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INTRODUCTION

In [Q] the second author studies families of strongly divisible filtered
F-crystals in relation with Griffiths transversality. In his book [02] Ogus
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introduces the notion of T-crystal (T for transversal), which provides an
excellent context to study this kind of questions. He uses it to prove a version
of Mazur’s theorem on the relation between the action of Frobenius and the
Hodge filtration on crystalline cohomology which is valid for cohomology
with coefficients in an F-crystal. As applications, he gets results about
Newton and Hodge polygons (Katz conjecture) and degeneration of the
Hodge spectral sequence. One of his key results shows that there is an
equivalence between F-spans and T-crystals, provided we restrict to objects
of width less than p.

In his letter to Illusie [B3], Berthelot developes the theory of crystals
of level m. We use this new theory to extend Ogus’ theorem to objects
of width less than p™*!: after defining T-m-crystals and F-m-spans, we
show that one can identify T-m-crystals of width less than p™*! with a full
subcategory of F-m-spans.

More precisely: let S be a torsion free p-adic formal scheme, Sy
its reduction mod p and X a smooth Sp-scheme. A T-m-crystal on
X/S is a crystal E of level m with a filtration Fil by submodules
which after saturation (see Definition 1.1.6), behaves like a filtration by
subcrystals. If F': X — X’ is the relative Frobenius of X/Sy, an F-m-span
is a p-isogeny ®: F™*+1"E — E' of p-torsion free m-crystals. We prove
(Theorem 4.3.6) that if (E, Fil) is a p-torsion free T-m-crystal on X/.S such
that FilP™" ¢ pE, then there exists a unique F-m-span ®: F™t1"E — F
such that, up to saturation, F m+1" Rl coincides with the filtration M
defined by M*: = & !(p*E’). This construction is functorial in (E,Fil)
and the functor is fully faithful.

In order to prove this theorem, we consider a lifted situation: X is
a smooth formal S-scheme, Fj is the relative Frobenius of Xy over Sy,
F:X — X' is a lifting of Fy and we assume that there are coordinates
t1,...,tq on X and X’ such that F(t;) = t. Then T-m-crystals correspond
to Griffiths transversal @g{";?g—modules that are also transversal to the
m-PD-ideal (p) and F-m-spans correspond to p-isogenies of Dg:f;zg—
modules. We prove the theorem in this local situation (Theorem 2.3.3

and Corollary 3.3.5).

Let us briefly describe the structure of this paper: in the first part,
we recall Ogus’ notion of transversality and Berthelot’s notion of partial
divided power structures as well as some properties of p-isogenies in this
context. In the second part, we first recall Berthelot’s theory of differential
operators of finite level, we define Griffiths transversality for D™ _modules
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and we build the local version of our functor. In the third part, we define
and study p-m-curvature for D™ _modules in characteristic p and we use
this notion to prove the fullfaithfulness of our functor in a local situation.
In the fourth part, we recall Berthelot’s theory of m-crystals, we define T-
m-crystals and F-m-spans and we deduce our main theorem from its local
version. In the fifth and last part, we study the behavior of T-m-crystals
and F-m-spans when m varies and use it to show that our results provide
some improvement on Ogus’ theory.

Acknowledgments. — The first (resp. second) author wishes to thank
the Universidad Auténoma de Madrid (resp. the Université de Rennes I) for
its hospitality. We both want to express our gratitude to Pierre Berthelot
and Arthur Ogus who allowed us to see preliminary versions of their articles.
We also thank the referee for his very careful reading of the manuscript.
Many of his comments helped us a lot in polishing this article.

Conventions. — We let p be a non zero prime and m € N. All formal
schemes are p-adic formal schemes. All schemes are locally killed by some
power of p and might hence be considered as formal schemes. Also, all
PD-structures are compatible with p. We will use the subindex 0 to indicate
reduction mod p. We will adopt the standard multiindex notation, and if
k= (ki,...,kq) € N we will write |k| = k1 + - - - + kq.

1. PRELIMINARIES

1.1. Transversal filtrations.

We briefly recall the notion of a transversal module from [02]. We
call transversal what Ogus calls G-transversal and almost transversal what
he calls G’-transversal. Let us first fix some terminology and notations:

1.1.1. DEFINITION. — Let A be a ring (in a topos). A module filtration
Fil on an A-module M is a decreasing filtration by submodules Fil* such
that there exists an integer a such that Fil* = M. It is called effective if
we can take a = 0. In general, if we set Fil[r]* := Fil**" we see that Fil[a]
is an effective filtration on M. If ¢ : (T,A’) — (7, A) is a morphism of
ringed sites, (M, Fil) is a filtered A-module and Filf; denotes the image
of *Fil* in ¢*M, then ¢*(M,Fil) := (p*M,Fily) is called the inverse
image of (M, Fil).
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In this article, in order to simplify the notations, we will only consider
effective filtrations.

1.1.2. DErFINITION. — A ring filtration on a ring A is a module
filtration I™*) such that I®1® c [=+0 If (A, I®) is a filtered ring, we
set I := IV) and we say that a filtered module (M, Fil) has width at most w
(with respect to I) if there exists an integer a such that Fil® = M and
Fil****! ¢ IM. A filtered ringed site (T, A, I*)) is a site endowed with a
filtered ring. A morphism of filtered ringed sites

@: (7,4, I'W) — (T,4,1W)
is a morphism of ringed sites such that ¢*I*) maps into I'®) for all k.
1.1.3. DEFINITION. — A filtered module (M, Fil) in a filtered ringed
site (T, A, I™) is transversal (a T-module for short) if it satisfies
IM NFil* = TFiF ! 4T Filk—2 4 TG FilF—3 4.
for all k. It is almost transversal if
IMNFil* C IFIF ! +I@ FilF=2 4 1O FiF =3 4 ...
for all k and saturated if I® Fil® c Fil*** for all k, ¢.

Since there will sometimes be several ring filtrations involved, we will,
if necessary, say (almost) transversal to I*) and saturated with respect
to I™). If I®) = I* for all k, we will just say (almost) transversal to I and
saturated with respect to I.

1.1.4. Example. — A filtered module (M, Fil) in a ringed site (7, A) is
transversal to an ideal I of A if and only if it satisfies IM NFil* = I Fil*for
all k.

1.1.5. Remark. — A filtered module is transversal if and only if it is
almost transversal and saturated.

Starting from any almost transversal filtration, there exists a natural
process that turns it into a transversal one:

1.1.6. DeFiNiTION. — If (M, Fil) is a filtered module on a filtered
ringed site (T, A, I*)), we set

Fil* = Fil* +IFil* ' +I@ Fil* 2 IO FifF 2 ...
We call (M, Fil) the saturation of (M, Fil).
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1.1.7. ProprosiTION (see [02], 2.3.1).

(i) The filtration Fil is the finest filtration on M that is saturated and
coarser than the given one.

(ii) If (M,Fil) is almost transversal, then its saturation is transversal.

This saturation process is specially useful in view of the following
result:

1.1.8. ProrosiTiON (see [02], 2.2.1). — Let
P (‘:r,a AI, II(*)) — (“T? Aa I(*))

be a morphism of filtered ringed sites such that the natural map
¢ tA/I — A'/T' is flat. If (M,Fil) is an almost transversal module,
then so is ¢*(M, Fil).

1.2. p-isogenies.

We introduce the m-PD-filtration (p, { }) and we describe transversa-
lity with respect to this filtration in terms of p-isogenies.

