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INDEX AND DYNAMICS OF QUANTIZED
CONTACT TRANSFORMATIONS

by Steven ZELDITCH(*)

1. INTRODUCTION

The problem of quantizing symplectic maps and of analyzing the dy-
namics of the quantum system is a very basic one in mathematical physics,
and has been studied extensively, by both mathematicians and physicists,
from many different points of view. The present article is concerned with
one such quantization method, that of Toeplitz quantization, and with the
semiclassical viewpoint towards the ergodicity and mixing properties of the
quantized maps, as examples of quantized Gelfand-Naimark-Segal systems
in the sense of [Zl]. We will describe a method of quantizing contact trans-
formations of a contact manifold (X, a) with periodic contact flow as uni-
tary operators on an associated Hardy space ft^X), and prove a number
of results on the index and dynamics of the quantized contact transforma-
tions. The method, essentially a unitarized version of Boutet de MonvePs
Toeplitz quantization [B] [BG], is closely related to the geometric quantiza-
tion of symplectic maps on Kahler manifolds and produces new examples of
quantized GNS systems. The quantum ergodicity theorems follow in part
from the general results of [Zl], but also include some sharper ergodicity
and mixing theorems analogous to those of [Z2], [Z3] in the case of wave
groups.

To illustrate the method and ergodicity results we will also study
in detail the Toeplitz quantization of symplectic torus automorphisms
^cat maps5) (§5), undoubtedly the most popular of maps to undergo
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quantization- see [AdTW] [BNS] [HB] [BdB] [d'EGI] [KP] [K] [Ke] [We]
for just a few among the many treatments. As the reader is surely aware,
quantization is not a uniquely defined process and it is not a priori clear how
the plethora of quantizations defined in these articles are related to each
other or to the quantization presented here. In fact, although it is not quite
obvious, all but that of [BNS] are equivalent to the Toeplitz quantization
studied here. We will describe the relations between them more precisely
at the end of the introduction.

What is more, it will be proved in §5 that the Toeplitz quantization
of 6'L(2,Z) reproduces what must be the quantization of most ancient
vintage—-namely, the Hermite-Jacobi action of 5'L(2, Z) (or more precisely
its theta-subgroup SLe(2, Z)) on spaces QN oftheta functions of any degree
N (cf. [Herm], [Kloo] or, for a modern treatment, [K] [KP]). We construct
this action by lifting g E SLe (2, Z) to a contact transformation \g of
N^/N^ the quotient of the Heisenberg group by its integral subgroup,
and compressing the latter to the spaces ©^. This connection develops the
long chain of links between theta functions and harmonic analysis on the
Heisenberg group (e.g. [A] [M]), and is perhaps of independent interest.
For one thing, it gives a framework for analysing asymptotic properties
of theta functions in the semi-classical (large N) limit. It may also be
used, together with the explicit formula of the Cauchy-Szego kernel on the
Heisenberg group, to give a Selberg-type trace formula for the trace of an
element g € 57^ (2, Z) acting on the space of theta functions of degree N
(§6).

It should also be mentioned that the quantization of 6'Z^(2,Z)
as unitary operators Ug^N on QN is just a concrete realization of the
metaplectic representation of the finite metaplectic group Mp(2,Z/7V).
That is, the Toeplitz-quantization of an element g e 57^(2, Z) is equivalent
to reducing it mod TV, and then applying the metaplectic representation
IJLN of SL(2^/N). Hence the trace formula alluded to above is giving the
characters of the finite metaplectic representations. We further mention
that when N = pk is a, power of a prime, Ug^N may be described in terms
of the metaplectic representation over the field ofp-adic numbers, indeed as
the quantization of g viewed as a symplectic map on the p-adic torus. We
will not develop this point of view here, but we hope it may help clarify the
number-theoretic aspects of the spectral theory of Ug^N (cf. [Ke] [d'EGI]).

Although our main aim in this article is to discuss the quantum
dynamics of Toeplitz-quantized maps, we would also like to mention
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an interesting index problem associated to them. Namely, the Toeplitz-
quantization of a symplectic or contact map \ will be an operator U-^
which is unitary modulo finite rank operators. It therefore has an index,
which depends only on \ and on the principal symbol of U^. The problem
of calculating this index ind(^) was raised in [Wei] in the closely related
context of Fourier Integral operators but it does not seem to have been
calculated before in any example. Hence it may be of interest to observe that
the index ind(^^) of g G 5L(2, Z) is always zero, as follows the unitarity of
the Hermite-Jacobi 'transformation laws'. This vanishing of the index has
a very simple alternative explanation, so it is not clear how generally to
expect the index to vanish (see the Remarks at the end of §5).

This article will presume a degree of familiarity with the machinery
of Toeplitz operators as presented in the book of Boutet de Monvel and
Guillemin [BG]. This machinery involves some language and ideas from
symplectic geometry, microlocal analysis, several complex variables, CR
functions and from the representation theory of the Heisenberg and meta-
plectic groups. We hope that the explicit calculations of symbols, quantiza-
tions, traces and so on in the case of the symplectic torus automorphisms
will provide elementary examples of how this machinery works, in a form
accessible to those studying quantum maps from other points of view. In
an obvious sense, which should be clearer by the end of §5-6, the cat maps
are among the basic linear models for the general theory.

We will also assume some familiarity with quantum dynamics, espe-
cially from the semi-classical viewpoint. This is actually a rather broad
assumption, since there are many different approaches to quantum dynam-
ics. With the aim of clarifying the relation between our set-up, methods
and results with those of other articles on the dynamics of quantum maps,
we end this introduction with a rapid comparison to the works cited above.

0.1. Comparison to prior articles.

First, let us compare quantization methods. Besides the Toeplitz
method of quantizing a symplectic map on a compact symplectic manifold,
which requires the map to lift as a contact map of the 'prequantum
circle bundle5, the only general method is that of geometric quantization.
Traditionally, this is a method only of quantizing symplectic manifolds
and observables; but in the last few years it has been extended to include
a variety of symplectic maps. In particular, motivated by the needs of
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topological field theory, there are many articles using the method of Kahler
quantization to quantize elements of SL(2^Z). By Kahler quantization we
mean geometric quantization on a Kahler manifold in the presence of a
complex polarization. This is the method used in [AdPW] [We], among
many other places, and discussed in the book of Atiyah [At]. As in the
Toeplitz construction, the symplectic torus automorphisms are quantized as
translation operators on theta functions. However, such translations change
the complex structure and so do not preserve a fixed space of holomorphic
theta functions. In the language of geometric quantization, one has to
define a BKS (Blattner-Kostant-Sternberg) pairing between the different
complex polarizations to return to the original space. It is at this point
that the Toeplitz and Kahler methods differ: In the Toeplitz method, one
uses orthogonal projection back to the original space (times a normalizing
factor) while in the Kahler method, one uses a parallel translation along
the moduli space of complex structures on the torus. In the case of torus
automorphisms, both methods produce the classical transformation laws
for theta functions (as was pointed out by Weitsman in the Kahler case
(loc.cit.)). Hence the Toeplitz and Kahler methods are equivalent in this
case. They are surely equivalent in much greater generality, but to the
author's knowledge this has never been studied systematically.

The other quantizations of the cat maps [HB] [Kea] [dEGI] [dBB]
[BNS] are based (implicitly or explicitly) on the special representation
theory of the Heisenberg and metaplectic groups. This is also true in
the many physics articles on other quantum maps such as kicked rotors
and tops. It is the author's impression that the methods of geometric and
Kahler quantization are seldom used in the semi-classical physics literature,
wherein quantization seems to be equated with canonical quantization (i.e.
with representation theory of the Heisenberg group). It may therefore be
useful to point out that the Toeplitz method gives equivalent quantizations
to 'WeyP or 'canonical quantization', not only for the cat maps but also
for all other symplectic maps mentioned above.

Now let us turn to the comparison of dynamical notions such as
ergodicity, mixing, K and so on.

These notions are often left undefined in the semi-classical literature,
since the main problem there is to determine the impact of dynamical
properties of the classical limit on the spectral data of the quantum system.
However, one can also introduce intrinsic notions of quantum ergodicity,
mixing, complete integrability (and so on) which capture the behaviour of
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quantizations of classically ergodic (etc.) systems. The definitions used in
this paper are of this kind; they are based on [Zl], [Z2] (see also [Su]) and
will be reviewed in §2.

