attracting fixed point 77^ C B D D^I^^^2) (which is a perturbation
of the parabolic point for some map of type z2 + ^). By the Denjoy-Wolf
Theorem, ^(C) ———> ̂  fof any ^ G H, uniformly on compact subsets

n—>oo
of El. Thus for a given compact set K (c= B, there exists A7' = A7'(J<T, 0) such
that ^{K) C ^(J771^^1). By a normality argument, the choice of N is
actually independent of a particular 0 under consideration.

By Lemma 2.2 the set K = ̂ (D^W)) \ D^W) H El is compactly
contained in El, and diamJC < C}!^^. For TV as above we have

N-l
z ' G U ^(x) u £)(^m(A;)), and the lemma is proved. D

%=o

7. PROOFS OF THE MAIN LEMMAS

The case of essentially bounded combinatorics is more involved than
the bounded case treated above (§5). Above we needed only quite rough
combinatorial information in between two consecutive renormalization
levels. Below we will need to pull the point more carefully through the
principal nest waiting until it jumps. A difficulty arises if the jump occurs
at a "bad" moment. Then the corresponding iterate of the periodic interval
is deep inside of a cascade and hence is not commensurable with its original
size. The analysis of saddle-node behavior given in §6 will allow us to handle
this problem.

7.1. Proof of Lemma 4.2.

In view of Lemma 2.8, we can assume without loss of generality that
all the renormalizations R^f, £ = 0 , . . . , k - 1, belong to a class £\ with an
absolute A. Let us start with a little lemma:

LEMMA 7.1. — Let f e £\ be a map ofEpstein class which is not close
to the cusp. Then both components of B \ A contain an f-preimage of 0
which divides them into commensurable parts.

Proof. — The interval [a, ft'} is mapped by / onto [/3, a] 3 0. Denote
by T] = /^(O) n [a, {3'}. Under our assumption this point is clearly different
from a and f3'.

As the space of maps of Epstein class £\ which are not close to the
cusp is compact, rj divides [a, /?'] into commensurable parts. The analogous
statement is certainly true for the symmetric point T/ € [/?, a'}. D
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As in §5, let us fix a level r, let n = n^ and set

(7.1) Jo = P\ Jl =E P;_i, . . . , J_(,_i) = P{.

Let z e D(r*) n Cr^ with sufficiently big t = t(\). Let

(7.2) Z =E 2^0, 2;-!, ̂ -2, • . . , ^-(n-1)

be the backward orbit of z corresponding to the orbit (7.1). We should
prove that
(7^ dist(^_i),J_^_i)) ^ dist(zo,Jo)
(f.6) ————————————————<^ C^pe;———TT-j———•

[J-(n-l)l |Jo|

We will proceed inductively along the principal nest. Namely, we will
show below that the backward ^-orbit (7.2) either e-jumps at some good
moment, or follows the backward J-orbit (7.1) with at most one level delay.

In what follows we work with a fixed renormalization level I and skip
index I in the notations: / = fi = ^(/o), S = S^ A = A^B ==E B< We
will use notations of §3 for different combinatorial objects. Let Hs(x) be
the monotonicity intervals as defined in §5.1.

LEMMA 7.2 (Return to A). — Let E == EQ,E^, ... ,E-s == E '
be consecutive returns of the backward orbit (7.1) to B^ between two
consecutive returns to A. Let ( = (^o? C-i? • • • C-s = C' De ^ne corresponding
points of the backward orbit (7.2). Assume ^ ^ D(S)- Then either
^/ 6 D{B), or there is a moment when —i e [—s,0] when the point
(^-i e-jumps : (^-i, E-i) > e(pe) > 0 and moreover
^ dist(C-,,E-,) dist(Co,^o)
1 7 ———\~F————— - ^^pe)———[1p~\———'\^-i\ |^o|

Proof. — By definition of the essential period, s < pe- Note that the
interval /^(fi') is contained well inside 5'. By the Schwarz Lemma and
Lemma 2.2, if a point (,-i ^ D{S), then it e-jumps. Combining Lemma 2.3
and Lemma 2.6 we see that (7.4) holds up to the first moment —i when ^-^
e-jumps.

