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SCHUBERT VARIETIES, TORIC VARIETIES,
AND LADDER DETERMINANTAL VARIETIES

by N. GONCIULEA and V. LAKSHMIBAI®*)

Introduction.

Let & be the base field which we assume to be algebraically closed of
arbitrary characteristic. Let £ be a a finite distributive lattice, k[£] =
klz, | 7 € L], I(L) the ideal generated by all binomials of the form
Ty —TrveTrag, T, ¢ being two noncomparable elements of £ (see Section
3 for notations), and R(L) = k[L]/I(L). Let X(L£) = SpecR(L). The main
object of study in this paper is the variety X (L) for the case £ = I4n,
where Iy, = {i = (i1,...,%q) | 1 <41 < ... <ig < n} (the partial order on
I, being the natural one, namely (i1, ...,%q4) > (j1,...,Jd) <> it > ji
for all 1 < t < d). Denoting X (I4,,) by just X4 n, we prove (cf. Theorem
10.4)

THEOREM 1. — X4 , is a normal toric variety.

Let G4, be the Grassmann variety of d-planes in k™. Using Theorem
1 and the results of [12], we prove (cf. Theorem 10.8).

THEOREM 2. — The Grassmannian G4, degenerates to the normal
toric variety Xg p.

In the case d = 2, the toric variety X3, may also be identified with
a certain ladder determinantal variety. To make it more precise, let L
be a one-sided ladder with lower outside corner op, and upper outside
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Figure 1. An one-sided ladder.

corners a1 = (by,01),as = (be,a2),...,04 = (b;,a;). Let X(L) be the
ladder determinantal variety determined by the vanishing of all 2-minors
in £. (Note that X, , is simply X (L), where £ is a ladder with n — 3
outside corners and a; = a;—1 +1,b; = bj—1 + 1,1 < 4,7 < n—3,
ag = 0 = bg). For 1 < i < [, let V; be the subvariety of X(L£) defined
by zo =0 for a € [ag A o, a9 V 0] (see Section 2 for notations). We prove
(cf. Theorem 12.3)

THEOREM 3. — The irreducible components of Sing X (L) are precisely
Vi, 1 <4 <1, where SingX (L) is the singular locus of X (L).

For arbirary d, we prove some partial results, and state a conjecture(!)
on the irreducible components of the singular locus of the variety X .

Because of the relationship between certain toric varieties and ladder
determinantal varieties as discussed above, we are naturally led to study
ladder determinantal varieties (LDVs). LDVs were first considered by
Abhyankar (cf. [1]) in his study of the singularities of Schubert varieties.
Fixing an one-sided ladder £ as above and a positive integer ¢, let X;(L)
be the variety defined by the vanishing of all t-minors in £. In [22], Mulay
relates X;(L) to the “opposite cell” in a certain Schubert variety X (w) in

(1) This conjecture has now been proved in [3)].
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SL(n)/Q for a suitable n and a suitable parabolic subgroup Q. Using this
result and Theorem 3, we prove (cf. Theorem 15.15) a refined version of
the conjecture of [20] on the components of the singular locus for the class
of Schubert varieties arising from LDVs.

We now give a brief outline of the proof of our results. For proving
Theorem 1, we first prove (cf. Section 3) that I(L), £ being a finite
distributive lattice, is a toric ideal (in the sense of [26]). We then prove
(cf. Section 7) the Cohen-Macalayness of R(L). For the case £ = I4,, we
futher prove (using the Jacobian criterion for smoothness) that the variety
X (L) is nonsingular in codimension 1.

Theorem 2 is proved using Theorem 1 and the result (cf. [12])
that there exists a flat family whose special fiber is R(I4,) and general
fiber is k[G4,n), the homegeneous coordinate ring of G4, for the Pliicker
embedding. Theorem 3 is again proved using the Jacobian criterion for
smoothness.

The sections are organized as follows. In Sections 1 and 2, we recall
some generalities on Grobner bases and distributive lattices. In Section 3,
we prove the primality of the ideal I(L£), £ being any finite distributive
lattice (our proof is very short, and combinatorial in nature). In Section 4,
we carry out a short geometric proof of the fact that a binomial prime ideal
is toric (see [9] for an algebraic proof). In Section 5, we prove some general
results on X (L) (in particular, we compute the dimension of X(£)). In
Section 6, we construct a “standard monomial basis” for R(L). In Section
7, we prove the Cohen-Macaulayness of R(L). In Section 8, we derive
some properties of the distributive lattice I3 ,. In Section 9, we study the
variety X4, where Xq, = X(L), for £L = I4,. In Section 10, we prove
the normality of the variety Xg,. In Section 11, we prove some partial
results, and state a conjecture, on the irreducible components of SingXg ,.
In Section 12, we verify the conjecture stated in Section 11 for d = 2,
by determining the irreducible components of SingX (L), where X (L) is
the determinantal variety defined by the vanishing of all the 2 minors in
a general one-sided ladder L. In Section 13, we recall some results on the
flag variety SL(n)/B, and its Schubert varieties. In Section 14, we relate
X(L), as well as the irreducible components of SingX (L) to opposite cells
in certain Schubert varieties in certain SL(n)/Q. In Section 15, we state
a refined version of the conjecture in [20] and verify it to be true for the
pull-backs in G/B (under G/B — G/Q) of the Schubert varieties obtained
in Section 14.
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It should be remarked that in [27] a purely combinatorial description
of Sing X (L) is obtained. In this paper we have taken a geometric approach
to this problem, in the case when £ = I; ,, or £ is an one-sided ladder.

In this paper we have considered only those ladder determinantal
varieties which are also toric varieties. In a subsequent paper [13], we study
a larger class of ladder determinantal varieties (which are not necessarily
toric varieties), and prove results similar to those of Sections 12, 14 and 15.

The authors wish to thank the referee for some useful suggestions.
The authors wish to thank C. S. Seshadri and P. Sankaran for many useful
discussions, especially pertaining to Sections 4 and 9.

1. Generalities on Grobner bases.

Let k be a field, and consider the ring k[z1, ..., 2z,] of polynomials in
n variables x1, . .., ,. We recall below some generalities on Grobner bases;
for more details one may refer to [7], [8].

DerINITION 1.1. — A total order < on the set of monomials in
k[z1,...,2n] is called a monomial order if for given monomials m, m,,
my, with m # 1, m; < m, impliesm; <m-m; < m-m,.

For the rest of this section, a fixed monomial order < is considered.

If f is a nonzero polynomial in k[zi,...,Z,], then the greatest
monomial (with respect to <) occuring in f is called the initial monomial
of f, and we denote it by in(f); the coefficient of in(f) is called the initial
coefficient of f. For a family of polynomials F C k[z1,...,Z,], the ideal
generated by its elements will be denoted by (F), and the set of the initial
monomials of all polynomials in F will be denoted by in(F).

DeFINITION 1.2. — Let I C k[zy,...,z,] be an ideal. A finite set of
polynomials F C I is called a Grébner basis for I with respect to < if

(in(F)) = (in(I)).

DerFINITION 1.3. — A reduced Grébner basis for I with respect to < is
a Grobner basis F for I with respect to < such that the initial coefficients
of the elements in F are all 1, and for all f € F, none of the monomials
present in f lies in (in(F \ {f})).

ProrosITION 1.4. — Any Grébner basis for I generates I as an ideal.
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In the case when I is the defining ideal of an algebraic variety X, a
Grobner basis for I will be also called a Grobner basis for X.

ProrosiTiON 1.5. — A nonzero ideal I C k[z1,...,z,] has a unique
reduced Grobner basis (with respect to a given monomial order).

1.6. Reverse lexicographic order. Assume that the variables z1,...,z,
are totally ordered as follows: z; < ... < Z,,. A monomial m of degree r in
the polynomial ring k[z1, . .., z,] will be written in the formm = z;, ...z; _,
with 1 < 4; < ... < i < n. The reverse lexicographic order on the set of
monomials m € k[z1,...,Z,] is denoted by <,ie;, and defined as follows:
Ziy . Ti, =rlex Tj, ---Tj, if and only if either 7 < s, or 7 = s and there
exists an [ < r such that i; = j1,...,4 = jJi, 141 < Ji+1- It is easy to check
that <, jez 1S @ monomial order.

2. Generalities on distributive lattices.

2.1. We recall the following definitions on lattices. A lattice is a
partially ordered set (£, <) such that, for every pair of elements z,y € L,
there exist elements = V y and z A y, called the join, respectively the meet
of x and vy, defined by:

y, then

xVy zzzVy,
y, then z < x A y.

>z, zVy>y, and if z >z and 2
TANY<T, TAY < <z

VA%

y, and if 2z and z

It is easy to check that the operations V and A are commutative and
associative.

An element z € £ is called the zero of £, denoted by 6, if z < z for
all z in £. An element 2z € L is called the one of £, denoted by 1, if z > «
for all z in L.

Given a lattice £, a subset £ C L is called a sublattice of Lif z,y € L’
impliesszAye L, zVye L.

Two lattices £1 and Lo are isomorphic if there exists a bijection
¢ : L1 — Lo such that, for all z,y € Ly,

p(zVy) =) Ve(y) and p(z Ay) = o(z) A p(y).
A lattice is called distributive if the following identities hold:

1) zA(yVz)=(xAy)V(zAz)
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(2) zV(yAz)=(zVy)A(zV2).

2.2 An example. — Given an integer n > 1, C(n) will denote the chain
{1 <...<n}, and for ny,...,ng > 1, C(ny,...,ny) will denote the chain
product lattice C(ny) X ... xC(ngq) consisting of all d-tuples (i1, . .. ,i4), with
1<% <ny,...,1 < ig < ng. For (il,...,id), (jl,...,jd) in C(nl,...,nd),
we define

(il,...,id) < (jl,...,jd) = 1 Sjl,...,id < Jd -
We have
(i1,..+,8q) V (J1s .-+, Ja) = (max{i1, j1},..., max{ia, ja})
(il, .. ,id) A (jl, .. ,jd) = (min{il,jl}, A ,min{id,jd}).
C(ni,...,nq) is a finite distributive lattice, and its zero and one are
1,...,1), (ny,...,nq) respectively.

Note that there is a total order <« on C(nj,...,nq) extending <,
namely the lexicographic order, defined by (i1, ...,%4) < (j1,-.-.,jq) if and
only if there exists | < d such that 43 = j1,...,% = ji,%91+1 < Ji+1. Also
note that two elements (i1, ...,%4) < (j1,-..,J4) are non-comparable with
respect to < if and only if there exists 1 < h < d such that ip > jn.

Sometimes we denote the elements of C(n1,ng, ..., ng) by 2;,...i,, with

1<i1<n17"'a1<id<nd~

2.3. The lattice of all subsets of the set {1,2,...,n} is denoted
by B(n), and called the Boolean algebra of rank n. Note that B(n) is
isomorphic to [C(2)]™.

One has the following (see [2]):

THEOREM 2.4. — Any finite distributive lattice is isomorphic to a
sublattice of a Boolean algebra of finite rank, and hence, in particular, to
a sublattice of a finite chain product.

3. The ideal associated to a distributive lattice.

3.1. Let A= {aj,...,a,} be a subset of Z™. Consider the homomor-
phism

m:Z" - Z™, u=(u1,...,uy) — u1a; +... +uyan.
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Let x = (z1,...,Zn), t = (t1,...,tm), and
kix] = k[zy,...,x0], kT =k[tr, ... tm, t7%, ... 801
The map 7 induces a homomorphism of semigroup algebras

7 k[x] — k[t*1], x; > t3,

DEFINITION 3.2. — The kernel of T is denoted by I4 and called the
toric ideal associated to A.

Note that a toric ideal is prime.
Recall the following (see [26]).

ProposiTioN 3.3. — The toric ideal I 4 is spanned as a a k-vector
space by the set of binomials

{x"* —x¥ | u,v € Z} with 7(u) =n(v)}.

3.4. An important example (cf. [26]). — Let us fix the integers

d d

ny,...,ng > 1, and let n = [[ n;, m = Y n;. Let ell,...,elm be the
i=1 i=1

unit vectors in Z™, for 1 <l < d. For 1 < &; < mn1,...,1 < &4 < ng, define

ag,..¢, = €, @...@egd €M G... L™
and
Anl,...,’nd = {afl...gd ' 1 < 51 < MN1yeeey 1 < gd < nd}-
The corresponding map
T an-...~nd — Zn1+...+nd

is defined as follows: for 1 < I < d and 1 < 4; < my fixed, the (ny + ... +
ni—1 + %)-th coordinate of m(u) is given by > ue,..¢,_,66,4,...£4» the sum
being taken over the elements (£1,...,&-1,&,&41,---,&) of C(ny,...,ng)
with & = 4;. We call this subset the I-th slice of C(ny,...,nq4) defined by
i1, and denote it by {§ = i;}. The components (or entries) of an element
u € Z™™ are indexed by the elements (i1,...,34) of C(ny,...,ng). If

(41s---+Ja) € {& = 1}, sometimes we also say that u;, . j, itself belongs to
the slice {gl = il}.

