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ON THE HAAGERUP INEQUALITY
AND GROUPS ACTING ON A^BUILDINGS(*)

by Alain VALETTE

1. Introduction.

Let Fn be the free group on n generators; for 7 6 Fn, denote by
171 the word length of 7 with respect to a free generating subset; for /
a function with finite support on Fn, denote by A(/) the operator of left
convolution by / on the Hilbert space ^(Fn). In Lemma 1.5 of [Haa79],
U. Haagerup proved the following remarkable inequality on the operator
norm ||A(/)||:

11^)11 ̂ JE lA^l+H)4.
VSeFn

In other words, the convolution norm of /, which is in general quite hard
to compute (see e.g. [A076]), can be estimated by a weighted ^-norm - or
Sobolev norm - which is much easier to calculate.

Haagerup's inequality was studied in a systematic way by P. Jolissaint
(see [JolQO], [Jol89]) in the setup of a group F endowed with a length
function L. A length function is a function L : F —>• Ti+ such that L(l) = 0,
L(7-1) = L(7),L(7i72) ^ ^(71) + ^(72) for every 71, 72, 7 ^ F, and for
every R > 0 the set {7 e F : ^(7) ^ R} is finite (i.e. L is a proper function).

Apart from length functions given by word length with respect to
a finite generating subset in a finitely generated I\ examples of length

(*) An appendix to the paper "On the loop inequality for euclidean buildings", by Jacek
SWIATKOWSKI.
Key words: Convolutor norm - Random walks - Amenability - Growth of groups -
Euclidean buildings.
Math. Classification: 44A35 - 43A05 - 51E24 - 60J15.
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functions are obtained by letting F act properly isometrically on a metric
space (X,d) with base-point Xo^ and setting

^(7) =d(^Xo,Xo)

for 7 G r (actually this last example is general).

Denote by CT the group algebra of r, i.e. the space of complex-valued
finitely supported functions on r, endowed with the convolution product;
for / e OF and s > 0, define the weighted ^-norm of / as:

II.,L = l^f^m^L^.
V-yer

DEFINITION 1. — We say that T satisfies the Haagerup inequality, or
has the (RD)-property with respect to L, if there exists constants (7, s > 0
such that, for any f € CT, one has

||A(/)||^G||/||^.

The papers [Jol90] and [dlH88] give the main known examples of
(RD)-groups; among finitely generated groups with a word length, these
are groups with polynomial growth and hyperbolic groups "a la Gromov".

The main feature of (RD)-groups (which explains the acronym RD)
appears in [Jol89]: for an (RD)-group F, the space of rapidly decreasing
functions on F (i.e. functions 0 on F such that H^Hs,!/ < oo for every
s > 0) is a dense subalgebra of the reduced C*-algebra C^(r), such that
the inclusion induces isomorphisms in topological K-theory. (This fact
played a crucial role in the Connes-Moscovici proof [CM90] of Novikov's
conjecture for hyperbolic groups.) Applications ofHaagerup's inequality to
harmonic analysis were given in [Haa79] and [JV91]. More recently came
other applications to spectra of Markov operators [dlHRV93].

Jolissaint gave a purely algebraic obstruction to property (RD): if
r contains a subgroup which is solvable with exponential growth, then
there is no length function on F for which Haagerup's inequality holds
(combine 1.1.7, 2.1.1 and 3.1.8 in [Jol90]); this applies in particular to
5Ln(Z), with n ^ 3 ([Jol90], 3.1.9); more generally, this holds true for
any non-uniform lattice in a simple real Lie group with real rank at least
2 (private communication of E. Leuzinger and C. Pittet). In contrast, a
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uniform lattice in such a Lie group (or in a simple p-adic group with split
rank at least 2) has no solvable subgroup with exponential growth (see
[GW71]). Thus the question was raised in the problem section of [FFR95]
whether such a uniform lattice has property (RD); that was the motivation
for the present paper. While this article was under completion, we received
a very interesting preprint by J. Ramagge, G. Robertson and T. Steger
[RRS] providing a proof of property (RD) for As-groups - these groups will
be defined below.

In this paper, we first generalize Definition 1 as follows:

DEFINITION 2. — Let E be a linear subspace of CT; we say that E
satisfies the Haagerup inequality if there exists constants G, s > 0 such
that, for any f € E, one has

||A(/)||^C||/||^.