1.2.1. DeFINITION. — If A is a Z(y,)-algebra and M, M " two p-torsion
free A- modules, a p-isogeny ® : M — M’ of width at most w is an injective
homomorphism ® : M — M’ ® Q of A-modules such that there exists an
integer a such that p®tVt1 M’ C ®(M) C p*M’. It is called effective if
one can take a = 0. In general, if we set ®[r] = p~"®, we see that ®|[a] is
effective.

As we do for filtrations, we will only consider effective p-isogenies.

Transversality with respect to p, meaning to the ideal (p), has a very
nice interpretation in terms of p-isogenies:

1.2.2. ProposiTION (see [02], 5.1.2). — The functor ® — (M, Fil),
where Fil¥ = ®~1(pk M), is an equivalence from the category of p-isogenies
of width at most w onto the category of filtered modules transversal to p of
width at most w.

Actually, the filtration that will naturally appear in the sequel
is not (p)* but the m-PD-filtration defined below (and generalized in
Definition 1.3.4).

1.2.3. DEFINITION. — For k = qp™ +r with 0 < r < p™, we let
pt¥} .= p*/q!. The m-PD-filtration (p){*} on a Z,-algebra A is the finest
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ring filtration such that p*} € (p){¥}. We will also write (p,{ }) for this
filtration.

In the sequel, we will also need the notion of modified binomial

coefficients. Let us recall what they are:

1.2.4. DEFINITION. — If k' and k" € N%, and
K'=gpm+r, 0<r’ <pm,
E'=q¢"pm+r", 0<r" <pm,
k=k'+k'"=qgpm+r, 0<r<pm,

one sets:

{k'} _q"q”'EN and <1;'>’ (k'){k'}

Proposition 1.2.2 is still valid for the m-PD-filtration under some
assumptions on the width:

1.2.5. PROPOSITION (see [02], 2.3.5). — The functor « saturation with
respect to (p,{ })» from the category of filtered modules transversal to p
to the category of filtered modules transversal to (p,{ }) is an equivalence
of categories when restricted to objects of width less than p™t!.

1.2.6. CorOLLARY. — The functor ® — (M, Fil) where Fil* is the
saturation of ®~(p* M') with respect to (p,{ }) is an equivalence from the
category of p-isogenies of width less than p™*! onto the category of filtered
modules transversal to (p,{ }) of width less than p™*!.

1.3. m-PD-structures.

We recall Berthelot’s theory of partial divided powers from [B4] which
generalizes the usual divided power structures in [B1].

1.3.1. DEFINITION. — Let Y be a formal scheme. An m-PD-structure
on a coherent ideal I in Oy is the data of a PD-ideal (J,[]) in I such
that I®™) 4+ pI  J (where I®™) is the ideal locally generated by fP™
with f € I). We say that I is an m-PD-ideal or that (Y,I,J) is a formal
m-PD-scheme. We will drop J, or even I, from the notations when no
confusion should arise. If f € [ and k = qp™ +r with0 < r < p™, we write

flel = gr (fp"‘) lq],
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1.3.2. DeriNiTiON. — Let (S,a,b) be a formal m-PD-scheme.
The m-PD-structure on a extends to a formal S-scheme X if the PD-
structure on b extends to a PD-structure on X (compatible with p). An
m-PD-structure (I,J) on a formal S-scheme Y is said to be compatible
with (S, a, b) if the m-PD-structure on a extends to Y, the PD-structure on
J + (p) is compatible with the PD-structure on b + (p) and I N (bQy + (p))
is a sub PD-ideal of 6Oy + (p). We then say that (Y,I,J) is a formal
m-PD-S-scheme.

1.3.3. DeFINITION. — Let (S,a,b) be a formal m-PD-scheme. A
morphism of formal m-PD-S-schemes is a morphism of formal schemes
¢ :Y' =Y such that o=(I) C I' and (Y’',J') — (Y, J) is a morphism
of formal PD-schemes. If (Y,I,J) is a formal m-PD-S-scheme and X is
the closed formal subscheme of Y defined by I, we say that X — Y is an
m-PD-immersion.

The following generalizes Definition 1.2.3 and agrees with Berthelot’s
new definition that replaces [B4] 1.3.8 and 1.3.7.

1.3.4. ProrosiTioN AND DEerINITION (see [B5]). — If (Y,I,J)
is a formal m-PD-S-scheme, then there exists a finest ring filtration
(I,{}) := I*} on Oy such that

(i) It =1,
(ii) I"} N (J 4+ 6Oy + pOy) is a sub PD-ideal of J + b0y + pOy,
(iii) z{*} € 11"} whenever z € 11"},

It is called the m-PD-filtration on Oy with respect to (I,J). Then
(Y, 0y, I{"}) is a filtered ringed site. Moreover, any morphism of formal
m-PD-S-schemes induces a morphism of the corresponding filtered ringed
sites.

Universal m-PD-immersions do exist:

1.3.5. PROPOSITION AND DEFINITION (see [B4], 2.1.1). — Let S be a
formal m-PD-scheme, X a formal S-scheme to which the m-PD-structure
of S extends and i : X — Y an immersion into a formal S-scheme.
Then i factors as an m-PD-S-immersion X — P} /5(m) (Y) followed by a
morphism ¢ : P35 m)(Y) — Y having the following universal property:
any morphism Y’ — Y inducing X' — X, where X' — Y’ is an m-PD-
S-immersion whose ideal satisfies I\"*1} = 0, factors uniquely through ¢.
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We say that Py g\ (Y) is the n-th m-PD-neighborhood of X inY and we
write P ) g(m)(Y) for its structural sheaf.

1.3.6. Remark. — If X — Y is an immersion of schemes (locally
killed by a power of p) then there exists an m-PD-S-immersion
X — Px/s(m)(Y) with the same universal property but without nilpotency
condition on I. We call Px/g(m)(Y") the m-PD-neighborhood of X inY’, and
write P’/ g(m)(Y’) for its structural sheaf.

1.3.7. DeEFINITION. — If % is the diagonal immersion
X—Y:=XxgX,

then we drop Y from the notations in 1.3.5 and 1.3.6 and we call P /()
the sheaf of m-th principal parts of order at most n.

2. DIFFERENTIAL OPERATORS OF LEVEL m AND
GRIFFITHS TRANSVERSALITY

2.1. Differential operators of level m.

We will now recall from [B4] Berthelot’s theory of differential operators
of finite level.

Let (S,a,b) be a formal m-PD-scheme and X a smooth formal S-
scheme to which the m-PD-structure of S extends. We consider P% /g ()
as an Ox-module using the first projection X xg X — X and we note
0:0x — P%/s(m) the map induced by the second projection. We first
recall the definition of differential operators of level m:

2.1.1. DerFINITION. — The O x-dual ng;% n t0 P%/5(m) is called the
sheaf of differential operators of level m and order at most n. The natural
maps P /s(m) — Px/s(m) for n < n' induce injections Dg:,'/”?gn — :Dg:'%'n'
and we set

(m) _ (m)
Dx)s = U Dx)sn:
Moreover, the natural maps "

rsm) — Px/s(m) ® Px/s(m)
induce bilinear maps
D(m) X D(m) N D(m)
X/Sn X/Sn' X/Sn+n!
which make ‘Dg;% into a ring called the ring of differential operators of

(m)

level m. Its p-adic completion will be denoted by D X/s°
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2.1.2. Remark. —If t,,...,t; are local coordinates on X and
Ti: = O(ti) - ti for all i,
then P% /S(m) 18 & free O x-module on the 7{&} with k] < n.

