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DETERMINANT BUNDLE OVER THE UNIVERSAL
MODULI SPACE OF VECTOR BUNDLES

OVER THE TEICHMULLER SPACE

by Indranil BISWAS

1. INTRODUCTION

Let X be a compact Riemann surface of genus g ^ 2, equipped with
a compatible Riemannian metric. Fix a point XQ € X. Let jV denote the
moduli space of stable vector bundles on X of rank r and determinant
Ox{d.xo).

Let p be the projection of X x J\T onto M. On X x Af there is a
natural universal adjoint bundle £. The top exterior product of the first
direct image

e := T^p.f)
is an ample line bundle on J\T. (The line bundle 9 is the anti-canonical
bundle of A/".)

By a celebrated theorem of Quillen, there is a natural hermitian
metric on 0, such that the curvature of its hermitian connection is a
multiple of a natural 2-form on J\T obtained after identifying AT with a space
of equivalence classes of irreducible SU(r) representations of 7Ti(X — .z-o)-
This identification of M with a unitary representation space is provided by
a well-known theorem of Narasimhan and Seshadri.

The primary aim here is to address the question of the dependence
of the Quillen hermitian structure of the line bundle 9 over A/" on the
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conformal structure of the Riemann surface X. Towards this goal, we set
forth a systematic study of the universal moduli space and the Quillen
determinant bundle over the Teichmuller space.

The space of all marked conformal structures of genus g is parameter-
ized by a space what is known as the Teichmuller space; we shall denote this
space by T. Over T there is a natural universal family, say C, of Riemann
surfaces.

We construct a "universal moduli space", say A^T? over T such that
for any t C T, the fiber Aft is the moduli space of stable bundles over the
Riemann surface represented by the point t. Then we construct a "universal
adjoint bundle", say ET^ over the fiber product C Xj- Mr-

Let p2 denote the natural projection of C x^ Afj- onto Mr' General-
izing the definition of 9 above, let us define

top i
QT := A (.RWr)

to be the line bundle on MT.

By a construction of Bismut, Gillet and Some (which is a generaliza-
tion of the construction of Quillen), we have a hermitian metric on the line
bundle GT.

Bismut, Gillet and Some in [BGS1] give a general formula for the
curvature of the hermitian line bundle they construct (which is known as
the local Riemann-Roch formula).

We show that in our particular situation, the curvature form of 67-
coincides with a natural (1, l)-form on Mr- In particular, we show that the
curvature is positive semi-definite.

There is a natural action of the mapping class group, denoted by
M.CQ1 on T such that the quotient is the moduli space of Riemann surfaces
of genus g.

We show that the action of M.CQ1 lifts to all the objects over T that
we construct. In particular, over the smooth locus of the moduli space of
Riemann surfaces there is a "universal moduli space of vector bundles",
and a determinant line bundle over this "universal moduli space". There
is a natural hermitian connection on this line bundle whose curvature is
computed Theorem 5.4; the curvature turns out to be semi-positive.

Acknowledgments. — The author is grateful to the referee for some
useful remarks, and also for pointing out several references. The author is



DETERMINANT BUNDLE OVER THE UNIVERSAL MODULI SPACE 887

grateful to the Institut Fourier and the Academic des Sciences, Paris, for
their hospitality and support during the writing of this paper.

2. PRELIMINARIES

In this section we shall recall some known facts about the Teichmuller
spaces and the moduli spaces of vector bundles over Riemann surfaces.

2.1. Some facts about the Teichmuller space.

Let S be a compact connected oriented C°° surface of genus g > 2.
Fix a point SQ € 5'.

The space, denoted by Com(S'), of all complex structures on S
compatible with the orientation of S', has a natural structure of an infinite
dimensional complex Frechet manifold. The group, Diff^^^o), of all
orientation preserving diffeomorphisms of S fixing the point SQ C 5, has a
natural action on Corn {S) given by the push-forward of a complex structure
by a diffeomorphism. Consider the subgroup

Diff^(5,5o) C Diff^^o)

consisting of all those diffeomorphisms of (5, So) which are homotopic to the
identity map, with a homotopy preserving the base point. The Teichmiiller
space for (5',so)?

T; :=T;(5,5o)

is the quotient Com(S')/Diff^(S', so). Since the action of any g € Diff^^, so)
preserves the complex structure of Com(S'), there is a natural induced com-
plex structure on 7^1.

Consider triplets of the form (X, a;o, /), where X is a Riemann surface
of genus (7, XQ € X, and / : X —> S is a diffeomorphism such that
f(xo) = SQ. Identify {X^xo^f) with (Y,2/o,^) if there is a bi-holomorphic
map h : X —> Y such that h{xQ) = yo, and the diffeomorphism
g o ho f~1 e Diff(}"(5', 5o). The Teichmuller space 7^1 is the moduli space of
equivalence classes of such triplets.

There is a universal Riemann surface

(2.1) TT : C} -^ T,1
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along with a holomorphic section C^ : Tg- —^ C^ such that TT o ( = id. We
shall briefly describe the construction of C1.

On the Cartesian product S x Com(5') there is a tautological complex
structure determined by the condition that for any c € Com(5'), the subset

S x c C S x Con^)

is a complex submanifold with the complex structure c; and for any s ^ S,
the subset s x Com(5') is a complex submanifold. This implies that the
projection

p2 : S x Com(S) —> Com(S)

is a holomorphic map. The group Diff^^, So) acts on both the components
S and Com(S'). Consider the diagonal action of Diff^(5, so) on S x Com{S).
This action preservers the complex structure of S x Com(S). The universal
Riemann surface C^ is the quotient space

(S x Com(5))/Diff^(^o).

The projection p^ induces the complex submersion TT. Since the elements of
Diff^"(5', So) preserve the point SQ, the section of the projection pa defined
by SQ descends to a section of the submersion TT in (2.1). This is the section
C mentioned earlier.

For any t € T, after choosing a lift f of tm Com(6'), the Riemann sur-
face Tr'"1^) can be identified with 5'; this identification will be denoted by ft.
The point t represents the equivalence class of the triplet (Tr"1^), <(t), ft).

Define Tg := T(S) to be the Teichmiiller space for the surface S.
By definition, Tg = Con^/Diff^), where Diff^) is the group of all
orientation preserving diffeomorphisms of 5' homotopic to the identity map.
There is a natural holomorphic submersion of T1 onto Tg such that any
fiber is bi-holomorphic to the open unit disc in C.

For any t := (X,/) e Tg, the holomorphic tangent space TfTg is
canonically identified with ^(X.Tx). Using Serre duality we have, the
following identification of the cotangent space:

T^Tg = H°(X^KJ,)

where Kx denotes the holomorphic cotangent bundle of X. The Poincare
metric on X, denoted by g x , is the unique metric with curvature -1. On
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H°(X,K^) the pairing

(2.2) (a,/3) —— / a0^^1

Jx

defines a hermitian metric. (Note that a (g) (3 0 Qy> is a (1, l)-form on X.)
The Riemannian metric on Tg thus obtained is a Kahler metric, and is
called the Weil-Petersson metric. Let ̂ p denote the hermitian (1, l)-form
on Tg for the Weil-Petersson metric.