In contrast, there are the definitions of ergodicity, mixing (etc.) in
the theory of (7*- or W^-dynamical systems. These are more analogous to
the classical notions and are applied to open or infinite quantum systems.
In this framework, a quantum dynamical system is defined by a C* or
W* algebra A of observables, together with an action a : G —>• Aut(A)
of a group G by automorphisms of A. The system (A, G, a) is generally
covariantly represented on a Hilbert space 7Y, so that dg{A) = U*AUg
of v4, with Ug a unitary representation of G on T~i. Dynamical notions
are non-commutative analogues, often at the von-Neumann algebra (W^*-)
level, of the usual notions for abelian systems. In particular, the spectra
of mixing systems must be continuous. For some recent references in the
mathematical physics literature, see [B] [JP] [Th].

As mentioned above, our interest is in the semi-classical aspects of
quantum dynamics: The quantum systems studied in this paper will have
discrete spectra and the ergodicity and mixing properties will be reflected
(by definition) in the asymptotics of the eigenfunctions and the eigenvalues.
To clarify the relation between this point of view and that of the C*-
dynamical point of view, we will also state definitions in terms of the
relevant C* algebras and their automorphism groups. It is hoped that this
approach will also clarify the nature of the dynamical properties at issue
in the semi-classical literature.

Let us contrast the two kinds of dynamical notions in the example of
the cat maps, using the articles [B] [BNS] [NT1] [NT2] [Th] to represent
the C* and W* approach. In these artricles, the cat maps are quantized
as automorphisms of the rotation algebras M.Q (the non-commutative
torus), and have precisely one invariant state. The GNS representation with
respect to this state determines a covariant representation of this system
by translations by the classical cat map on functions on the torus. In their
words, this gives a "radically different" quantization from the semi-classical
one, in that the quantized cat maps have the same multiple Lesbesgue
spectrum, hence the same mixing properties, as the classical maps.

The relation of this to the Toeplitz (or other semi-classical) quantiza-
tions is as follows: first, in the semi-classical quantizations, the Planck con-
stant 0 varies only over the rational values —, corresponding to the space
QN oftheta functions of degree N. The finite Heisenberg group Heis (Z/W)
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acts irreducibly on this space and its group algebra C[Heis(Z/W)] defines
the relevant C* algebra. This algebra is not the rotation algebra .Mj. but
is rather the quotient M.J./ZN by its center ZN. The elements of SL(2, Z)
define automorphisms of M._ which (under a parity assumption) preserve
the center. Hence they also define automorphisms of the quotient alge-
bra. The quotient automorphisms are the ones studied in the semi-classical
literature. Unlike the automorphisms of the full rotation algebras, the quo-
tient ones have discrete spectra and many invariant states, and hence are
not ergodic in the C* sense. However, they are quantum ergodic in the
semi-classical sense whenever the classical cat map is ergodic. Finally, we
note that the quantized cap map systems in the sense of [BNS] are also
quantized GNS systems in the sense of [Zl], and are trivially quantum er-
godic because the only invariant state is the unique fractal state. Hence
they do not have distinct classical limits in the sense of this paper. The
quantizations in [B] [BNS] [NT1], [NT2] appear essentially as classical dy-
namical systems, albeit involving non-commutative algebras. See §5 for a
more complete discussion.

The organization of this article is as follows:

0. Introduction
1. Statement of results
2. Background
3. Symplectic spinors and proof of the unitarization lemma
4. Quantum ergodicity and mixing: Proof of Theorems A,B,C
5. Quantized symplectic torus automorphisms:

Proof of Theorem D
6. Trace formulae for quantized toral automorphisms.

Acknowledgements. Conversations with A. Uribe on Toeplitz oper-
ators, with A. Weinstein on the index of a contact transformation, and
with J. Weitsman on Kahler quantization and theta-functions are grate-
fully acknowledged. We have also profited from an unpublished article of
V. Guillemin [G2], which discusses the trace formula in Theorem E for
elliptic elements.
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1. STATEMENTS OF RESULTS

In this article, the terms quantum ergodicity and quantum mixing
refer to the properties of quantized abelian systems defined in [Zl], [Z2].
They will be briefly reviewed in §2.

We will be concentrating on one kind of example of such quantized
abelian systems. The setting will consist of a compact contact manifold
(X,a) with an periodic contact flow ^t, together with a contact transfor-
mation

X - - X - . X x*(^)=^ X'^^^'X

commuting with 0*. The S1 action defined by (^ will be assumed elliptic, so
that its isotypic spaces are finite dimensional. The map x wu! be quantized
as a Toeplitz- Fourier Integral operator

U^'.Hi(X)^HiW

acting on a Hilbert space H^(X) of generalized CR functions on X
called the Hardy space. The motivating example is where the symplectic
quotient (0,0;) is a Kahler manifold and where (X,a) is the principal
[/(l)-bundle (with connection) associated to the pre-quantum line bundle
(with connection) (L,V) —»• 0 such that curv(V) = uj. Relative to the
given complex structure J, the quantum Hilbert spaces are the spaces Ti^
of holomorphic sections of I/^, which are canonically isomorphic to the
spaces H^{N) of £7(1)- equivariant CR functions on X, in the CR structure
induced by J. For precise definitions and references, see §2-3.

We first give some general results on the spectrum and on the quan-
tum ergodicity and mixing properties of quantized contact transformations.
The quantization U^ and the orthogonal projection Hs on H^ will be con-
structed so that they commute with the operator Wf of translation by
<^; under this [/(l)-action, H^ breaks up into finite dimensional "weight"
spaces Hj^{N) of dimensions (IN and U^ breaks up into rank (IN unitary
operators U^N- Hence the quantum system decomposes into finite dimen-
sional systems. Prom the semi-classical point of view, the focus is on the
eigenvalue problems:

f U^Nj = C^^Nj {4>N3 € ^E(AQ) 1

[ (<^Vz, <f>Mj >= S M N ^ Z J . }
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We will prove the following statements about the eigenvalues and
eigenfunctions in §4. The first is a rather basic and familiar kind of
eigenvalue distribution theorem, which will be stated more precisely in §4.

THEOREM A. — With the above notation and assumptions: The
spectrum cr(U^) is a pure point spectrum. The following dichotomy holds:

(i) aperiodic case. If the set of periodic points of' \ on the symplectic
quotient 0 has measure zero (w.r.t. /^), then as N —> oo, the eigenvalues
{e101^3} become uniformly distributed on S1;

(ii) periodic case. If ^p = id for some p > 0 then there exists a \-
invariant Toeplitz structure IIs so that o'(U-^) is contained in the pth roots
of unity.

Here, p, is the symplectic volume measure of {O^uj).

Next comes a series of general results on the quantum dynamics of
Toeplitz systems. The rationale for viewing them as quantum ergodicity
and mixing theorems will be reviewed in §2 (see also [Zl] [Z2] for extended
discussions).

THEOREM B. — With the same notation and assumptions: Suppose
that (<^,;<) defines an ergodic action of G = S1 x Z on (X,a A (da)11"1),
and let (0, uj) denote the symplectic quotient. Then the quantized action
(Wt, U^a) of G has the following properties: for any a € C°°(0)

. dN
(£P) lim — ̂  |(<T^, (f>Nj) - /^r)|2 = 0.

N—»-oo ON z-^

(£P\) (Ve)(^) limsup 1 ]T |(a^, ̂ )|2 < e.
N-^oo dN L^.

\ei0Ni-eieNj\<6

Here, /2(cr) = f^ adp, is the average ofcr on (0, dp.)
P'\U)

COROLLARY B. — For each N there is a subset JN C {1 , . . . , d^}
such that:

(a) lim ̂  = 1;
N—»-oo (1^

(b) w- lim \(/)NJ [2 = 1 on the quotient 0 := X/S1. Here, w-lim is
N—>oo,jeJN

the weak* limit on C{0).
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THEOREM C. — With the notations and assumptions of Theorem B:
If the action is also weak-mixing, then in addition to fP, £P\, we have, for
anyaeC°°(0),

(.MP)(Vr € R) (Ve)(3<$) limsup — V |(^z, ̂ Nj)|2 < e.
N—^oo ^N ^j,

^Ni-e^NJ-eiT^g

The restriction i -^ j is of course redundant unless r = 0, in which
case the statement coincides with £P\. For background on these mixing
properties see §2 and [Z2], [Z3].