We let {8} be the dual basis to {7 {£}} in Dg;’;?gn.

Ifk=gp™+1r < p™t!, we set

k. = Q(E)/q!_

If n < p™*!, then the 7% with |k| < n form a basis for P%/g(,,) and the
Olk] form the dual basis in Dg?;?s*n Note that ‘DE{.% is generated as an

O x-algebra by the 8i[pi I 81-(# ) for j<m.

2.1.3. Remark. — If ¢:Y — X is a morphism of smooth formal
S-schemes and JF is a Dg}"/g—module then ¢*F has a natural structure
of D('7) -module that can be described locally as follows. Let ¢i,...,%t4
be local coordinates on X, ti,...,t; be local coordinates on Y and
{ri} and {73} be the corresponding sections of P%/g(m) and Py, g(m)-
If (7'{J }) = fii = '{l} and s is a section of F, we have

o (¢*(s)) = D_ £ 0" (87 (5))-

As in the classical case, D™)_modules have an interpretation in terms
of stratifications:

2.1.4. ProPosITION (see [B4], 2 3.2). — If F is an Ox-module, it is
equivalent to give it a structure of D X /?S.-module or an m-PD-stratification
(defined in the obvious way).

2.1.5. DEFINITION. — A ’Dg:';?s.—module (or 5&;%-modu1e) is locally
(topologically) quasi-nilpotent if locally, given any section s, we have

i(N) (s) = 0 as N — oo for any index i.

It follows from Proposition 4.1.7 and Proposition 4.1.8 below that this
definition does not depend on the choice of the local coordinate system.

2.1.6. ProposITION (generalization of [B1], II. 4.1.3). — If X is a
smooth S-scheme (with p locally nilpotent) and ¥ is an Ox-module, it is
equivalent to give it a structure of locally quasi-nilpotent ‘DE,:.'})S-moduIe or
an m-HPD-stratification (defined in the obvious way).
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We will also have to consider formal S-schemes that are not necessarily
smooth. In order to deal with this situation we need to introduce the
following terminology (see also [B4], 2.3.4 and 2.3.5):

2.1.7. DerFINITION. — Let X be an S-scheme and X — Y
a closed immersion into a smooth formal S-scheme. It follows from
Proposition 4.1.5 below that Px/s(m)(Y) has a natural structure of
Dg;%—module. A ?X/S(m)(Y)-Dgf'/L?g—module is a Dg,"/%—module F with a
structure of Px/s(m)(Y")-module such that, locally, given any sections f of
Px/s(m)(Y) and s of F, we have

28(1s) = 3 {3} 29 (5) 2% 2,

It follows from Proposition 4.1.7 and Proposition 4.1.8 below that this
definition does not depend on the choice of the local coordinate system.

2.2. Griffiths transversality for D™ .modules.

We define Griffiths transversality for D™)_modules and interpret it
in terms of stratifications.

Let S be a formal m-PD-scheme and X a smooth formal S-scheme.
The following generalizes the usual notion of Griffiths transversality:

2.2.1. DerFINITION. — A filtered Dg?/')s—module (F,Fil) is a ’DE,:';?S.—
module F together with a filtration by sub O x-modules. We say that (F, Fil)
is Griffiths transversal if whenever P € Dg?/l?sn’ we have P(Fil*) c Fil*™"

and that it is horizontal if the Fil* are @%)S-submodules. A filtered @gg}g-
module (F,Fil) is a complete ‘ﬁg(";?g—module F together with a filtration
by complete sub Ox-modules. We say that it is Griffiths transversal or
horizontal if it is so mod p™ for all n.

2.2.2. Remarks.
(i) What we call Griffiths transversal corresponds to what is simply

called a filtration on a D-module in the classical situation.

(ii) Assume we have local coordinates t1,...,t4. In order to show
that (F, Fil) is Griffiths transversal it is sufficient to check that 61[1”1 IFil* ¢
Fil*~P for j < m and all i.

Here is the interpretation of Griffiths transversality in terms of
stratifications:
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2.2.3. DEFINITION. — Let (F, Fil) be a filtered O x-module with an m-
PD-stratification {e, : p5F — p;F}. We call the stratification transversal
if €, induces an isomorphism between Fil%, and Fil%, for all n.

2.2.4. PROPOSITION. — Let F be a Dg:'/‘)s-module and Fil* a filtration
on F by sub Ox-modules. Then ¥ is Griffiths transversal if and only if the

corresponding m-PD-stratification is transversal.

Proof. — Let J be the ideal of X in P)T}/s(m)v pl,pzzP)"{/S(m) - X
the projections, ¢ : p3F — p}F the n-th Taylor isomorphism of F and

0:F — piF,
e—e(1®e)

the n-th Taylor map. Assume first the m-PD-stratification to be transversal.

Since € induces an isomorphism between F_il’;2 and F_il’; ,» then

9Fil* C Filf = Filk +IFiE !+ Filk 2+ gt R
C Filk™.

If P:P%/s(m) — Ox is a differential operator of level m and order
less than n, then P acts on F as the composite of § and pi(P) (i.e.
P(e) = (P ®1d)(8(e)) so that PFil* c Fil*~™. Thus, we see that F is
Griffiths transversal. Conversely, assume that F is Griffiths transversal. We
want to check that ¢ induces an isomorphism between F_Tl’;z and F—‘i-l’; , and
we may assume that we have local coordinates t;,...,t4 on X. Thanks to
the cocycle condition, it is sufficient to show that 6(Fil*) c FTil’;l. But if
e € Fil* then

0e) =Y 09 (e)rlt € Y gV Filkd = Filk . O

The same is true for hyperstratifications. Let S be an m-PD-scheme
and X a smooth S-scheme.

2.2.5. DerFiNiTION. — If (F,Fil) is a filtered Ox-module, we call
an m-HPD-stratification ¢ : p5F — p{F on F transversal if € induces an
isomorphism between Fil%, and Fil% .

2.2.6. PROPOSITION. — An m-HPD-stratification ¢ : p3F — p}F on
a filtered O x -module (¥, Fil) is transversal if and only if (¥, Fil) is Griffiths
transversal.

Proof. — Same as Proposition 2.2.4. O
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2.3. Griffiths transversality and p-isogenies.

We are going to build the local version of the functor of our main
theorem.

Let S be a formal m-PD-scheme, X a formal S-scheme, Fy the relative
Frobenius of X over Sp and F: X — X " a lifting of Fy. We assume that
there are local coordinates t1,...,ts on X and X’ such that F*(t;) = t¢.

We will write X(()'"H) for the pull back of X, by the m + 1 iterate
of Fy, and, with the usual slight abuse of notation, we will call

FHt: Xo — x{™HY

this m + 1 iterate of Fy and F™*1: X — X(m+1) 3 lifting obtained by
iterating the above process.

2.3.1. LEMMA. — If s is a section of a Dg’:}nm/s-module &, then for
k < p™*!, we have, with a; € Z,

L (Fm+1‘ (s)) = EPZGZ,E (3" -k pm1t (_3_[1] (s)).

m+1

Proof. —Forn=0p — 1, we have in P (1) /8(m)

1
+1 _ tpfn+
T

Fm+1'(7-i) =(t+ Ti)p’"

pm+1 m-|—l
m+1__
k 2 k3
k=1
m+1_1

P

m+1_k k

= E peikt] 7
k=1

with ¢; x € Z. Thus we can write
P = Fplay " o8
with a; x € Z. Therefore, if s is a section of €, we have

QW(F™ () = D pLayp t2 TEFTHY (9lEs)). O

This lemma allows us to show that Frobenius pulls back transversal
modules to horizontal modules:
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2.3.2. ProposiTiON. — If (€, Fil) is a Griffiths transversal D X(,),, +1)/85"
module (or D X(z,, +1/8 -module) on X(™+1) which is saturated with respect

to (p,{ }), then F™+1" (&, Fil) is horizontal.

