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DETERMINANT BUNDLE OVER THE UNIVERSAL
MODULI SPACE OF VECTOR BUNDLES

OVER THE TEICHMULLER SPACE

by Indranil BISWAS

1. INTRODUCTION

Let X be a compact Riemann surface of genus g ^ 2, equipped with
a compatible Riemannian metric. Fix a point XQ € X. Let jV denote the
moduli space of stable vector bundles on X of rank r and determinant
Ox{d.xo).

Let p be the projection of X x J\T onto M. On X x Af there is a
natural universal adjoint bundle £. The top exterior product of the first
direct image

e := T^p.f)
is an ample line bundle on J\T. (The line bundle 9 is the anti-canonical
bundle of A/".)

By a celebrated theorem of Quillen, there is a natural hermitian
metric on 0, such that the curvature of its hermitian connection is a
multiple of a natural 2-form on J\T obtained after identifying AT with a space
of equivalence classes of irreducible SU(r) representations of 7Ti(X — .z-o)-
This identification of M with a unitary representation space is provided by
a well-known theorem of Narasimhan and Seshadri.

The primary aim here is to address the question of the dependence
of the Quillen hermitian structure of the line bundle 9 over A/" on the
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conformal structure of the Riemann surface X. Towards this goal, we set
forth a systematic study of the universal moduli space and the Quillen
determinant bundle over the Teichmuller space.

The space of all marked conformal structures of genus g is parameter-
ized by a space what is known as the Teichmuller space; we shall denote this
space by T. Over T there is a natural universal family, say C, of Riemann
surfaces.

We construct a "universal moduli space", say A^T? over T such that
for any t C T, the fiber Aft is the moduli space of stable bundles over the
Riemann surface represented by the point t. Then we construct a "universal
adjoint bundle", say ET^ over the fiber product C Xj- Mr-

Let p2 denote the natural projection of C x^ Afj- onto Mr' General-
izing the definition of 9 above, let us define

top i
QT := A (.RWr)

to be the line bundle on MT.

By a construction of Bismut, Gillet and Some (which is a generaliza-
tion of the construction of Quillen), we have a hermitian metric on the line
bundle GT.

Bismut, Gillet and Some in [BGS1] give a general formula for the
curvature of the hermitian line bundle they construct (which is known as
the local Riemann-Roch formula).

We show that in our particular situation, the curvature form of 67-
coincides with a natural (1, l)-form on Mr- In particular, we show that the
curvature is positive semi-definite.

There is a natural action of the mapping class group, denoted by
M.CQ1 on T such that the quotient is the moduli space of Riemann surfaces
of genus g.

We show that the action of M.CQ1 lifts to all the objects over T that
we construct. In particular, over the smooth locus of the moduli space of
Riemann surfaces there is a "universal moduli space of vector bundles",
and a determinant line bundle over this "universal moduli space". There
is a natural hermitian connection on this line bundle whose curvature is
computed Theorem 5.4; the curvature turns out to be semi-positive.
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2. PRELIMINARIES

In this section we shall recall some known facts about the Teichmuller
spaces and the moduli spaces of vector bundles over Riemann surfaces.

2.1. Some facts about the Teichmuller space.

Let S be a compact connected oriented C°° surface of genus g > 2.
Fix a point SQ € 5'.

The space, denoted by Com(S'), of all complex structures on S
compatible with the orientation of S', has a natural structure of an infinite
dimensional complex Frechet manifold. The group, Diff^^^o), of all
orientation preserving diffeomorphisms of S fixing the point SQ C 5, has a
natural action on Corn {S) given by the push-forward of a complex structure
by a diffeomorphism. Consider the subgroup

Diff^(5,5o) C Diff^^o)

consisting of all those diffeomorphisms of (5, So) which are homotopic to the
identity map, with a homotopy preserving the base point. The Teichmiiller
space for (5',so)?

T; :=T;(5,5o)

is the quotient Com(S')/Diff^(S', so). Since the action of any g € Diff^^, so)
preserves the complex structure of Com(S'), there is a natural induced com-
plex structure on 7^1.