The third series of results concerns the special case of quantized
symplectic torus automorphisms, or quantum 'cat maps5 (as they are known
in the physics literature). In this case, the phase space is the torus R^/Z271,
equipped with the standard symplectic structure ̂  cb^Ad^. The cat maps
are defined by elements g € 5p(2n, Z) (or more precisely, elements of the
"theta-group" Spe(^n,K), see §5). As will be seen in §5 (and as is easy
to prove) these symplectic maps are "contactible": i.e. can be lifted to the
prequantum U(Y)- bundle X as contact transformations \g. The resulting
situation is very nice (and very well-studied) because of its relation to the
representation theory of the Heisenberg group: This stems from the fact
that X is the compact nil-manifold H^^/r where E^ ~ R271 x ^is the
reduced Heisenberg group and where F is the integral lattice Z271 x {1}.

The spectral theory of the classical cat map is that of the unitary
translation operator T^g by \g on L^^X). Its quantization Ug will be
more or less its compression to the Hardy space H^(X) of CR functions
associated to the standard CR structure on X. That is, essentially Ug =
H^r^Hs where HE : ̂ (X) -^ H^{X) is the Szego projector. (As will be
explained in §2 and §5, this definition has only to be adjusted by a constant
so that Ug is unitary.) The projector will often be denoted more simply by
H when the complex or CR structure is fixed. In a well-known way, this
space of CR functions can be identified with the space of theta functions
of all degrees for the lattice Z71, and thus the quantized cat maps will
correspond to a sequence Ug^N of unitary operators on the spaces of theta
functions of degree N. As mentioned above, they are of a classic vintage
and appear in the transformation laws of theta-functions. Equivalently,
they arise in the metaplectic representation of the finite symplectic groups
Sp(2n^/N). The CR structure plays the role of the complex polarization
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in Kahler quantization, with the standard CR structure corresponding to
the choice of complex structure J = il on R^/Z271.

Postponing complete definitions until §2 and §5, we may state our
results on theta functions as follows:

THEOREM D. — Let g e 5'Z^(2,Z) := { [ a ] e 5L(2,Z), with

Nac,Nbd even }. Then:

(a) There exists a constant multiplier m(g) such that the Toeplitz
operator Ug := m{g)TlT^gTl is unitary. The space of elements H^{N)
of weight N relative to the center Z of El^ may be identified with the
space ON = Thpf of theta functions of degree N and the restriction
Ug^N := Ug\jj2rpf\ defines the standard action (transformation law) of the
element g 6 67^ (2, Z) on fh^.

(b) The multipliers m(g) may be chosen so that the quantization
maps g —> Ug^N are projective representations of SLe(2,Z/N), and indeed
so that Ug^N is the metaplectic representation of Mpe(2^/N).

(c) The index of the symplectic map g and contact transformation \g
in the sense of [Wei] equal zero.

(d) Jf no eigenvalue of g is a root of unity, then the spectral data
{e^eNj ̂ Nj} of Ug^N satisfy the quantum mixing properties {M.P\} (cf.
Definition 2a.6).

(e) One has the exact Egorov theorem: For a e C^R^/Z271),
UgllaHUg = n(IIpcr • '^gIlg)H, where Tig is the Toeplitz projector for the
complex structure g ' i.

The statements in (b)-(c) follow from that in (a). The main point is
that the Toeplitz method produces the metaplectic representations. This
is the periodic analogue of the result of Daubechies [D], which shows that
the Toeplitz method produces the real metaplectic representation.

In §6 we will present an exact trace formula for the traces of the
quantized symplectic torus automorphisms. As noted in the introduction,
the trace formula is classical ([Kloo]), although the method of proof appears
to be new.
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THEOREM E. — In the notation of Theorem D: The multiplier m(g)
can be chosen so that the trace of the quantized cat map Ug,N is given by

rr. TT 1 \-^ ^N^m^-a^m^^I-gr^m^)}.TrUg^N = / . _—. /. e

V^H2 9) [(r^rOlcZ^AJ-p)-^271

The square root is denned by the standard analytic continuation (cf. [F],
W.

This trace formula can be (and has been) used to analyse the fine
structure of the spectra of quantized cat maps. The simplest case is that of

the elliptic element S = ( ). Its quantization (on theta functions of

degree N) is equivalent to the finite Fourier transform F(N) on L^Z/TV)
(cf. [AT]. The trace formula then reads:

ĵy"^"/-(l+(-.)'').

From this formula one can deduce that the eigenvalues of F{N) are ±1,
±i with essentially equal multiplicities (loc. cit.). It follows that the 'pair
correlation function5 for the quantization Us of S is a sum of delta functions.

The above trace formula has also been studied previously in the
physics literature ([Ke], loc.cit) to analyse the fine structure of the spectra
of the Ug^s when g is a hyperbolic automorphism. In this case the
eigenvalues become uniformly distributed on the circle as N —^ oo. On
the scale of the mean level spacing, however, the spectra of the Ug^'s
behave very erratically as N —^ oo: For each N , there exists a minimal
positive integer r{N), known as the quantum period, with the property
that ^Tw = e'^^Id. The eigenvalues e'0^ are therefore among the
translates by e^^ of the r(N)th roots of unity. The erratic aspect is
that the period r(N) depends on the factorization of N into primes and
hence is very irregular as a function of N. Moreover the multiplicities rriNj
of the eigenvalues e^^^^ seem to be evenly distributed as j varies
over {0,1,. . . ,T(TV) - 1} [Ke]. It follows that they tend to infinity at the
erratic rate of N / r ( N ) .

The eigenvalue pair correlation problem for quantized hyperbolic
cat maps thus involves some intricate questions of number theory, while
that for quantized elliptic maps is rather trivial. There are however some
relatively interesting intermediate cases whose pair correlation functions
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can be analyzed by means of the trace formulae of the above type (and we
hope to do so in a future article).

2. BACKGROUND

2a. Review of quantum ergodicity and mixing.

We begin by reviewing the notions of quantized abelian system and
of quantum ergodic system from [Zl], and explain how they apply in the
present context. We also review the mixing notions of [Z2], [Z3].

A quantum dynamical system is a (7*-dynamical system (A,G,a),
where A is a unital, separable (7*-algebra and a : G —> Ant(A) is a repre-
sentation of G by automorphisms of A. We assume that A acts effectively
on a Hilbert space H and that there exists a unitary representation U of
G such that o^(A) = U^AUg. In other words, we assume the system is
covariantly represented on H.

Since G = S1 x Z in this paper, we will assume G is an abelian;
moreover we will assume that the spectrum o-(U) is discrete in the set
Irred(G')(=Z x S1 here) of irreducible representations of G. (In fact, in
the Toeplitz examples the spectrum will not only be discrete but will have
the strong asymptotic properties described in Theorem A.) We denote by
T-i = (D 7-̂  the isotypic decomposition of H^ by Ha the orthogonal

<TCa{U)

projection onto Hen and by ujo- the invariant state uJa(A) = ——TrII^A.
rkLla

We then say:

DEFINITION (2a.l). — (.4,G,a) is quantized abelian if the micro-
canonical ensembles

^'^WE} ^ rA;(^^
v / E{a)^E

have a unique weak- limit as E —> oo, and if the C*-dynamical system
(7r^{A), G, a^) associated to uj by the GNS construction is abelian.

Here, rk is short for "rank", N(E) = ^ rk(Tla^ and the sum runs
k|^B

over a € (r(U) of energy E{a) less than E, with E(a) essentially the distance
from a to the trivial representation. We regard uj as the classical limit
(state) of the system, and (A, G, a) as the quantization of the associated
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GNS system. The relevant notions simplify a good deal in the case of
the Toeplitz systems of this paper, and will be further discussed in §2.b.
For general discussion, including generalities on classical limits of Toeplitz
systems, see [Zl].

We also say:

DEFINITION (2a.2). — A quantized abelian system (A,G,a) is quan-
tum ergodic if there exists an operator K in the von-Neumann algebra
closure of A such that

< A >= uj{A)I + K with UE{K"K) -^ 0.

Here, < A > is the time average of A,

< A >= w - lim < A >T
T->oo

where

<A>r:= / ^T(g)oig(A)dg,
JG

with ^T a11 "M-net" (approximate mean) for G. In the case G = S1 x Z,
^{g^dg = 7pX[-T,T}Wdtd6 where d6 (resp. dt) is Lebesgue measure on S1

(resp. counting measure on Z).