Proof. — We have seen that if s is a section of &, then for k < p™*t1,
we have

A (F™+17 (5)) = S play 1P k1 (ali) (s)).

Since (€,Fil) is Griffiths transversal, we know that if s € Fil‘, we have
(8l1(s)) € Fil*"l. 1t follows that F™+1" (9lil(s)) € Fil*~l! so that

Pl aj,k $3P" Tk pm1® (Q[il (s)) epl Fil¢-l!,

Since (€, Fil) is saturated with respect to (p,{ }), so is F™*+1" (€, Fil) and
therefore

ald! (Fm+1‘(s)) — Zpl‘ ajk pip™ —k pm1* (Qlil (s))
e prri-i =Y "plidFt-il crlt. o

2.3.3. THEOREM. — Assume S has no p-torsion. Let (E,Fil) be a
p-torsion free Griffiths transversal ‘Dg((zn +1) g-module of width less than
p™*! which is transversal to (p,{ }). Then there exists a unique p-isogeny

& Ftl"e L F of ‘Dg( /g-modules such that F™+1" Fil* is the saturation
of ®~1(p*F) with respect to (p,{ }).

Proof. — Follows from Corollary 1.2.6 and Proposition 2.3.2. |

2.3.4. DEFINITION. — Given any lifting F : X — X' of the relative
Frobenius of Xy over Sy, an F’"+1-p-1sogeny on X/S will be a p-isogeny
of the form ® : F™+1"& — F where € is a D™ -module and F is a

Dg(";l)s—module.

X(m+1)/s

2.3.5. — Theorem 2.3.3 glves a functor p from the category of p-
torsion free Griffiths transversal D™ x(m y -module of width less than p™+!

that are transversal to (p, { }) to the category of F™*+1-p-isogenies of width

less than p™*! on X/S. We will show in section 3.3 that this functor is
fully faithful.
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3. D™)_MODULES IN CHARACTERISTIC p AND
GRIFFITHS TRANSVERSALITY

3.1. p-m-curvature of a D™ -module.

We define p-m-curvature for D™ _modules in characteristic p and
study the relation between it being zero and horizontal sections.

Let S be a scheme of characteristic p and X a smooth S-scheme.
We let

. Dg;';?; be the kernel of the canonical map Dg:,'/‘?s. — Ox;

ng( /)s be the kernel of the canonical map Dg?/l)s — &nd(Ox).

3.1.1. DeFiNiTIONS. — Let F be a D( X/s s-module. The sheaf ¥V of
horizontal sections of F is the part of F on thch 2D( /S acts as zero.
The p-m-curvature of F is the restriction to % X /?g of the canonical map
DY — End(3).

3.1.2. Remark. — Let F be a ‘D()Z.'/‘?S.—module. Then it follows from
[B4], 2.2.6, that F has zero p-m-curvature if, locally on X, we have for
all 1, 8§pm+1)(s) = 0 for any s € F. In particular, in case m = 0, zero
p-m-curvature is the same as zero p-curvature.

Let F: X — X' be the relative Frobenius of X over S.

3.1.3. LemmA. — If € is a Dx(m+1)/s—modu1e, then Dg}n/); acts as

zero on sections of the form F™1" (s) with s € €.

Proof. — This is a local question. We have

* m+1
F™(n) = (™ -7

_PZ (pm+1)tpm+1_k k

= k i T;
k=1

m+1 {pm+l}

p _p|7,

= T’i

It follows that, if 0 < j < p™*t!, then F™*+!"(79) = 0, so that, for any

section s of £, we have OUl(F™+1" (s)) = 0. O

3.1.4. ProproSITION. — The trivial ‘I)g:,';)s—module Ox has zero p-m-
curvature and the canonical map O x (m+1) — F,Z"“O; is bijective.
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Proof. — The first assertion is an obvious consequence of the
definition. The second one is local and we may therefore choose local
coordinates t1,...,tq. These coordinates define an étale map from X to A‘g..

The relative Frobenius being cartesian with respect to étale morphisms and
to base change, this map provides us with an isomorphism

EM0x & O x(me) ®F, [t1,...,ta] Fplt1, - - Lt D

where Fp[t1,...,tq)™+D is Fp[t1,. .., tq] seen as a module over itself via the
(m + 1)-st power of Frobenius. If Fp[t1, .. .,t4]<pm+1 denotes the space of
polynomials of degree stricly less than p™*! in each variable, the canonical
map

Fplt1, .., t4] ®F, Fp[tl,...,td]g’;j,,ﬂl) — Flt, ..., tg ™D

is bijective and therefore
F,:n-HOX 2 Ox(m+n) ®F, ]Fp[tl, cee td]<p(m+1) .

Since F,[n“‘D()?/'?; acts as zero on Ox(m+1), we are reduced to showing
that if f € Fp[t1,...,ta]<pm+n and ’Dg?/‘? acts as zero on f, then f € ).

One may first prove that if A is an F-algebra and f € A[t”j] is such that
%) (f) =0, then f € A[t”""] and then use induction on d. The details
are left to the reader. O

3.1.5. PropPOSITION

(i) IfF is a Dg;';)s—module then F™t1FY is a sub Oy (m+1)-module of
Fmtlg,

(ii) If€ isa Dg;'gn Iy g-module then F™+1°¢ has zero p-m-curvature.

Proof. — Again, these are local questions. For the first assertion, we
have to show that if s is a section of ¥ and f is a section of O y(m+1) then
AEY((F™m+17(f)s) = 0 for k # 0. For the second one, we have to show that

if s is a section of F and f is a section of Ox, then prmﬂ) (fF™(s)) = 0.
Using the formula

a® (1) = ¥ {5102 2% 2 ),

both statements are easy consequences of Lemma 3.1.3 and Proposi-
tion 3.1.4. ]
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3.2. Cartier’s theorem for D™-modules.
We generalize Cartier’s theorem (see [K], 5.1) to Dg:';?g—modules.

Welet S, X and F: X — X' be as in section 3.1.

3.2.1. LEMMA. — Let t;,...,tq be local coordinates on X and
Pim Y (-t
E<pm+1

IfFis a ﬂ)gg/‘g-module with zero p-m-curvature, then P is a projector
from F onto F .

Proof. — We follow the first part of the proof of Proposition 5.1
in [K]. Since F has zero p-m-curvature, we have c’)zg’ )(s) =0 for j > p™*+L.

There should therefore be no confusion if we write 9! (s) = 0 for j such
that max(j;) > p™*+1. If s € F, we have

8 (P(s)) = 8 (Y (-p)k 8¥)(s))
- Z Z ali! ((—E)E) (_a_[i—i] Q[E])(s)

and, if j # 0, we have

mon(1) (13 - (1) D)o

Thus we see that P maps f into FV . Since P restricts to the identity on H'V,
it is a projector from J onto FV. O

3.2.2. ProprosITION. — Let F be a ‘Dg’;g-module with zero p-m-
curvature. Then the canonical map F™*+1" Fm+13V _, ¥ js an isomorphism.
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Proof. — We follow the end of the proof of Proposition 5.1 in [K].
The question is local on X and we may therefore assume that we have local
coordinates ti,...,t5. We have seen in Lemma 3.2.1 that P is a projector
from F onto FV . It follows that the map

T:§ — Frtl" pmtlgV
s— ) tk@ Polkl(s)

E<pm+1

is well defined. Let us show that T is a right inverse to the canonical map
U:FmHU"Fmtlgy L F If s € F, then

(U oT)(s) = Y tPIE)(s)
= Zik Z(_E)é a4 plkl(s)
=SSt (B T gk

= (Z(—l)g (Z))i dlil(s) =s.