2.2. Some facts about the moduli space of vector bundles.

Let X be a Riemann surface of genus g ^ 2. Fix a point XQ e X.

Let M(r, d) denote the moduli space of isomorphism classes of stable
bundles on X of rank r and degree d. We shall always assume that
— r < d ^ 0 . Note that after tensoring with a line bundle, the degree
of a vector bundle can always be made to lie in this range.

Let U{r,d) denote the subspace of Horn11'(71-1 (X - xo),U(r))/U(r)
consisting of all those representations whose holonomy along the oriented
loop around XQ is

exp^Trdv^T/r).^^ e center (U (r)).

A fundamental theorem of Narasimhan and Seshadri, [NS], identifies
M(r,d) with 7Z(r,d).

For a € 7^(r,d), let Ua denote the local system on X given by the
adjoint action on the Lie algebra u(r). The tangent space of r^7Z(r,d) is
^(X,^). For v,w C 7p7Z(r,d), the pairing

(2.3) (v, w) i—> / trace(^ U w)
Jx

defines a symplectic form on U(r,d) [G], which is actually a Kahler form
on M(r,d). We shall denote this Kahler form by ^. The form ^ was first
constructed in [AB], and is a special case of a very general construction of
Weil-Petersson form in ([ST], page 703, Theorem 2).

Choose and fix a metric on the Riemann surface X; for example, the
Poincare metric.

Fix a C°° hermitian vector bundle V of rank r and degree d on X.
Let ^^(V) denote the space of all smooth (p,g)-forms on X with values
in V. The group of all smooth automorphisms of V will be denoted by G-
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Let A denote the space of all holomorphic structures on V, which is
an affine space for the vector space ^^(Enc^Y)).

Consider the open subset A8 C A consisting of all holomorphic
structures such the corresponding holomorphic bundle is a stable bundle.
The group Q acts on A, and it preserves the subset A8. The quotient A8 / Q
is M(r,d) [BR, Proposition 3.7].

Let pi, i = 1,2, denote the projection of the Cartesian product X x A
to its %-th factor.

^ On p^(V) we have a holomorphic structure defined by the operator
9y which acts on any section s of p^(V) in the following way:

(2.4) (9Ts)^9y) := 9y{s\^^)(x) + 9A{s\{^)(9y).

For any 9 C A, let V denote the corresponding holomorphic hermitian
connection on V. The connection, ̂ T', on p^V) defined by

(2.5) (V^)^) := V(^^)(^) + d{s\^^)(9)

is the holomorphic hermitian connection for the holomorphic structure 9r
and the obvious pullback hermitian metric.

It is easy to check that the natural action of Q on p\ (V) preserves the
holomorphic structure QT- Taking the quotient of P(p^(V)) by Q we get
the universal projective bundle, denoted by P, on X x M(r,d).

Let Qu C G be the subgroup consisting of all unitary automorphisms.
The action of Gu on p^(V) preserves both the holomorphic structure ~QT
and the connection V71.

A hermitian connection on V is called a Yang-Mills connection if the
curvature is of the form X.ujJdy, where uj is the Kahler form on X, and A
is a constant on X.

Let AH C A be the set of all irreducible Yang-Mills connections on
V. Using the action of any Gu on the restriction ofp^(V) to X x AH, we get
a reduction of the structure group of the universal projective bundle, P, to
the projective unitary group PU(r) C U(r). Moreover, since the action of
Qu preserve the operators QT and V71 defined earlier, we have the following
lemma:

LEMMA 2.6. — The projective bundle P is equipped with a holomor-
phic connection, denoted by V, such that V is the extension of a PU(r)
connection on the above reduction of structure group of P to PU(r).
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Consider the following subvariety of M(r, d)

(2.7) N^d) := {E e M(r,d) \^E= Ox{d.xo)}.

Let p2 denote the projection of X x N ( r ^ d ) onto N ( r ^ d ) . The sheaf
P2*^° on ^(r? ̂ ) ls locally free of rank (r2 — l)(g — 1). Define

(2.8) 6' := ^R^S0.

(Note that the 0-th direct image R°p^£° is zero.) Let i : N(r,d) —>
M(r, d) be the inclusion.

We shall denote the Quillen metric on 9' by hq.

The Theorem 0.1 of [BGS1] gives the following:

PROPOSITION 2.9. — The curvature of the hermitian metric hq on ©'
is 47rr\/—l.%*f2, where 0 is the form denned in (2.3).

3. THE UNIVERSAL MODULI SPACE
AND THE UNIVERSAL BUNDLE

In this section we shall carry out the constructions of Section 2.2 for
the universal Riemann surface C^ defined in Section 2.1.

3.1. The universal moduli space.

The existence of the universal moduli over 7^1 follows from a very
general construction carried out in [ST]. A simple construction that we
give bellow will be used in later computations.

As the first step towards constructing the universal moduli space as a
complex manifold, we shall construct the underlying topological manifold.

We continue with the notation of Section 2.1. Consider Horn111 (71-1 {S—
so), U{r))/U(r), the space of equivalence classes of irreducible representa-
tions of TT^(S — so) in U(r). This space does not depend upon the choice of
the base point needed in order to define the fundamental group TT]_(S — So)-
Define 7^(r, d) to be the subspace of Hom^Tri^ — so)? U{r))/U{r) consist-
ing of all homomorphisms such that the holonomy along the oriented loop
around So is exp(—27^d\/:rT/r)7^x7..
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For any a := {X,xo,f) e 7^, let 7^(r,d)^ denote the representation
space (as above) for X. Using /, the space K(r,d)^ gets identified with
7^(r,d). For (X^o,/7) equivalent to a, since / is homotopic to /', the
above identification of 7^(r,d)^ with 7^(r,d) is independent of the choice
of the diffeomorphism / in the equivalence class. Thus, for another /? :=
(Y,yQ,g) e 7^, the spaces K(r,d)^ and 7^(r,dL are identified, since both
are individually identified with 7^(r,d).

In Section 2.2 we mentioned that 7^(r, d) is naturally diffeomorphic
the moduli space of stable bundles. So from the above it follows that if
the universal moduli space on 7^1 exists then it must be diffeomorphic to
T;x7Z(r,d).

However, given any a € 7^1, there is some neighborhood U C T1

of a, such that the for the family of Riemann surfaces C^u —> U,
the corresponding family of moduli spaces Mjj(r^d) —> U exists as a
complex manifold. From the previous discussion we conclude that M[/(r, d)
is canonically diffeomorphic to U x 7^(r,d). This identification equips the
product U x 7^(r, d) with a complex structure. For two such sets

UxU(r,d) and U ' x7Z(r,d)

the two complex structures on the intersection (U H U ' ) x 7^(r, d) actually
match. So we have a complex structure on 7^ x 7^(r,d); this complex
manifold will be called the universal moduli space, and it will be denoted
by M(r,d).

This universal moduli space has the following property which is
obvious from its construction: Let U be a complex submanifold of T1 (of
any possible dimension); and let E be a rank r holomorphic bundle on the
restriction C^\u such that for any u C U^ the restriction, Eu^ of E to C1 u
is a stable bundle of rank r and degree d. For any a € T1, by using the
natural identification of the moduli space M^(r,d) with 7^(r,d), we get a
C°° map which is called the classifying map

TE : U —— 7^x7Z(r,d)

for the family of bundles E; in other words, r^(n) is the point correspond-
ing to the bundle Eu. The complex structure of M(r^d) has the property
that this classifying map YE is actually a holomorphic map.