This notion of quantum ergodicity is equivalent to a condition on
the eigenfunctions of the quantum system. To state it, we recall that in a
generalized quantized abelian system the group G is assumed to have the
form T71 x J^ x J^ (with T71 the n-torus). Hence the irreducibles are 1-
dimensional, of the form C</>^ where <^ is an eigenfunction corresponding
to a character \ of G. By our assumptions above, the set of such characters
is discrete in the dual group G and we enumerate them in a sequence
\j according to their distance E{\j) to the trivial representation. The
corresponding eigenfunctions will be denoted cf)j. To each is associated an
ergodic invariant state pj of the quantum system, namely the vector state
pj{A) = (A<^-, (f)j). The criterion above of quantum ergodicity is equivalent
to the following:

3<S Cspec(£7) : D*(<S) = 1 w- lim p. = uj.
3-^^.Xj^S

Here D*(<?) is the density of S (see [Zl]).

The general quantum ergodicity theorem are as follows. First:
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THEOREM (2a.3) ([Zl], Theorems 1-2). — Suppose (A,G,a) is quan-
tized abelian. Then: ifu is an ergodic state, the system is quantum ergodic.

There is a more refined result due to Sunada [Su] and to the author
[Zl].

THEOREM (2a.4) ([Su] [Zl], Theorem 3). — With the same notation
and assumptions as in Theorem A.I: ergodicity ofuj is equivalent to quan-
tum ergodicity of (A, (3, a) together with the following strong ergodicity
property:

{£P\) lim lim O;£;((A)^A) = lim lim c^((A)^A) = [a;(A)|2.
r—>-oo E—>oo E—>oo T—>oo

Further, £P\ is equivalent to:

{£P\) (V6)(E3<?) limsup ——— ^ |^(A)|2 < e
E-00 ^W ^..E^E^E

\E(xj)-E(xk)\<6

where pij(A) = (A<^, ̂ •) = TrA' ̂  <g) (f>j.

There are analogous definitions and results in the case of weak-mixing
systems.

Quantum weak mixing has to do with the mean Fourier transform

A(^) := w - lim Ar(x)
r—>'oo

of observables A € A, where \ € G where

^r(x) = / ^T{g)oig(A)~)c(g)dg
JG

is the partial mean Fourier transform, and where the limit is taken in the
weak operator topology. (When the expression for A gets too complicated
we often write .^(A)^) for this transform and similarly for the limit
as T —> oo). The following generalizes the definition of a quantum weak
mixing system given in [Z2] for the case of the systems (^°(M),R,Q;),
with ^°(M) the (7*-algebra of bounded pseudodifferential operators over
a compact manifold M and with o^(A) = U^AUt the automorphisms of
conjugation by the wave group Ut := e^^ of a metric g on M:

DEFINITION (2a.5). — A quantized abelian system is quantum weak
mixing if, for \ ̂  1,

{MP) limsup^(A(^)A(x)*) = 0.
E—^oo
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As in the case of ergodicity there is a sharper weak mixing condition
which involves the partial mean Fourier transform and the eigenfunctionals
pij(A) := (A(f)i,(f)j) above. We note that the eigenfunctionals of the auto-
morphism group correspond to eigenvalues in the "difference spectrum"
{XjXk}' ^or motivation and background on quantum weak mixing we refer
to [Z2], [Z3]. In the following G* denotes the set of non-trivial characters
ofG.

DEFINITION (2a.6). — A quantized abelian system has the full weak
mixing property if in addition to M.P it satisfies, for all \ € G*:

(.MP!) lim lim ———^(Ar(x)*AT(x)) = 0.
I —>00 Hi—>00 1\ l-C/J

In the case of wave groups, we have:

THEOREM (2a.7) ([Z2], [Z3]). — Let (A,G,a) = (^°(M),R,a) with
a the automorphism of conjugation by the wave group Ut of a Riemannian
metric g on M. Then: the geodesic now Gt is weak mixing on the unit
cosphere bundle S*M with respect to Liouville meassure fi if and only if
the quantum system (A, G, a) has the mixing properties M.P and M.P\.

COROLLARY (2a.8) ([Z2], [Z3]). — With the same notations and
assumptions as in Theorem (2a.7), we have, for all \ € G*:

(.MP!*) (Ve)(3<5) limsup ——— ^ |^.(A)|2 < e.
E-00 N^ ^-.E^E^W

\E(xj~^k~^)\<6

This theorem is generalized in Theorem C to Toeplitz systems.

2b. Periodic contact manifolds and Toeplitz algebras.

We now introduce the quantized abelian systems which play the
principal role in this article: the ones generated by periodic contact flows
and quantized contact transformations. The proof that the quantizations
can be unitarized will be postponed to §3, where a good deal of further
background on Toeplitz operators and their symbols will be reviewed.
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The setting opens with a compact contact manifold (X,a). The
characteristic distribution ker da of a is one dimensional, and hence there
exists a vector field 5 on X such that a(5) = 1 and SJLda = 0. We will
make the

ASSUMPTION 1 (2b.l). — The characteristic flow (^ of 5 is periodic.

This assumption is satisfied in the motivating examples from geomet-
ric quantization theory and complex analysis. Thus, suppose L —> M is a
holomorphic line bundle over a compact complex manifold, and let || • [| be
a hermitian metric on L. Then the disc bundle 0 = {(x^v) : \v\^ < 1} is a
strictly pseudoconvex domain, whose boundary Qfl has a natural contact
structure with periodic characteristic flow. Of particular interest here are
the line bundles which arise as "pre-quantum line bundles" over Kahler
manifolds in Kahler quantization. See [AdPW] [BG] [We] for examples and
further discussion.

Now let

(2b.2) E := {(x, ra^) : r > 0} C T*X\0 .

Then S is a symplectic cone, and according to Boutet de Monvel and
Guillemin [BG] always has a Toeplitz structure IIs, that is, an orthogonal
projection with wave front along the graph of the identity on S, and with
the microlocal properties of the Szego projector onto boundary values of
holomorphic functions on a strictly pseudoconvex domain. For the precise
definition and local models we refer to [BG], Definition 2.10.

The algebra of concern is then the Toeplitz algebra 7^ associated to
IIs. By definition, this is the algebra of operators IIsAIIs on L2^) with
A e ^f°{X) (i.e. the algebra of zeroth order pseudodifferential operators
over X). The range of IIs will be denoted JZ|;, i.e.

IIs : L\X) -^ Hi(X).

It is clear that the Toeplitz algebra is effectively represented on this Hilbert
space.

As mentioned above, the group G of concern will be S1 x Z. The
circle S1 will operate on I^^X^ di/) by: Wf' f(x) = f^^x). Here dy is the
normalized volume form determined by a, i.e. dv = ca A (da)71"1 for some
c > 0, where dimX = 2n+1. We may (and will) assume that IIs is chosen
so that [ns,W^] = 0 ([BG], Appendix). Then S1 will operate on H^.
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Its generator -Dv compresses to the Toeplitz operator H^-D-sIl^. The
z i

symbol of this Toeplitz operator is the function <1>: S —> R, <I>(a;, ̂ ) = (^, S).

The group Z will act by powers of a quantized contact transformation.
By definition this will be a unitary operator U^ : Hj^(X) —> H^(X) of the
form:

(2b.3) U^ = IIsT^AII^

where T^f(x) = /(x"1^)) ana where A e ^ns- ̂ e w1^ "^^ tne

ASSUMPTION 2 (2b.4). — ^ > 0 and [7^, Wt] = 0.

These assumptions are also satisfied in the examples from Kahler
quantization theory. They imply that \ descends to a symplectic automor-
phism \o of the quotient 0 = X / S 1 of X by the action of <^*. They also
imply that Il^-D^H^ is an elliptic Toeplitz operator, and hence that the

z
isotypic subspaces H^{N) are finite dimensional. Vice-versa they hold if
(X, a) is the prequantum 5'1- bundle of an integral symplectic manifold
[BG], Lemma 14.9.

To show that (2b.3) is non-vacuous we will prove the:

UNITARIZATION LEMMA 1 (2b.5). — Let \ be a contact transformation
of a contact manifold (X, a) satisfying the assumptions 1-2. Then there
exists a symbol a A € C°°{0) determined in a canonical way from x^s
and a canonically constructed operator A € ^n WJ^1 principal symbol O~A

such that [A, -D-s] = 0 and such that U^ in (2b.3) is unitary on H^ (at
v

least on the complement of a finite dimensional subspace).