We have seen that Fl"'*l(‘); = Ox(m+1 and it follows that U is a bijection
in the case ¥ = Ox. Hence, T is also a left inverse to U in this case, which
implies that for any f € Ox, we have T(f) = f ® 1. In general, we have for
feOxandsedFY,

(ToU)(f®s)=T(fs)=)_ tk® Palkl(fs)

= ZIE ® PoEl(f)s

= (X ttePa(n))(1es)

=T(H1®s)=(f®1)(1®s)=f®s. O
3 2 3. ProposITION. — Let € be a ‘Dg((znﬂ)/s -module, F = F™+1"¢

(as D X/ S-modu]e) and n: & — F™1F be the adjunction map. Then
(i) The map 7 induces a natural isomorphism & & FT"1FY of O x (m+1)-
modules.

(ii) In the situation of Lemma 3.2.1, the action of P on F™*+1F factors
through 7.

(iii) If F is a sub—DfX";g—moduIe of F, then the natural map
Fm+1" Fm+1lg _, F induces an isomorphism F™+1" (n~Y{(FmH15)) =~ F
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Proof. — We know from Proposition 3.1.5 (ii) that F has zero p-m-
curvature. It follows from Proposition 3.2.2 that

Fm+1"£ o Fm+1*Fm+13;V
and we use the faithful flatness of F' to obtain assertion (i).

In order to prove assertion (ii), we recall from Lemma 3.2.1 that the
image of P acting on ¥ is (contained in) FV. It therefore follows from (i)
that the action of P on F™*+1F factors through

n:& = Fmlgy , prtly,

Finally, for (iii), since F has zero p-m-curvature, so does . The
map 7 being functorial, it follows from (i) that it induces ¥V = Fm+1F so
that

F o pmtl" gV o pmtl” (U_I(F:nﬂy))- O

3.2.4. CoroLLARY (Cartier’s theorem). — The functors € — F™+1" ¢
and F — F,I”‘HS“V give an equivalence between the category of O x(m+1)-
modules and the category of Dg:,';?s,-modules with zero p-m-curvature. 0O

3.3. F™t+l_p.isogenies and Griffiths transversality.

We have built in section 2.3 a functor u that associates F™+!-p-
isogenies to some filtered D) -modules. We are now going to define a
functor o from F™*!-p-isogenies to filtered D(m)_modules that will allow
us to prove that p is fully faithful.

The setting is as in section 2.3: S is a p-torsion free formal scheme,
X is a smooth formal S-scheme, Fj is the relative Frobenius of Xy over Sy
and F: X — X' is a lifting of Fy. We also assume that there are local
coordinates ti,...,ts on X and X’ such that F*(¢;) = t£.

If : F™t1"¢ — F is an F™*lpisogeny on X/S, we consider the
filtration M on F™*+1"& given by

M*: = @7 (p"F)
and the filtration Fil on &€ given by
Fil* : = g~ Y{(Fm+iMF),
where 7: & — FM™+t1Fm+1"¢ i the adjunction map. We will write Fil for
the saturation of Fil with respect to (p, { }). This way, we get a functor

a:(®:F™ e - F) — (&, Fi)
with values in the category of filtered f)gg)s—modules transversal to (p, { })-
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3.3.1. LEMMmA. — If
E<pm+1

then there exists @, reducing to 1 mod p, such that
P(F™Y (5)) = F™H7(Q(s))

for any section s of a pim -module €.

x(m+1)/s

Proof. — From Lemma 2.3.1, we deduce that
QW (F™HY (5)) = 3o 0y 27 P (219)(s)) = P (Q(s))

where Qi : = Spla i t20!3) and we let

> (-1)kQy. O

E<pm+1

The following result is of technical nature and is needed in the next
proposition:

3.3.2. LEMMA. — Let ® : F™t1"€ — F be an F™*!-p-isogeny on
X/S and M, Fil and n as above. Then 1o : £ — Fg:+1Fm+1'eo is strictly
compatible with the induced filtrations (i.e. we have Fill = 5y (Fgnt ME)).

Proof. — We follow the proof of Theorem 2.2 of [O1]. The map is
clearly compatible with the induced filtrations and we are left with proving
the strictness. Let so € €y be such that no(so) € Fgut! ME. We want to
prove that there exists a lifting s € € of sg such that ®(n(s)) = p*s’. It is
clearly sufficient to show that for any 7 there exists a lifting s € € of s,
and u such that ®(n(s) + p‘u) = p*s’ and then take i = k. We prove this
by induction on 4, the case i = 1 being just our assumption.

So, let us assume that s € € is a lifting of sg such that

®(n(s) + p'u) = p*s'.

Since ® is a morphism of ) /) -modules, it commutes with the operator P
of the lemma. Using Lemma 3.3.1, we have

p*P(s) = P(p*s') = P(2(n(s) + p'w))
= ®(P(n(s)) + P(p'v)) = @(1(Q(s)) + p*P(u)).
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We have seen in Proposition 3.2.3 (ii) that the action of P on F(;”“'Eg
factors through ng : €9 — Fgr 1 Fi"+1" €. We can therefore write

P(u) = n(v) + pw.

It follows that

PEP(s') = 8(n(Q(s)) +p'n(v) + 9" w) = @(1(Q(s) + p'v) + " w).

It just remains to observe that Q(s) + pv is a lifting of sy since @ is the
identity mod p. O

3.3.3. PROPOSITION. — Let ® : F™*1"¢& — F be an F™*+1-p-isogeny
on X/8, and M and Fil as above. Then we have F™+1" Fil¥ = M*.

Proof. — We follow the proof of Lemma 5.2.11 in [02]. The modules
€ and F are p-torsion free and the filtrations Fil* and M* are transversal
to p. From this, we deduce that the commutative diagram

0 — FmHFib-l 2, P piF Bt RilE 0

| | !

0 —— M1 - MF — MF ——0

has exact rows. Hence, by induction, it is sufficient to prove that
F™+1" Filf = M} But we have seen in Proposition 3.2.3 (iii) that

F+Y (ng (Fo ME)) = Mg
and we know from Lemma 3.3.2 that ny 1 (F+! M}) = Filf. O

We will show in Proposition 5.2.5 that the filtration Fil in the
definition of « is not always Griffiths transversal when m > 0. Nevertheless,
for the functor yu of 2.3.5, we have the following:

3.3.4. THEOREM. — When restricted to the essential image of p, the
functor « is a quasi-inverse to p.

Proof. — Follows from Proposition 3.3.3. a

3.3.5. CoroLLARY. — The functor p is fully faithful. O
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4. TRANSVERSAL m-CRYSTALS

4.1. m-crystals.
We recall Berthelot’s theory of m-crystals from [B3].

Let (S,a,b) be a formal m-PD-scheme. If X is an S-scheme, we will
always assume that the m-PD-structure of S extends to X.

4.1.1. DerFINITION. — If X — Y is an m-PD-S-immersion of S-
schemes, we say that Y is an m-PD-S-thickening of X .

4.1.2. DEFINITION. — Let X be an S-scheme. The m-th crystalline
site of X/ is the category Cris(™ (X/S) of m-PD-S-thickenings U — Y
with U open in X, endowed with a suitable topology. As in the classical
case, the site Cris(™ (X/S) is functorial in X/8.