The map 7 induces the map

T k[xll...la R RN ITRRR 7$n1n2...nd] - k[tlla see ,t1n17- . '1td17 oo ,tdnd]
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given by

Ty g tigy oo tagy, for 1 <& <ng,. ., 1< &g < ng.

DerINITION 3.5. — Given a finite lattice L, the ideal associated to L,
denoted by I(L), is the ideal of the polynomial ring k[L] := k[z, | T € L]
generated by the set of binomials

Ge={zy— (xAy)(zVy)|z,y € L non-comparable}.

By Theorem 2.4, a finite distributive lattice £ may be identified with
a sublattice of a finite chain product lattice . Hence it inherits a total
order extending the given partial order. In turn, this total order induces
the reverse lexicographic order on the monomials in k[£], as in 1.6.

The following theorem shows that the ideal associated to a chain
product lattice is toric.

THEOREM 3.6. — 1) We have I(C(na,...,n4)) = La,,
2) The set of binomials
G={zy—(zAy)(zVy)|z,y€C(n,...,ng) non-comparable}

is a Grébner basis for I(C(ni,...,nq)) with respect to the reverse lexico-
graphic order.

Proof. — Let C = C(n1,...,ng) and A = A, n,. Let f € Is; by
Proposition 3.3, there exist u;, v; € Z% with 7(u;) = 7(v;), and ¢; € k*,
1 <7 < s such that

S
(4) f= e —xv)
=1
for some s > 1, with the property that s is the smallest integer > 1 such

that f can be expressed as a linear combination of s binomials in the set
(3). Now we rewrite f as

s s
f= Zaixui + Zbix"", a;, b; € k.
i=1 =1

Then none of the coefficients a1, ...,as,b1,...,bs is zero. Indeed, suppose
that a; = 0 for some 1 < ¢ < s. This implies that there exists j € {1,...,s},
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J # i such that either ¢; = ¢; and v; = u;, or ¢; = —¢; and u; = u;. In the
first case we have

(5)  a(x™ —xY) +ci(xV —xV) = ¢(x —xV), 7(u;) =7(v;).
In the second case we have
(6)  ci(x™ —xV) 4 ci(x —x¥) = ¢i(xV —xV), 7(vj) =7m(vy).

But (4), (5) and (6) imply that f can be written as a linear combination
of s — 1 binomials in the set (3), contradicting the choice of s. Thus
a; # 0,1 < i < s, and similarly b; # 0, 1 < ¢ < s. This shows that
in(f) = in(x" — xV*) for some 1 < % < s. Let us write

xW _ xVi — XW(xu _ xv),

where u,v,w € Z7%, with 7(u) = n(v) and supp(u) N supp(v) = @.
Let us suppose that x" >, XV, ie. in(x" — xV) = x" and in(f) =
in(x" — xVi) = x". Let x;,.;, be the smallest variable appearing in
x", i.e. (i1,...,%q) is the smallest element of supp(u) with respect to <.
Then xV contains a variable z,  k,, with (k1,...,kq) < (i1,...,%4). Since
m(u) = w(v), the sum of the entries in every slice is the same for both
u and v. In particular, since all the entries of u in the slices {¢{; = i},
with 1 < 7 < 41, are 0 (by the choice of (41,...,%4)), all the entries of v
in these slices must also be 0. This implies that (k1,...,kq) € {& = i1}
Let 1 < h < ny such that k; =41,...,kh—1 = th—1, kn < in. Then the sum
of the elements of v in the slice {£, = kn} is nonzero, which implies that
{&n = kr}Nsupp(u) # 2. Let (j1,. - -, Jjq) be an element in this intersection.
We have (i1, ...14) <(j1,.-.,Ja) (by the definition of (i1,...44)), and since
in > kn = jn, we conclude that (i1,%2,...,%4) and (ji1,...,J4) are non-
comparable. Thus we obtain that x" is divisible by z;,. ;,z;,.. ;,. Hence
x" is also divisible by ;,. ;,%j,. . ,. Therefore in(f) is divisible by the
initial term of an element of the set

G ={zy— (zAy)(zVy)|z,y € C non-comparable}

of generators of the ideal I(C). Since G C I 4, it follows that G is a Grobner
basis for I 4. In particular it is a set of generators for this ideal. Thus G
generates both I(C) and I4, which implies the equality of the two ideals.

O
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THEOREM 3.7. — Let L be a finite distributive lattice . Then
1) The ideal I(L) is toric (and hence prime).
2) The set of binomials

Ge={zy— (zAy)(z Vy)|z,y € L non-comparable}
is a Grobner basis for I(L) with respect to the reverse lexicographic order.

Proof. — By Theorem 2.4, we may assume that £ is a sublattice of
C(ny,...,nq), for some ny,...,ng > 1. Let us denote C = C(ny,...,nq),
A=A, n, and G = Gc. Note that G, is the subset of G consisting of all
binomials in G involving only the variables from L. Let us denote

gl::{flv"wfr}) g\gl::{gh"'?gs}'

Let g; = zy — (x Ay)(z V y), with z,y € C non-comparable, 1 < i < s; then
at least one of z and y does not belong to £ (£ being a sublattice of C,
z,y € L would imply x Ay,z Vy € L, so g; would involve only variables
from £).

Let Az C A be given by the elements in 4 indexed by the elements
of £, and let f be an element of

I, = ker (%|k[q) = (ker %) N k[L] = Ly Nk[L).

In the course of the proof of Theorem 3.6, we saw that in(f) is divisible by
the initial term of a binomial in G, and since f € k[L], this binomial must
be one of the f;’s, i.e. an element of G.. Since G, C I 4,, it follows that G,
is a Grobner basis for I4,, hence G, generates I4,.. Therefore I(£) = 14,,
and the stated assertions follow now. O

4. Varieties defined by binomials.

Let k£ be an algebraically closed field of arbitrary characteristic.
Consider an integer m > 1, and the m-dimensional torus T;,, = (k*)™.

DerFINITION 4.1 (cf. [17]). — An equivariant affine embedding of T,,
is an affine variety X containing T,, as an open subset, equipped with an
action of T,, on X

T xX—>X
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extending the action T,, x T,, — T,, given by the translations in T,,.

DEerINITION 4.2 (cf. [10], [17]). — An equivariant affine embedding X
of a torus is called an affine toric variety if it is normal.

43. Let N > 1. For a multi-index a = (ai1,...,an), let x® =
... z%¥. Let X be an affine variety in AM, not contained in any of
the coordinate hyperplanes {z; = 0}. Further, let X be irreducible, and let
its defining prime ideal I(X) be generated by ! binomials

(%) x2 = /\ixb", 1<igl,

where a; = (a;1,...,a;n), by = (bi1,...,b;n), and A\; € k. Consider the
natural action of the torus T = (k*)™ on AV,

(tla"'1tN) '(a’l,“'aaN) = (tlala"‘atNaN)‘

Let T = {t = (t,...,tny) € Ty | t&% = tP 1 < i < I}, and
X° ={(z1,...,zn) € X |z; #0for all 1 <i < N}

ProposITION 4.4. — Let notations be as above.
(1) There is a canonical action of T on X.

(2) X° is T-stable. Further, the action of T on X° is simple and
transitive.

(3) T is a subtorus of Ty, and X is an equivariant affine embedding
of T.

Proof. — (1) We consider the (obvious) action of T on AV. Let
(:cl,...,a:N) € X, t = (tl,...,tN) € T, and (yl,...,yN) =t -
(z1,.--,zn) = (t121,--.,tNZN). Using the fact that (z1,...,zN) satisfies
(%), we obtain

YLy uN = g0 gEN g gn = N gba gbavgba b
b; b;
=Ay1" YN
forall 1 i<l ie (y1,...,yn) € X. Hence t - (a1,...,an) € X for all
te X.

(2) Let z = (z1,...,zn) € X°, and t = (t1,...,tn) € T. Then,
clearly t - (z1,...,zn5) € X°. Considering z as a point in AV, the isotropy
subgroup in T at z is {id}. Hence the isotropy subgroup in 7" at z is also
{id}. Thus the action of T' on X° is simple.



1024 N. GONCIULEA, V. LAKSHMIBAI

Let (z1,...,zN), (2},...,2) € X°. Set t = (t1,...,tn), where
t; = z;/z;. Then, clearly t € T. Thus (z1,...,zn) = t - (2},...,Z)).
Hence the action of T on X° is simple and transitive.

(3) Now, fixing a point z € X°, we obtain from (2) that the orbit
map t — t -z is in fact an isomorphism of 7" onto X°. Also, since
X is not contained in any of the coordinate hyperplanes, the open set
X; = {(z1,...,zn) € X | z; # 0} is nonempty for all 1 < i < N. The
irreducibility of X implies that the sets X;, 1 < ¢ < N, are open dense in
X, and hence their intersection

N
X°=ﬂXiz{(xl,...,xN)eXlw,-;éOforanyi}
i=1

is an open dense set in X, and thus X° is irreducible. This implies that
T is irreducible (and hence connected). Thus T is a subtorus of Tx. The
assertion that X is an equivariant affine embedding of T follows from (1)
and (2). 0O

Remark 4.5. — With notations as in Section 3, note that the variety
V(I 4) is an equivariant affine embedding of Ty, = (k*)™.

5. Some general results on the variety associated
to a finite distributive lattice.

We first recall some basic definitions on finite partially ordered sets.
A partially ordered set is also called a poset.

A finite poset P is called bounded if it has a unique maximal, and a
unique minimal element, denoted 1 and 0 respectively.

A totally ordered subset C of a finite poset P is called a chain, and
the number #C — 1 is called the length of the chain.

A bounded poset P is said to be graded if all maximal chains have
the same length (note that 1 and 0 belong to any maximal chain).

Let P be a graded poset. The length of a maximal chain in P is called
the rank of P.

Let P be a graded poset. For A\, u € P with A > u, the graded poset
{r € P| u <7 < A} is called the interval from p to A, and denoted by
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[14, A]. The rank of [, A] is denoted by I,,()); if u = 0, then we denote l,(N)
by just I(N).

Let P be a graded poset, and A\, u € P, with A > p. The ordered pair
(A, ) is called a cover (and we also say that A covers p) if [,,()\) = 1.

DEeFINITION 5.1. — An element z of a lattice L is called join-irreducible
(respectively meet-irreducible) if z = x V y (respectively z =  Ay) implies
2z =1z or z = y. The set of join-irreducible (respectively meet-irreducible)
elements of L is denoted by J (respectively M), or just by J (respectively
M ) if no confusion is possible.

DeriNiTION 5.2. — The set Jp N M of join and meet-irreducible
elements is denoted by JM_, or just JM if no confusion is possible.

DEFINITION 5.3. — A subset I of a poset P is called an ideal of P if
for all x, y € P,
z €I and y < z imply y € I.

THEOREM 5.4 (Birkhoff). — Let £ be a distributive lattice with 0, and
P the poset of its nonzero join-irreducible elements. Then L is isomorphic
to the lattice of finite ideals of P, by means of the lattice isomorphism

a—I,={re€P|T<a} a€L.

DEFINITION 5.5. — A quadruple of the form (1,¢,7 V ¢,7 A ¢),
with 7,¢ € L non-comparable is called a diamond, and is denoted by

D(T7¢’TV ¢7T/\ ¢)'
LemMMmaA 5.6. — With the notations as above, we have
(a) J = {7 € L | there exists at most one cover of the form (7,\)}.

(b) M = {r € L | there exists at most one cover of the form (A, 7)}.
Proof. — In order to prove part (a), let us denote
Z = {X € L | there exists at most one cover of the form (A, p)}.

Clearly, J C Z. Let A € Z, and assume A € J. Assumption implies that
there exists a diamond D(7, ¢, A, u). In particular, this implies 7 < A, ¢ < A.
Now L being graded, there exist a, (8 such that 7 < a, ¢ < 8, and (\, a),
(A, B) are covers. Now, 7 < @, ¢ < 3, and A = a V 8 imply o # 5. But
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this would imply that A covers two distinct elements, contradicting the
hypothesis that A € Z. Hence the assumption that A ¢ J is wrong, which
shows (a).

The proof of (b) is similar. a
5.7. Let X(L£) be the affine variety of the zeroes in kN of I(£) (note
that X (L) is irreducible, in view of Theorem 3.7). Then X (L) is a variety

defined by binomials, and we follow the notations in Section 4. We have
N=#L, I(X(£)) =I(L). Let T ={(7,4,7V$,TAP) | (1,¢) € Q}, where

Q = {(1,9) | 7,¢ € £ non-comparable}.