Granted the Unitarization Lemma, the C*-dynamical system of con-
cern will be (7^,5'1 x Z,a) where a^ is conjugation by U^Wt. By the
composition theorem of [BG], such conjugations are automorphisms of the
Toeplitz algebra.

The principal symbol of IIsAIIs may be identified with (TA\T,\ a
more complete description of the symbol will follow in the next section.
The symbol algebra of 7^ (zeroth order Toeplitz operators) may then be
identified with smooth homogenous functions of degree 0 on E; hence with
functions on X. In the C'*-closure one gets all the continuous functions.
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Many of the notions involved in the definition of quantized abelian
systems in § 2.a simplify a good deal for these Toeplitz systems. First, the
irreducibles correspond to characters X(N,r) ''= el'RiNt (g) e^ of S1 x Z
and have the form C0(jv,z) where U^Wt.^Nj) = e^^e^0^^^^. The
energy E(\^,r)} is defined to be N. Hence the microcanonical ensembles
UJE have the form

1 E

^ = J^E) Z dNUJN

where E eAf and where o;jv is the degree n ensemble defined by

1 ^N

^N :== d^ Z^W) with PW^) ̂  (M^)^W)).

The ensembles UJE are equivalent to the ensembles

1 ^
UE := -^ ̂  ̂ JV

^7^1

in the sense that C(^(A) = a;£7(a)+o(l) as j^ —> oo. This follows easily from
the fact that (IN ~ A^113^-1 has polynomial growth (for similar assertions
see [Zl], [Z4].) In fact, the order N ensembles UN have sufficiently well-
behaved asymptotics that we will not need to further average over all N.
This accounts for the stronger kinds of results available in the Toeplitz
case.

PROPOSITION (2b.6). — (7^, 5'1 x Z, a) is a quantized abelian system,
with classical limit system (G(X), S1 x Z, aj, where a^ ̂  is conjugation
byT^Wt.

Proof. — With the assumptions (1)-(2) above, as well as the tempo-
rary assumption of the Unitarization Lemma, the isotypic decomposition
of H^ is just its decomposition into joint eigenspaces for (L^, Wt), and the
weight spaces H^(N) are just the eigenspaces of Wf corresponding to the
characters e2^^. Let UN denote the associated orthogonal projection, and
let (IN = dimH^(N) = rA;(II^). Then we have (with E e N), A e 7^,

UJN{A) = —TrII^A
ON

where of course

^^^WE) £ TtAIlN
' ' OsiNsiE
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and of course N(E) = ^ d^. The asymptotics of c^v(A) follow in a
N^

standard way from the singularity asymptotics at t = 0 of the dual sum

(2b.7) ^ (TYAH^e27^ = ̂  d^^e27^ = TrIl^AWt.
N^O N^0

The composition theorem for Fourier Integral operators and Hermite
Fourier Integral operators [BG], §7, shows that the trace is a Lagrangian
distribution with singularity only at t = 0 and with principal symbol at
the singularity given by

o;(A) = / a A^V.
Jx

Here, dy = oA^a)71"1, and as above a A is identified with a scalar function
on X. In fact the trace (2b.7) is a Hardy distribution on S1 so one can
conclude, simply by comparing Fourier series expansions, that

(2b.8) a;N(A)-a;(A)+0(AT1)

for smooth Toeplitz operators A (see [BG], §13, for details of this argu-
ment). It obviously follows that UJE (A), U^E (A) -^ CJ(A). Since (2b.8) is
much stronger we will henceforth use it as the key property of the Toeplitz
system.

To complete the proof, we only need to identify the classical limit
system precisely. From the composition theorem we have

(2b.9) a(ai,fc(A)) = a A ' (^ • A

and hence need only to identify the GNS representation with the symbol
map. However, it is clear that for smooth elements A € 7g (i.e. not in
the norm-closure), ^(A*A) = 0 if and only if a A = 0, hence the ideal
Af = {A : o;(A*A) = 0} is the norm closure of T^T1, namely the ideal JC of
compact operators in the algebra. However one has the exact sequence

0 ̂  JC -^ T^ -^ C{X) -^ 0

where the last map is the symbol map [Do]. Hence 7^/A/', closed under
the inner product induced by uj is precisely L^X.di/), and the induced
automorphisms are those of (2b.9). D
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3. SYMPLECTIC SPINORS AND PROOF OF THE
UNITARIZATION LEMMA

The main point of this lemma is to determine the principal symbol OA
of the pseudodifferential operator A in (2b.3) which unitarizes the Toeplitz
translation by T^. This symbol will reappear in the course of the proof of
Theorem D. The rest follows by use of the functional calculus. The length
of the proof is due mainly to the review it contains of symplectic spinors
and symbols of Toeplitz operators.

Proof. — By [BG], Theorem 7.5, any operator of the form (2b.3) is a
Fourier Integral operator of Hermite type with wave front along the graph
of^ls. Here, \ is understood to extend to E as a homogeneous map of order
1. Therefore, the main point is to construct A so that U^ is unitary, and
so that it commutes with the other operators. Consider first the unitarity.
At the principal symbol level, this requires

(3.1) a^A^^^sT^An) = a(Hs).

To solve (3.1), we will have to go further into the symbol algebra of
7^: We first recall that the principal symbol of a Hermite operator is a
"symplectic spinor" on S. In other words, a homogeneous section of the
bundle

Spin(E^) ^ Ai(E^) (^(E^/E^)

where ([BG], p. 41, [G2])

(3.2)(i) E^={o;,^,-0:Or,OeE}

(ii) A^ is the - form bundle

(iii) E^/E^ is the symplectic normal bundle of E^

(iv) ^(E^/E^) is the bundle of Schwartz vectors along E^/E^.

In the case at hand, A2(E^) has a natural trivialization coming
from the symplectic volume —form on X. Hence we can ignore it. Also,
(E^/E^^-p) is the sum (Ep)-1- C (Ep-) where (Ep)-1 is the symplectic
orthogonal complement of Ep := TpE in Tp(T*X). For each choice of
symplectic basis of (TpE)-1-, one has identifications

(3.3)
(TpS^ ^ ̂  0 (K^)*

^(S^/S^)^^) ^ S^ @ R^).
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Here, R^ CM^ is the Lagrangian subspace of (TpS)1- C (TpS)^ indicated in
(3.3) and S is the usual space of Schwartz functions. A symplectic spinor
a can be identified in this way with the kernel ^o-(p,o,o) of a smoothing
operator T(a,p) on the Hilbert space L2^).

Consider in particular the Szego-Toeplitz projector Hs. According to
[BG], Theorem 11.2, its symbol o^Hs) may be described as follows: First,
HE determines a homogeneous positive definite Lagrangian sub-bundle A
of S-1 (g)C (the complexified normal bundle of S in T*(X)). For each x € S,
Ax then determines a unique (up to multiples) vector e^ € «S(S^~), called
the vacuum vector corresponding to e^. Then T(a{H^),x) = e^ 0 e^,
i.e. cr(Hs) is the rank one projection onto Ce\^.

To bring this somewhat down to earth, we note that HE is annihilated
by an involutive system of d = . dim S — 1 equations

D.HE ~ 0 (modulo ^-°°)
(3.4)

[^.,D,]-SA^ (A^G^0)

similar to the tangential Cauchy-Riemann equations for the Szego projector
of a strictly pseudo convex domain. Above, ̂ ~°° is the algebra of smoothing
operators on X. The characteristic variety of this system is S, and the
matrix -{a(Dj)^a(Dk)} is Hermitian positive (or negative) definite along

%
S. Let Hay be the Hamilton vector field of aj := (r(Dj) and set

(3.5) ^ = spanc{^ : J = 1,..., ̂ }.

One can check that A^ C S^- (g) C, that dime Aa; = _ dime S-1 0 C and
that Aa. is involutive. Hence, Aa; is a Lagrangian subspace of S^ 0 C.

Now let M^S^) be the metaplectic frame bundle of S-1: i.e. the
double cover of the symplectic frame bundle of S-1 corresponding to the
cover Mp(2n,R) -^ 5p((2n,R). Then

^(S^M^S^x^R^)

where fi is the metaplectic representation. From this one can transfer the
Schrodinger representation p of the Heisenberg group on <S(R^) to ^(S-1-)^
for each x, and each metaplectic frame of S^. If dpx represents the derived
representation at a*, then one sees that the symbol equations corresponding
to (3.4) are

(3.6) dp^H^aW =0 (x € S,5, € A,).