4.1.3. Remark. — There exists a unique sheaf Jg("/}s on Cris(™(X/8S)
whose value on (Y, I, J) is I{"}. We will write

Ox/sl =J§?/}S and JX/S: ng(l/}s

It is clear that (Cris(m) (X/8),0x/s, jﬁ?/}s) is a filtered ringed site.

4.1.4. DEFINITION. — Let X be an S-scheme. To any sheaf E on
Cris™(X/S) and any object Y of Cris™ (X/S), one associates in the
obvious way a sheaf Ey on Y. If E is an Ox;s-module, any morphism
¢ :Y' =Y of m-PD-thickenings gives a natural morphism o*Ey — Ey.
We call E an m-crystal if these maps are all bijective.

The proofs of the following statements are straightforward generali-
zations of those of the analogous results from [B1]. They should appear in
a forthcoming article of Berthelot as announced in [B4].

4.1.5. ProPosSITION. — If X — Y is a closed immersion of S-schemes
and E is an m-crystal on X, then i, FE is an m-crystalonY .

4.1.6. CorROLLARY. — If § = SpecOs/a and X = X xg S, then the
restriction functor Cris(™ (X/8) — Cris{™ (X/S) induces an equivalence
between the categories of m-crystals on X/S and on X/S.

4.1.7. PROPOSITION. — Let ¢ : X — Y be a closed immersion
of S-schemes with Y smooth. Then the functor E — Ey := (i4E)y is
an equivalence of categories between m-crystals on X and locally quasi-
nilpotent Px/s(m) (Y)-Dg;%-modules.
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4.1.8. ProOPOSITION. — Let X be a smooth formal S-scheme and
let X,, denote its reduction mod p™*!. The functor

E+— Ex :———li—n_lEX"

is an equivalence of categories between m-crystals on X, and locally
topologicall i-nil lete D)
pologically quasi-nilpotent complete D’ /s modules.

4.2. T-m-Crystals.

We define T-m-crystals and relate them to differential modules. Note
that we call T-m-crystals what Ogus would call proto-T-m-crystals.

Let S be a formal m-PD-scheme.

4.2.1. ProOPOSITION AND DEFINITION. — Let f : (U',Y') — (U,Y) be
a morphism of m-PD-S-thickenings such that U’ — U is flat and (¥, Fil) a
T-module on (Y, Oy,3™}). Then Tf*(F,Fil) := (f*F, Fil}) is a T-module
called the T-inverse image of (¥, Fil).

Proof. — This follows from Proposition 1.1.7 (ii) and Proposi-
tion 1.1.8. O

4.2.2. DEFINITION. — Let X be an S-scheme. If E is any T-module on
Cris(X/S)(™) and Y any object of Cris(X/S)(™), then Ey is in a natural
way a T-module. If f : Y’ — Y is a morphism in Cris(X/S)(™), then there
is a natural morphism of filtered modules Tf*Ey — Ey:. We call E a
T-m-crystal if these maps are all isomorphisms of filtered modules (i.e. such
that Filk = Fil*).

The category of T-m-crystals is functorial with respect to flat
morphisms: if ¢: X’ — X is a flat morphism and E a T-m-crystal on
X/S, then

Te*(E,Fil): = (¢"E, FTIIZ;)
is a T-m-crystal.

4.2.3. Example. — The trivial T-m-crystal is (O X/S,Jgf/}s) whose
value at X is the trivial filtered module Ox = Fil° D Fil! = 0.

The following generalize Proposition 3.2.2 and Theorem 3.2.3 of [02]:
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4.2.4. ProprosITION. — Ifi : X — Y is a closed immersion into a
smooth S-scheme and E a T-m-crystal on X/S, then

ix(B, Fil) := (i, E, i, Fil)
is a T-m-crystal which is transversal to (ixJx/s,{ })-
Proof. — Same proof as [02], 3.2.2. O

4.2.5. PROPOSITION. — Let i : X — Y be a closed S-immersion
into a smooth S-scheme. Then the functor E — FEy is an equivalence
of categories between T-m-crystals on X and Griffiths transversal locally
quasi-nilpotent Px;g(m) (Y)—Dg:';‘)g—modules which are transversal to the
m-PD-filtration of Px/g(m)(Y).

Proof. — Let p1,p2: Px(Y?) — Px(Y) be the projections. If E is a
T-m-~crystal, we have an isomorphism of filtered modules

E:Tp;Ey = Eyz & TpIEy s

which means that the HPD-stratification ¢ : p5F = p}J is transversal and
therefore, by Proposition 2.2.6, that Ey is Griffiths transversal.

Conversely, let F be a Griffiths transversal locally quasi-nilpotent
Px/s(m) (Y)—Dg,r'/")s.—module which is transversal to the m-PD-filtration
of Px/s(m)(Y). There exists, by Proposition 4.1.7, a unique m-crystal E
such that EFy = F. Let X — T be an m-PD-thickening. Since Y is smooth,
i extends locally on T to a map f:7 — Y which in turn extends to an
m-PD-morphism g:T — Px(Y). We then set

Fil* Er = Filf,

so that (Er,Fil) = Tg*(F,Fil). If this is well defined, it is clear that we
obtain a quasi-inverse to our functor. It is actually sufficient to check that
the HPD-stratification ¢ : p5F — p}J is transversal. But this follows again

from Proposition 2.2.6. ]

4.2.6. CorROLLARY. — Let X be a smooth formal S-scheme. Then
the functor E — Ex is an equivalence of categories between T-m-crystals
on Xo/S and locally topologically quasi-nilpotent Griffiths transversal
complete @E,?/L)S—modules transversal to (p,{ }). O
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4.3. T-m-~crystals and F-m-spans.
We define F-m-spans and use them to describe T-m-crystals.

Let S be a formal m-PD-scheme, X a smooth Sp-scheme, and
F: X — X' the relative Frobenius of X over Sp.

4.3.1. DeFINITION. — If (E, Fil) is a filtered m-crystal where the Fil®
are not merely sub modules but sub m-crystals, then we say that (E, Fil) is
horizontal.

Note that a horizontal filtered m-crystal is not a T-m-~crystal. Let us
describe the saturation process:

4.3.2. PROPOSITION

(i) Any horizontal filtered m-crystal (E,Fil) on X/S that is almost
transversal to (p,{ }) is almost transversal to (Jx;s,{ }). In particular,
(E,Fil) is a T-m-crystal.

(ii) The functor (E,Fil) — (E,Fil) from the category of horizontal
filtered m-crystals on X/S that are transversal to (p,{ }), to the category
of T-m-crystals is fully faithful.

Proof.

(i) Let X — T be an m-PD-immersion and I the ideal of X in T.
We have to show that (Er,Fil) is almost transversal to (I,{ }). This
question is local on T'. The scheme X being smooth over Sy, it locally lifts
to a smooth formal scheme Y over S. Since Y is smooth and X — T is
nilpotent, there exists, locally on T', a map ¢:T — Y that induces the
identity on X. The m-PD-structure on 7' is compatible with (p, { }), so that
the map ¢ is an m-PD-morphism. Since (Ey, Fil) is almost transversal to
(p,{ }), it follows from Proposition 1.1.8 that (Er, Fil) is almost transversal
to (I,{ }). Applying Proposition 1.1.7 (ii), we get the last assertion.