Now from the definition of the complex structure on .M(r,d) it is
clear that the obvious projection

pi : A^(r,d) —.T;
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is a holomorphic submersion. The following theorem gives further proper-
ties of the complex structure on M. (r, d).

THEOREM 3.1. — For any v e 7^(r, d), the subset Tg- x v C M(r, d)
is a complex submanifold of M(r, d).

Before we prove this theorem, let us show how this theorem gives an
explicit description of the complex structure on M(r, d).

For any ^ := (a,p) 6 7^1 x 7^(r,d), the (real) tangent space has the
decomposition

T^T;1 x7Z(r,d)) = T^eWr.d).

The complex manifold structure on 7^1 gives an automorphism (the almost
complex structure)

A e Aut(T^1)

such that A2 = -Id. Take any a := (X,xo,f) e 7^. The space 7Z(r,d)^
is identified with the moduli of rank r and degree d stable bundles on X.
This induces a complex structure on 7^(r,d)^. Now, the identification of
7^(r, d)^ with 7^(r, d) (using /) gives a complex structure on 7^(r, d). Using
this complex structure, we have

Ba € Aut(7p7Z(r,d))

such that B^ = —Id. Using the decomposition T^(T^ x 7^(r,d)) =
T^Tg1 C TpR,{r, d), define

(3.2) J(a) := A C Ba

to be the automorphism ofT^(7^1 x7^(r, d)). Clearly, J(a)2 = —Id. In other
words, we have constructed an almost complex structure on 7^1 x 7^(r,d),
which we shall denote by J .

The submanifold a x 7^(r,d) C .M(r,d) is obviously a complex
submanifold, and from Theorem 3.1, 7^ x p is a complex submanifold
of M.(r^ d). Hence we have the following corollary of Theorem 3.1.

COROLLARY 3.3. — The almost complex structure for the complex
manifold .M(r, d) is J (defined in (3.2)). In particular, the almost complex
structure J is integrable.

So, in view of Corollary 3.3, Theorem 3.1 can be taken as a construc-
tion of the complex structure of the universal moduli space.
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Proof of Theorem 3.1. — Before actually proving the theorem, here
is the strategy of the proof. Given a point a € T1 we shall show that there
is an open set U C 7^1 containing a such that over the family of Riemann
surfaces

C^\u — U
there is a holomorphic bundle E —> C^\u such that for any f3 :=
(V, yo, g) e U", the restriction E\(^ —> Y is the stable bundle corresponding
to the representation v (in the statement of 3.1). (As noted earlier,
using g the representation v gives a natural element of Horn11'(71-1 (V —
Vo)^ U(r))/U{r) with holonomy 27rd/r.Irxr around yo.) We earlier observed
that the classifying map is holomorphic. In particular, the classifying map

fE : U —— M(r,d)

for the family E is holomorphic. But the image of /£;, from the property
of E, is the submanifold U x v of .M(r,d). Thus, U x v is a holomorphic
submanifold of .M(r, d). This would complete the proof of Theorem 3.1.

So the point is to construct the holomorphic bundle E.

First we shall consider the case where the degree d = 0.

Take any f3 and v as above. The local system on Y — yo given by v
naturally extends across yo^ since the holonomy around yo is trivial. Let V/j
denote the rank r local system on Y obtained this way. The stable bundle
on Y corresponding to v is the holomorphic bundle given by V^.

For the projection TT defined in (2.1) — since the fibers are connected
and 7^1 is contractible — the long homotopy exact sequence implies that
the inclusion of a fiber in C^ induces an isomorphism of the fundamental
groups. Using this isomorphism, v gives an element

y € Hom^Tri^),^))/^).

(Since the holonomy of v is trivial around SQ? we may consider it as an
element of Honr^Tr^S'),^?'))/^?').) Let Vy denote the local system on
C1 given by v. Clearly the restriction of Vy to any Riemann surface Tr"^/?)
is the local system Vp.

Let E be the holomorphic bundle on C^ corresponding to the local
system Vy.

For any f3 := (V, y o ^ g ) , we noted that the restriction of Vy to Y is
the local system Vp defined earlier. This implies that the restriction of E
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to V is the stable bundle on Y corresponding to v. So E has the required
property which implies that the classifying map T1 —> .M(r,d), given by
/3 '—> (/?, ^) is holomorphic. This completes the proof for the case d = 0.

Now assume that d -^ 0. We shall complete proof of the theorem by
reducing this case to the earlier case of d = 0. The following proposition
will be used for that purpose.

PROPOSITION 3.4. — For any integer r ^ 1 there is a Galois cover
A : S —> S with Galois group Z/r which is totally ramified over SQ.

Proof of Proposition 3.4. — Let D2 := {z e C\ \z\2 ^ 1} denote the
closed unit disc in C and let D§ := {z € C| \z\2 < 1} be its interior. Take
a disc in 5

/ : D2 —— S
with /(I) = so. Consider the manifold with boundary 5" := S - f(D^).
Take the disjoint union of r copies of 5":

5-:= Q^
j=i

where each S^ is a copy of 5". For any integer j with 1 ̂  j ^ r - 1, and any
t = exp(27^^/:::L9) <E oD2 with 0 ^ 0 < 1/2, identify the point f(t) in the
component S'y with the point f(t~1) in the component S^i; also, identify
the point f(t) (t as above) in S^ with the point f(t~1) in S[. Let S denote
the quotient space (of S'7') obtained using the above identifications. Let So
denote the quotient of S - f(D^) obtained by identifying f{t) e f{9D2)
with f(t~1). It is easy to see that there is a natural projection of S onto So.
This projection is a Galois covering with Galois group Z/r, and it is totally
ramified over (the images of) so and /(-I). But So is a compact oriented
two manifold of genus g. Hence 5o is diffeomorphic to S. So, composing
the above projection with a diffeomorphism from So to S which takes the
image of SQ (in So) to so, we get the required covering A in the statement
of the proposition, n

Continuing with the proof of Theorem 3.1, for {3 and v as earlier, recall
the construction of the corresponding stable bundle. The representation v
gives a rank r local system on Y—yo. The local system gives a holomorphic
vector bundle on Y - yo. Now, using the local system this vector bundle
is extended to Y. See Section 1 of [MS] for the details of this extension.
Of course, such extensions were carried out earlier in a much more general
situation by Deligne [K].
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Fix once and for all a cover A : S —> S of degree r given by
Proposition 3.4. Denote A'^o) by s.

Take any (3 := (Y.yo.g) e Tg1. Using the diffeomorphism g we may
pullback the covering A to a covering

(3.5) <fA : V —. Y.

Let g : Y —> S be the diffeomorphism induced by p. It is easy to see that
the pointed Riemann surface (Y.g'1^)) does not depend upon the choice
of g in the equivalence class. We shall denote g~l(s) by y .