Consider triplets of the form (X, a;o, /), where X is a Riemann surface
of genus (7, XQ € X, and / : X —> S is a diffeomorphism such that
f(xo) = SQ. Identify {X^xo^f) with (Y,2/o,^) if there is a bi-holomorphic
map h : X —> Y such that h{xQ) = yo, and the diffeomorphism
g o ho f~1 e Diff(}"(5', 5o). The Teichmuller space 7^1 is the moduli space of
equivalence classes of such triplets.

There is a universal Riemann surface

(2.1) TT : C} -^ T,1
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along with a holomorphic section C^ : Tg- —^ C^ such that TT o ( = id. We
shall briefly describe the construction of C1.

On the Cartesian product S x Com(5') there is a tautological complex
structure determined by the condition that for any c € Com(5'), the subset

S x c C S x Con^)

is a complex submanifold with the complex structure c; and for any s ^ S,
the subset s x Com(5') is a complex submanifold. This implies that the
projection

p2 : S x Com(S) —> Com(S)

is a holomorphic map. The group Diff^^, So) acts on both the components
S and Com(S'). Consider the diagonal action of Diff^(5, so) on S x Com{S).
This action preservers the complex structure of S x Com(S). The universal
Riemann surface C^ is the quotient space

(S x Com(5))/Diff^(^o).

The projection p^ induces the complex submersion TT. Since the elements of
Diff^"(5', So) preserve the point SQ, the section of the projection pa defined
by SQ descends to a section of the submersion TT in (2.1). This is the section
C mentioned earlier.

For any t € T, after choosing a lift f of tm Com(6'), the Riemann sur-
face Tr'"1^) can be identified with 5'; this identification will be denoted by ft.
The point t represents the equivalence class of the triplet (Tr"1^), <(t), ft).

Define Tg := T(S) to be the Teichmiiller space for the surface S.
By definition, Tg = Con^/Diff^), where Diff^) is the group of all
orientation preserving diffeomorphisms of 5' homotopic to the identity map.
There is a natural holomorphic submersion of T1 onto Tg such that any
fiber is bi-holomorphic to the open unit disc in C.

For any t := (X,/) e Tg, the holomorphic tangent space TfTg is
canonically identified with ^(X.Tx). Using Serre duality we have, the
following identification of the cotangent space:

T^Tg = H°(X^KJ,)

where Kx denotes the holomorphic cotangent bundle of X. The Poincare
metric on X, denoted by g x , is the unique metric with curvature -1. On
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H°(X,K^) the pairing

(2.2) (a,/3) —— / a0^^1

Jx

defines a hermitian metric. (Note that a (g) (3 0 Qy> is a (1, l)-form on X.)
The Riemannian metric on Tg thus obtained is a Kahler metric, and is
called the Weil-Petersson metric. Let ̂ p denote the hermitian (1, l)-form
on Tg for the Weil-Petersson metric.

2.2. Some facts about the moduli space of vector bundles.

Let X be a Riemann surface of genus g ^ 2. Fix a point XQ e X.

Let M(r, d) denote the moduli space of isomorphism classes of stable
bundles on X of rank r and degree d. We shall always assume that
— r < d ^ 0 . Note that after tensoring with a line bundle, the degree
of a vector bundle can always be made to lie in this range.

Let U{r,d) denote the subspace of Horn11'(71-1 (X - xo),U(r))/U(r)
consisting of all those representations whose holonomy along the oriented
loop around XQ is

exp^Trdv^T/r).^^ e center (U (r)).

A fundamental theorem of Narasimhan and Seshadri, [NS], identifies
M(r,d) with 7Z(r,d).

For a € 7^(r,d), let Ua denote the local system on X given by the
adjoint action on the Lie algebra u(r). The tangent space of r^7Z(r,d) is
^(X,^). For v,w C 7p7Z(r,d), the pairing

(2.3) (v, w) i—> / trace(^ U w)
Jx

defines a symplectic form on U(r,d) [G], which is actually a Kahler form
on M(r,d). We shall denote this Kahler form by ^. The form ^ was first
constructed in [AB], and is a special case of a very general construction of
Weil-Petersson form in ([ST], page 703, Theorem 2).

Choose and fix a metric on the Riemann surface X; for example, the
Poincare metric.