In view of Proposition 4.4, dim X(£) = dim T, and we now compute the
dimension of T

Let m : X(Tw) — X(T) be the canonical map, given by restriction,
and for x € X(Tn), denote m(x) by X. Let us fix a Z-basis {x, | 7 € L}
for X(Tx). For a diamond D = (1,¢,7V ¢, 7 A ¢) € I, let xp =

Xrve T Xra¢ — Xr — X¢-
LEMMA 5.8. — We have
(1) X(T) ~ X(Tn)/ ker «.
(2) kerm is generated by {xp | D € Z}.

Proof. — The canonical map 7 is, in fact, surjective, since T is a
subtorus of T. Now (1) follows from this. The assertion (2) follows from
the definition of 7. O

5.9. For a € L, let I, be the ideal corresponding to a under the
isomorphism in Theorem 5.10. Let

Yo = ZX&-

b€l,

LEMMA 5.10. — The set {1, | a € L} generates X(T) as a Z-module.
Proof. — Consider the homomorphism
0:X(Tn) = X(T), Xa+ Y

(note that {x, | a € L} is a Z-basis for X(Tx)). For a diamond
D = (1,¢,u,A) € I, we have

(*) .’(ZT +E¢ = Ep, + Z[;)\a
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and hence xp € ker §. Conversely, it is clear that any relation among ,’s is
of the form (x). Hence ker § = ker 7, and X (T') ~ X (Tn)/ ker 0, (cf. Lemma
5.8). In particular, this implies that 6 is onto, and the result follows, since
{Xa | @ € L} generates X(Tn) as a Z-module. a

ProposITION 5.11. — The set {X, | 7 € J} is a Z-basis for X(T).

Proof. — By Lemma 5.10, {¢), | a € L} generates the Z-module
X(T). Now

(1) Py = 270= Z Xo

oel, {0€Jc,0<a}

(cf. 5.9). Hence {X, | 7 € J} generates the Z-module X (T). Also it is clear
that no proper subset of {X, | 7 € J} generates X(T'). The result now
follows. ] O

Now, since dim X(£) = dim T, we obtain
THEOREM 5.12. — The dimension of X (L) is equal to #J.

DEerINITION 5.13. — Let £ be a finite distributive lattice. We call the
cardinality of J, the dimension of L, and we denote it by dim L. If L' is a
sublattice of L, then the codimension of L' in L is defined as dim £—dim £’.

LEMMA 5.14. — Let P = (Py)oec € X (L) be such that P, # 0 for
any 7 € J. Then Py # 0 for any 0 € L.

Proof (by induction). — Let 6 € L. If 6 € J., there is nothing to
check. Let then 8 € L\ J¢.

Let 0 be a minimal element of £\ Jz. This implies that every 7 € £
such that 7 < 0 belongs to J. The fact that € £\ J. implies that there
are at least two elements 6,60 of £ which are covered by 6. Note that 6,
0, are not comparable. We have 6; V 0, = 0. Let u = 6; A 2. We have
PyP,, = Py, Py,. Now Py, # 0, Py, # 0, since 01,6, € J.. Hence we obtain
that Py # 0.

Let now ¢ be any element of £\ J,. Assume, by induction, that
P, # 0 for any 7 < ¢. Since ¢ € J, there are at least two elements ¢1, ¢
of £ which are covered by ¢. We have ¢, V ¢2 = ¢, Py Ps = Py, Py,, where
6 = ¢1 A ¢2. Also Py, # 0, Py, # 0 (since ¢1, ¢2 are both < ¢). Hence we
obtain Py # 0. O
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DErFINITION 5.15 (cf. [27]). — A sublattice £’ of £ is called an
embedded sublattice of L if

oEL, TV, TAPEL = T,0€L.

Given a sublattice £’ of L, let us consider the variety X(£’), and
consider the canonical embedding X (£') — A(L') — A(L) (here A(L') =
A#EA(L) = A#E).

PROPOSITION 5.16. — X (L’) is a subvariety of X (L) if and only if L'
is an embedded sublattice of L.

Proof. — Under the embedding X(L£') — A(L), X(L') can be
identified with

{(@:)rec €AL) |2, =0if T & L', 224

= Z,v4Trag for T,¢ € L' non-comparable}.

Let 1’ be the generic point of X (L’). We have X (£’') ¢ X(L) if and only
if 7/ € X(L).

Assume that 7’ € X(L£). Let 7, ¢ be two noncomparable elements of
L such that 7V ¢, 7V ¢ are both in £’. We have to show that 7, ¢ € L.
If possible, let 7 ¢ L£'. This implies n; = 0. Hence either 7;,, = 0, or
Mrag = 0, since 7' € X(L£). But this is not possible (note that 7V ¢, 7 A ¢
are in £', and hence 7, and 7/, are both nonzero).

Assume now that £’ is an embedded sublattice. We have to show
that o' € X(L). Let 7, ¢ be two noncomparable elements of £. The fact
that £’ is a sublattice implies that if 7/, or m,, is zero, then either
M7, or Ny is zero. Also, the fact that £’ is an embedded sublattice implies
that if 7; or 7y is zero, then either 7,,, or 7; ., is zero. Further, when
T, ¢a ’TV¢, TAd)eL,a

Mol = MrvgTrng:
Thus 7’ satisfies the defining equations of X (L), and hence ' € X(£). O
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6. A standard monomial basis for R(L).

6.1. Let R(L) = k[L]/I(L), k[L] being as in Section 3. Note that
R(L) is a domain (cf. Theorem 3.7). Let X(£) = SpecR(L). For 6 € L,
let us consider the sublattice Lo = {A € £ | A < 6} and the ring
Ro = Re/(zx | A € L,A £ 0) = R(Ly) and denote SpecRy by X (Ls),
or just Xy. Note that £y is an embedded sublattice (cf. Definition 5.15).
In the sequel, for 7 € £, we shall denote Z, (in R(L)) by just z.; similarly,

the restriction z,| Xo will be also denoted by just z.,.

6.2. We take a total order > on L extending the partial order >,
and a monomial of degree r in R(L) will be written as z., ...z,., with
T > oo 2 Tp.

DEFINITION 6.3. — A monomial z., ...z, of degree r is said to be
standard on X (L), if; > ... > 7,. Such a monomial is said to be standard
onXgif0>m>...27.

ProposiTiON 6.4. — Standard monomials on Xg are linearly inde-
pendent in Ry.

Proof. — Ry being graded, it suffices to prove the linear independence
of standard monomials of a given degree, say r. We shall prove this by
induction on {(#), and 7. If [(f) = 0, or r = 1, the result is clear. Let then
1(6) 21, r>1, and let

(*) ZaiFi =0, a; € k*
i€l
be a linear relation, where F; = 7;1...Tir, Ti1 = ... = Tir. If 751 < 6 for

some i, then restricting (*) to X,,, we obtain (by induction hypothesis)
that a; = 0 for all j with 7j; < 7, (note that Fj| X, is either identically
zero, or it remains standard on X, ). Thus we mayusuppose that 7;, =0
for all 4 € I. Now x4 can be cancelled out (since Ry is a domain), and the
result follows by induction on r. i

PROPOSITION 6.5. — Any monomial in Ry is standard.
Proof. — Let F = z,, ...z, . If there is an ¢ such that 7; ¥ 7,41, this

implies 7;, 7,41 are non-comparable. Then, denoting 7; V 7;41, 7; A Tix1 by
A, u respectively, we have F =z, ...zxZ, ... %, and the new expression
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of F' is lexicographically greater than the previous one, since A > 7.
Continuing this process, after a finite number of steps we arrive at a
standard monomial expression of F' (since L is finite). m]

Combining Propositions 6.4 and 6.5, we obtain

THEOREM 6.6. — Standard monomials on Xy form a basis of Rg.

7. Cohen-Macaulayness of R(L).

In this section we prove the Cohen-Macaulayness of R(L) using
deformation techniques. Let S(L£) denote the Stanley-Reisner algebra of

L, namely k[L]/(zazp | (o, 8) € Q) (recall that @ = {(a, B) | @, B €
L noncomparable }).

Recall the following (cf. [4]):

THEOREM 7.1. — The ring S(L) is Cohen-Macaulay.

We now construct a flat family over k[t] whose general fiber is R(L)
and special fiber is S(L£). This construction is done in the same spirit as in
[12].

7.2. We first assign positive integers n,, 7 € £, in such a way that if
7> 7/, then n, > n,s (for example we may take n, = I(7)). We choose an
integer N, and set N, = NY7). Then, since L is finite, we can choose N
sufficiently large so that for any diamond D(7,¢,7V @, 7 A @),

NTV¢ + NT/\¢ > N, + N¢.

THEOREM 7.3. — There exists a flat family over k[t] whose special
fiber is S(L) and general fiber is R(L).

Proof. — For 7,¢ € Q , let f, 4 be the element in k[L] given by

f‘r,¢ =TrTp — TrvepTrag-

Then I(L) = (fr,¢ | (1,¢) € Q). Let us denote R(L), S(L), k[L], by R, S,
P respectively. Let A = k[t], and P4 = A[za,a € L]. For (1,¢) € Q, we
define the element f; 4 in P4 as

f‘r,¢,t =TrTp — xTV¢xTA¢tNTV¢+NTA¢_NT_N¢-

(note that fr 4+ is well defined, in view of the choice of N, ’s).
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Let Z be the ideal in P4 generated by {f-4: | (7,¢) € Q}, and
R = P4/T.
CrLAM. — (a) R is k[t]-free.

(b) R @k[t,t™1] ~ R[t,t71].
K[t]

(c) RQ klt]/(t) ~ S.
k[t]

Proof. — We have

RQKltl/(t) = Pa/(T + (©)

k[t]

S.

This proves (c). Let B = k[t,t~!], and Pg = B[zq,a € L]. Let I(resp. Z) be

the ideal in Pp generated by {f- 4 | (T,¢) € Q}(resp. {fro:¢ | (T,0) € Q}.
We have

(7 Pg/I ~ R[t,t™}]
(8) Pg/T ~RQ)klt, t7"].
k[t]

The automorphism

Pp ~ Pg, Lo tNaa:a
induces an isomorphism
(9) Pg/I ~ Pp/1.

From (7), (8), (9) we obtain (b). Finally, it remains to show (a). Let
Xo = %o (in R = Pa/T), fo =tV>X, and

M={fo, - fa. |l >... 20, T €L}

We shall now show that M is a k[t]-basis for R. We first observe that M is
a k[t]-basis for R. We first observe that any monomial F = f, ... f. isin
fact standard. In order to see this, let ¢ be such that 7; # 7;+1. Then using
the relation

X, X,

_ Noivriss +Noinrs sy —Nri —Nrs
i1 = Xrivrig Xriarg b Tt T AT TR T i

we obtain F' = f,, ... fr._| fr.vrigy frinrigs - - - fr,.. Continuing thus, we find
(as in the proof of Proposition 6.5) that at each step the expression for F
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is lexicographically greater than the expression at the previous step (here
we suppose 71 * ... = T,), and thus we arrive at an expression for F as a

standard monomial (since £ is finite).

It remains to prove the linear independence of M. Since standard
monomials form abasis for R (cf. Theorem 6.6), we obtain (by base
change), that M is a k[t,t!]-basis for R[t,t~!]. Denoting the isomorphism
Ps/I ~ R[t,t™!] by ¢, we have {¢™ (fa, .+ fa,) |1 > ... > ap,7 € Zy}
is a k[t,t~1]-basis for R[t~!]. For a monomial m = z, ...z, (in R[t,t71]),

T

we have p~'(m) = t V=X, ...X, , where N, = 3 N,,. Hence we

=1
obtain {fo, ... fa, | @1 > ... > ar,v € Z;} is a k[t,t"!]-basis for
R[t™!] (since t~™m= is a unit in k[t,t~!]). In particular, we obtain that
{fay -+ fa. | @1 > ... > ar,7 € Z;} is linearly independent over klt,t™1],
and hence over k[t]. o

Combining Theorems 7.1 and 7.3, we obtain

THEOREM 7.4. — The ring R(L) is Cohen-Macaulay.

8. The distributive lattice I;, and the variety X, ,.

Let
Id’n={‘l'=(i1,...,id) | 1<i1<... <14 gn}
We consider the partial order > on I, given by
(i1s---5ta) 2 (J1,- -+, Jd) <> 412 1,84 2 Ja

For 7 € I ,, we denote the j-th entry in 7 by 7(j), 1 < j < d.

ProposITION 8.1. — (I4,, >) is a distributive lattice.

Proof. — Let 7,¢ € Iqn, say T = (i1,...,%4), ¢ = (j1,...,Ja). Let
k: = max{i, ji }, l: = min{%;, j¢:}, 1 <t < d. Then it is easily checked that

TV¢ = (k1,...,kqa), TAd = (l1,...,l3), and that (I, >) is a distributive
lattice. o

For the rest of this section, the lattice I, will be denoted by simply
L, and we use the notations introduced in Section 5.
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In the discussion below, by a segment we shall mean a set consisting
of consecutive integers.

LEMMA 8.2. — We have

(a) The element T = (41, ...,1q) is join-irreducible if and only if either
T is a segment, or T consists of two disjoint segments (u,v), with u starting
with 1.