For v € 7^(r, d) let Vy be the stable bundle on Y corresponding to
u. Let A*(^) € Hom^TT^y - y ) , U{r))/U(r) denote the pullback using the
homomorphism

(<7*A)* : ̂ (Y-y)-^7r,(Y-yo)

note that this corresponds to pullback of the local system. Prom the
condition on ramification of A, the holonomy around the point y of the
local system on Y - y given by A*(^) is identity. So the local system
extends to Y. Let Wy be the holomorphic vector bundle on Y for this
local system. The Galois group Z/r acts as automorphisms of on Y, and,
since Wy corresponds to a local pullback local system, the action of Z/r
on V lifts to automorphisms of Wy. (That v is only a local system on the
complement Y - VQ and not on the whole of Y is reflected in the fact that
the isotropy, Z/r, of y acts nontrivially on the fiber Wy\y.) So Z/r acts on
the direct image (^*A)*W^ (defined in (3.5)). It can be checked that Vy is
the invariant subsheaf of (g*\)^Wy.

We shall do the above constructions for a family of Riemann surfaces.

For U C T^ let C\u denote the restriction of the family of Riemann
surfaces C1 to U.

Let U be an contractible open set containing a := (X.a-o,/) such
that we have a Galois cover

(3.6) r : C — C\u

with Galois group Z/r such that it is totally ramified over the divisor in
C\u given by the image of < (in (2.1)). So C is a family of Riemann surfaces
parameterized by (7; for (3 e U, the Riemann surface over /3, for this family,
will be denoted by C\^.
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Since fibers of TT o F are connected and U is contractible, we have
that Ti-i (C) is canonically isomorphic to the fundamental group of a fiber
of TT o F where the isomorphism is given by the inclusion of the fiber. So
there is an one-to-one correspondence between local systems on C and local
systems on a fiber of TT o F. We saw that the local system A*(^) extends
across the puncture; and hence, using the above correspondence, we have
a local system Vy on C. Let V denote the holomorphic bundle on C given
by Vy. It is easy to see that the holomorphic bundle on C\u given by the
invariant subsheaf of the direct image sheaf, namely

E := (T^vf^

has the required property. This completes the proof of Theorem 3.1. n

In (2.3) we defined the symplectic form, j^, on 7^(r,d) constructed in
[G]. Let ?yi denote the pullback of Q. to .M(r,d), using the projection to
the second factor.

LEMMA 3.7. — The 2-form p^t on M(r,d) is of type (1,1), and also
it is a closed positive semi-definite form.

We note that this form ?yi is a special case of a very general Weil-
Petersson form constructed in [ST].

Proof of Lemma 3.7. — Since fHs a closed form, the pullback form,
p^, is also closed.

Since p^fl. is a real form, in order to prove that it is (1,1) type, it is
enough to show that the (2,0) part ofp^, denoted by (p^)2'0, vanishes.

Take any m := (a, v) G .M(r, d). From Corollary 3.3, the holomorphic
tangent vector space

(3.8) T^°M^ d) = T^ C r^M,(r, d)

where M^ (r, d) is the moduli space of stable vector bundles over the pointed
Riemann surface C^\a. For any v e T^'°7^1, we have d(p-z)(v) = 0 (as an
element of T^(r,d) (g) C). So, in order to prove that (j^Q)2'^^) = 0, it
is enough to show that pyi(u,v) = 0 for v,w € T^°Ma(r,d). But ^ is a
(1, l)-form on M^(r, d). So we have p^(n, v) = 0.

To complete the proof we have show that p^Q(w.w) ^ 0 for any
weT^M^d).

In view of the earlier remark that d(p'z)(T^°T1) = 0, it is enough
to show the above inequality for any w € T^°Mo,(r,d). But fl. is a Kahler
form on Mo;(r, d), and hence the proof of the lemma is completed. D
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We note that from the proof of Lemma 2.6 it follows that for any
Kahler form f2' on 7^, the form p^ + p^ is a Kahler form on M{r, d).

3.2. The universal projective bundle over C1 x^i M(r^d).

We shall construct a universal projective bundle over the fiber prod-
uct C^ x^i M(r,d). As the first step we shall construct the underlying
topological projective bundle of the universal projective bundle.

DEFINITION 3.9. — Let TT : P —> M be a principal G bundle on
a manifold M equipped with a foliation F C TM (i.e., F is an integral
subbundle of the tangent bundle). A partial connection on P along F is a
C°° lift

7T : TT*F ——> TP

of the differential d7T (i.e., d7r o TT is identity on F ) which is equivariant for
the action ofGonP [KT]. A flat partial connection is a partial connection
such that the lift TT preserves the Lie bracket. This is equivalent to the
condition that the image ofn is an integrable subbundle ofTP. Note that
in the special case where F = TM, a (flat) partial connection is a (flat)
connection in the usual sense.

For any p e 7^(r,d) we have a flat principal U(r) bundle, Up, on
S — SQ. Consider the extension of structure group of Up to PU(r) given by
the projection U(r) —> PU(r). The holonomy around SQ of the connection
on Up is in the center of U(r). Hence the principal PU(r) bundle extends
to 5; let P(p) denote the projective bundle on S thus obtained. The flat
connection Up induces a flat PU{r) connection on P(p), which we shall
denote by V^.

Let F denote the foliation on S x 7^(r, d) along the S direction; in
other words, the leaves of T are the fibers of the natural projection of
S xM(r,d) onto M(r,d).

On S x K(r, d) there is a C°° projective bundle, P(S), equipped with
a flat partial connection, V(^), along T such that for any p € 7^(r,d),
the restriction of the pair {P{S), V(J')) to S x p is isomorphic to the pair
(P^),^) defined above. Before constructing the bundle P(5'), we first
note that any two projective bundles on S x K(r, d) with this property
are canonically isomorphic. Indeed, any automorphism of P(p) preserving
the connection V^ must be the trivial automorphism. Hence for another
projective bundle (P^y.V^)'), there is a unique isomorphism between
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the restrictions to S x p of P(S'y and P(S) respectively, which takes
the connection V(^) to V^)'. Hence P(S') and P{SY are canonically
isomorphic. Moreover, the isomorphism between them takes the partial
connection V(.F) to the partial connection V(.F)'.

After putting a complex structure on the surface S we may invoke
Lemma 2.6 which says that for a Riemann surface X there is a universal
projective bundle on X x M(r, d) with a PU{r) connection.

Let (P(5),V) be the projective bundle with PU(r) connection on
S x .M(r,d) for the chosen complex structure on 6'. The partial connec-
tion on P(S) along 7 induced by V is denoted by V(^7). Clearly the pair
(P(S'), V(^7)) satisfy the above conditions. The point is: though the connec-
tion V depends upon the conformal structure on 5, the partial connection
does not depend upon the conformal structure.