Fix a C°° hermitian vector bundle V of rank r and degree d on X.
Let ^^(V) denote the space of all smooth (p,g)-forms on X with values
in V. The group of all smooth automorphisms of V will be denoted by G-
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Let A denote the space of all holomorphic structures on V, which is
an affine space for the vector space ^^(Enc^Y)).

Consider the open subset A8 C A consisting of all holomorphic
structures such the corresponding holomorphic bundle is a stable bundle.
The group Q acts on A, and it preserves the subset A8. The quotient A8 / Q
is M(r,d) [BR, Proposition 3.7].

Let pi, i = 1,2, denote the projection of the Cartesian product X x A
to its %-th factor.

^ On p^(V) we have a holomorphic structure defined by the operator
9y which acts on any section s of p^(V) in the following way:

(2.4) (9Ts)^9y) := 9y{s\^^)(x) + 9A{s\{^)(9y).

For any 9 C A, let V denote the corresponding holomorphic hermitian
connection on V. The connection, ̂ T', on p^V) defined by

(2.5) (V^)^) := V(^^)(^) + d{s\^^)(9)

is the holomorphic hermitian connection for the holomorphic structure 9r
and the obvious pullback hermitian metric.

It is easy to check that the natural action of Q on p\ (V) preserves the
holomorphic structure QT- Taking the quotient of P(p^(V)) by Q we get
the universal projective bundle, denoted by P, on X x M(r,d).

Let Qu C G be the subgroup consisting of all unitary automorphisms.
The action of Gu on p^(V) preserves both the holomorphic structure ~QT
and the connection V71.

A hermitian connection on V is called a Yang-Mills connection if the
curvature is of the form X.ujJdy, where uj is the Kahler form on X, and A
is a constant on X.

Let AH C A be the set of all irreducible Yang-Mills connections on
V. Using the action of any Gu on the restriction ofp^(V) to X x AH, we get
a reduction of the structure group of the universal projective bundle, P, to
the projective unitary group PU(r) C U(r). Moreover, since the action of
Qu preserve the operators QT and V71 defined earlier, we have the following
lemma:

LEMMA 2.6. — The projective bundle P is equipped with a holomor-
phic connection, denoted by V, such that V is the extension of a PU(r)
connection on the above reduction of structure group of P to PU(r).
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Consider the following subvariety of M(r, d)

(2.7) N^d) := {E e M(r,d) \^E= Ox{d.xo)}.

Let p2 denote the projection of X x N ( r ^ d ) onto N ( r ^ d ) . The sheaf
P2*^° on ^(r? ̂ ) ls locally free of rank (r2 — l)(g — 1). Define

(2.8) 6' := ^R^S0.

(Note that the 0-th direct image R°p^£° is zero.) Let i : N(r,d) —>
M(r, d) be the inclusion.

We shall denote the Quillen metric on 9' by hq.

The Theorem 0.1 of [BGS1] gives the following:

PROPOSITION 2.9. — The curvature of the hermitian metric hq on ©'
is 47rr\/—l.%*f2, where 0 is the form denned in (2.3).

3. THE UNIVERSAL MODULI SPACE
AND THE UNIVERSAL BUNDLE

In this section we shall carry out the constructions of Section 2.2 for
the universal Riemann surface C^ defined in Section 2.1.

3.1. The universal moduli space.

The existence of the universal moduli over 7^1 follows from a very
general construction carried out in [ST]. A simple construction that we
give bellow will be used in later computations.

As the first step towards constructing the universal moduli space as a
complex manifold, we shall construct the underlying topological manifold.

We continue with the notation of Section 2.1. Consider Horn111 (71-1 {S—
so), U{r))/U(r), the space of equivalence classes of irreducible representa-
tions of TT^(S — so) in U(r). This space does not depend upon the choice of
the base point needed in order to define the fundamental group TT]_(S — So)-
Define 7^(r, d) to be the subspace of Hom^Tri^ — so)? U{r))/U{r) consist-
ing of all homomorphisms such that the holonomy along the oriented loop
around So is exp(—27^d\/:rT/r)7^x7..
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For any a := {X,xo,f) e 7^, let 7^(r,d)^ denote the representation
space (as above) for X. Using /, the space K(r,d)^ gets identified with
7^(r,d). For (X^o,/7) equivalent to a, since / is homotopic to /', the
above identification of 7^(r,d)^ with 7^(r,d) is independent of the choice
of the diffeomorphism / in the equivalence class. Thus, for another /? :=
(Y,yQ,g) e 7^, the spaces K(r,d)^ and 7^(r,dL are identified, since both
are individually identified with 7^(r,d).