(b) The element T = (i1,...,%q) is meet-irreducible if and only if
either T is a segment, or T consists of two disjoint segments (u,v), with v
ending with n.

(c) The element T = (i1,...,i4) Is join-irreducible and meet-
irreducible if and only if either T is a segment, or T consists of two disjoint
segments (u, V), with p starting with 1 and v ending with n.

Proof. — We first observe that (iy,...,%4) is join-irreducible if and
only if (n+1—1i4,...,n+1—1;) is meet-irreducible. Thus it suffice to prove
part (a). It is easily seen that 7 = (i1, ...,14) is a cover for (j1,...,74) € £

if and only if {ji,...,j4} is obtained from (i1,...,%4) by replacing i; by
iy — 1 for precisely one t, and this proves (a). Part (c) follows from (a)
and (b). u]

8.3. For a join-irreducible or meet-irreducible element 7 € £ we say
that 7 is of Type I (resp. Type II) if 7 consists of just one segment (resp. two

disjoint segments), as in the description given by Lemma 8.2. We denote
by Jg), JM g) (resp. ng), J M[(:H)) respectively the set of elements of J,

JM; of Type I (resp. Type II). Note that
IMP ={(i+1,...,i+d)|0<i<n—d},
and
IMID ={@,...in+j+1—d,...,n) | 1<j<d—1}.

For 7 = (i+1,...,i+d) € JMY and ¢; = (1,...,5,n+j+1—d,...,n) €
JM[(:II), let A,’j =7V ¢j, Mij = T A ¢j. Note that 79 = 6 and 7,4 = T
Clearly,

/\ij = (Z+1, ceyitj,n+l+5—d,. .. ,n), Kij = (1, B I o ol S ,’L+d)

In the sequel, X4, will denote the variety X (L), for £ = I .
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9. The irreducible components of X, \X;)n.

We preserve the notations of Section 8. As in Section 4, let X7 =
{(®1,...,zNn) € Xgn | z: # 0 for all 7}.

LEmMMA 9.1. — Let 0 € Jo\JMg,say 6 = (1,...,5,t+1,...,t+d—j),
where j <t <n+j—d. Then 0 = p;j, wherei =1 — j.

The result follows from the definition of y;; (note that 0 < ¢ < n—d).

9.2. Let
L ={reL|r(r)#i+r}
where 0 <i<n—d,and 1 <r <d.
ProrosiTiON 9.3. — With notations as above, Lgr) is an embedded

sublattice of L.

Proof. — Let 7y, 6 € L{". Then clearly 7V §, YA S € £§’). Similarly,
ify,8in L aresuch yVé, yAS € L',l(-r), again it is clear that v, § € £§T). o

ProposITION 9.4. — Let notations be as above. For 0 < i < n—d, let
Y; = Xgn N{z,;, =0}

Then
(1) Y and Y,,_4 are irreducible,

g ) the irreducible components of Y;, 1 < i < n —d — 1, are precisely
XM, 1<r<ad.

Proof. — In order to prove (1), it is enough to observe that Y =
X(L\ {0}), Yn_a = X(L\ {1}). Now we prove (2). We have, in view
of Propositions 5.16 and 9.3, that X ([,ET)), 1 < r < d is an irreducible
subvariety of X (L). Also X(£{") C Y; (since 7; & £).

Let now Z C Y;, Z irreducible. Let 1 be the generic point of Z. Let
T € L, T # 7; such that 1, = 0 (note that, since ., = 0, for at least one
TEL, T#Tiyn =0).

CLAIM. — T € £§’), for somer,1<r<d.
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Proof. — Assume that 7 ¢ E( ) for all 1 < r < d. This implies
T(r) =i+ for all 1 < r < d. But thxs implies that T = 1;, contradicting
the choice of 7. Hence our assumption is wrong, and the claim follows. O

Now the claim implies that n € X (Lgr)), for some r, 1 < r < d, and
hence Z C X(L‘gr)). O

CorOLLARY 9.5. — The subvariety X(Egr)), 1<ig<n—-d-1,
1< r<d, of Xqr, has codimension 1.

9.6. We next determine the irreducible components of X4 ,N{z4 = 0},
for ¢ € JM of Type II. Let
o=¢;=(1,...,5n+1+j—d,...,n),
where 1 <j<d—1.Fixr,withj+1<r<n+j—d, and let

Ljr={r€L| either 7(j + 1) <7 or 7(j) > r}.

ProposiTION 9.7. — With notations as above, L;, is an embedded
sublattice of L.

Proof. — Let v, 6 € L . Then either v(j) > r, or 7(j +1) <, and
6()=ryoré(j+1)<r.
CLAIM. — YV, YANS €L,
Proof. — We distinguish four cases.
Case 1: ~(j) 27, 6(j) 2
This implies that (yV8)(j) > r, (YA8)(j) > r, and hence YV, YAS € L;j .
Case 2 y()=r,6(j+1)<r

This implies that (yV8)(j) =, (yA6)(j+1) <7, and hence yV§, YA €
Ljr.

Case 3: v(j+1)<r, 6(j)=r
This is similar to the previous case.
Case4: ~(G+1)<r,é(j+1)<r

In this case, (yV8)(j+1) <7, (YA6)(j+1) < r, and hence yV§, YAS € Ljr.
w
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CramM. — Let 7, 6 be two noncomparable elements of L such that
YVé,YyNS€E€Lj,. Thenvy, § € L.
Proof. — Here, we distinguish three cases.
Case I: (yA&)(F)=r
This implies y(j) > r, 6(j) > r. Hence v, 6 € Lj ;.
Case 2. (yVo&)(j+1)<r
This implies y(j + 1) <7, 6(j + 1) < 7. Hence vy, § € L ,.
Case 32 (yV&(G)=zr, YAHG+1) <.
Now (v V 6)(j§) > r implies that at least one of {v(j), 6(j)} is > r.
Assume that v(j) > r. This implies v(j+1) > r+1, and hence §(j+1) < r

(since (y A8)(j +1) < 7). Thus, v(j) > r, and 6(j + 1) < r. Hence v,
b€ Ej,,-. u]

The above two claims show that £, is an embedded sublattice. D

ProprosiTiON 9.8. — Let notations be as above. For 1 < j < d—1, let
Yj = Xd,n n {$¢j = 0}

Then the irreducible components of Y; are precisely X (Ljr), j+1 <1 <
n+j—d.

Proof. — We have, in view of Propositions 5.16 and 9.7, that X (£; ,)
is an irreducible subvariety of X (£). Also X(L;,) C Y; (since ¢; & L; ).
Let now Z C Yj, Z irreducible. Let 7 be the generic point of Z. Consider
an element 7 € £, T # ¢; such that n, = 0 (note that, since 1y, = 0, for
at least one 7 € L, T # ¢, n- = 0).

CLAM. — T € Lj,, forsome j+1<r<n+j—d.

Proof. — Assume that 7 € L;,, for all j+1 <7 <7+ j—d. Then for
r = j+ 1, we have 7(j) < 7 + 1. Hence we obtain 7(j) = j. Similarly, for
r=n+j—d,wehave 7(j+1) >n+j—d Hencer(j+1)=n+1+j—d
(note that 7(j +1) < n+ 1+ j — d for any 7 € L£). Thus we obtain that
r=(1,....5,n+1+j—d,...,n), ie. 7 = ¢;, which is not true, by our
choice of 7. Hence our assumption is wrong, and the claim follows. o

Now, the claim implies that n € X(L; ), for some r, with j+1 <7 <
n+j —d, and hence Z C X(L;;), for some r, with j + 1 <r<n+j—d.

(m}
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CoROLLARY 9.9. — The subvariety X(L;,), 1<j<d—-1,j+1<
r<n+j—d, of X4, has codimension 1.

ProposiTiON 9.10. — The irreducible components of X4, \ Xg ,, are
precisely the subvarieties X(L( )) 1<i<n—-d-1,1<r<d, X(Lj,),
1<j<d-1,j+1<r<n+j—d, andX(C\{O}),X(E\{l}).

Proof. — Let Z C Xan\ X3 ,,, Z irreducible, and let n be the generic
point of Z. In view of Propositions 9.4 and 9.8, it is enough to show that
there exists a 7 € JM such that n, = 0.

Assume that 7, # 0, for any 7 € JM. Let 0 € Jz \ JM. Then 6 is
a Type I join-irreducible element of £. Let

0=(@1,...,5t+1,...,t+d—7j).

We have 6 = p;j, where ¢ = t — j (cf. Lemma 9.1). Thus 6 = 7 A ¢;,
and hence our assumption implies that ng # 0. This, together with our
assumption, implies that s # 0, for any 6 € J. This implies n € X7, (cf.
Lemma 5.14), which is not true. Hence our assumption is wrong. O

LEMMA 9.11. — We have

(a) for1<ig<n—d-1, JML\{T,}CE(T) for allr, 1 < r < d, where
T,-:(z+1,...,z+d)

(b) for1 < j<d—-1,JMc\{¢;} C Lj, forallr, j+1<r <n+j—d,
where ¢; = (1,...,5,n+j+1—d,...,i+d).

Proof. — (a) Fix r, 1 < r < d. Let § € JM. First, let 0 be of Type
ILsay=(G+1,...,5+4d), where j # 1. Then, clearly, 6 € .C . Now let
0 be of Type II, sayﬁ—(l Shn+1l4+j—d,...,n). Then0(r)~—r1f

r < j,and 8(r) =n—d+r if r > j. In either case, it is clear that 6 € L
for all r.

(b)Fixr, j+1<r<n+j—d. Let 0 € JM,. First, let 6 be of Type
Lsayf=(i+1,i+2,...,i+d). Wehave 0(j) =i+7,0(j+1) =i+j+1.
Hence 6(j) > r,ifi+j>r,and (j+1) < r,ifi+j+1<r. Thus 0 € L; ,.

Now let 0 be of Type I, say 6 = (1,...,s,n+1+s—d,...,n). Ifj < s,
then (j+1) =j+1<r,and hence § € L;,.If j > s, then (j) =n—d+j,
and §(j+1) =n—d+j+1. Hence eithern—d+j+1<r,orn—d+j>r
Thus 6 € Lj .. O
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ProposITION 9.12. — Let Y be an irreducible component of Xg, \
X,‘;’n. Let P be the generic point of Y. Then P, = 0, for precisely one
element T € JM,.

Proof. — If Y is equal to X (£ \ {0}) or X(£\ {1}) (cf. Proposition
9.10), the assertion is obvious. For the other components the result follows
from Proposition 9.10, and Lemma 9.11. m]

10. Normality of X, .

In this section we prove that the variety X, , is normal. We already
know that Xg, is Cohen-Macaulay (cf. Section 7), and in view of Serre
Criterion, it suffices to show that X, is nonsingular in codimension 1.
In view of Proposition 9.10, it is enough to prove that generic points of
XL\ {0, X(L\ {1}), X(LD), 1<i<n—d—1,1<r < d, X(Ljp),
1<j<d-1,j+1<r<n+j—d are smooth points. We prove this using
the Jacobian Criterion.

Let J be the Jacobian matrix of Xy, where the rows of J are
indexed by

{fr.p =T+ZTp — TrvpZTrng | T, € L noncomparable },

and the columns are indexed by {4 | § € L}. For simplicity, sometimes we
consider the rows being indexed by the diamonds in £, and the columns
being indexed by just the elements of L.

Recall that for any P € X4, if Jp is the Jacobian matrix evaluated
at P, then rank Jp < codim p () X4,n, with equality if and only if P is a
smooth point.

ProposiTiON 10.1. — Let P € X4, be such that P, # 0 for all
TE JMg) \ {70, Th—d}- Then P is a smooth point.

Proof. — Let Jp be the Jacobian matrix evaluated at P. We shall
now exhibit a submatrix of Jp of maximal rank, equal to

codim g2y Xa,n = (Z) —d(n—-d)—1.
Foreachi,2<i<n—d,let

Zi={0eL|0(d)=i+d}\{n, 0<j<d-1},
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where for 0 < j <d -1,
Tiy=0i+1,...,i+j-Li+j+1Li+j+2,...,i+d)
(note that 7,1 < Tig—1 < ... < Tio = Ty, where 7,_1 = (¢,i+1,...,i+d—1)
and 7; = (i + 1,94+ 2,...,7+ d), as defined in Section 8).