The group Diff^(5,so) (defined in Section 2.1) acts on S x U{r,d)
by the combination of the tautological action on S and the trivial action
on 7^(r, d). We shall describe an action of Diff^"(5, so) on the bundle P('S')
which is lift of the above action on S x 7^(r, d). Take any / 6 Diff^"(5', 5o);
for p € 7^(r, d) consider the pullback bundle /*P(p) equipped with the
pullback connection /*V^. Since / € Diff^(5,5o), the two bundles with
flat connections, namely (P^.V^) and (/*P(p), /"'V^), are isomorphic.
Indeed, a s / i s homotopic to the identity map, their holonomies are
conjugate to each other. However, the pair (P(p)^p) do not admit any
nontrivial automorphism, since the connection is irreducible. So there is
a unique isomorphism between (P(p),V^) and (./^POo),/*^). Consider
the diffeomorphism / x Id of S x %(r,d). It is easy to check that the
isomorphism

i(f): (f x idyp(p) -^ p(p)
obtained above has the following property: for g e Diff^'(5', 5o), the equality

I { f ) o l ( g ) = I ( f o g )

holds. In other words, we have lift of the action ofDiff^*?, so) on 6'x7^(r, d)
to the pair (P(6'),V(^7)), i.e., a lift to an action on ?(<?) which preserves
the partial connection V(.F).

Recall the construction of the universal Riemann surface C^ in Section
2.1. Let pi2 denote the projection of S x %(r, d) x Com(S') onto S x %(r, d).
Consider the projective bundle with flat partial flat PU(r) connection

(3.10) (p^W . P^^W) —> S x 7Z(r, d) x Com(S).
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The group DifF^(5, so) acts on S x U{r, d) x Com(S') by the combina-
tion of the previous action on S x 7^(r, d) and the push-forward of complex
structure on S (denned in Section 2.1) by a diffeomorphism. Note that the
action of Diff^S^o) on (P(5'),V(.D) induces action of Diff^(S',so) on
(P^S)^^^)).

Consider the projection
(3.11)
(P^(5),^2V(^))/Diff^(5,5o) —— (5x7Z(r,d)xCom(5))/Difi^(5,5o)

=^x7Z(r,d) =ClgX^M^d).

(In section 3.1 we saw that M{r,d) = 7^ x 7^(r,d).) It is easy to that
the map in (3.11) gives a projective bundle on C^ x^i M(r,d) equipped
with a flat partial PU{r) connection along the fibers of the projection of
C^ onto 7^1; we shall denote this projective bundle with partial connection
byCP(r,d),V(par)).

Let 92 '' C^ x/^i .M(r, d) —> .M(r, d) be the projection onto the second
factor. For any element

(t,p) € r^x7Z(r,d) = M(r,d)

the restriction of P(r,d) to ^ l(^p) is the projective bundle P(p) defined
earlier, and the restriction of V(par) is the partial connection V^.

Using an earlier argument, namely any automorphism of P(p) pre-
serving the connection V^ must be the trivial automorphism (which was
used in the proof of uniqueness of (P(S'),V)), any two projective bundles
on C^ x^i .M(r,d) with partial connections satisfying the above condition
must be canonically isomorphic. Thus we have established the uniqueness
of the projective bundle P(r, d).

Remark 3.12. — We shall give another construction of the pair
(P(r, d), V(par)). The projection 7 : Com(S') —> T^ admits local sections.
Take a covering {Ui} of 7^1 by open sets such that over each Uz there is a
smooth section Si of 7. Consider the disjoint union

J(P(^) x [/,).
i

On the intersection Ui D Uj the difference of the two sections Si and Sj is
given by a map

^ : U,nU, -^ Diff^(5,5o).
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Recall the action of Diff^"(6',5o) on P(S). Using the map gij we may glue
P(S) x Ui and P(5') x Uj along P(5') x {Ui n Uj). The resulting space is
P(r, d). The action of Diff^"(S', so) on P{S) preserves the partial connection
V(^'). This implies that the partial connection on the projective bundle
P(S) x Ui over S x 7^(r, d) x Ui given by the pullback of V(^7) is preserved
by the above gluing. Hence P(r,d) gets an partial connection, which is
V(par).

We shall now put a PU{r) connection and a holomorphic structure
on the projective bundle P(r,d) over C^ x/p. A^(r,d) constructed above.

Let

(3.13) q : C^x^M^d) -^ Tg1

denote the obvious projection. For any t € 7^1, let (X^xo) = (Tr"1^),^))
be the pointed Riemann surface over t for the family of pointed Rie-
mann surfaces (C^,C) (defined in Section 2.1). We may restrict the pair
('P(r, d), V(par)) to the complex submanifold q"1^) of C^ x/p. M{r^ d); let
('P(r,d)^,V(par)t) denote this restriction.

Recall Lemma 2.6 - the pair ('P(r,d)^,V(par)t) is the universal
projective bundle P in Lemma 2.6 equipped with the partial connection
induced by the connection on P. Indeed, as we have seen earlier, this
property of the partial connection V(^7) uniquely fixes the projective
bundle P(S). Since both V(par)f (from the construction, V(par)i is same
as V(^7)) and the partial connection on P, induced by the connection in
Lemma 2.6, have the property of V(^7), we get that the projective bundles
P{r^d\ and P are canonically isomorphic. Moreover, this isomorphism
takes the partial connection V(par)f to the partial connection induced by
the connection on P given by Lemma 2.6.

Using the above identification with P, we conclude that the bundle
V(r^d\ is equipped with PU(r) connection, which we shall denote by Vi,
and a holomorphic structure compatible with Vf.

There is a natural isomorphism between 71-1(6') and 71-1 (C^). Indeed,
Ti-i (5) has an isomorphism with the fundamental group of any Riemann
surface in the family C1 which in turn is isomorphic to 71-1 (C1), with an
isomorphism given by the long homotopy exact sequence for the fibration TT.

Take a p C 7^(r, d); using the above isomorphism, p gives

p C Hom^Tri^),?^))/?^).
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(Note that p gives an element of Hom^Tr^),?^))/?^).) Let

(3-14) {P(^\p)^(r^p))

be the projective bundle on C^ equipped with flat PU{r) connection given
by p. The flat connection V(7^,p) induces a holomorphic structure on
WP).

Let

(3.15) T : C\ x^i M{r,d) —> 7Z(r,d)

be the composition of the projection to .M(r,d) with the projection of
M(r, d) = 7^ x U{r, d) to the second factor 7Z(r, d).

Theorem 3.1 says that the fibers of the projection M(r, d) —> 7^(r, d)
are complex submanifolds of M(r,d). So r'^p) is a complex submanifold
for any p € 7^(r,d). Corollary 3.3 implies that the map

C1, ——— T-\p)

defined by c i—> (c, p) is a bi-holomorphism.

Let (^(r.cO^^par)^) denote the restriction of (P(r,d),V(par)) to
r^p). Note that the partial connection V(par)p is an actual connection
on ^(r,^. Clearly, the two projective bundles with flat connections on
r^^), namely

{P(T^p)^(T,\p)) and (P(r, d^ , V(par)^)

are canonically identified. (As before, the isomorphism is determined by
the condition that the connection ^/(T^p) is taken to X^par)^.) Using
this identification, the bundle 'P(r, d)p gets a holomorphic structure.

Take any c € C^ x^i M(r,d). Denote q(c) € 7^ and r(c) €
K(r,d) by ^ and p respectively, where 9 and r are defined in (3.13)
and (3.15) respectively. The intersection g^^) H T""^?) is a copy of the
Riemann surface Tr"1^). The restrictions of the two projective bundles with
connections, ('P(r, d\, V^) and (P(r, d)p, V(pa^)p), to the Riemann surface
Tr"1^) are identified with the flat projective bundle on 7^~l(t) given by
the representation p € 7^(r,c?). In particular, the above two restrictions
coincide on q"1^) D r"1^).