(Somewhat pedantically: CT satisfies the Haagerup inequality, according
to Definition 2, if and only if F satisfies the Haagerup inequality, according
to Definition 1.) The purpose of this generalization is twofold. First, even
if r does not have property (RD), it may happen that some interesting
subspaces of CT satisfy the Haagerup inequality (as an illustration, see
[Jol96] for the case of a free product F = G * Z, with G arbitrary). Second,
it may be easier to prove Haagerup's inequality for a subspace, as we will
show.

Our main results are as follows:

(1) A *-subspace E of CT satisfies the Haagerup inequality if and
only if there exists constants G, s > 0 such that, for any self-adjoint / € E
and any k € N:

/(^(i^c^n/ll^,
where f^ is the j-th convolution power of / in CT.

(2) We get the following new characterization of property (RD): F
has property (RD) if and only if there exists constants (7, s > 0 such that,
for any symmetric, finitely supported probability measure ^ on F and any
/ c e N :

^(i)^^!^^.
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Noticing that //^(l) = sup{//2^ (x) : x G F} measures the decay of the
random walk on F associated with /^, one sees that this is close to results
linking decay of random walks with growth properties of F, as they appear
e.g. in Chapters VI and VII of [VSCC92].

(3) Denote by RadL(F) the space of radial functions^ i.e. the space of
functions in CT that depend only on L. If L is a word length function on
a finitely generated group F, we are able to relate growth and amenability
as follows. Suppose that Rad^F) satisfies Haagerup's inequality; we prove
that r is non-amenable if and only if F has superpolynomial growth. (This
was known to Jolissaint [Jol90], under the stronger assumption that F has
property (RD)).

(4) Assume that L is integer valued (e.g. L is a word length). It turns
out that Haagerup's inequality for Rad^(r) has a purely combinatorial
interpretation. Define a strict N-loop with length 2k in F as a sequence
(2:0 = 1, ̂ i , . . . , V2k-i,^k = 1) such that L(t^_\^) = N for i = 1,..., 2k',
the sphere SN of radius N is the level set SN = L'^TV). We show that
Rad^r) satisfies Haagerup's inequality if and only if there exists constants
(7, s > 0 such that for any k, N e N:

card{strict N-loops with length 2k in F} ̂  (7^(1 + AO^cardS^.

This last result allows us to make the link with J. Swiatkowski's
paper [Swi], to which the present paper is an appendix. Indeed, let F
be an An -group, i.e. a group acting simply transitively on the vertices
of a thick euclidean building A of type An\ Aa-groups have been studied
for some years now, first from a combinatorial point of view [CMSZ93],
then from the point of view of harmonic analysis [CMS93]; for n ^ 3
the existence of A^-groups has been established by D. Cartwright and T.
Steger [CS]. Let VQ G A be a base-vertex; consider the length function
^(7) = d^(^Vo^o), where d^ is the combinatorial distance on the 1-
skeleton of A. Swiatkowski's loop inequality (Theorem 0.6.(a) in [Swi])
is nothing but our combinatorial criterion, equivalent to the Haagerup
inequality for Rad^F). Moreover, the fact that F has exponential growth
(proved in Proposition 1.9 of [Swi]) gives a direct, combinatorial proof of
the non-amenability of F.

Thanks are due to M. Bozejko, T. Coulhon, P. Jolissaint and F. Lust-
Picquard for a number of helpful conversations at various stages of the
research. We are also indebted to the referee for a number of simplifications.
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2. Property (RD) for a subspace of CT.

We shall consider two involutions on CT:

/^^wheren^T^;

/ ^/where/(7)=/(7-1).

We say that f is self-adjoint if / = = / * , and symmetric if / = /. A
linear subspace E of CT is a ^-subspace if £'* = E.

PROPOSITION 1. — For a ^-subspace E ofCT, the following conditions
are equivalent:

(i) E satisfies the Haagerup inequality;

(ii) there exists constants (7i, s > 0 such that for any self-adjoint f € £1,
one has

||A(/)||^Ci||/||^;

(iii) there exists constants C^^s > 0 such that for any A; € N and any
self-adjoint f e £', one has

/(^(i) ̂ 11/11 .̂

Proof. — (i) ==^ (ii) is clear.

(ii) ==> (i) This follows easily from the fact that the involution / i—^ /*
on CT is an isometry both for the norm ||A(/)|| and H/Hs,!,-

(ii) => (iii) Notice that g* ^ g(l) = ||̂ ||| for any g € CT. Then, for a
self-adjoint f (z E:

/(^)(i) = ||/W||| ^ \\\(fW)\\2 = HA^H^ ^ c^n/11^.