In Section 2.2 we mentioned that 7^(r, d) is naturally diffeomorphic
the moduli space of stable bundles. So from the above it follows that if
the universal moduli space on 7^1 exists then it must be diffeomorphic to
T;x7Z(r,d).

However, given any a € 7^1, there is some neighborhood U C T1

of a, such that the for the family of Riemann surfaces C^u —> U,
the corresponding family of moduli spaces Mjj(r^d) —> U exists as a
complex manifold. From the previous discussion we conclude that M[/(r, d)
is canonically diffeomorphic to U x 7^(r,d). This identification equips the
product U x 7^(r, d) with a complex structure. For two such sets

UxU(r,d) and U ' x7Z(r,d)

the two complex structures on the intersection (U H U ' ) x 7^(r, d) actually
match. So we have a complex structure on 7^ x 7^(r,d); this complex
manifold will be called the universal moduli space, and it will be denoted
by M(r,d).

This universal moduli space has the following property which is
obvious from its construction: Let U be a complex submanifold of T1 (of
any possible dimension); and let E be a rank r holomorphic bundle on the
restriction C^\u such that for any u C U^ the restriction, Eu^ of E to C1 u
is a stable bundle of rank r and degree d. For any a € T1, by using the
natural identification of the moduli space M^(r,d) with 7^(r,d), we get a
C°° map which is called the classifying map

TE : U —— 7^x7Z(r,d)

for the family of bundles E; in other words, r^(n) is the point correspond-
ing to the bundle Eu. The complex structure of M(r^d) has the property
that this classifying map YE is actually a holomorphic map.

Now from the definition of the complex structure on .M(r,d) it is
clear that the obvious projection

pi : A^(r,d) —.T;
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is a holomorphic submersion. The following theorem gives further proper-
ties of the complex structure on M. (r, d).

THEOREM 3.1. — For any v e 7^(r, d), the subset Tg- x v C M(r, d)
is a complex submanifold of M(r, d).

Before we prove this theorem, let us show how this theorem gives an
explicit description of the complex structure on M(r, d).

For any ^ := (a,p) 6 7^1 x 7^(r,d), the (real) tangent space has the
decomposition

T^T;1 x7Z(r,d)) = T^eWr.d).

The complex manifold structure on 7^1 gives an automorphism (the almost
complex structure)

A e Aut(T^1)

such that A2 = -Id. Take any a := (X,xo,f) e 7^. The space 7Z(r,d)^
is identified with the moduli of rank r and degree d stable bundles on X.
This induces a complex structure on 7^(r,d)^. Now, the identification of
7^(r, d)^ with 7^(r, d) (using /) gives a complex structure on 7^(r, d). Using
this complex structure, we have

Ba € Aut(7p7Z(r,d))

such that B^ = —Id. Using the decomposition T^(T^ x 7^(r,d)) =
T^Tg1 C TpR,{r, d), define

(3.2) J(a) := A C Ba

to be the automorphism ofT^(7^1 x7^(r, d)). Clearly, J(a)2 = —Id. In other
words, we have constructed an almost complex structure on 7^1 x 7^(r,d),
which we shall denote by J .

The submanifold a x 7^(r,d) C .M(r,d) is obviously a complex
submanifold, and from Theorem 3.1, 7^ x p is a complex submanifold
of M.(r^ d). Hence we have the following corollary of Theorem 3.1.

COROLLARY 3.3. — The almost complex structure for the complex
manifold .M(r, d) is J (defined in (3.2)). In particular, the almost complex
structure J is integrable.

So, in view of Corollary 3.3, Theorem 3.1 can be taken as a construc-
tion of the complex structure of the universal moduli space.