Clearly,

r,(̂  x^i M(r,d)) = T,^-1^)) + T,{r-\p)).
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(Note that this is not a direct sum.) We saw that the two projective bundles
with PU(r) connections, namely

CP(r,d),,Vi) and (^(^^(par)^)

coincide on q~l(t) D r^^). From this we conclude that there is a unique
PU{r) connection, V(P), on the projective bundle P(r^ d) over P(r^ d) such
that the restriction of V(P) to any <?-l(^) is Vf, and the restriction of V(P)
to any r"1^) is X^par)^.

LEMMA 3.16. — The connection V(P) obtained above induces a
holomorphic structure on the projective bundle P(r, d).

Remark 3.17. — If the connection V(P) induces a holomorphic
structure then the holomorphic structure is uniquely determined by the
following property: for any t € 7^1 and p e 7^(r,d) the holomorphic
structures on the restrictions, namely P(r^d\ and P(r,d)p respectively,
are precisely the holomorphic structures obtained above.

Proof of Lemma 3.16. — Let

^(V(P)) € ^(C^ x^i .MM), Ad(P(r,d)))

be the curvature of the connection V(P). Since a C°° connection on a
complex manifold whose curvature is of type (1,1) gives a holomorphic
structure on the bundle [Ko, Ch. I, Proposition 3.7], to prove the lemma
we have to show that I^(V(P)) is of the type (1,1).

Let CD —> D be a holomorphic family of Riemann surfaces of genus
g parameterized by the open disc D. Let s be a section for this family. Let
E be a holomorphic vector bundle of rank r on CD such that for any t € D^
the restriction Et to the Riemann surface Ct is a stable bundle of degree d.

Using a theorem of Narasimhan and Seshadri, [NS], there is a re-
duction of the structure group of the projective bundle P{E) to PU{r).
There is a unique connection on Ad(E) (vector bundle of trace zero en-
domorphisms) compatible with both the holomorphic and the hermitian
structures of Ad{E)\ let V(D) denote this connection.

Fix a diffeomorphism, /, such that the following diagram is commu-
tative

CD -^ S x D
\ /

D



904 INDRANIL BISWAS

and f~l(sQ x D) is a complex submanifold of CD; for t G D, let /^ denote
the restriction of / to C<. Using / we have a holomorphic map

f : D -^ r;

such that for any t ^ D, the pair (C(, 5(t), /t) is represented by f(t). Let /'
denote the natural lift of / to a holomorphic map from CD to C^. Let

(7j : Cp —> C^ Xr^M(r,d)

be the holomorphic map given by the family of bundles E.

It is easy to see that the pullback a^('P(r, d)) is naturally isomorphic
to P(E), and the pullback connection cr^(V(P)) is V(D). But the curvature
form of the connection V(D) is of the type (1,1). Since a/ is holomorphic,
cr^(^(V(P))) is of the type (1,1) on CD.

Let W C r^°((^ x^i A^,d)), where a := (^m) e ̂  x^i M(r,d),
be a subspace of rank two. Then either W can be realized as a subspace of
d(<7^)(a), with a € CD, where

d(ay) : r^(CD)0C —— T^ x^M{r,d))^)C

is the differential, or W is a subspace of T^°{M.{r^d)). In the first case
2

the contraction of ^^(P)^^) with any element of A TV vanishes, since
a^(K(y(P))) is of the type (1,1). The curvature of the connection Vi on
the bundle P(r,d)^ over q^^t) (defined in (3.13)) is of type (1,1). So, in
the second case, also, the contraction of ^(V(P))(a) with any element of
2
A W vanishes. So the (2,0)-part of J^(V(P))(a) must be zero. Similarly
it can shown that (0,2)-part of jFC(V(P))(a) vanishes. This completes the
proof of the lemma. D

We shall come back to K(y(P)) in Section 5.

4. MAPPING CLASS GROUP ACTION

In this section we shall give actions of the mapping class group on
M(r,d) and^r.d).
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4.1. Action on M.{r,d).

We shall use the notation of Section 2.1.

The group Diff^(S',so) is a normal subgroup of Diff^^so). The
quotient group

MCQ\ := Diff+(5,5o)/Diff^,5o)

is known as the mapping class group.

The natural action of Diff^^o) on Com{S) induces an action of
MCQ\ on T^ := Com(5)/Diff^(5,5o). Let pi denote this action.

Any element g G Diff^S^o) gives an automorphism of
71-1 (5 — so). So the diffeomorphism g gives an diffeomorphism of
Horn11'(71-1 (5 - so), U{r))/U(r), which in turn induces a diffeomorphism of
K{r,d). (This corresponds to taking the pullback of a local system us-
ing the diffeomorphism g~1.) Clearly, for any g e Diff^(5',5o), the in-
duced diffeomorphism of K(r, d) is trivial. So we have an action of MCQ1

on 7^(r,d), which we shall denote by p2. Recall that as a real manifold,
M^d)=Tglxn^d).

LEMMA 4.1. — The action, pi x p2, of MCQ^g on M(r,d) preserves
both the complex structure and the (1, l)-form pyi.

Proof. — Clearly the expression (2.3) is invariant under the action
of any element of Diff^S^o). In other words, the form fl. on 7^(r,d) is
invariant under the action p2 of MCQ\. This implies that the form p^l is
also invariant under the action pi x p2.

Now from the description of the complex structure on M{r, d) given
in Theorem 3.1 and Corollary 3.3, we conclude that in order to prove that
the action of MCQ^g on M{r^ d) preserves the complex structure of A^(r, d),
we must prove the following two statements:

(1) For any g e MCQ\ and v e 7Z(r,d), the translation (pi x
P2)(^)(^1, ̂ ) of the complex submanifold (7^, v) C M(r, d) is also a com-
plex submanifold, with the translation map being holomorphic (on (T1,;/)).

(2) For any g e MCQ\ and t C Tg1, the translation (pi xp^)(g)(t, 7Z(r, d))
is a complex submanifold, with the translation map being holomorphic (on
(Wr^d))).

For a proof of the first statement note that (pi x ps)^)^,?/) =
(T^p^(g)^). Hence the statement (1) follows from Theorem 3.1 and the
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fact that the diffeomorphism of Tg- given by the action of g e MCQ1 is a
holomorphic automorphism.

For the second statement, from Corollary 3.3 we conclude that

(Pi xp2)(g)(Wr,d)) = (pi(^),7Z(r,d))
is a complex submanifold of M(r,d). The Riemann surfaces given by
t e Tg1 and pi(g)(t) are isomorphic. The translation map on (^,7Z(r,d))
is induced by a holomorphic automorphism (possibly identity map) of the
Riemann surface given by t. Hence the translation map is holomorphic.
This completes the proof of the lemma, n

The quotient M\ := T^/MCQ^ is the moduli of Riemann surfaces of
genus g with one marked point. Let

d : T,1 -^ M\
denote the quotient map.