By Lemma 7.1 each component of B \ A contains an /-preimage
of 0 which divides B into X-commensurable intervals, with K = K{pe).
Hence the monotonicity interval of /, H = Hs(E-s)^ is well inside of B. As
f :B —> B has an extension of Epstein class ^p,(\) (Corollary 2.12), we can
apply Lemma 5.2. It follows that if none of the points <^ e-jumps, then
C-z (E De{H\ 0 > -i > -5, with 6 = ^TT - 0(e). Thus C-. € D(B) for
sufficiently small e < e(pe)^ and the proof is completed. D
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We say that a point/interval is deep inside of the cascade (3.1) if
it belongs to r^)+pe\jm(fc+i)-pe. (^ ^he case of essentially bounded
combinatorics this cascade must be of saddle-node type). Recall that a
moment —i is called good if the interval J_^ is commensurable with Jo- By
Lemma 3.6, this happens, e.g., when for some fc, the interval J-i lies in
jm(fc) ^ jm(fc+i) ^{o^ the first entering to F^^) but is not deep inside
the corresponding cascade.

LEMMA 7.3 (First return to I171^). — Assume that f is not
immediately renormalizable. Let E = E Q ^ E - ^ ^ . . . ^ E-s = E ' be the
consecutive returns of the backward orbit (7.1) to A until the first return
to J^). Let C e CA nD(B), and let < == Co ,C- i - - -C-5 = C' be the
corresponding points in the backward orbit ofC,o. Then either ^' e -D(A),
or «_,,E_,) > c(pe) > 0 and dist(C_,,E_,) ^ C(pe)\B\ at some good
moment 0 > —i >, —s.

Proof. — Let H = Hs(E-s). As / is not immediately renormalizable,
we have the interval I1 = [p,p'], which is contained well inside of A by
Lemma 3.2. Ifp is chosen on the same side of 0 as a, then ^{a^p} D [a, a'].
Denote by rj the /^preimage of 0 in [a,p]. Since / is quadratic up to
bounded distortion (Lemma 2.6), the map f2^ pi is quasi-symmetric (that
is, maps commensurable adjacent intervals onto commensurable ones). It
follows that rj divides [a,p], and hence A, into K = K(pe^ A)-commensurable
parts. Hence H C [77, rf] is well inside A.

By Lemma 5.2 and Lemma 7.2, either ̂  e De(H) with 0 = ^Tr-O(e),
or there is a moment i < s such that

(7.5) (C-^z) > e and dist(C-z, E.,) < C(pe)\B\.

In the former case we are done as Do(H) C D(A) for sufficiently
small e.

Let the latter case occur. Then we are done if the moment —i is good.
Otherwise E-i is deep inside the cascade A = 1° D I1 D • • • D J771^1^.

Consider the largest r such that £-(i+g) C J^-1 \ 1^ for all
0 <: q < r. Note that by essentially bounded combinatorics (Corollary 3.6),
the moment —j = —{i-\-r) has to be good. By Lemma 6.2, either (7.5)
occurs for ^-^, and we are done, or <^- e D{A).

In the latter case let K C J^1)-1 \ J^) be the interval containing
£'_(s_i) which is homeomorphically mapped under /^-1--7 onto A (to see
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that such an interval exists, consider the Markov scheme described in §3).
By the the Schwarz Lemma C-(s-i) ^ D(K) C D(A). Now the claim follows
from Lemmas 2.2 and 2.6. D

Now we are in a position to proceed inductively along the principal
nest: Note that the assumption of the following lemma is checked for k = 1
in Lemma 7.3.

LEMMA 7.4 (Further returns to I^W). — Let E and E ' be two
consecutive returns of the backward orbit (7.1) to the interval I171^. Let
^ and ^' be the corresponding points of the backward orbit of ZQ. Assume
that C € ^(r7^-1)). Then, either C' € D^W), or (C^Q > e(pe) > 0,
anddist^,^) < C^e)!^"^!.

Proof. — Denote by E the last interval in the backward orbit (7.1)
between E and £", which visits J771^-1) before returning to T^W. Then
hk-\E' = E and h^_^E = E for an appropriate j.