(iii) =^ (ii) It follows from the spectral theorem (see e.g. [Kes59],
lemma 2.2) that, for any self-adjoint g € CT:

^(g(2k\l))^=\\\(g)\\.

This concludes the proof of Proposition 1.
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PROPOSITION 2. — Let Ebea *-subspace ofCF which is stable under
the map f —^ \f\. The subspace E has property (RD) if and only if there
exists constants C, s > 0 such that for any symmetric non-negative f C E
and any k € N:

/(^(l) ^ C^II/H^,

Proof. — The direct implication follows from Proposition 1. For the
converse, notice that for g a self-adjoint element in E, we have |^2^ | ̂
|^|(2fc) pointwise, and \g\ is non-negative and symmetric in E. Then

^)(i) = |^)(i)| ^ |^)(i) ^ C^M^ = c^M2^
so that the result follows from (iii) => (i) in Proposition 1.

We single out as a corollary what Proposition 2 says for E = CT.

COROLLARY 1. — r has property (RD) if and only if there exists
constants (7, s > 0 such that, for any symmetric, finitely supported proba-
bility measure u. on F and any k e N:

^(1) ^ G^M^.

(By homogeneity, the condition in the corollary is clearly equivalent to the
one in Proposition 2.) On purpose, we expressed the corollary by appealing
to probability measures fi on F; indeed, ^^(l) is just the probability
of return to 1, in 2k steps, of the random walk on F with probability
transitions p(x,y) = ^Ji(y~lx). There are numerous results on the decay of
/^^(l) as k -> oo; see especially Chapters VI and VII of [VSCC92] for the
relation between decay of random walks and growth of the group.

For the rest of the paper, we assume that the length function L is
integer-valued (this will be the case if L comes from a proper isometric
action of F on a graph). We denote by \N the characteristic function of
the sphere S N '

PROPOSITION 3. — Let E be a ^-subspace ofCT.

(a) If there exists constants C,s> 0 such that, for any N, k G N and
any self-adjoint f G E:

(*) (W2^!) ^ C^fXN^L
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(where f\N denotes the pointwise product), then E satisfies the Haagerup
inequality.

(b) Assume moreover that E is stable under f —> \f\. Then E satisfies
the Haagerup inequality provided (si!) holds for any non-negative symmetric
f e E .

Proof. — (a) The following computation is inspired by the proof of
Lemma 1.5 in [Haa79]. First, as in the proof of Proposition 1 above, we
have for any self-adjoint / € E and any N € N:

\WXN)\\ ̂  C\\fXN\\s^

00

But / = ^ f\N, hence
N=0

1|A(/)|| ̂  E WXN)\\ ̂  CJ^ \\fXN\\s,L = Cf^ \\fXN\\s,L(^N)(l^N)-1

N=0 N=0 N=0

/ o o \ * / ° ° \ *
^ c E 11/̂ 11^(1 + N)2] E (1 + ̂ )~2 (^ Cauchy-Schwarz)

\N=0 ) \N=0 )

<N=0

One concludes as in the proof of Proposition 1, (ii) => (i).

(b) This follows immediately from (a) and the proof of Proposition 2.

Taking E = CT, one immediately sees that Corollary 1 may be
improved:

COROLLARY 2. — The group F has property (RD) if and only if there
exists constants (7, s > 0 such that, for any fc, N € N and any symmetric
probability measure p, supported in S N :

^(i) ^ c^M2^.
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3. Radial functions.

We restrict attention to the subspace E = Rad^(F) of radial functions
in CT; note that this is exactly the linear span of the \N^' It turns out
that property (RD) for Rad^(r) has a purely combinatorial meaning.

PROPOSITION 4. — Rad^F) satisfies the Haagerup inequality if and
only if there exists constants (7, s > 0 such that, for any fc, N G N:

card{strict N-loops with length 2k in F} ^ 0^(1 + ̂ ^(card 5 .̂

Proof. — It follows from Propositions 2 and 3(b) that Radi/(r)
satisfies the Haagerup inequality if and only if there exists (7, s > 0 such
that, for any k, N e N:

^(l) ^ G^UxNil^.