Now, 7;;, 0 < j < d—1 are precisely the elements with the properties
7;j(d) = i+d, and 7;; > 7;_1. Hence 7;_; is not comparable with any 0 in Z;.
Now, for each 6 € Z;, we associate the row indexed by f,,_, . We consider
the submatrix J’ of Jp with columns 1ndexed by {#e€Z;|2<i<n—d},
and rows indexed by { fn 1, 0|0 €Z;, 2<i<n—d}. Then J " is a square
matrix, of size equal to Z #Z; (note that the Z;’s are disjoint). Now the

1=2
set {6 € L | 0(d) = i+ d} is in bijection with Iy_; {1 . ;4a—1} (here, for

r < 8, I (n,,. n,} denotes the set of all r-tuples i = (iy,...,%,), where
i1 <...<ir,and {é1,...,%-} C {n1,...,ns}). Hence

1+d-—1
and

PUa=E () = (2) - (s2)) 1 -an-am
(Z) d(n—d)—1

(note that mf}“ (T:f) = (T))

Jj=1
Now, a typical row in J' is indexed by
f‘r,‘_l,o = xn_le - «TT,-_IVO-TT,-_I/\Oa

where 6 € Z;. The only variable appearing in f,,_, ¢, which is an index
for a column of J’, is zg. Further, the entry in J’ in the row indexed by
fr._1,6 and column indexed by x4 is nonzero (by hypothesis). Thus, J’ is
a diagonal matrix, with nonzero diagonal entries. Henc [J’ has rank equal
to its size, which is

n .
(d) —d(n —d) — 1 = codim p () Xa,n-

Thus we obtain that P is a smooth point of Xg,. o
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ProposITION 10.2. — Let P € X4, be such that P, # 0, for all
Teld Mgl). Then P is a smooth point of Xg p,.

Proof. — Let Jp be the Jacobian matrix evaluated at P. We shall
now exhibit a submatrix of Jp of maximal rank. Fixr andi,1 <r <d-1,
r+l1<i<n—d+r—1.Set

ZW ={0eL|6(r) =1, and O(t) =t, for t <r}\ {6;},

where 0; = (1,...,r—Lii,n+r—d+1,...,n). Let

n—d+r—1 )
z.= |J z9.
i=r+1

Then

U Zs ={r € L| T and ¢, are noncomparable },

8<T

where ¢, = (1,...,,n+r—d+1,...,n), 1 < r < d—1, as defined
in Section 8. Let J' be the submatrix of Jp with columns indexed by

{0 € Z, | 1 < r <d-1}, and rows indexed by {fs, ¢ |0 € Z,,1 <r <d—1}.
d—1

Then J’ is a square matrix of size equal to Y #Z, (note that the Z,’s are
r=1

disjoint). Now, {# € L | 8(r) = i, and 6(t) = t, for ¢ < r} is in bijection
with Iy i41,... n}- Hence

@ (")
#20= (371 -1,

and

() TR e R

i=r+1

(i) (,750) e
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Hence the size of J’ is equal to
= n—r
Y[ (n2al1)--a]

() () e

:(Z)—M—d%Jf%d—UM—@

=<Z)—an—@—L

As in the proof of Proposition 10.1, we find that J’ is a diagonal matrix,
with nonzero diagonal entries. Hence the rank of J’ is equal to its size,
which is

n .
(d) - d(n - d) —-1= COdlmA(ﬁ)Xd,n.

Thus P is a smooth point of Xg . m]

ProprosITION 10.3. — The variety X4, is nonsingular in codimen-
sion 1.

Proof. — Let Y be an irreducible component of X4, \ Xg,,. Let P
be the generic point of Y. Then, by Proposition 9.10 and Lemma 9.11,
P, = 0 for precisely one element 7 € JM. Hence the result follows from
Propositions 10.1 and 10.2. O

Proposition 10.3 and Theorem 7.4 yield the following
THEOREM 10.4. — The variety X4, is a normal toric variety.

10.5. Let A4, denote the homogeneous coordinate ring of G4, (the
Grassmannian of d-planes in k™) for the Pliicker embedding. We recall (cf.

[12]):

THEOREM 10.6. — There exists a flat family whose general fiber is
A4 n, and whose special fiber is R(I4n).

Remark 10.7. — The above result is also proved in [26] using SAGBI
(Subalgebra Analog to Grobner Bases for Ideals) theory.

Combining Theorems 10.4 and 10.6, we obtain
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THEOREM 10.8. — The Grassmannian G4, degenerates to the normal
toric variety Xq n.

11. A conjecture on the singular locus of X, ,.

In this section we prove a partial result towards the determination of
the singular locus of X ,. We also state a conjecture on the singular locus
of X dn-

We assume that n > 4 (note that for n < 3, X4, is smooth). Let
notations be as in Section 8. Let L;; = L\ [pij,Aij], 0 < i < n —d,
1<j<g<d-1.

LEMMA 11.1. — Let i = 0, and 1 < j < d—1. Then Ly; is an embedded
sublattice. Further, JM() \ {r} C Lo;.

Proof. — We have 1y = (1,...,d), ¢; =(1,...,j,n+1+j—d,...,n),
and hence po; = 7o, and \;; = ¢;. Hence 0 € [79, ¢;] if and only if 6(t) =t,
for 1 <t < j. Therefore 6 € Ly; if and only if 6(t) # t, for some t, 1 <t < j.
Let v, 6 be two noncomparable elements in Lo;. Let t1, t2 < j be such that
~(t1) # t1, 6(t2) # t2. Then, letting ¢ = max(t1,t2), we have vV 6(t) # t,
YAS(t) #t. Thus yV 6, vy A6 € Loy;.

Let now 7, § be two noncomparable elements of £ such that vV é, yA
6 € Loj. Let t < j be such that y A §(t) # t. This implies vV 6(t) # t.
Then, clearly v(t) # t, 6(t) # t. Thus v, § € Lo;. Thus we obtain that Lo;
is an embedded sublattice. Let 7 € JM(D\ {rp},say 7 = (i +1,...,i +d),
where 7 > 1. Then clearly T € Lo; (note for example that 7(1) # 1). o

CoROLLARY 11.2. — Let P be the generic point of X(Lo;). Then P
is a smooth point of L.

Proof. — We have P, # 0, for 7 € JM(D \ {r;}. Hence the result
follows from Proposition 10.1. m]

LEMMA 11.3. — Leti=n—d,and 1< j <d—1. Then £L,_4; is an
embedded sublattice. Further, JMD \ {1,_4} C Ln—4 e

COROLLARY 11.4. — Let P be the generic point of X (Ln_q;). Then
P is a smooth point of L.
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The proofs of Lemma 11.3, and Corollary 11.4 are similar to those of
Lemma 11.1, and Corollary 11.2 respectively.

LEMMA 11.5. - Let 1 <i<n—-d—-1,1<j<d-1. Then L;; is an
embedded sublattice, and

codimp ¢, ) X (Lij) < codimp ) X (£).

Proof. — For 6 € L we have
0 € [1ij, Mij] <= 0() <i+j, and (G +1)>i+5+1

(here, by 6(j), we mean the j-th entry in the d-tuple 6). Let v, § two
noncomparable elements in L£;;. We have either v(j) > ¢ +j + 1, or
v(j+1) < i+j. Similarly, we have either §(j) > i+j+1,0r §(j+1) <i+j.

CLAIM. — YV 4, Y A6 € Ly;.

The proof is the same as in the proof of the first claim in Proposition
9.7.

CrLAamM. — Let v, 6 be two noncomparable elements of L such that
YVé,YyANb6 € L;;. Theny, § € Ly;.

The proof is the same as in the proof of the second claim in Proposi-
tion 9.7.

The above two claims show that £;; is an embedded sublattice. It
remains to prove the inequality

COdimA(Cij)X(ﬁij ) < codimA(c) X([,) .

If6=(k+1,...,k+d) e Jg), k # i, is a join-irreducible element
of Type I distinct from 7;, then 0(j) =k+j>i+j+1,if k> ¢+ 1, and
0 +1) =k+j+1<i+j,if k <i— 1. Further, the unique element ¢’
of £ such that (0, 6') is a cover in L is given by ¢’ = (k,k+2,...,k + d).
It is easily seen that if either k # i + 1, or j # 1 then ¢’ € £;;, and is the
unique element of £;; such that (6, 8') is a cover in £;;. Let then k =i +1,
and j = 1. In this case, we observe that if 6 = (i,i+1,i+4,...,i+d+1),
then 6 € £;;, and § is the unique element of £;; such that (6,6) is a cover
in L;; (note that [6, 6] N L;; = {6, 0}). Thus 6 € Ji,;.
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Let now = (1,...,8,t+1,...,t+d—s) € J'), where t # n+j—d,
if s = j, be a join-irreducible element of Type II distinct from ¢;. We
distinguish three cases.

Case 1: s<j

We have 6(j) =t+j—s,0(j+1) =t+j+1—s. Hence, if t—s > i+1, then
0(j) >i+j+1,and 0 € L;;. Ift—s <i—1,then 6(j+1) < i+j,and § € L;;.
Further, the unique element 8’ of £ such that (8, 8') is a cover in £ is given
by ¢ =(1,...,s,t,t+2,...,t+d). It is easily seen that 8’ € L;;, and is the
unique element of £;; such that (0,6’) is a cover, except when s +1 = j,
andt—s =1+1. Thus 0 € J.,;, except whens+1=j,andt—s=1i+1.In
this case, we observe that if § = (1,...,s8,i+s,i+s+1,t+3,...,t+d—3j),
then § € L;;, and is the unique element of £;; such that (6, 6) is a cover

in Eij. Thus 6 € JLij'

Case 2. s=j

We have 0(j) = j, 0(j+1) = t+1. Hence, if 6(j+1) < i+j,ie. t <i+j—1,
then 6 € L;;. Further, the unique element 8’ of £ such that (6, 8’) is a cover
in £ (namely 8’ = (1,...,5,t,t+2....,t+d—j)) also belongs to £;;, and is
the unique element of £;; such that (8, 6') is a cover in £;;. Hence 8 € J,;.
Case 3: s>

We have s > j+ 1, and hence 8(j + 1) = j+ 1 < i+ j. Hence § € £;;. As
in Case 2, if ¢ is the unique element of £ such that (0,8’) is a cover in L,
then @ € L;;, and is the unique element of £;; such that (,6’) is a cover
in £;;. Hence 6 € Ji,;.

From above, we have
#JCz‘j > #Jc— (n_d—z+.7+1)

On the other hand, we have

#E #Ezg #[p'zj, zJ] = (l';]) (n;i;‘?) .

It can be seen easily (by assuming d < [n/2], since I, is isomorphic to
In—d,n) that
i+j>(n—i—j) L
. . >n—d—i1+4+j+1,
( J d—j

#L —#Je > #Lij — #Jc,;-

ie.
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The result now follows from this. O

ProposiTiON 11.6. — For1<i<n—d—-1,1<j<d-1, we have

X(C”) C Sing(de).

Proof. — Let P be the generic point of £;;. We have P, =0 forall 7 €
[Kij, Aij]- Let Jp be the Jacobian matrix evaluated at P. Then the subma-
trix of Jp with rows given by {fr ¢ | 7, ¢ € [pij, Aij], T, ¢ noncomparable },
and columns given by {z, | 7 € [usj, Aij|} is the zero matrix. Let J’ be
the matrix obtained from Jp by deleting these rows and columns. Then
we have

1) rank J' = rank Jp.

Further, J' is precisely the Jacobian matrix of the variety X (L;;) C Ag,;,
evaluated at P’ = (P;),¢c,;- Hence

(2) rank J' < codimy z,,) X (L:5) < codimp () Xan

(cf. Lemma 11.5). The result now follows from (1) and (2). a

We have the following conjecture(!) on the singular locus of X, dn-

ConNJECTURE. — The irreducible components of Sing X4, are pre-
cisely X(Li5),1<i<n—-d-1,1<j<d-1.

12. Singular loci of certain ladder determinantal varieties.

In this section we determine the singular loci of certain ladder
determinantal varieties. Viewing X5, as a ladder determinantal variety,
we prove the conjecture of Section 11, for the case d = 2.

We assume d = 2, and view L(= I,) = {(4,5) | 1 < ¢ < j < n}
as being contained in Y = {(4,5) | 1 < 4,5 < n}. The equations defining
the variety X (L) are precisely the 2 minors of Y which are contained in L.
Now we look at a more general type of varieties.

(1) This conjecture has now been proved in [3].
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121. Let Y = {(b,a) | 1<b<n,1<a<n}. Givenl <b; <... <
by<n,1<a; <...<a; <n, we consider the subset L of Y, defined by

L = {(b,a) | there exists 1 < <! such that b; <b<n,1<a<a;}.

We call L an one-sided ladder in Y, defined by the outer corners a; =
(biyai), 1 < i <1 (see Figure 1). For 1 < i < [, let L; be the subset of Y’
defined by

L; ={(b,a) | b; <b<n,1<a<a}

Clearly, L = LlJ L.
i=1

We also view Y as the generic n X n matrix (Zpe)i<b,a<n, and we
say that zp, € L if (b,a) € L. Let k[L] denote the polynomial ring
k[Zba | Toa € L], and let A(L) = A#L be the associated affine space.
Let I(L) be the ideal in k[L] generated by the 2 minors of Y which are
contained in L, and X (L) C A(L) the variety defined by the ideal I(L).
A 2 minor in Y formed with two consecutive rows and two consecutive
columns will be called a solid minor. We have (cf. [11]):

LEMMA 12.2. — The codimension of X(L) in A(L) is equal to the
number of solid 2 minors in L.