The Markov scheme (3.2) provides us with an interval K C
jm(fc)-i ^ jm(fe) containing E which is homeomorphically mapped under
h^_^ onto J771^-1). By essentially bounded geometry K is well inside
jm(fc)-i \^ jm(fc) j^g ^g^ ̂  critical value /^-i(0) is contained in one of
the intervals J^^ ^ which is well inside K by essentially bounded geometry.
Thus this critical value divides K into commensurable parts.

Let K ' 3 £" be the pull-back of K by hj, \ F^. It follows that K ' is
contained well inside J^^).

Let C = ̂ fe-iC' be the point of the orbit (7.2) corresponding to E. By
the Schwarz Lemma, C ^ D{K). By the previous remarks and Lemma 2.2,
C' c D^W), or (C^) > e(pe) and dist^.E') < G^e)!^-^. D

Lemma 7.4 is not enough for making inductive step since the jump can
occur at a bad moment. The following lemma takes care of this possibility
in the way similar to Lemma 7.3.

LEMMA 7.5 (First return to r^^), k > 1). — Let E =
£'0,^-1,... ,E-s = E ' be the consecutive returns of the orbit (7.1) to
jm(fc) y^-j ̂  ̂ ^ return to I771^1). Let C = Co, C-l • • ̂  C-5 = C' be the

corresponding points in the backward orbit of C- Assume that C-l e

Cpn(fe+i) H D^W). Then either C' € D^W), or (C-l^z) > e(pe) > 0
and disi(^-i,E-.i) < (^(pe)!!771^! at some good moment — l > — z > —s.
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Proof. — Consider the largest moment r < s — 1 such that
E-q C r^+^-i \ jm(fc)+g ^ ^ q < r. By essentially bounded
combinatorics and geometry, this moment is good.

By Lemma 6.2, either

(C- .̂) > e and dist(C-.,^-r) < 0(^)1^1,
or C,-r e D^I171^). In the former case we are done by Lemma 2.1.
So let us assume the latter. If r = s — 1 the claim follows from
Lemmas 2.2 and 2.6. Otherwise, the Markov scheme (3.2) provides us
with an interval K C I772^1)-1 \ 7^(^+1) containing E_^-i) which is
mapped homeomorphically onto J^) by ̂ -l-r. By the Schwarz Lemma,
C-(s-i) ^ D{K) C D^I171^), and the desired conclusion follows again from
Lemmas 2.2 and 2.6. D

The following lemma will allow us to pass to the next renormalization
level. Note that the statement is almost identical to that of Lemma 7.2. Let
us now restore the label £ for the renormalization level.

LEMMA 7.6 (To the next renormalization level: period > 2 case). —
Assume that fg is not immediately renormalizable.

Let E = £Li,.... E-r = E ' , . . . , E_^s) = E" be the returns of the
backward orbit (7.1) to ^^+1, and let E^ E" be two consecutive returns
to A^. Let (^ = ^-i,.. . , ̂ / , . . . , ̂ _^s) = C" be the corresponding points
of the backward orbit (7.2), and suppose C e ^(J771^""1)), where ̂  = \(f^)
is the height of fn. Then either C," e D{B^1), or (C-^^z) > e(pe) > 0
and dist(C-z, £_,) <, (7(p) |B^+11 for some 1 <, i < r + s. Moreover, all these
moments are good.

Proof. — First, r + s < 2pe by definition of the essential period pe,
and the last statement follows from Lemma 2.6.

By Lemma 7.4, either (€-'2^2) > e, dist(C_2,^-2) ^ C(pe)\BW\,
or C-2 e D^W).

By the Schwarz Lemma and Lemma 2.2, if (^ e ^(r71^), then
eithe^C_(,+i) e ^J^)), or dist(C_(,+i),E_(,+i)) < ^(pe)!^1! and
(C-(i+i), £'-(z+i)) > e(pe) > 0. In the latter case we are done.

If the former case occurs for all i < r + s then by Lemma 5.2,
C" e De(H), where H = H^s-i{E'1',^+1) and 0 = JTT - 0(e). By
Lemma 7.1, H is well inside ^+1, and hence D^) C D(B^1) for
sufficiently small 6 > 0. D
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Our last lemma takes care of the case when the map fn is immediately
renormalizable.