326 STEVEN ZELDITCH

The vacuum state e^ is the unique solution of the similar system of
equations on ^(S-^. Since o(HE) is a projector it must be e^ 0 e\

Next, return to (3.1). By the composition theorem [BG], 7.5,

(3.7) ^n^r^n^An) = [^l2 • an^cr^n^) o an,.
Now ^^s^x is ^so a Toeplitz structure on S, since ^ is a symplectic
diffeomorphism of E. Hence ^T^Tl^T^) will be a rank one projection
^ 0 CA^ for some Lagrangian sub-bundle A^ of E-1 0 C. In fact

(3.8) A^ = d^(A)

where ^ : T*(X) -^ T*(X) is the natural lift (d^)-1 of ^ to T*(X). Note
that ^[s = ^|s, and since j< is symplectic,

d\: rs 0 c -^ rs 0 c,
d^ : E-1- 0 C -^ E-1 0 C.

Also, d^(A) is lagrangian sub-bundle of ^-L 0 C. By the symbolic calculus,
^T^Il^T^) will have to solve (3.6) with 5j replaced by ^(S,); hence
(3.8).

Carrying out the composition of projections in (3.7), we conclude that

(3.9) a^A^n^AII^) = \aA\2 \{e^e^e^ 0 e\.

To satisfy (3.1) it is sufficient to set:

(3-10) ^A(x)={e^e^)-1.

Of course, we must show that {e^,e^}(x) never vanishes. In the model
case R^, e^ and CA correspond to a pair of Gaussians 7^ and 7^3, where
7z = e^zx^ for a complex symmetric matrix Z = X + iY with V > 0.
It is obvious that (7^157^2) never vanishes, since the Fourier transform of
a Gaussian is never zero.

Now let S1 act via Wf. Since Its commutes with the action, one may
assume the operators Dj in (3.4) commute with the action (otherwise, one
can average them). Hence, the Lagrangian sub-bundle A is S^-invariant,
and since \ commutes with the S1 action, A^ is also S ̂ invariant. It follows
from uniqueness of the vacuum vectors (up to multiples) that CA and CA
are eigenvectors of the S'1 action. Since they correspond under ^, they mus^fc
transform by the same character. It follows that {e^e^ ) is 5'1 invariant.
Hence, we have:
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(3.11) (JA is S1-invariant.

Now extend a A (in any smooth way) as a homogeneous function of
degree 0 on T*X\0, and let Ai be any operator in ^^ wit^ symbol (TA-
By operator averaging against W^ we may assume A, -Ds\ = 0. At this

L Z J
point, Ai satisfies:

[Ai,ns]=o

(3.12) [Ai,^J=0
L % \

U\ := Il^T^A^H^ is unitary modulo T^1.

We now employ a simple argument of Weinstein [Wei] to correct Ai to
define an operator U^a) which is unitary. In the following we will pretend
that the index ind(t7i) = 0. If it is not, one has to work on the orthogonal
complement of a finite dimensional subspace. This index is an invariant of
the contact transformation \ and hence is called the index of \. We will
discuss it further in §5.

By (3.12), U^U\ and U\U^ are elliptic Toeplitz operators, with
principal symbols a(H^). Hence their kernels are finite dimensional. Let K
be an fi^-invariant isometric operator from kerUi —>• ker^; let P denote
the orthogonal projection onto ker(7i. Then KP is a finite rank operator
and

Bi == E/i 4- KP

is an injective Fourier Integral operator of Hermite type. It follows that
B^B\ is a positive Toeplitz operator with symbol cr(IIs). Just as for pseudo-
differential operators, there is a functional calculus for 7^. We may express

Bi*5i = IIsCTIs C € ^s

and then define

G = (Bi*Bi)^ = nsC^iis e Ts .

Then set U^ = B\G. It is unitary and satisfies all the conditions of the
lemma, n
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4. QUANTUM ERGODICITY AND MIXING:
PROOFS OF THEOREMS A, B, C

We begin with the proof of the spectral dichotomy:

Proof of Theorem A.

Proof of (i). — The precise statement of (i) is that the eigenvalues
^TrzONj ; j = l,. . . ,c^v} with d,N = dimH^(N) become uniformly
distributed on S1 as n —> oo in the sense that

(4.1) w- lim -^^Me^^^^dO
v / N-.00 (IN 3

or equivalently for, / € C(S1),

. dN /.i
(4.2) lim —^f(e27^ieN^= / /(e2^)^.

N-^oo (IN ̂  Jo

Of course, it suffices to let f(z) = ^(A; 6 Z), and to prove that the left
side tends to 0 if k 7^ 0. But if / = zk, the left side is

(4.3) lim —Ti(U^)nN
N—>-00 ON

where as above UN : H^{X) —»• H^(N) is the orthogonal projection. The
limit can be obtained from the singularity at 6 == 0 of the trace

00

TrWeU^ = ̂  e2^^ )̂!!̂ .
N=0

By the composition calculus of Fourier Integral and Hermite operators
[BG], the singularities of the trace occur at values of 6 for which e2^0 ' ^k

has non-empty fixed point set. It is clear that 6 must equal zero, and that
the fixed point sets consists of the fibers over the fixed points of ^k on 0.
This is a finite subset if A; 7^ 0, and hence the singularity is of the type
(t + %0)~1 ( compare [BG], Theorem 12.9). It follows that Tr^^)^ is
bounded as N —> oo if k -^ 0 (compare [BG], Proposition 13.10). On the
other hand, (IN = dimH^(N) ~ 7v(dimX+i)/2-i ̂  ̂ ^ ̂  ̂  ̂ ^ ^3)
is zero unless k = 0. n

Proof of (ii). — If ^ is periodic, then the whole group G generated
by the contact flow and by \ is compact, and as mentioned above the
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Toeplitz structure Hs may be constructed to be invariant under it. Hence
the unitary quantization of ^ is simply

^ := HE^HS

and U^ = HETvfcHs. It follows that U^ = HE (the identity operator on
/C /\. A,

H^) and hence its eigenvalues are pth roots of unity. D

We now turn to the quantum ergodicity and mixing theorems. The
ergodicity theorems follow almost immediately from the results of [Zl].

Proof of Theorem B.

Proof. — By Proposition (2b.6), (7^, S1 x Z, (Wt, U^)) is a quantized
abelian system and by assumption the classical limit system is ergodic.
Except for one gap, the statement then follows from Theorems 1-3 of [Zl].

The gap is that we are using the more localized ensembles u;n rather
than the microcanonical ensembles UJE- However, the only properties of UJE
used in [Zl] are that they form a sequence of invariant states satisfying
^ -_). ^ Since this was also proved for the degree N ensembles (JN m
Proposition (2b.6) (see (2b.8), the proof of Theorem B is complete, n

Remark. — The ergodicity assumption is equivalent to the ergodicity
of \ on (0, fi)

The following theorem states that if \ is weak mixing on (0, /^), then
the quantum system has the full weak mixing property of Definition (2a.6)
in the even stronger form involving the degree n ensembles. There is a
notational overlap in that we are writing \ both for characters and for the
contact map; both are conventional and we do not believe this should cause
any confusion.

Proof of Theorem C.

Proof. — First, the weak mixing property of \ on (0, p) is equivalent
to the statement that

(4.4) lim ||^M(T)/||L2=0 (V/-L1)
M—>oo

where

FM{r}:L\O^^L\0^}
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is the partial mean Fourier transform

1 M

^(rV^^^e—r^/.
—M

Indeed, we have

JimJI^(T)/-P,/||^=0

for all / e L2, where P-r is the orthogonal projection onto the eigenspace of
T^ of eigenvalue Pr. On the other hand if \ is weak mixing, then Prf = 0
for all /-LI since the unitary operator

r^L^O.^^L2^,^)

Wo}=f{x-\o)
has no Z^-eigenfunctions other than constants. Henceforth we only consider
non-trivial characters (r -^ 0) since the case r = 0 is covered in the
ergodicity theorem above.