(ii) We have to show that Fil* determines Fil*. This is a local question
on X. The scheme X being smooth over Sy, it locally lifts to a smooth
formal scheme Y over S. Since (Ey, Fil) is saturated with respect to (p, { }),
we have Fil*Ey = Fil* Ey. It follows from Corollary 4.2.6 that Fil* E is
determined by Fil® Ey and hence by FilFE. O

4.3.3. DeFINITION. — If (E, Fil) is in the image of this last functor,
we call it a horizontal T-m-crystal.

We are now able to globalize the local results of parts 2 and 3:
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4.3.4. ProposiTioN. — If (E,Fil) is a T-m-crystal on X(™m+1) /S,
then TF™1" (E, Fil) is a horizontal T-m-crystal.

Proof. — This follows from Proposition 2.3.2 and Proposition 4.3.2 (i).
O

4.3.5. DEFINITION. — An F-m-span is a p-isogeny ® : F™*1"E — E’
of m-crystals.

4.3.6. THEOREM. — Assume S has no p-torsion. Let (E,Fil) be a
p-torsion free T-m-crystal on X(™+1) /S of width less than p™+!. Then
there exists a unique F-m-span ® : F™*1"E — E’' of width less than
p™t1 such that the saturations of F™t1" Fil* and ®~1(p*E’) with respect
to (Jx;s,{ }) coincide. This construction is functorial in (E,Fil) and the
functor is fully faithful.

Proof. — Follows from Theorem 2.3.3, Proposition 4.3.2 (ii) and
Corollary 3.3.5. 0

5. COMPARISON OF TRANSVERSALITY PROPERTIES
FOR VARIOUS LEVELS

From now on, m’ will be an integer larger than m and { }’ will denote
divided powers of level m’. We will also write d: = m/ — m.

5.1. Changing level and Griffiths transversality.

After recalling how to obtain a D™-module from a D(m’)—module,
we show that, for filtered D) _modules transversal to p of width at
most p™*!, Griffiths transversality can be checked on the corresponding
filtered D™-module. We give a counterexample for higher width.

5.1.1. — We recall some results from [B4].

(i) If Y is a formal scheme and I is a coherent ideal in Oy, then any
m-PD-structure (J,[ ]) on I is also an m/-PD-structure on I. If (S, a,b)
is a formal m-PD-scheme and (Y, 1,J) is a formal m-PD-S-scheme, then
it is also a formal m/-PD-S-scheme. We should also remark that the
m/-PD-filtration is finer than the m-PD-filtration.

(ii) Let S be a formal m-PD-scheme, X a formal S-scheme to which
the m-PD-structure of S extends and ¢ : X — Y an immersion into a formal



94 BERNARD LE STUM AND ADOLFO QUIROS

S-scheme, then there are canonical maps P} /S(m,)(Y) — P% /S(m)(Y).
They are bijective for n < p™+1,

(iii) Assume now that X is smooth over S. Then we get canonical
maps

(m) (m”)
DX/S - DX/sn

that are buectlve for n < pmti, They glue to give canonical maps

‘DE,?/%. — D( X/$ and, after completion, Dl X /s — @g( / 52 We can therefore
cons1der any ‘D( X/s —module (resp. D X /S—module) as a D X /?S.-module

(resp. D X /?g-module)

(iv) Assume moreover that S has no p-torsion. Then one easily checks

that the obvious functor from D( X/$ —modules to D /) -modules is faithful.
It is even fully faithful when restricted to p-torsion free objects.

Let S be a formal m-PD-scheme and X a smooth formal S-scheme to
which the m—PD-structure of S extends. If (F, Fil) is a Griffiths transversal

Dg:,'/l;—module (resp. D X /S-module), then it is also Griffiths transversal
as a DEX /?g-module (resp. Dg( /?s.-module).

The converse is true under some additional hypothesis:

5.1.2. ProprosiTioN. — Let (¥,Fil) be a filtered o™ X/$

that is Griffiths transversal as a ﬂ)g( /g—module and

-module of
width at most p™*!

transversal to p. Then it is also Griffiths transversal as a D! X/ S—modu]e

Proof. — We have to show that, if P € D( X/ s) is an m/-PD-differential

operator of order at most n, then P(Fil¥) c Fil*~™. Thanks to 5.1.1 (iii),
we may assume that n > p™*!. We proceed by induction on k.

o If k < p™*t1, then Fil*~™ = F and our assertion is trivial.

o If k > p™*1, transversality to p and the condition on the width give
us that Fil¥ = pFil*~1. It follows that

P(Fil¥) = pP(Fil*~1) c pFil* 17" c FilF ", O

The bound on the width is sharp as the following shows:



TRANSVERSAL CRYSTALS OF FINITE LEVEL 95

5.1.3. Example. — We take X to be the affine line over S and we
consider (F,Fil) where ¥ = Ox and Fil is defined as follows:

o for 0 < k < p™*!, Fil® is the ideal generated by the elements p*~iti
for0<i<k;

o for k > p™*1, Fil® is the ideal generated by the elements pF—t for
0 < i < pm+! — 1, together with pt—P" " —1p™ "'

It is clear that (F,Fil) is a filtered Dg}'}g-module of width p™*1! + 1.

It is transversal to p because, for k < p™*t1, both (p) NFil* and pFil*~! ar
generated 1 by the elements pk ‘i for 0 < i < k— 1, together with pt" whlle
(p)N Fil’"" *!and pFil’"  are genera.ted by the elements p?" T1-igi for
0 < i < p™tl — 1, together with pt?"

To show that (F,Fil) is Griffiths transversal as a pim

X/ S-module, let us
remark that

sgpeey - { O it <
0 otherwise.
It follows that 8)(Fil*) ¢ Fil* " when 0 < k < p™*+!. Moreover,
when 7 < p™, we have (”m:l) € (p) and therefore
A (FiP™ Y  pFiP” T c FpT T LT
Nevertheless, (¥, Fil) is not Griffiths transversal as a Dg;'; g—module because
2™ e FiIr™ T H pug 9P (™) = 1 ¢ Fill

m+41

5.2. Frobenius descent and F™t1-p-isogenies.

We are going to apply Berthelot’s theory of Frobenius descent to
F™+1_pisogenies and use it to study the question of the surjectivity of the
functor p of 2.3.5.

Let S be a formal m-PD-scheme and X a smooth formal S-scheme to
which the m-PD-structure of S extends. Let Fy be the relative Frobenius
of X over Sp and F: X — X' a lifting of Fy. We briefly recall Berthelot’s
unpublished theory of Frobenius descent.

5.2.1. PROPOSITION (see [B5]). — The morphism
FixgFi: X xg X — X@ x5 X@
induces for all n, a unique morphism
d .
F: Px/s(mny — PX@ s(m)

compatible with the PD-structures (taking into account the PD-ideal of S).
It is also compatible with the partial divided power filtrations.
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It follows that, if € is a D™)

X@/s
structure of Dg( / S)-module.

-module, then F¢'(€) has a natural

5.2.2. THEOREM (see [B5]). — If S is a scheme, the functor& — FE(E)
induces an equivalence between the categories of D™ -modules and

x@Vs
Dg( / Sz-modules.

It follows that the functor & — F¥(&) induces an equivalence between

the category of complete pim x(d> / g-modules and the category of complete
DI

X/ ;-modules From Proposition 1.2.2, we get an equivalence between the

category of p-isogenies of complete D™ -modules and the category of

xwvs
p-isogenies of complete D X/ S-modules. Thus, we get:

5.2.3. COROLLARY. — The functor F¥ makes the full subcategory
of F™+1_p-isogenies on X(9) /S consisting of those ® : F™t1" & — F where
EisaD
on X/S.