TuEOREM 12.3. — Let L be an one-sided ladder in Y defined by the
outer corners «; = (b;,a;), with a; > 2 and b; <n—1,1 < i < l. For each
1<i<!, let V; ={P = (Py)acrL € X(L) | Py =0 for all « € L;}. Then
the irreducible components of Sing X (L) are precisely V;, 1 <1 < L.

Proof. — First, we prove that V; C Sing X(L), for all 1 € ¢ <
I. Fix 1 < ¢ < I, and let P = (Py)acrz € Vi. Let J be the Ja-
cobian matrix of X(L). Then the rows of J are indexed by {M |
M is a 2 minor of Y contained in L }, and the columns are indexed by
{zo | @ € L}. Let Jp be the Jacobian matrix evaluated at P. Then the
(M, z,)-th entry in Jp is equal to +P,, where o' is the element in M
which is neither in the row, nor in the column containing «, if z, appears
in M, and 0 otherwise. Since P € V;, the row indexed by a minor involving
To; = T(b,,a;) 18 0. Also, the column indexed by z4;, is 0.

Let J' be the matrix obtained from Jp by deleting the column
indexed by z.,, and the rows indexed by minors involving z,,. Then

(1) rank Jp = rank J’,
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since J' is obtained from Jp by deleting zero rows and columns.

Now consider the one-sided ladder L’ obtained from L by deleting the
element ;. Let P! = (Py)aer'- Then P’ € X(L'), and J' is the Jacabian
matrix of X (L') evaluated at P’. Thus

2) rank J’ < codim 51 X (L).

By hypothesis, a; > 2 and b; < n — 1, and hence there exist at least one
solid minor in L not contained in L', while every solid minor in L’ is also
contained in L. Thus, using Lemma 12.2, we deduce that

(3) codim o1 X (L") < codim (1) X (L).
Using (1), (2) and (3), we deduce that

rank Jp < codim (1) X (L),
i.e. P € Sing X(L).

Next we prove that Sing X (L) C U Vi.Let P € X(L) \ U V;. For

each 1 <7 <[, we fix an element 3; € L such that Ps, # 0. Let C be the
set obtalned from L by deleting the elements appearing either in the first
column, or in the last row of L. Then #C is equal to the number of solid 2
minors in L, and by Lemma 12.2, we have

#C = codim A(L)X(L)

We have C = U C;, where C; = CN (L; \ Liy1), for 1 <@ <1, Ly, = 2.

Let 7; be the set of elements in L; not in the row or the column of §;.
Clearly, #7; = #C;. By (decreasing) induction on i, suppose that, for some
1, 1 < i <, the sets 7;,...,7; have been constructed, such that

(1:; T, CcLji<j<|,
(2); the sets 7;,...,7; are pairwise disjoint,

(4); 7, contains no elements appearing in the column or in the row
of :8j7 1 < .7 < l,

(5); there exists a row in L; not containing any element from 7; U
..UT,.
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We define the set 7;_; as follows. If 8;_; € L;_1 \ L;, then 7;_; is
obtained from L; ; \ L; by deleting the elements in the column of §;_;.
If ;1 € Li—1 \ L;, then 7;_; is obtained as follows. Choose a row R;
in L;, as given by (5);. We set T,_1 = (L;—1 \ L;) U R; \ Ag,_,, where
Ap,_, is the set of elements of L in the row and column of f3;_;. Clearly,
T;—1 C L;_1, the sets T,_1,7;,...,T; are pairwise disjoint, #7;_1 = #C;_1,
and 7;_; does not contain any element in the row or the column of 5;_;.
Also, there exists a row in L;_; which does not contain any element from
T,—1UT;U...UT;. Hence the sets T;_1, T, . . . , 7y satisfy (1);—1 —(5);—1. Thus
we obtain pairwise disjoint sets 7; C Lj, 1 < j < [, such that #7; = #C;,
and 7; does not contain any element in the row or column of §;. Let

1
T = U T;. Then #T = #C.
i=1

For 7 € T;, 1 < i < [, let M™ be the 2 minor determined by 7 and
B;. Clearly, M™ # M " forr, T €T, T # 7'. Let J’' be the submatrix of
Jp given by rows indexed by M"’s and the columns indexed by z.’s, with
7 € T. We index the rows and columns of J’ by the elements in 7, and
we arrange them increasingly, with respect to the lexicographic order in Y
(namely, (b,a) > (¢/,a’) ifb>b,orb="b,a>d).

Letusfix 7 € T,say 7 € 7;, 1 <1 < . Since 7 is the only entry in M"
which belongs to 7, we deduce that in the 7-th row of J’ all the entries
are zero, except the one in the 7-th column, which is equal to +Pg,, and
hence it is nonzero. Thus the matrix J' is diagonal, with nonzero diagonal
entries. Therefore its rank is equal to its size, which is #7. Since #7 is
equal to #C, and hence equal to the codimension of X (L), we deduce that

(4) rank J' = codimy 1) X (L).
Since rank J < rank Jp < codimyzyX (L), (4) implies that
rank Jp = codimy )X (L),

i.e. P ¢ Sing X (L). Therefore we conclude that

l
Sing X (L) = | J Vi.
=1
Let £; = L\ L, 1 <4 < l. Then £; is a distributive lattice, and V; is
identified with X (£;). Using §5.7, we deduce that V; is irreducible, 1 <7 < [.
The fact that V; ¢ V; for ¢ # j is obvious. This completes the proof of the
theorem. O
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The following theorem shows the validity of the Conjecture stated in
Section 11, for the case d = 2.

THEOREM 12.4. — Let L;; C Iz, 1 < i < n— 3, be as in Section
11. Then the irreducible components of Sing X, , are precisely X (L;1),
1<ig<n-3.

Proof. — First observe that ¢; = (1,n) is the only join and meet-
irreducible element of Type II in I ,, and the join and meet-irreducible
elements of Type I are 7; = (i + 1,7+ 2), 0 < ¢ < n — 2 (note that 79 = 0,
Tp_g = T) We have X, = X(L) x A%, where L = I, \ {6,T} Using
Theorem 12.3 for the ladder L, we obtain that the irreducible components
of Sing X(L) are V; , 1 < i < n— 3 (V; being as defined in the statement of
the Theorem). Thus the irreducible components of Sing X5 ,, are precisely
Vi x A%, 1 <i<n—3.Itis easily seen that X(L;;) = V; xA2, 1 <i<n—3,
and the result follows from this. m)

Remark. — We have
codimX(L)Vi:bH.l—b,-+a,-—ai_1+l, 11!
1

(here, ap = 0, bi41 = n). In particular, taking L = I \ {6, }, we deduce
that Sing X» ,, is of pure codimension three in Xg .

13. Generalities on SL(n)/B.

Let G = SL(n), the special linear group of rank n — 1. Let T be the
maximal torus consisting of all the diagonal matrices in G, and B the Borel
subgroup consisting of all the upper triangular matrices in G. It is well-
known that W can be identified with S,,, the symmetric group on n letters.
For w € W and Q a parabolic subgroup, let Xg(w)(= Bw@ (mod Q))
be the Schubert variety in G/Q associated to w. When @ = B, we shall
denote Xg(w) by just X (w).

Following [6], we denote the set S of simple roots by {g;—¢€;4+1, 1 < i <
n—1} (note that £; —e;41 is the character sending diag(t1, . . ., t,) to t;t +11)
The reflection s, _¢,,, may be identified with the transposition (i, j) in S,.
For w = (a1...a,) € Sy, it is easily seen that w(e; — €;) = €4, — €q;-

13.1. The Chevalley-Bruhat order on S,. For w;, we € W, we have
X(w1) C X(we) <= ma(X(w1)) Cmg(X(wz)) foralll <d<g<n—1,
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where g is the canonical projection G/B — G/ PA (here, for a simple root
@, P, is the maximal parabolic subgroup P w1th Sp = S\ {a}) . Hence
we obtam that for (ai...an), (b1...bn) € Sp,

(@1...an) 2 (by...b,) < (ay...aq) T2 (by...04) 7T foralll <d << n—1

(here, for an ordered d-tuple (t;...tq) of distinct integers, (t1...tq) 1
denotes the ordered d-tuple obtained from {ti,...,t4} by arranging its
elements in ascending order).

13.2. The partially ordered set I, ... o, . Let Q be a parabolic subgroup
in SL(n), with Sg as the associated set of simple roots. Let 1 < a; < ... <
ar < n, such that Sg =S \ {@a,,...,Qq,}. Then Q = P;; Nn...N P;: ,
and Wg =S4, X Say—a; X ... X Sp_q,- Let *

Togar = {G1s--s8k) € Tayn X X Igpn | & Cipqq forall 1<t <k—1}

Then it is easily seen that Wg‘“‘(={w eW | w(a) >0foralla € Sg})
may be identified with I,, .. ,.

The partial order on the set of Schubert varieties in G/Q (given by
inclusion) induces a partial order > on I, ... 4., namely, for i = (4,...,%),
i=0p-d) €layan iz <= 4 >, forall 1<t <k

13.3. The minimal (maximal) representatives. Let w € W, and let
i=(4,...,1) be the element in I, . o, which corresponds to wsi". Let
wg‘i“ (resp. w(**) be the minimal (resp. maximal) representative of wWq
in W. Let w correspond to i = (%4, ..., %) under the identification in §p13.2.
Then, as a permutation, the element wgi" is given by 3., followed by i, \ i;
arranged in ascending order, and so on, ending with {1,...,n}\3, arranged
in ascending order. Similarly, as a permutation, the element wg®* is given
by i, arranged in descending order, followed by i,\¢; arranged in descending
order, etc..

13.4. The opposite big cell in G/Q. Let Q = ﬂ PA Let a = n— ag,

and @ be the parabolic subgroup consisting of all the elements of G of the
form

Al x % . *
0 Ag * %
O 0 0 - Ap %
0 0 O 0 A
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where A; is a matrix of size ¢; X ¢, ¢ = as — as—1, a9 =0, 1 < t < k, and
A is a matrix of size a X a, and z,,; =0, m > as, | < ay, 1 <t < k. Denote
by O~ the subgroup of G generated by {Us | @ € R~ \ Ry} (here R is
the set of negative roots and Ry = {a € R~ [a= 3 agf}). Then O~

BESq
consists of the elements of G of the form
L 0 0 --- 0 O
*x Ib 0 --- 0 O
x k% I, O
* ok ox --- x I

where I; (resp. I,) is the ¢; X ¢; (resp. a X a) identity matrix, and if z,,; # 0,
with m # [, then m > a4, | < a; for some t, 1 < t < k. Further, the
restriction of the canonical morphism f : G — G/Q to O~ is an open
immersion, and f(O7) ~ B~ée;q o One refers to B™e;q , as the opposite
big cell in G/Q. Thus we obtain an identification of O~ with the opposite
big cell in G/Q.

13.5. Pliicker coordinates on the Grassmannian. Let G4, be the
Grassmannian variety, consisting of d-dimensional subspaces of an n-
dimensional vector space V. Let us identify V' with k", and denote the
standard basis of k™ by {e; | 1 < i < n}. Consider the Pliicker embedding
fa : Gapn — P(AYV), where A%V is the d-th exterior power of V. For
i=(i1,...,%q) € Ian, let € =€;; A...Ae;,. Then the set {e; | i € I4} is
a basis for A%V. Let us denote the basis of (A?V)* (the linear dual of A%V)
dual to {e; | i € Ian} by {p; | j € Ia,n}- Then {p; | j € I4n} gives a system
of coordinates for P(A?V). These are the so-called Pliicker coordinates.

13.6. Schubert varieties in the Grassmannian. Let Q = P&;. For
simplicity of notation, let us denote P&; by just Pz. We have

Gd,n >~ G/Pd

Let ¢ = (41,...,%4) € Ign. Then the T-fixed point e; p, is simply
the d-dimensional span of {e;,,...,e;,}. Thus Xp, (i) is simply the Zariski
closure of B - [e;, A...Ae;,] in P(AYV).

In view of the decomposition Xp, (i) = J Xp,(j), we have

J<i

Pilxp,0 #0 = i>]
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Remark 13.7. — Given 7 € I, T = (i1,...,%4), let A, denote the
Young diagram (ig — d,...,4; — 1). Then, using Lemma 8.2, we see that
the element 7 € I, is join-irreducible if and only if the associated Young
diagram A, is a rectangle, i.e. all rows have the same number of boxes.
We also observe that 7 is join-irreducible if and only if X () is nonsingular
(this is a consequence of the fact that X (7) is nonsingular if and only if A,
is a rectangle, cf. [21]).