One connection to the quantum theory is thru the partial mean
Fourier transforms

AM{\) = ^M(x)A := / ^M{g)ag{A)^{g)dg
JG

ofobservables A e 7^. To simplify, we recall that without loss of generality,
an element of 7^ may be assumed to be of the form IIsAIIs with
A e ^°(X), with [A,Wt] = 0, [A,IIs] ~ 0 [BG]. As above, we also write
characters \ in the form e27"^ 0 e^ with e27^* e S1. We further note
that the quantum mixing condition stated in the theorem concerns only
the diagonal blocks II^AII^v whose partial mean Fourier transforms have
the form

1 M r
J^MWNAHN = _j V e-^ / e-^^W^U^TlNAnNU^Wtdt.

2M m^M jSl x x

Since [U^HN] = [H^ILv] = O.T^n^ = e27 !̂!̂ , the conjugates
ag(IlNAHN) are constant in t and hence ^M(x)n^AII^ = 0 unless the
character \ has the form 1 0 e'^. In the latter case, the partial mean
Fourier transforms of the blocks simplifies to

1 M

(4.5) ^(r)n^An^ = ̂  ^ e-^c/^n^An^E/^
7n=—M
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which begin to look very much like their classical counterparts. The
resemblence is of course made even closer by use of the Egorov theorem
for Toeplitz operators [BG], which implies that U^IIAIIU^ € 7^ with
principal symbol equal to T^o-nAn-

We now make the key observation:

(4.6) lim —||^(r)n^An^||^=||^M(T)aA||i2N—>oo any-

where a A denotes the function on 0 induced by the principal symbol of
nAII. This follows from the Egorov theorem combined with a special case
of the Szego limit theorem for Toeplitz operators:

(4.7) lim —UlLvAILvll2 = ——— ( [^l2^
N-^oo (IN 1^(0) Jo

which holds if (TA\T, is invariant under the contact flow (see [BG], Theorems
6 and 13.11.)

It follows from (4.4) and (4.6) that if \ is weak mixing and r 7^ 0,
then

(4.8) lim lim ^T uW^ A^\^s = ̂
M—»'oo N—>oo UN

for all smooth A in the Toeplitz algebra. Let us now express (4.8) in terms
of the eigenfunctions (f)(N,i) OI Ug and in terms of the eigenfunctionals
P(JV^)(A) := (A0(^),(^(7v^)) of the automorphisms Og. We have

M
PW,)(^M(T)n^An^) = ̂  ^ e^^-^-^p^A)

m=—M

= -^DM^NI - ONJ - r)p(^)(A)

where DM is the Dirichlet kernel DM^X) = ——^—/TV2"" Hence (4.8) is
sin (3)

equivalent to:

-. dN -
(4-9) ^ ̂  ̂  E I^^M^ - ON, - T)!2!̂ ,̂ )!2 = o.

^,J'=1

Given e > 0 we choose M sufficient large so that (4.9) is ^ e. If we then
choose 6 > 0 so that —.DMW ^ - for x ^ 6, the statement of the

^.ilvj. z^
theorem follows for A in place of a G C°°{0).
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oo
This is actually the general case: the diagonal part © II^yAII^ of A

N=0
is its average relative to Wt and hence its symbol is 5'1-invariant and may
be identified with a function a on 0. Since the lower order terms in the
symbol make no contribution in the limit n —> oo, the statement is only
non-trivial for the Toeplitz multiplier IIcrll. D

COROLLARY. — The Toeplitz system is quantum weak mixing in the
sense that

lim ^(A*(x)A(x))=0
N—>oo

for \ ̂  1.

Proof. — The Szego limit theorem cited above shows that

(4.10) —||AM(X)AM(X)II^ = —^(A^(X)AM(X)) +o(l).UN UN

Hence

—^(A^(X)AM(X))-O
UN

for T € R — 0 and the corollary follows from the fact that

(4.11) C^(A^(X)AM(X)) ^ ^(A*(x)A(^).

(For the proof of (4.11) see [Z2], Proposition (1.3iv).) n

Remark. — Although we will not prove it here, the quantum mixing
property A4\ is actually equivalent to the weak mixing of ^ on (0, p). The
proof is essentially as in Theorem 1 of [Z2], given the modifications above
to the 'iV half of that theorem. We also refer to [Z2] for other variants
of the weak mixing conditions. All of these conditions generalize to the
Toeplitz setting and even to the case of essentially general quantized abelian
systems. For the sake of brevity we have only stated the condition which
is most concrete in terms of the eigenfunctions of the system.
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5. QUANTIZED SYMPLECTIC TORUS AUTOMORPHISMS:
PROOF OF THEOREM D

In this section, we illustrate the general theory in §2-4 with the special
case of quantized symplectic torus automorphisms g € 6'p(2n,Z). As will
be seen, if g lies in the theta-subgroup Spe(2n, Z), then it lifts to a contact
transformation \g of the circle bundle N^/N^ ~ EI^/F over R^/Z271 with
respect to the natural contact structure a. Here, N^/Ny^ ^ H^/r is the
quotient of the Heisenberg group N^ (or reduced Heisenberg group H^)
by its integer lattice N^ (or reduced lattice F). The quantization will then
be a unitary Toeplitz operator of the form II^pII, operating on the Hardy
space H^(N^/N-^) of CR functions on the quotient.

As mentioned in the introduction, the action of the Toepltitz-
quantized torus automorphisms on these CR functions will be identified
with the classical action of the theta group Spe(2n^) on the space of
theta functions (of variable degree). The statements in Theorem D will
follow directly from this link. To establish it, we will need to draw on
the harmonic analysis of theta functions from [A] [AT], the transformation
theory of theta functions from [KP], and the analysis of CR functions on
N^/N-^ from [FS] [S]. The notational differences between these references
explain, and we hope justify, the notational redundancies in this section.

5.1. Symplectic torus automorphisms.

The starting point is the affine symplectic manifold (r*]^71,^), where
a = Ti^^dxjAd^j^ and with a co-compact lattice r C T^R71 which we
will take to be Z271. The quotient (^*Rn/^,o•) is then a symplectic torus.
If g C 5^(7'* R71, cr) == Sp(2n^R) is a linear symplectic map satisfying
^(Z271) = Z271, then g descends to symplectic automorphism of the torus
(still denoted g).

It is convenient to express g in block form

'A B'
C D ) ' '^x w ̂ e ~~' ̂  w JE^(5 .1.1) g= „ - :RS®R?-^RS®R?

relative the the splitting T*R" = R^ ®R^ R2". Then g <E Sp(2n,R), i.e.
g is a symplectic linear map of R2", if and only if

(5.1.2) ( i ) f f*€5p(n,R)
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(ii) A*C7 = G*A, B*D = P*B, A*D - C*B = J

(iii) AB* = BA*, CD* = DC*, AD* - BC* = J.

Also ^(Z271) = Z277' is equivalent to a 6 S'p(2n,Z). ([F], Chapter 4)

5.2. Kahler and Toeplitz quantization of complex torii.

The quantization of g should be a unitary operator Ug on a Hilbert
space T-i which quantizes (r*]^/]"',^). The method of geometric (Kahler)
quantization constructs H as the space of holomorphic sections of a
holomorphic line bundle L —> T^R^r, with respect to a complex structure
Z on T^W^'/r. We will temporarily assume Z to be the affine complex
structure J coming from the identification R^®R? —^^((x^) i—^ x+i^).
Later we will consider more general Z.

The line bundle L, and its powers L0^, are associated to the so-called
prequantum circle bundle p : X —> ^*Rn/^ by the characters \N of S1.
The definition of prequantum circle bundle also includes a connection a.
As is well-known, in this example X is the compact nilmanifold H^6 /F,
where EI^ is the reduced Heisenberg group R271 x S1 and where r is a
maximal isotropic lattice. We pause to recall the precise definitions, since
there are many (equivalent) definitions of these groups and lattices.

We will take the group law of H^ in the form

(5.2.1) (rc,^). (a/,^) = (a;+^,$+$',e^(w/+*<7^^'^^»)

with o-((a;,$), CK',^))) == ( ^ x ' ) - {^,x). The center Z ofH^ is the circle
factor S1. Evidently, Z acts by left translations on X and its orbits are the
fibers of p. The connection one form is given by

(5.2.2) a = dt + JS^i(^<, - ̂ dx,).

With the group law in the form (5.2.1), the integer lattice F is not
Z271 x {1} (which is not a subgroup) but is rather its image under the
splitting homomorphism

(5.2.3) s : Z271 -^ H^ s(m,n) := (m.n.e^^^).