The obvious actions of the group of Diff^^o) on S and Com(5')
respectively, combine together to induce an action of MCQ1 on the uni-
versal Riemann surface C^. It is easy to see that for any g e MCQ1, the
diffeomorphism of C^, given by the action of g , is actually a holomorphic
automorphism. Clearly the projection, TT, ofC^ to 7^, is equivariant for the
actions of MCQ1

For g ^ 3, the generic Riemann surface of genus g does not admit any
nontrivial automorphism. For g = 2, the only nontrivial automorphism of
the generic Riemann surface is the hyperelliptic involution.

Let M° C Mig be the Zariski open set consisting of pairs (X, xo)
such that X does not have any nontrivial automorphism fixing XQ. From
the above remark it follows that the set M° is non-empty. The subset
^(M0) C Tg- is obviously invariant under the action of MCQi In fact,
the action of MCQig on ^(M0) is free. The quotient

C° := {do^-^M^/MCQig

is the universal curve over M°.

The diagonal action of MCQ\ on ^(M0) x 7Z(r,d) is free, since it
is free on ^{M0). The projection from the quotient manifold, namely
(4.2) A : M°^d) := ^-\M°) x n^d))/MCQ} — M°

gives the universal moduli space for the universal curve C° over M°.

It will be interesting to give an algebraic structure on the complex
manifold M°(r,d) such that the map A becomes an algebraic morphism.
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4.2. Action on P{r,d).

The actions of MCQ^g on C^ and M(r,d) together induce an action
on the fiber product C^ x^i M{r,d)', let p^ denote this action.

Recall the construction of P{r,d) in (3.11). The group MCQ1 acts
naturally on all the three factors in (3.10), namely S, 7Z(r, d) and Com{S).
Using the uniqueness of (P(S), V(.F)), the projective bundle equipped with
connection, the action of MCQ\ on S x K{r, d) x Com(S') induces an action
of MCG^ on the total space of P{r,d). This action on P(r,d) has the
property that the projection of P(r, d) to C^ x^i M(r, d) is equivariant for
the actions of M.CQ1

Let p4 denote the action of MCQ\ on P(r, d) obtained this way.

LEMMA 4.3. — The action, p^ of MCQ^g on P{r,d) preserves the
PU(r) connection V(P).

Proof. — We need to establish the following two statements to prove
the lemma:

(1) For any t ^ 7^, the identification of P(r, d\ with P(r, d) .^, given
by the action of g € MCQ^g on P(r, d), takes the connection Vf on P(r, d)^
to the connection Vp^) on P(r,d) ^y

(2) For any v e 7^(r,d), the identification between P(r,dY and
P(r, d)p2(^/) given by the action o f^e MCQ^ takes the connection V(par)^
to the connection X^par)^2^.

The Riemann surfaces corresponding to t e T1 and p^(t) are isomor-
phic. The connection V^ is the connection obtained in Lemma 2.6. The
uniqueness of this connection implies that — since the two Riemann sur-
faces are isomorphic — the connection V^ must be identified with V/,^).

The connection V(par)^ on P(r,dY is given by the connection
V(7^,^) (defined in (3.14)) using the identification of P{r,dY with
P(7^,z/). It is easy to see that V(7^,i/) is identified with V(7^,p2(^))
by the action of g e MCQ^g. n

Taking the quotient by MCQ^g of the restriction of P(r, d) to the open
set

(^qr^M0) CC^x^M^d)
{q defined in (3.13)) we get the universal projective bundle, ^(r.d), over
the fiber product C° x^o M°(r,d). Note that P°(r,d) has a hermitian
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connection induced by V(P) using Lemma 4.3. The Lemma 3.16 implies
that this connection induces a holomorphic structure on P°(r^d).

5. THE DETERMINANT LINE BUNDLE

Let M{r^d) C M.(r^d) be the submanifold consisting of triplets of
the form (X, XQ, E) such that

(5.1) ^E = Ox(d.xo).

From the description of the complex structure of M(r,d) in Corollary 3.3
it is obvious that A/'(r, d) is a complex submanifold of M(r, d).

Let "RSU C 7^(r,d) be the space of all SU(r) representations of
71-1(5 — so)- Note that the holonomy around SQ for a connection in 7^(r, d),
namely 27rd/r.Irxr^ is in SU{r).

In the above notation,

.A/-M) =Tglxnsu
in the identification .M(r, d) = T1 x 7^(r, d).

We may restrict the PGL(r) bundle with connection ('P(r,d),V(P))
to •A/'(r, d); this restriction is also denoted by (P(r, d), V(P)).

Let Ad(P(r,d)) denote the adjoint bundle ofP(r,d), i.e., the vector
bundle associated to the adjoint action of PGL(r) on its Lie algebra, namely
^(r,C). Note that for any t € 7^, the restriction of Ad(P(r,d)) to q^W
is the bundle £° defined in Section 2.2.

Lemma 3.16 implies that the connection V(P) induces a holomorphic
structure on Ad(P(r,d)).

Following (2.8), define the holomorphic line bundle on J\f{r,d) given
by the top exterior product of the first direct image

(5.2) Or := Tj^A^r.d))

where q^ is the projection of C^ x^i ./V(r, d) onto ./V(r, d). Note that Qr is
the relative anti-canonical bundle on A/'(r,d).

Since any endomorphism of a stable bundle is a multiplication by
some scalar, the 0-th direct image R°q^Ad(P{r,d)) is zero. So the line
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bundle 9r is the dual of the determinant bundle for Ad(P{r^d)) in the
sense of [BGS1].

On a Riemann surface of genus g ^ 2 there is a unique Kahler metric
of constant curvature (—1), which is known as the Poincare metric. For a
holomorphic family of Riemann surfaces, the Poincare metric on each fiber
patches up smoothly to give a smooth hermitian metric on the relative
tangent bundle. So, in particular, we have a hermitian metric on the relative
tangent bundle of the family of Riemann surfaces given by the map q^.

The family given by q^ is locally Kahler in the sense of [BGS1] (defined
in page 50 there). Indeed, this family is the pullback of the family given by TT
(defined in (2.1)) using map projection q (defined in (3.13)). Since pullback
of a locally Kahler family by a holomorphic map is clearly locally Kahler,
we need to show that the family given by TT is locally Kahler. However, the
universal cover of C^ is 7^2; and on 7^2 there is a natural Weil-Petersson
form which is invariant under the deck transformations. So C1 is a Kahler
manifold. This implies that the family given by TT is locally Kahler.

We note that from the construction in Section l(d) of [BGS3], there
is a hermitian metric on 6r; we shall denote this hermitian metric by HQ.

We want to calculate the curvature of the hermitian connection for
the hermitian metric HQ.

In (2.2) we defined the Weil-Petersson form uj^p (which is a Kahler
form) on the Teichmiiller space T; and prior to that, we noted that there is
a natural projection of T1 to T. Let 7 denote this projection. Let a denote
the obvious projection of.A/'(r,d) onto T1 So

(5.3) u)wp ''= (7°cr)*^wp

is a positive semi-definite closed (1, l)-form on T1

Let K(HQ) denote the curvature of the hermitian connection on Qr
for the hermitian metric HQ.