13.8. Evaluation of Pliicker coordinates on the opposite big cell in
G/P;. Consider the morphim ¢4 : G — P(A?V), where ¢q = f4 004, 04
being the natural projection G — G/P;. Then p;(¢4(g)) is simply the
minor of g consisting of the first d columns and the rows with indices
J1y--.,J4- Now, denote by Zy the unipotent subgroup of G generated by
{Uas | @ € R~ \ Rp,}. We have, as in §13.4

Zy= {( Idxd de(n—d) ) € G} .
Am—dyxd I(n-dyx(n—d)
As in §13.4, we identify Z4 with the opposite big cell in G/P;. Then, given
z € Zg, the Pliicker coordinate p; evaluated at z is simply a certain minor
of A, which may be explicitly described as follows. Let j = (ji,-- ., Ja),

and let j, be the largest entry < d. Let {k1,...,k4—r} be the complement
of {j1,-..,4-} in {1,...,d}. Then this minor of A is given by column

indices k1, ...k4s—r, and row indices j,i1,...,J4 (here the rows of A are
indexed as d + 1,...,n). Conversely, given a minor of A, say, with column
indices by, ..., bs, and row indices ¢4_s+1,- - -, %4, it is the evaluation of the
Pliicker coordinate p; at z, where i = (i1,...,i5) may be described as
follows: {41,...,%4—s} is the complement of {b,...,bs} in {1,...,d}, and
id—s+1,- - - ,tq are simply the row indices (again, the rows of A are indexed
asd+1,...,n).

13.9. Evaluation of the Pliicker coordinates on the opposite big cell
in G/Q. Consider

f:GoG/Q = G/Py X ...X G[P,, — P1x...x Py,

where P; = P(A%V). Denoting the restriction of f to O~ (O~ being as in
§13.4) also by just f, we obtain an embedding f : O~ — P; x ... x Py,
O~ having been identified with the opposite big cell in G/Q. For z € O™,
the multi-Pliicker coordinates of f(z) are simply all the a; x a; minors of
z with column indices {1,...,a:}, 1 <t < k.
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13.10. Equations defining multicones over Schubert varieties in G/Q.
Let Xq(w) C G/Q. Let

rR=@H(c/Q. QL)
R, = @ H°(Xo(w), Q L),

where a = (a1,...,ax) € Z’fr. The kernel of the restriction map R — R,
is generated by the kernel of Ry — (R(w)); (cf. [18]); but now, in view of
13.6, this kernel is the span of

{pg | l € Id,'n,, d= aly...,0k, w(d) ; 1};
where w(® is the d-tuple corresponding to the Schubert variety which is
the image of Xg(w) under the projection G/Q — G/P,,, 1 <t < k.

13.11. Ideal of the opposite cell in X (w). Let us denote B~e;q oN

Xo(w) by just Ay,. Then as in §13.4, we identify B_eidQ with the
unipotent subgroup O~ generated by {U, | @ € R™ \ R}, and consider

A, as a closed subvariety of O~ (one refers to A, as the opposite cell in
X (w)). In view of §13.10, we obtain

ProposiTion 13.12. — The ideal defining A,, in O~ is generated by
{(pi|i € Ly, d=au,... a5, w'¥ #i}

(here, for z € O, pi(2) is as in §13.9).

14. Relationship between ladder determinantal varieties
and Schubert varieties.

In this section, we relate X (L) as well as the irreducible components of
Sing X (L) to certain Schubert varieties in a certain SL(n)/Q. Eventhough
the relationship between X (L)’s and Schubert varieties is proved in [22],
we give an independent proof to suit to our purpose.

Let Y = (Zps), 1 < b,a < n be a matrix of variables, and L C Y
an one-sided ladder defined by the outer corners (b1, a1),..., (b, a;), with
1< <...<b<n,1<a; <...<a <n. We also assume that L lies
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below the main diagonal of Y, i.e. b; > a; for all 1 < ¢ < [ (this can be
achieved by adding extra rows and columns to Y, if necessary).

Let G = SL(n), and consider the parabolic subgroup @ = P,, N...N
P,, in G. Let O~ be the opposite big cell in G/Q. Let X (L) C A(L) be
the the variety defined by the vanishing of the 2 minors in L, as in Section
12. Let H be the one-sided ladder defined by the outer corners (a; + 1, a;),
1< i<, and let Z be the variety in A(H) ~ O~ defined by the vanishing
of the 2 minors in L. Note that Z ~ X(L) x A(H \ L).

Let Y™ = (ypa), 1 < b,a < n, where

Tpa, if (bya) € H
Yva = 1, ifb=a
0, otherwise.

Note that, given 7 € W%, 1 < i < [, the function p,|o- represents the de-
terminant of the submatrix T' of Y~ whose row indices are {7(1),...,7(a:)},
and column indices are {1,...,a;}.

We shall now define an element wy, € W such that Z gets identified
with the opposite cell in X (wr) (see also [22]). We define w;, € W? by
specifying w{*) € W4, where m;(X (wr)) = X (w'*) under the projection
m:G/Q —> G/P,,, 1 <i<l.

Define w(L‘“), 1 <7 <[, inductively, as the maximal element W% with
the following properties:

(1) wi i = 1) =bi -1,
P a;—1 a;
(2) 1fz>1,thenw2 )Cw(L )
(here, for a d-tuple 8 = (61,...,04), by 6(t) we mean the t-th entry,
1<t<d).

Remark. — Note that wy, is well defined as an element of W<, and
it is the unique maximal element 7 of W< with the property

T(“")(ai — 1) < b;,

forall 1 <7<l

In the sequel, we shall denote wy, by just w.

THEOREM 14.2. — The variety Z identifies with the opposite cell in
X(w), i.e. Z= X(w)N O~ (scheme theoretically).
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Proof. — Let f be a generator of I(Z), i.e. f = det M, for some
2 X 2 matrix M contained in L. Let r; < 72 (resp. ¢; < c2) be the row
(resp. column) indices of M. Let ¢ be the smallest integer such that M
is contained in L;. Thus ri,72 > b; > a;, ca > a;—1 (here ;1 = 0
ifi =1). Let 7 = {1,...,a;} \ {c1,¢c2} U {r1,72}. Then 7 € W% and
prlo- = det T, where T is the a; X a; submatrix of Y~ whose row indices
are {7(1),...,7(a;)}, and column indices are {1,...,a;}. Using Laplace
expansion with respect to the last two rows of T', we obtain

(%) detT = Z +det Ne/ o det My o1,

the sum being taken over all subsets {c/,c"} C {1,...,a;}, ¢ # ", where
N/ o is the (a; — 2) % (a; — 2) submatrix of Y~ whose row indices are
{1,...,a;}\{c1, c2} and column indices are {1,...,a;}\{c/,c"}, and M o~
is the 2 x 2 submatrix of Y~ whose row indices are {ry,r2} and column
indices are {c/,¢"}. Note that M., ., = M, and Ng, ., is a lower triangular
matrix, with all diagonal entries equal to 1, and hence det M appears in
(%), and its coefficient is £1. Also note that N o~ is obtained from N, c,
by replacing the columns with indices ¢/, ¢’ by the columns with indices
C1,C2.

By decreasing induction on the index c¢; of the first column of M, we
prove that f (= det M) can be written in the form f = Y g4ps|o-, with
¢ € Wai; {ai + 1’ vee ’n} n {¢(1)a cee 7¢(az)} = {TI,T2}a and 9o € k[H]

If ¢; > a;—1, then for {¢,c"} # {ci,c2} we have det Ny v = 0,
since at least one of c1,cp is an index for a column in Ny ., and all
entries of this column are 0. Thus, in this case (x) reduces to detT =
+det M, i.e. det M = £p,|o-, with 7 € W% such that {a; + 1,...,n} N

{T(l), ey T(ai)} = {7‘1,7‘2}.

Let ¢; < a;—1 be such that the above statement is true for ¢; +1. First
we observe that if c; & {¢/,c”}, then det Ny o = 0, since in this case c; is
an index for a column in Ny ., and all entries of this column are 0. Let
then c; € {¢/,c"}, and let {¢, "} = {c,c2}. Then N, is obtained from
N¢, c, by replacing the column with index ¢ by the column with index ¢;.
If ¢ < ¢1, then N, is still lower triangular, but the diagonal entry in the
column with index ¢; is 0, and hence det N ., = 0. Therefore we obtain

detT = +det M + > +det N, det M, .,
cE{cl+1,...,a,~}\{cz}
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and hence

f=detM = +p,|o- + > +det N, ., det M, ,.
ce{c1+1,...,a; }\{c2}

Using induction hypothesis for M, .,, we obtain f = Y g¢pslo-,
with ¢ € W% such that {a; + 1,...,n} N {#(1),...,d(a;)} = {r1,72},
and g4 € k[H]. In particular, we obtain ¢(a; — 1) = r;. Since 71 > b;,
we deduce that ¢(a; — 1) > b;. We have w(®) (a; — 1) = b; — 1, and
hence ¢(a; — 1) > w(®)(a; — 1). This shows that ¢ £ w(@), and hence
Pglo- € I(X(w) N O~). Therefore f € I(X(w)NO7).

Let now g be a generator of the ideal I(X(w) N O7), i.e. g = p;lo-,
with 7 € W% for some 1 <4 < I, such that 7 € w* (cf. §13.6). Since w(®)
consists of several blocks of consecutive integers ending with b, — 1 at the
(az — 1)-th place, for some t’s in {1,...,7}, and a last block ending with
n at the a;-th place, it follows that there exists a t € {1,...,4} such that
7(at — 1) > b;. As above, the function p,|o- represents the determinant of
the submatrix T of Y~ whose row indices are {7(1),...,7(a;)}, and column
indices are {1,...,a;}. Using Laplace expansion with respect to the first a;
columns,we have det T' = ) det A, det B, where A, (resp. B,) is an a; x a;

P

(resp. (a; —at) x (a; — a¢)) matrix. Clearly, all the column indices of A, are
< at, and since 7(a; — 1) > by, at least 2 row indices of A, are > b;. Using
Laplace expansion for A, with respect to 2 rows whose indices are > b;, we
obtain det A, = Y det Cy det Dy, where C, (resp. Dg) is a 2 (resp. a; — 2)

q
minor, with C, contained in L; C L. This shows that p,|o- € I(Z). This

completes the proof. o

CoROLLARY. 14.3. — The variety X (L) is normal, Cohen-Macaulay,
and has rational singularities.

This follows from Theorem 14.2, and the fact that Schubert varieties
are normal, Cohen-Maculay, and have rational singularities (cf. [23], [24],
and [18]).

14.4. Let us fix j € {1,...,1}. We shall now define ; € W< such that
Z; =V; x A(H \ L) gets identified with the opposite cell in X (;).
For i < j, let 65" = w(@) \ {n} U {b; - 1}.

For i = j, let Hg.a") = w(®) \ {n} U {z;}, where z; is the maximal
element in {1,...,b; — 1} \ w(®).



SCHUBERT VARIETIES, TORIC VARIETIES 1057

For i > j, let

glas) _ wle), ifz; € wle)
T LI\ {yiu{e), ifa € wled,

where y; is the minimal element in w(%:) \ 0§ai‘1).

LEmMA 14.5. — With notations as above, we have 0; < w. Further,
g is the (unique) maximal element 7 € W, 7 < w™*, such that
T(aj)(aj) < bj.

The assertion is clear from the definition of 6;.

THEOREM 14.6. — The subvariety Z; C Z gets identified with the
opposite cell in X (0;), i.e. Z; = X(6;) N O~ (scheme theoretically).

Proof. — Let f be a generator of I(Z;). If f € I(Z), then in view
of Theorem 14.2 we have f € I(X(w) N O~) C I(X(6;) N O~) (since
w > 0;), and there is nothing to prove. Assume that f ¢ I(Z); then
f = x4, for some a = (b,a) € L;. Then f can be written as pg|o-,
with ¢ € W%, such that {b} = {a; + 1,...,n} N {¢(1),...,9(a;)},
and {a} = {1,...,a;} \ {#(1),...,¢(a;)}. Thus ¢(a;) = b, and since
a € Lj, we have b > b;. Therefore ¢(a;) > b;. But 0§.aj)(aj) =b; — 1,
and hence ¢(a;) > 0§“j)(aj). This shows that ¢ £ 95-'1’ ), and therefore
feIl(X@;)n0O7).

Let now g be a generator of the ideal I(X(6;) N O~), i.e. g = pr|o-,
with 7 € W), for some 1 < i <[, such that 7 € 05-‘“).

First assume that i < j. Then 05-'“) consists of several blocks of
consecutive integers ending with b; — 1 at the (a; — 1)-th place, for some t’s
in {1,...,4—1}, and a last block ending with b; — 1 at the a;-th place. The
condition 7 £ 0](.(“) implies that either there exists ¢ € {1,...,4 — 1} such
that 7(a; — 1) > by, or 7(a;) > bj. In the first case we have 7 ¢ w(@:), and
hence p,|o- € I(X(w)NO~) = I(Z) C I(Z;). Suppose now that 7(a;) > b;.
The function p,|o- represents the determinant of the submatrix 7" of Y~
whose row indices are {7(1),...,7(a;)}, and column indices are {1,...,a;}.
Obviously, all column indices are < a;. On the other hand, since 7(a;) > b;,
the last row of T" is contained in L;, and expanding T along this row, we
deduce p;|o- € I(Z;).