Now

\\XN\\S,L= E (l+i^))2^ (l+^^card^)*
^ 7:L(7)=iv

and

X^l) = ^ XN(5l)XN(52)...XN(52fc).
(si,S2,...,S2fc):SlS2...S2fc=l

With 1:0 = 1 = V2k and ^~_\^ = 5^ for ^ = 1,..., 2fc, this yields:

^^(l) = ^ XN^o"1^)^^^1^) . • .XN^-l^fc)

(vo,vi,...,r2fc)^o=V2fc=l

= card{strict AT — loops of length 2k}

since (^o? ^i? • • • 5 ^2A;) contributes a non-zero term to the summation if and
only if L{VQ^V\) = L(v'[lv'z) = ... = L{v^_^k) = N. This concludes the
proof.

An N-loop with length 2k in F is a sequence (vo = 1, v^ , . . . , v^k-i i ̂ ik =
1) such that L(v^Vi) ^ n for i = 1,..., 2k. Consider also the ball with
radius N in F:

BN = {7 € F : L(7) ^ N}.
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LEMMA 1. — Assume that Rad^F) satisfies the Haagerup inequality.
Then there exists constants C, s > 0 such that, for any fc, N € N:

card{7V - loops with length 2k in F} ̂  (7^(1 + ̂ ^(card^^.

Proof. — Denote by T]N the characteristic function of BN- Since
Rad^(r) satisfies the Haagerup inequality, we find by Proposition 1 con-
stants C, s > o such that, for any fc, N G N:

^(D ̂  ^11^11%.
But

/ v
llrfL= E (^^M)28 ^ (l+AO^cardB^.

\7eB^ /

On the other hand, the same calculation as in the proof of Proposition 4
yields:

77^(1) == card{JV - Joops with length 2k in F}.

This concludes the proof of Lemma 1.

Suppose now that F is a finitely generated group, and that L is a word
length function with respect to some finite, symmetric, generating subset.
Lemma 1 exhibits a link between the Haagerup inequality and growth
properties of F, i.e. the behaviour of the growth function N —^ cardB^y.
It turns out that amenability also plays a subtle role, as the following two
propositions illustrate.

PROPOSITION 5. — Suppose that F is not amenable. The following
statements are equivalent:

(i) Rad^(r) satisfies the Haagerup inequality;

(ii) There exists constants (7, s > 0 such that, for any fc, N € N;

card{7V - loops with length 2k in F} ^ 0^(1 + AO^^cardB^.

Proof. — (i) =^ (ii) This is just Lemma 1 (which does not depend on
amenability).
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(ii) =^ (i) We assume that (ii) holds. Since F is non-amenable, by
Folner's property there exists e > 0 such that card SN ^ e.card BN for any
N e N. Then, for k, N € N:

card{strict N - loops of length 2k} ^ card{AT - loops of length 2k}
^ C2k(l+N)2ks(c^dBN)k

/ (-1 \^k

^ ^= (l+AO^card^.
V v 6 /

It follows from Proposition 4 that Rad^(r) satisfies the Haagerup inequal-
ity.

The following proposition extends Jolissaint's result that an amenable
group with property (RD) (with respect to a word length function) nec-
essarily has polynomial growth; see Corollary 3.1.8 in [JolQO]. Following
[VSCC92], we say that a finitely generated group is superpolynomial if its
growth function grows faster than any polynomial.

PROPOSITION 6. — Assume that, for some word length function L,
the space Radjr^F) satisfies the Haagerup inequality. The following are then
equivalent:

(i) r is not amenable;

(ii) r has exponential growth;

(iii) r is superpolynomial.

Proof. — (i) =^ (ii) It is a general fact that any non-amenable group
has exponential growth.

(ii) => (iii) Obvious.

(iii) => (i) Assume that F is superpolynomial. Let (7, s > 0 be such
that ||A(/)|| ^ C\\f\\^L for any / e Rad^F). Take / = r1N , the

card BN
uniform probability measure on BN- Then:

^W^^^S^^i^S-
Since F is superpolynomial, we have ||A ( ——•^— ) || < 1 for N big

\cardB7v /
enough. By Kesten's well-known characterization of amenability [Kes59],
the group F has to be non-amenable.
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It is often useful to have criteria for non-amenability that do not
depend on the presence inside the group of a free group on two generators.
Proposition 6 provides such a criterion. It will be used in the next section
to deduce that Ayi-groups are non-amenable. It would be interesting to use
this criterion to prove non-amenability for other finitely generated groups.