894 INDRANIL BISWAS

Proof of Theorem 3.1. — Before actually proving the theorem, here
is the strategy of the proof. Given a point a € T1 we shall show that there
is an open set U C 7^1 containing a such that over the family of Riemann
surfaces

C^\u — U
there is a holomorphic bundle E —> C^\u such that for any f3 :=
(V, yo, g) e U", the restriction E\(^ —> Y is the stable bundle corresponding
to the representation v (in the statement of 3.1). (As noted earlier,
using g the representation v gives a natural element of Horn11'(71-1 (V —
Vo)^ U(r))/U{r) with holonomy 27rd/r.Irxr around yo.) We earlier observed
that the classifying map is holomorphic. In particular, the classifying map

fE : U —— M(r,d)

for the family E is holomorphic. But the image of /£;, from the property
of E, is the submanifold U x v of .M(r,d). Thus, U x v is a holomorphic
submanifold of .M(r, d). This would complete the proof of Theorem 3.1.

So the point is to construct the holomorphic bundle E.

First we shall consider the case where the degree d = 0.

Take any f3 and v as above. The local system on Y — yo given by v
naturally extends across yo^ since the holonomy around yo is trivial. Let V/j
denote the rank r local system on Y obtained this way. The stable bundle
on Y corresponding to v is the holomorphic bundle given by V^.

For the projection TT defined in (2.1) — since the fibers are connected
and 7^1 is contractible — the long homotopy exact sequence implies that
the inclusion of a fiber in C^ induces an isomorphism of the fundamental
groups. Using this isomorphism, v gives an element

y € Hom^Tri^),^))/^).

(Since the holonomy of v is trivial around SQ? we may consider it as an
element of Honr^Tr^S'),^?'))/^?').) Let Vy denote the local system on
C1 given by v. Clearly the restriction of Vy to any Riemann surface Tr"^/?)
is the local system Vp.

Let E be the holomorphic bundle on C^ corresponding to the local
system Vy.

For any f3 := (V, y o ^ g ) , we noted that the restriction of Vy to Y is
the local system Vp defined earlier. This implies that the restriction of E
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to V is the stable bundle on Y corresponding to v. So E has the required
property which implies that the classifying map T1 —> .M(r,d), given by
/3 '—> (/?, ^) is holomorphic. This completes the proof for the case d = 0.

Now assume that d -^ 0. We shall complete proof of the theorem by
reducing this case to the earlier case of d = 0. The following proposition
will be used for that purpose.

PROPOSITION 3.4. — For any integer r ^ 1 there is a Galois cover
A : S —> S with Galois group Z/r which is totally ramified over SQ.

Proof of Proposition 3.4. — Let D2 := {z e C\ \z\2 ^ 1} denote the
closed unit disc in C and let D§ := {z € C| \z\2 < 1} be its interior. Take
a disc in 5

/ : D2 —— S
with /(I) = so. Consider the manifold with boundary 5" := S - f(D^).
Take the disjoint union of r copies of 5":

5-:= Q^
j=i

where each S^ is a copy of 5". For any integer j with 1 ̂  j ^ r - 1, and any
t = exp(27^^/:::L9) <E oD2 with 0 ^ 0 < 1/2, identify the point f(t) in the
component S'y with the point f(t~1) in the component S^i; also, identify
the point f(t) (t as above) in S^ with the point f(t~1) in S[. Let S denote
the quotient space (of S'7') obtained using the above identifications. Let So
denote the quotient of S - f(D^) obtained by identifying f{t) e f{9D2)
with f(t~1). It is easy to see that there is a natural projection of S onto So.
This projection is a Galois covering with Galois group Z/r, and it is totally
ramified over (the images of) so and /(-I). But So is a compact oriented
two manifold of genus g. Hence 5o is diffeomorphic to S. So, composing
the above projection with a diffeomorphism from So to S which takes the
image of SQ (in So) to so, we get the required covering A in the statement
of the proposition, n

Continuing with the proof of Theorem 3.1, for {3 and v as earlier, recall
the construction of the corresponding stable bundle. The representation v
gives a rank r local system on Y—yo. The local system gives a holomorphic
vector bundle on Y - yo. Now, using the local system this vector bundle
is extended to Y. See Section 1 of [MS] for the details of this extension.
Of course, such extensions were carried out earlier in a much more general
situation by Deligne [K].
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Fix once and for all a cover A : S —> S of degree r given by
Proposition 3.4. Denote A'^o) by s.