THEOREM 5.4. — The curvature (1, l)-form K{HQ) on Af(r^d) coin-
cides with the following form

fy.2 __ 1 \ /~Z\

$ := ^rV^i.p^ + ^——————^wp
07T

where p^fl, and C^wp are as in Lemma 3.7 and (5.3) respectively. (We denote
the restriction ofpyi on M.(r^ d) to the submanifoldj\/'{r, d), also, bypyi.)
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Proof. — Recall that J\T(r, d) = Tg1 x Usu- For t := (X, XQ, f) e Tg1,
the inverse image cr"1^) is the moduli space N(r,d) defined in (2.7).

Clearly the restriction of the form u^p to (T~l(t) is zero. The con-
struction of the determinant bundle with hermitian structure in [BGS3] is
compatible with respect to base change. So from Proposition 2.9 we ob-
tain that the restrictions of the two (1, l)-forms, namely K(H.o) and <I>, to
cr"1^) coincide.

Take any p € 'R-SU- Recall the construction of the connection V(P)
on P{r^d). Over the complex submanifold

C^xp c C^xr^^d)

the connection V(P) is the flat unitary connection induced by p.

Let Ad(P{r, d))p denote the restriction of P(r, d) to C^ x p. Let V(P)p
denote the restriction of V(P) to Ad(P(r, d))p.

Recall the Chern-Weil construction of Chern forms from a connection.
Since V(P)p is flat, all Chern forms of degree more than one vanish
identically. So the Chern character form of V(P)p is simply the rank of
Ad(-P(r,d)), which is (r2 - 1).

We noted earlier that family of Riemann surfaces given by TT is locally
Kahler. So we can apply Theorem 0.1 of [BGS1] (page 51) to the family
of Riemann surfaces C1 over 7^1, equipped with the Poincare metric on
the relative tangent bundle, and the hermitian bundle with connection
(V(P)p,Ad(P(r,d))p)over^.

In this situation, the curvature of the determinant bundle of
Ad ('P(r, d))p, equipped with the connection V(P)p, coincides with (r2 — 1)-
times the curvature of the determinant bundle for the trivial bundle over
C1 equipped with the trivial metric. Indeed, the Chern character form of
the trivial bundle with the trivial metric is 1. We noted that the Chern
character form of V(P)p is (r2 — 1). So for these two different situations,
namely V(P)p and the trivial connection, the expression (0.3) in Theorem
0.1 of [BGS1] differ by the (multiplicative) factor (r2 - 1).

Obviously the restriction of the differential form p^ (as in (5.4)) to
T1 x p C T1 x Ksu vanishes. So, in order to prove that the restrictions of
the two (1, l)-forms, namely K(Hq) and ^, coincide on T1 x /?, we must
show that the curvature of the determinant line bundle on Tg- for the trivial
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bundle on C^ equipped with the trivial metric, is

(5.5) ^^(^p)

where 7 as in (5.3).

However, this follows from Theorem 2 of [ZT] and the compatibility
of the hermitian structure of the determinant bundle with respect to
taking pullbacks. In fact, the earlier statement on the determinant of the
trivial line bundle is proved in §4.2 (page 184) of [ZT]. Note that there
is a difference in sign between [ZT] and (5.5) above. This is because the
determinant bundle that we denned is dual of the determinant bundle in
[ZT] or [BGS1]. (The curvature form of the induced connection on the dual
line bundle is (-l)-times the curvature form of the original connection. We
choose the dual, since Q' in (2.8) is ample.)

We note that the above mentioned result of [ZT] can also be found in
[FS] where a very general theorem has been proved which is valid for the
moduli space of any dimensional non-uniruled Kahler manifolds.

Take any a := ( t ,p ) G Tg1 x Usu = M'(r,d). Let v € T^T^ (resp.
w € T^l^su) be a (complex) tangent vector at t (resp. p). Let

v € T^JV(r,d) (resp.w C T^A/'(r,d))

be the tangent vector at a € A/"(r, d) given by v (resp. w).

In order to complete the proof of the Theorem 5.4 we must show that

(5.6) K(HQ)(a){v,w) = 0.

We apply Theorem 0.1 of [BGS1] to the family of Riemann surfaces

92 : C^x^M) —..V(r.d)

equipped with Poincare metric and the hermitian bundle Ad(P(r,d)).

Let Td3 be the component of Td(-RZ|C1'K^J~=V) (in the expression
0.3 of Theorem 0.1 of [BGS1]) of degree 2j (i.e., the component form of
tyPe (^j))- Similarly, let Ch3 denote the component of exp{-L^/27^^/'=:l)
(in the expression 0.3 of Theorem 0.1 of [BGS1]) of type {jj).

We shall denote the integration along fiber (the Gysin map) by 92* •
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So, Theorem 0.1 of [BGS1] applied to our situation says that

(5.7) K(HQ) = -^V^i.q^^Ch0 + T^Ch1 + Td°Ch2).

Now, Ad(P(r,d)) being an adjoint bundle, Ch1 = 0; also Td° = 1 and
Ch° = (r2 - 1).

The family of Riemann surface given by q^ along with the Poincare
metric on the relative tangent bundle is the pullback of the family given by
TT (denned in (2.1)). Hence, the form Td2 on C^ x^i A/'(r, d) is the pullback
of a form on C^ using the obvious projection. So the contraction of q^Td2

with uj vanishes.

Now from the definition of the connection V(P) we have the following:
the restriction of the connection V(P) on C1 x/7-i.V(r, d) to the submanifold
C1 x p', where p ' C 7^5^, is actually a flat connection. This implies that
at each point ofA/'(r, d) the form q^Ch2 is a pullback of a form on "R.SU-
Thus the contraction of q^Ch2 with v vanishes.

These observations, along with the expression (5.7) together imply
the equality (5.6), and the proof of Theorem 5.4 is completed. D

In Lemma 3.7 we proved that the form p^l is positive semi-definite.
The form c^p, being a pullback of a Kahler form by a holomorphic map,
is clearly positive semi-definite. Hence the first Chern form of the bundle
Ad(P(r^d)) for the curvature K{Hq) is a positive semi-definite form.

It is easy to see that the annihilator of the form K(HQ) is precisely
the (complex) rank one subbundle of the tangent bundle of ./V(r, d) given
by the relative tangent bundle of the projection

7 : T^ -^ r.
Indeed, uj^p being a Kahler form, the relative tangent bundle of 7 is clearly
the annihilator of the form 7*c<;^p. Now the nondegeneracy of ^l on "R.SU
implies that the annihilator of K^Hq) is precisely the subbundle of T T1

given by the relative tangent bundle for 7. (See the remark following the
proof of Lemma 3.7.)

In Lemma 4.3 we saw that the action of the mapping class group,
M.CG^ on P(r, d) preserves the connection V(P). The action of MCQ^g on
^(r, d) induces an action of M.CQ1 on the bundle 9r, which preserves the
holomorphic hermitian structure of Or.

Recall M°(r,d) defined in (4.2). Let A^°(r,ri) C M°{r,d) be the
complex submanifold given by the image (under the quotient map) of
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A/"(r, d) defined in (5.1). Taking the quotient for the action of MCQ^ on Or,
we get a holomorphic hermitian line bundle over A/^(r,d). Since K(Hq)
is positive semi-definite, the Chern form of this determinant bundle over
the universal moduli space A/'°(r,d) for the universal curve C°, is positive
semi-definite.
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