LEMMA 7.7 (To the next renormalization level: period 2 case). —
Assume that ji is immediately renormalizable, so that A^ == B^. Let
E C ^+1, E = EQ, £'_!,..., E-s = E ' be the consecutive returns of the
backward orbit (7.1) to B^ until the first return to A^.

Let ^ = (^o,..., C-s = C' be the corresponding points of the backward
orbit (7.2). Assume also that C e CA^ n D{B^). Then either <' e ̂ (B^1),
or

(C-^E^) > e and dist(C-z, ̂ -z) < C(pe)|^|

for some 0 > —z > —5. Moreover, all these moments are good.

Proof. — By essentially bounded combinatorics, s < 2pe which yields
the last statement.

Further, by Lemma 7.1, the monotonicity interval Hs{E-s^fe) is
contained well inside of ^^+1, and the claim follows from Lemma 5.2. D

Let us now summarize the above information. When fr-i is imme-
diately renormalizable, set Vr = Br~^. Otherwise let Vr = I^-^^fr-i}
where \ = \(fr-i) is the height of jr-\'

LEMMA 7.8. — Let fr = ̂ r /. Let us consider the backward orbit (7.1)
of an interval J and the corresponding orbit (7.2) of a point z. Then there
exist e = e(pe) > 0 such that either one of the points z-s c-jumps at some
good moment, or z_^n-i) ^ D(Vr).

Proof of Lemma 4.2. — If the former possibility of Lemma 7.8 occurs
than Lemma 2.1 yields (7.3) (note that the assumptions of Lemma 2.1 are
satisfied due to Theorem 3.4). In the latter possibility happens then

dist(^_i),J_(^_i))
————rj———————— < C(pe)

\J-{n-l)\

by essentially bounded geometry, and we are done again.

The lemma is proved. D
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7.2. Proof of Lemma 4.4.

Let us first show that J{fk) C ^(S^) with a 0 = 6{pe) (recall that
Sk 3 0 is the maximal interval on which fk is unimodal).

By Corollary 4.3, diamJ(^) < C(pe)\Br\.

Take ̂  € J(/.). Let ^ = ^(C"), C = /r(C'), and

C = C(h C-l? - • • 5 C-n = C 5 • • • ? C-2n = C

be the corresponding backward orbit.

Let the first possibility of Lemma 7.8 occur and (-s e-jumps at a
good moment s < n — 1. Then ^-5 C Ds(J-s) with 6 = S{pe) > 0, since
dist((^_s, J-s) is commensurable with \J-s\' But then by the Schwarz lemma
and Lemma 2.2, C" ^ Qe(Sr) with a 0 = 0(pe) > 0.

Let the second possibility of Lemma 7.8 occur.

Let us first consider the case when fr-i is not immediately renorma-
lizable. Then C' € ^(r-1^-1)). By Lemma 7.4, C" G D^-1'771^)) C
D(ST). Thus J(fr) C Qe{Sr), and we are done.

In the case when fr-i is immediately renormalizable ^' € D(Br~l).
Consider the interval of monotonicity of fr-i, H = H^ (C") C ST-. By
Lemma 5.2, C" ^ De(H) with 0 = JTT - 0(e), and the claim follows.

Let us now show how to replace ST by BT. By essentially bounded
geometry, the space Sr \ Br is commensurable with I-ST] (see Corollary 3.3
and the second statement of Lemma 2.7).

By the last statement of Lemma 2.7, for any 6 > 0, there is an
AT = N{pe^6) such that the A^-fold pull-back of S7' by fr is contained in
{l+6)Br. By the Schwarz Lemma and Lemma 2.2, J{fr) C Dp{(l-\-6)Br),
with a p = p(6,pe).

By the compactess Lemma 2.5, for some 6 > 0 (independent of r) the
map fr is linearizable in the ^[B'7']-neighborhood of the fixed point f3r- In
the corresponding local chart the Julia set J(fr) is invariant with respect
to /^. (/^-dilation. Hence further pull-backs will keep it within a definite
sector. D
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