X(,,zl +1); S—module equivalent to the category of Fm'“—p-isogem'es

5.2.4. LEMMA. — Let (5, Fil) be a filtered Dg:.%—modu]e of width less
than p™*! that is transversal to p and Fil the saturation of Fil with respect
to (p,{ }). Then (F,Fil) is Griffiths transversal if and only if (F,Fil) is

Griffiths transversal.

Proof. — The filtrations are identical up to order (p™*! — 1) and, for
any k > 0, we have

FilP™" -1+ = pFRP™ 1 and BRI = () FPTY L g

Assume now that S is a p-torsion free formal PD-scheme and that
there are local coordinates t1,...,tq on X and X’ such that F*(¢;) = tF.

5.2.5. ProprosITION. — The functor y of 2.3.5 is not in general an
equivalence of categories for m > 0. However, it becomes an equivalence
when restricted to objects of width at most p.

Proof. — Let ®: F™t1"¢ — F be an F™t1-p-isogeny on X/S of
width less than p™*t!. By Corollary 5.2.3, it corresponds to a unique F-
p-isogeny ®°: F*€ — F on X(™)/S. We have shown in section 3.3 how
to associate to ®° a filtration Fil on € that is transversal to p. Thanks to
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Proposition 3.3.3 and [02], 5.2.12, the filtered module (€, Fil) is Griffiths
transversal as a '55?3,,, +1) /S-module. It follows from Lemma 5.2.4 and
Proposition 3.3.3 that ® will be in the essential image of y if and only if
(&,Fil) is Griffiths transversal as a @g?:?n Iy g-module. If the width is at
most p this is always the case by Proposition 5.1.2, while Example 5.1.3

shows that this needs not happen for higher width. O

5.2.6. Example. — For m > 0, we can give an explicit F™t1-p-
isogeny of width less than p™*! on the formal affine line X which is not
in the essential image of yu. We take € = Ox(m+1) and we let F be the
ideal of Ox generated by the elements pP+1=it®™"" for 0 < i < p— 1,
together with ™ Tt is a sub D™)-module of O x and we let the p-isogeny
®: F™t1"¢ 5 F be multiplication by pPt1. If we apply the functor o to
this F™+1-p-isogeny, we get the saturation of the following filtration:

e for 0 < k < p, Fil* is the ideal generated by the elements p*~it?
for0<i<k;

o for k > p, Fil* is the ideal generated by the elements p*~it¢ for
0 <1i < p—1, together with pF—P~1¢P,

It is not Griffiths transversal because t? € FilP*! but dlP!(t?) = 1 is
not in Fil' and we can use Lemma 5.2.4. O

5.2.7. Remark. — Let ®:F*€ — F and ®': F*F — G be two F-
p-isogenies of width less than p. From [02], 5.2.13, or Proposition 5.2.5,
they are in the essential image of the fuctor u for level 0. Assume that &
and G are D(M)-modules and that &' o F* (®): F’€ — G is a morphism of
D.modules. Then it is an F?-p-isogeny of width less than (2p — 1), and
one may wonder if it is in the essential image of u. One can show that this
is true if p = 2, but if p > 2 the answer is no in general as the following
example on the formal affine line shows:

We take &€ = O, we let F be the ideal of O generated by p?, pt?
and 27, and G be the ideal of O generated by the elements pP*+1=tiP’
with 0 < 7 < p — 1, together with t*°. The p-isogenies ® and @' are
multiplication by p? and pP~!, respectively. The composition of F*(®)
and ® is Example 5.2.6 in the case m = 1. O

5.3. Changing level for T-m-crystals and F-m-spans.

We study the behavior of the functors relating T-m-crystals and
F-m-spans when the level changes and derive some consequences.
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5.3.1. LEMMA. — The functor «saturation with respect to (p,{ })»
from the category of filtered modules transversal to (p,{ }') to the category
of filtered modules transversal to (p,{ }) gives an equivalence of categories
when restricted to objects of width less than p™+1!,

Proof. — This is an immediate consequence of Proposition 1.2.5. 0O

Let (S,a,b) be a formal m-PD-scheme. If X is an S-scheme, it
follows from 5.1.1 (i) that Cris™ (X/S) is a subsite of Cris(™)(X/S). By
restriction, any sheaf on Cris(ml)(X /S) defines a sheaf on Cris(™ (X /Sg
The m/-PD-filtration restricts to a filtration on the structural sheaf Og?; S
of Cris(™ (X/S) that is finer than the m-PD-filtration.

Using restriction and then saturation with respect to the m-PD-
filtration, any T-module E on Cris(X/S)(™) defines a T-module on
Cris(X/S)(™). 1t is clear that this process is functorial and that, when
applied to T-m/'-crystals, it produces T-m-crystals.

Assume from now on that S has no p-torsion and that X is a smooth
So-scheme.

5.3.2. ProposiTioN. — Consider the functor that associates a T-
m-crystal to a T-m/-crystal. Restricted to p-torsion free T-m/'-crystals of
width less than p™*!, it is fully faithful and its essential image is the full
subcategory of p-torsion free T-m-crystals of width less than p™*! whose
underlying crystal is the restriction of an m’-crystal.

Proof. — This is a local question and all our constructions are
functorial. Using Corollary 4.2.6 and Lemma 5.3.1, the first assertion is a
consequence of 5.1.1 (iv) and the second follows from Proposition 5.1.2. 0O

Let F: X — X'’ be the relative Frobenius of X over Sp. We will
write (X/ S)g’:s) for the crystalline topos of level m. In [B3] Berthelot shows
that the morphism of crystalline topoi of level m induced by,Fd factors
canonically through the restriction map (X/S)™ — (X/S)™) to give a
morphism

P (X/9)) — (XD/8)G).
Under the equivalence of Corollary 4.1.8, this construction is compatible
with that of Proposition 5.2.1.
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5.3.3. ProPoSITION. — The functor F%" makes the full subcategory
of F-m-spans on X9 /S consisting of those ® : F™"t1"E — E’ where E
is an m/-crystal on X(™'+1) /S equivalent to the category of F-m’-spans
on X/S.

Proof. — This is a again a local question. Using Corollary 4.2.6, the
assertion reduces to Proposition 5.2.3. O

5.3.4. Remark. — When restricted to objects of width less than

m+1 we have commutative diagrams:

p

p-torsion free
T-m/-crystals ———— F-m/-spans on X/S
on X(m'+1) /g

[

p-torsion free
T-m-crystals ———— F-m-spans on X9 /S
on XM+ /g

where the horizontal arrows come from Theorem 4.3.6 and the vertical ones
from Proposition 5.3.2 and Proposition 5.3.3; and, when S is a PD-scheme:

p-torsion free
T-m-crystals ————— F-m-spans on X/S
on XM+ /g

p-torsion free
_0- _0- (m)
Z"RO Xc(rrgitgl)ss «——— F-0-spans on X(™) /S

where the top arrow comes from Theorem 4.3.6, the bottom one from
Theorem 5.2.13 of [02] and the vertical ones from Proposition 5.3.2 and
Proposition 5.3.3.

5.3.5. ProposiTiION. — The construction of 4.3.6 does not give an
equivalence of categories in general. However, if S is a PD-scheme, it
becomes an equivalence when restricted to objects of width at most p.

Proof. — Follows from Corollary 4.2.6 and Proposition 5.2.5. O
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