Assume now that ¢ > j. If 9§“") = w(®), then 7 ¢ w(®), and
hence p.|o- € I(X(w)NO~) = I(Z) C 1(Z;), and there is nothing to
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prove. Suppose that 05.‘“) # w(%), Then 0;’“) consists of several blocks of
consecutive integers ending with b;—1 at the (a;—1)-th place, for some ¢’s in
{1,...,3}\{7}, a block ending with b; —1 at the a;-th place, and a last block
ending with n at the a;-th place. The condition 7 ¢ 05-‘”) implies that either
there exists t € {1,...,4}\{j} such that 7(a;—1) > b, or 7(a;) > b;. In the
first case we have 7 ¢ w(%), and hence p,|o- € I(X(w)NO~) = I(Z) C
I(Z;). In the second case, the function p;|o- represents the determinant of
the submatrix T of Y~ whose row indices are {7(1),...,7(a;)}, and column
indices are {1,...,a;}. Using Laplace expansion with respect to the first
a; columns, we have det T = ) det A, det By, where A, (resp. Bp) is an

aj X a; (resp. (a; —a;) x (a; — Zj)) matrix. Clearly, all the column indices
of A, are < aj, and since 7(a;) > b;, at least one row index of A, is > b;.
Using Laplace expansion for A, with respect to a row with index > b;
we obtain det A, = > C,det Dy, where Cg’s are entries of a row of A,

q
contained in L; C L. This shows that p,|o- € I(Z;). O

15. A conjecture on the irreducible components
of a Schubert variety in SL(n)/B.

Let G = SL(n). In this section we state a conjecture which is
a refinement of the conjecture in [20] on the irreducible components of
the singular locus of a Schubert variety, and prove the conjecture for
a certain class of Schubert varieties, namely the pull-backs m~1(X¢q(w))
under 7 : G/B — G/Q, where w and @ are as in Section 14.

For 7 € W, let P, (resp. @,) be the maximal element of the set of
parabolic subgroups which leave BB (in G) stable under multiplication
on the left (resp. right).

We recall the following two well-known results (for a proof, see [19]
for example).

LEMMA 15.1. — Let o be a simple root, and let P, be the rank
1 parabolic subgroup with Sp, = {a}. Let T € W. Then BTB is stable
under multiplication on the right (resp. left) by P, if and only if T(a)) € R~
(resp. 771(a) € R™).
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CoROLLARY. — Let 7 € W. With notations as in Section 13, we have

Sp, ={ac S|t a)e R},
Sg, ={aeS|7(a) e R™}.

DEerINITION 15.3. — Given parabolic subgroups P, Q, we say that
BTB is P-Q stable if P C P, and Q C Q.

LEMMA 15.4. — Let G = SL(n). Let 7 € S,, say 7 = (a1,--.,an).
Let a = €; — €;41. Then

(1) 7(@) € R~ if and only if a; > a;41.

(2) 77Y(a) € R~ if and only if i + 1 occurs before i in T.

Proof. — We have 7(a).= €q, — €q,,, and 77(a) = €; — ek, where
a; =1 and ax =% + 1. The results follow from this.

Let n € W. We shall denote Xpg(n) by just X(n). We first recall the

criterion given in [20] for X (n) to be singular.

THEOREM 15.5. — Let = (ay...a,) € S,. Then X(n) is singular if
and only if there exist i,j,k,m, 1 <1 < j < k < m < n such that

either ay < amm <a;<a; or apm<a;<ax<a;.

15.6. The set F,. Let n = (a1...an) € S,. Let E, be the set of all
7/ < 1 such that either 1) or 2) below holds.

1) There exist 1, j,k,m, 1 <i < j < k < m < n, such that
(a) ag < am < a; < aj,

(b) if 7/ = (b1 ...by), then there exist ¢/, 5/, k',m’, 1 < < j <k <
m' < n such that by = ak, by = aj, b = am, by = aj,

(e) if T (resp. n’) is the element obtained from 7 (resp. 7’) by replacing
s, j, Ak, Ay Tespectively by ax, a;, am,a; (resp. by, bjs, ber, by respectively
by bjr, by, bir, b)), then 7/ > 7 and 7' < 7.

2) There exist i,j,k,m, 1 <1 < j < k < m < n, such that
(a) am < a5 < ag < ag,

(b) if 7 = (b1 ...by), then there exist ¢/, 5, k',m’', 1 <’ < j' < k' <
m' < n such that by = aj, by = am, by = a;, by = ax,
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(c) if 7 (resp. 1') is the element obtained from 7 (resp. 7’) by replacing
a;, @j, ak, Ay, Tespectively by a;, am, a;, ax (resp. by, bjr, by, by respectively
by bis, bir, bms, bjr), then 7/ > 7 and ' < 7.

Let F, = {r € E, | BrB is P,-Qystable}.

CoNJECTURE. — The singular locus of X (n) is equal to UxX()),
where A runs over the maximal (under the Bruhat order) elements of F,.

15.7. Let n = (a1 ...a,) € Sy,. Let Sing X(n) # @. Let (a,b,c,d) be
four distinct entries in {1,...,n} such that a < b < ¢ < d. An occurence
in n of the form (d,b,c,a), where d = a;, b = a;, ¢ = ax, & = am,
i < j < k < m, will be referred to as a Type I bad occurance in 1.
An occurance in 7 of the form (c,d,a,b), where ¢ = a;, d = a;, a = ay,
b= am,i<j<k<m,wil be referred to as a Type II bad occurance in 7.
Let (d, b, ¢, a) (resp. (¢',d’,a’,b")) be a bad occurance of Type I (resp. Type
IT), where a < b < c < d (resp. a’ <V < < d'). Let 6, ' be both < w.
Further, let b,a,d, c (resp. a’,c/,b’,d’) appear in that order in 6 (resp. ).
By abuse of language, we shall refer to (b,a,d,c) (resp. (a’,c,b',d’)) as a
bad occurance in 6 (resp. 6’) corresponding to the bad occurance (d, b, ¢, a)
(vesp. (¢, d',ad’, b)) in 7.

Let Q be as in Section 15, and let 7 : G/B — G/Q be the canonical
projection. Let 7 € W5'". We have 7! (Xo(7)) = Xp(7™**), where 7%,
as a permutation, is given by 7(%) arranged in descending order, followed
by 7(@2) \ 7(21) arranged in descending order, etc.. We shall refer to the set
r(a:) \T(‘“-l), 1 <7 <141, arranged in descending order, as the i-th block
in 7m2% (here, 7(%) = &, and 7(%+1) is the set {1,...,n} \ 7(®) arranged
in descending order).

For the rest of this section, w and Q will be as in Section 14.

Remark 15.8. — All of the entries in the i-th block in w™* are < b;—1,
2<igl.

LEMMA 15.9. — We have

(1) Qumes = Q.
(2) Let I-wmax = {Ei — Ei+1 | T = b] - 1,1 < ] < l}. Then
Spwmax = S\Iwmax.

The assertions are clear from the description of w™* (in view of
Lemma 15.4).
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LEMMA 15.10. - Let P = Pwmux, Q = meax. Tben BO;“axB iS P-Q
stable.

Proof. — The Q-stability of B67***B on the right is obvious. Regard-
ing the P-stability of BO**B on the left, first let = be an entry = # y;,
for any i > j such that z; & w(3:) (notations being as in §14.4). It is clear
that if x — 1 occurs after x in w™?*, then it does so in 67%* also. Let now
x = y; for some i > j such that z; & w(®), Further, let e,_1 — e, € Sp.
This implies that z # by for any k, 1 < k <! (cf. Lemma 15.9, (2)), and
that  — 1 occurs after z in w™®*. In particular we have x # b;, and hence
z > b;. From this it is clear that z — 1 occurs after z in 6°** also. The
result now follows from this. O

LeEmMA 15.11. — Any bad occurance in w™?* is of Type L

Proof. — Let w™®* = (a;...a,). Assume that (c,d,a,b) is a bad
occurance of Type II in w™®* where a < b < ¢ < d. Clearly, ¢ and d (resp.
a and b) cannot both appear in the same block , in view of the description
of w™®*, Let then c,d,a,b appear in the h-th, i-th, j-th, k-th blocks
respectively, where h < i < j < k. This implies that a < b<ec<d <b; — 1
(cf. Remark 15.8). But now, a and b are both < b; —1, and they both appear
after b; — 1; further, a appears before b in w™2*, which is not possible by
the construction of w™®* (note that a < b). The required result follows
from this. m]

Remark 15.12. — Of course, there are several bad occurances in w™*
of Type I. For example, fix some j, 1 < j <l.Taked =n,b=0b;—1,c=1b;
a = z;j, notations being as in §14.4. Then d, b, c,a occur in the 1-st, j-th,
k-th, m-th blocks respectively, where j < k < m. This provides an example
of a Type I bad occurance in w™?*.

LeEmMmMA 15.13. — Let d,b,c,a be a bad occurance in w™®*, where
a < b < ¢ < d. Assume that b belongs to the i-th block, for some i (note
that @ < I, since b < ¢). Then

1) b<b—1,
(2)d=n.

Proof. — Let d,b,c,a occur in the h-th, i-th, j-th, m-th blocks
respectively in w™?*) where h < ¢ < j < m. First observe that b < n,
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since b < ¢ < d < n. Hence, if ¢ = 1, then b < by — 1. If i > 2, again
b < b; — 1 (cf. Remark 15.8). Assertion (1) follows from this.

CLAIM. — d > b; — 1.

Proof. — Assume that d < b; — 1. Then assumption implies ¢ < b; — 1
(since ¢ < d). Now both ¢ and b are < b; — 1, and b belongs to the i-th block
in w™2*, This implies that ¢ should occur before b, which is not possible.
Hence our assumption is wrong, and the claim follows. m]

Note that the claim in fact implies that d =n (and h = 1). i

ProposiTiON 15.14. — The maximal elements in F,max are precisely
03, 1 < i < h (here Fymsx is as in §15.6).

Proof. — We first observe that 677®* € Fymax; for, corresponding to
the bad occurance d =n, b =b; — 1, ¢ = bj, a = z; (cf. Remark 15.12), we
have the bad occurance (b,a,d,c) (note that b,a,d,c occur in that order
in 6°2). Let us denote 65"** by 7'. Let w’ (resp. ) be the element of S,
obtained from 7/ (resp. w) by replacing b, a, d, c (resp. d, b, c, a) respectively
by d,b,c,a (resp. b,a,d, c). We have 7 < w (clearly), and 7(%)(a;) < b; — 1.
From this we conclude 7 < 7/ (cf. Lemma 14.5). Also, we have

(1) for i < j, w'@)(a; — 1) = w@(a; — 1) < b;
(note that, in fact, for i < j, w'(%) = w(@)), and for i > j + 1,
(ai) ; (ai)
w'(ai) _ {0% A), if bj € 0% )
;"7 \ {z;} U {b}, ifb; &6,
From this it follows that
(2) for i3> j+1,w @) (a;—1) = 0§-ai)(ai—1) <w®)(a;—1) =b;—1 < b;.
From (1) and (2) we conclude w(< w™* (cf Remark 14.1).
Thus we obtain 07"** € Fyymax.

Let now 7/ € Fymax. In particular, we have 7/ € Wa.

We have a bad occurrance in 7’ which has to be of the form (b, a, d, ¢),
a < b < ¢ < d, corresponding to the occurrance (d,b,c,a) in w™a*
(cf. Lemma 15.11). Let b, a,d, ¢ occur in the p-th, ¢g-th, r-th, s-th blocks
respectively in 7/, where p < ¢ < 7 < s (note that 7 € WG**). Let '
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be obtained from 7’ by replacing b, a, d, ¢ by d, b, c, a respectively. We have
w < w™* (cf. §15.6). Hence

w' @ (ag — 1) < w9 (ag — 1) = by — 1.

Further, 7/(34) is obtained from w’(%e) by replacing d by a (note that d = n,
cf. Lemma 15.13). Hence we obtain

T’(a")(aq) — w’(aq)(aq —-1)<b—1.

This, together with the fact that 7/ < w™**, implies 7" < 67 (cf. Lemma

14.5) m]
THEOREM 15.15. — The conjecture 15.6 holds for X (w™ax).

Proof. — In view of Theorems 12.3, 14.2 and 14.6, X (%), 1 < j <!
are precisely the irreducible components of Sing X (w™2*). On the other
hand, we have (cf. Proposition 15.14) that the maximal elements in Fy,max
are precisely 67'*, 1 < j < l. Hence the irreducible components of
Sing X (w™a*) are precisely {X(6) | 6 a maximal element of Fmax}. Thus
the conjecture holds for X (w™a). o
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