4. From Jolissaint to Tits:
groups acting on buildings.

Here we make the connection with the companion paper by J.
Swiatkowski [Swi]. It is noticed in [CMSZ93] that an irreducible euclidean
building with a vertex-transitive group of automorphisms is necessarily of
type An. So let A be a locally finite, thick euclidean building of type An.
Following Definition 0.1.2 in [Swi], we say that A is uniformly thick if
there exists q e N such that any codimension 1 face in A is contained in
9+1 chambers. We thank the referee for suggesting the next lemma, that
improves a previous version.

LEMMA 2. — For n ^ 2, a thick building of type An is uniformly
thick.

Proof. — For n ^ 3, this follows from Tits'result [Tit86] that a
thick building of type An is "classical", i.e. comes from a (not necessarily
commutative) field K endowed with a discrete valuation v (see §2 of
Chapter 9 in [Ron89] for a construction of the building An(K^v)). For
n = 2, the lemma follows from the fact that the link of a vertex in an
As-building is a generalized 3-gon (see §2 in Chapter 3 in [Ron89]), and
all vertices in a thick generalized 3-gon have the same valency (Proposition
(3.3) in [Ron89]).

Of course this lemma does not hold for n = 1, since an Ai-building is
just a tree. We shall use the fact that the lemma is (trivially!) true if this
tree admits a vertex-transitive group of automorphisms.

Let F be an Ayi-group, i.e. a group acting simply transitively on
the vertices of a thick A^-building A (examples of such groups appear
in [CMSZ93], [CS]). Fix a base-vertex Vo e A; let S be the set of elements
7 € F such that 7^0 is a neighbour of Vo in the 1-skeleton A^ of A.
Then S is a finite, symmetric, generating subset for F, and the Cayley
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graph of r with respect to S identifies with A^. Consider the length
function L(^) = ^(7^05^0)5 where d^ is the combinatorial distance in
A^; alternatively, L is the word length function with respect to S. From
Swiatkowski's loop inequality (Theorem 0.6. (a) in [Swi]) together with our
Proposition 4, we immediately get:

THEOREM 1. — Let r be an An-group, with L as above. Then the
space RadL(F) satisfies the Haagerup inequality.

COROLLARY 3. — An An-group is non-amenable.

Proof. — From Claims 1 and 2 in the proof of Proposition 1.9 in
[Swi], it follows that an An-group has exponential growth. Then combine
Proposition 6 with Theorem 1.

Of course this corollary is known, and we indicate two other possible
proofs.

First, for n ^ 2, one may prove the stronger statement that an An-
group r has Kazhdan's property (T). For n = 2, this is done in [CMS93]
when r acts in a type-rotating way and the building is locally Desarguesian
(these assumptions were dropped in [Pan] and [Zuk96]); for n ̂  3, first use
Tits'result [Tit86] (see also p. 137 in [Ron89]) that a euclidean building with
dimension at least 3 is "classical", i.e. comes from some simple algebraic
group G with F-rank at least 2, defined over some non-archimedean local
field F. So r is essentially a lattice in G, and one may prove as in [dlHV89]
that G and F have property (T).

Alternatively, one may construct free subgroups inside r. For n = 1,
this is a simple exercise. For n = 2, this is a recent result of W. Ballmann
and M. Brin (Theorem E in [BB]). For n > 3, using the fact that F is
essentially a lattice in G, one may appeal to the celebrated Tits alternative
[Tit72].

As a final remark, we mention that Swiatkowski proves in Proposition
1.9 of [Swi] that, for any uniformly thick building of type An, one has

cardB^(^) ^ G(l + AO^"^ card 5^(0

for any TV € N. If r acts simply transitively on the vertices of A, then
r is non-amenable (by Corollary 3), so that the above inequality may be
improved to the strong isoperimetric inequality

cardjE?7v(vo) ^ G'card^^o)
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for any N e N. Actually the latter inequality holds for any thick building A
that admits a discrete group F acting properly co-compactly. Indeed, such
a r is non-amenable (Theorem F in [BB]), so that card BN ^ K card SN by
F0lner's property. But the assumptions are such that F is quasi-isometric
to A; and it is known that satisfying a strong isoperimetric inequality is
a quasi-isometry invariant among graphs (see Proposition 4.1 in [Pit] for
a recent proof of this fact). If A comes from a simple algebraic group G
defined over some non-archimedean local field of characteristic zero, then
such co-compact lattices do exist [BH78].
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