Take any (3 := (Y.yo.g) e Tg1. Using the diffeomorphism g we may
pullback the covering A to a covering

(3.5) <fA : V —. Y.

Let g : Y —> S be the diffeomorphism induced by p. It is easy to see that
the pointed Riemann surface (Y.g'1^)) does not depend upon the choice
of g in the equivalence class. We shall denote g~l(s) by y .

For v € 7^(r, d) let Vy be the stable bundle on Y corresponding to
u. Let A*(^) € Hom^TT^y - y ) , U{r))/U(r) denote the pullback using the
homomorphism

(<7*A)* : ̂ (Y-y)-^7r,(Y-yo)

note that this corresponds to pullback of the local system. Prom the
condition on ramification of A, the holonomy around the point y of the
local system on Y - y given by A*(^) is identity. So the local system
extends to Y. Let Wy be the holomorphic vector bundle on Y for this
local system. The Galois group Z/r acts as automorphisms of on Y, and,
since Wy corresponds to a local pullback local system, the action of Z/r
on V lifts to automorphisms of Wy. (That v is only a local system on the
complement Y - VQ and not on the whole of Y is reflected in the fact that
the isotropy, Z/r, of y acts nontrivially on the fiber Wy\y.) So Z/r acts on
the direct image (^*A)*W^ (defined in (3.5)). It can be checked that Vy is
the invariant subsheaf of (g*\)^Wy.

We shall do the above constructions for a family of Riemann surfaces.

For U C T^ let C\u denote the restriction of the family of Riemann
surfaces C1 to U.

Let U be an contractible open set containing a := (X.a-o,/) such
that we have a Galois cover

(3.6) r : C — C\u

with Galois group Z/r such that it is totally ramified over the divisor in
C\u given by the image of < (in (2.1)). So C is a family of Riemann surfaces
parameterized by (7; for (3 e U, the Riemann surface over /3, for this family,
will be denoted by C\^.
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Since fibers of TT o F are connected and U is contractible, we have
that Ti-i (C) is canonically isomorphic to the fundamental group of a fiber
of TT o F where the isomorphism is given by the inclusion of the fiber. So
there is an one-to-one correspondence between local systems on C and local
systems on a fiber of TT o F. We saw that the local system A*(^) extends
across the puncture; and hence, using the above correspondence, we have
a local system Vy on C. Let V denote the holomorphic bundle on C given
by Vy. It is easy to see that the holomorphic bundle on C\u given by the
invariant subsheaf of the direct image sheaf, namely

E := (T^vf^

has the required property. This completes the proof of Theorem 3.1. n

In (2.3) we defined the symplectic form, j^, on 7^(r,d) constructed in
[G]. Let ?yi denote the pullback of Q. to .M(r,d), using the projection to
the second factor.

LEMMA 3.7. — The 2-form p^t on M(r,d) is of type (1,1), and also
it is a closed positive semi-definite form.

We note that this form ?yi is a special case of a very general Weil-
Petersson form constructed in [ST].

Proof of Lemma 3.7. — Since fHs a closed form, the pullback form,
p^, is also closed.

Since p^fl. is a real form, in order to prove that it is (1,1) type, it is
enough to show that the (2,0) part ofp^, denoted by (p^)2'0, vanishes.

Take any m := (a, v) G .M(r, d). From Corollary 3.3, the holomorphic
tangent vector space

(3.8) T^°M^ d) = T^ C r^M,(r, d)

where M^ (r, d) is the moduli space of stable vector bundles over the pointed
Riemann surface C^\a. For any v e T^'°7^1, we have d(p-z)(v) = 0 (as an
element of T^(r,d) (g) C). So, in order to prove that (j^Q)2'^^) = 0, it
is enough to show that pyi(u,v) = 0 for v,w € T^°Ma(r,d). But ^ is a
(1, l)-form on M^(r, d). So we have p^(n, v) = 0.

To complete the proof we have show that p^Q(w.w) ^ 0 for any
weT^M^d).

In view of the earlier remark that d(p'z)(T^°T1) = 0, it is enough
to show the above inequality for any w € T^°Mo,(r,d). But fl. is a Kahler
form on Mo;(r, d), and hence the proof of the lemma is completed. D