See subsection (5.8) for the terminology and further discussion.
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Under the action of Z, ^(X) has the isotypic decomposition

L2(X)= d) HN
N=-oo

where HN is the set of vectors satisfying Wtf = e^^/; here Wf is the
unitary representation of z by translations on L2. In the standard way,

00

we identify Ifjy with the sections of L^^. Thus, ® jH^v incorporates the
N=0

sections of all the bundles L^ at once.

The holomorphic sections of L0^ then correspond to the subspace
Hj^(N) of CR functions in jFfjv- Let us recall the definition [FS]: First, one
defines the left invariant vector fields

^^j-^ o'-i--'")
(5.2.4a) S^-^l 0-=1,...,")

T=Q-9t
on H^. They satisfy the commutation relations [3j,-Xfc] = 26jkT, all other
brackets zero. Then set

Z,=^+^i=X,-z5, 0=1,. .,n)
(5.2.4b) _ ^ ^

Zj=-^-~ izj-^ = X -̂ 4- z5j (j = 1 , . . . ,n)

(with Zj = Xj + i$j). The commutation relations are [Zy, Z^] = —2^jfcT,
all other brackets zero. One notes that o;(Zj) = a(Zj) = 0 (Vj), so the
sub-bundle Ti,o of ^(H^d) 0 C defines a C.R structure on H^. The Levi

form is given by {Zj,Zk)L = ^(^[^j^fe]) = ^-fc, so H^ is stronglyz _
pseudo convex. All of these structures descend to the quotient by r and
define a CR structure on X. The CR functions are the solutions of the
Cauchy-Riemann equations

(5.2.5) Z,f=0 (j=l,...,n).

We will denote by H^{X) the CR functions which lie in ̂ (X). Under
the action of Z we have the isotypic decomposition

(5.2.6) Hi(X)=Q)H^N)
N=0
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where H^(N) := H^ n HN is the space of CR vectors transforming by
the TV-th character \N- Under the identification of sections of L0^ with
equivariant functions on X in H N ' , the holomorphic sections correspond to
H^(N)([AT] [A] [M]). As is well-known, and will be reviewed below, the
holomorphic sections rhoi^0^) are the theta functions of degree N.

5.3. Toeplitz quantization of symplectic torus automorphisms.

Thus far, we have followed the procedure of geometric quantization
theory and have quantized (T^^yr, a) as the sequence of Hilbert spaces
H^(N) ̂  PholO^0^). The next step is to quantize the symplectic map g.
For this, geometric quantization offers no well-defined procedure in general,
and indeed it is not possible to quantize general symplectic maps (even very
simple ones) in a systematic way. In the case of certain g € Sp(2n^ Z) we
can use the Toeplitz method. These are the elements in the theta-subgroup
Spe(2n, Z) := {g C Sp(2n, Z) : AC = 0(mod 2), BD = 0(mod 2)}.

PROPOSITION (5.3.1). — Let g € Spe{2n,Z), and let \g : 7V^ —^ N]^
be defined by

\g(x,^t) = {g(x^),t).
Then \g descends to a contact diffeomorphism of (X, a).

Proof. — First, \g is well-defined on the quotient H^/r of the
Heisenberg group since the elements of 5p^(2n,Z) are the automorphisms
of H^ preserving F. The last statement follows from the fact that
F(g(m,n)) = F(m,n) (mod 2) if g € Spe(2n,Z) and if F(m,n) := (m,7i).

It remains to show that \*a = a. Let us write a = dt + -({•^5 d^} —
Zi

(^ dx)) where x = ( re , . . . , Xn), ^ = (6^ • • ̂ n) and (a?b) = Sa^. Then
^ga = dt + ^((.r1, d^) - ̂ 1, dx1)) where a^ = Ax + B^, ̂  = Cx + ̂  (in
the notation of 3.1-2). We note that

(x\ d^) - (^, dx1) = ((A*C - C*A)rr, dx)

+((^*B-B*D)$,dO
(5.3.2) +((D*A-B*C)a;,dO

+<(C*B-A*D)^,&)

=(x,d^)-{^dx)

by the identities in (5.1.2). Hence ^*a = a. D
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Remark. — Unfortunately, translations T(^^) on R^/Z271 do not
lift to contact transformations of this contact structure. They do of course
lift to translations of X by the elements (xo, $o, 1) ^ 11̂ , but these do not
preserve a. Indeed, a is right-invariant but not bi-invariant under E^, and
the invariance was used up in going to the quotient by T. The only elements
of EI^ which lift to contact transformations are those which normalize F,
namely N^ itself.

As above, we let S = {{x, rox) : x C X, r > 0} denote the symplectic
cone through (X, a) in T*X\0. We also let II: L^X) -^ ̂ (X) denote the
orthogonal projection (i.e. the Szego projector) onto the space of -L2 CR
functions. From the analysis of II due to Boutet de Monvel and Sjostrand
[BS], one knows that II is a Toeplitz structure on S. It is obvious that
the contact manifold (X,a) has periodic characteristic flow (generated
by 5 = T), and that both II and \g commute with T. Hence, by the
Unitarization Lemma, we can quantize \g as a unitary operator on H^^X)
of the form

(5.3.3) Ug=HT^AH

for some pseudodifferential operator over X commuting with T. More
precisely, it will be unitary if the index of \a vanishes, a condition that we
will discuss further below. Since Ug commutes with T, it is diagonal with
respect to the decomposition (5.4) and hence is equivalent to sequence of
finite rank unitary operators

(5.3.3^) U^g:H^N)-^H^N)^

the finite dimensional quantizations of g.
Since the Unitarization Lemma constructs Ug in a canonical fashion

from the contact transformation \g, we should be able to determine it
completely in a concrete example. The first step is to determine the
principal symbol, or more precisely the function given in (3.10).

To calculate it, we introduce the coordinates {x,^t,px,P^^Pt) on
T*(X) with (x,^t) the base coordinates used above and with (px^P^Pt)
the sympletically dual fiber coordinates. Thus, the symplectic structure on
T*(X) is given by

Q := ̂  dxj A dpx, + d^j A dp^ + dt A dpi.

The cone S is then parametrized by i : M"^ x X -> T*X, (r,a;,$,t) -^
(x, $, t, 2rax) and since this is a diffeomorphism we can use the parameters
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as coordinates on E. The equation of S is then given by

Px = r^ p^= -x pt = -r.

Hence,

z*(n) = y^ dxj A d^j + a A dr.

We recall that S is the characteristic variety of the involutive system
(5.2.5) and that the symbol on of the Szego projector involves the positive
Lagrangian sub-bundle (3.5) of TS-1- 0 C. We now describe these objects
concretely:

PROPOSITION (5.3.4). — At a point p = i(xo^ $o? ^o? ^o) ^ ̂  we have:
(a)

T^=.p{x,+^5,^^}

(b)

A,=.pc{^+.o(^4-^)}.

Proof. — (a) Using the above parametrization, we find that

. _9__ _9__ 9
^*8xJ~8xj~ro9p^
. 9 _ 9 9
^* ^/. — ^^ i y*o "S——9^j 9^j 9p^
. 9__9_

9t 9t
• ^L-t 9 9 9
^Qr-^Qp^ ^Qp^ apt

from which it is simple to determine the vectors X such that ^2(X, TpE) =0.

(b) The operators Dj of §3 are the operators Zj of (5.4b) whose
symbols are given by

^D, = ipx, - P^ 4- (Xj + i^j)pt.

Their Hamilton vector fields

H^ = - [Xj + iEj + iro f _ — + i-,—))3 z \ \9px, Q p a J )
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are easily seen to agree (up to complex scalars) with the vector fields
asserted to span Ap. D

We now wish to determine the vacuum states corresponding to A and
^(A). Recall that, given a symplectic frame ofTpS^, we get a representation
dpp of the Heisenberg algebra on the space ^((S-^p (see §3) and that the
vacuum state e^ is the unique state annihilated by the elements of Ap. To
determine it, we choose the symplectic frame

Bp := {——Re ̂ ,, —— Im H^J = 1,... ,n}
t V7'0 \ro )

and write a vector V € (^pS)-L as V = ̂  Oj ——Re H^ + /3j -7= Im H^.
V » o v ' 0

We observe that {——RejEf^.——r Im^.,r} form a Heisenberg alge-
1 V7"0 \/ro )

bra and that under the Schrodinger representation dpp they go over to

{^'1}-
PROPOSITION (5.3.5). — With the above notation: The vacuum state

eAp equals the Gaussian e~^^ .

Proof. — The annihilation operators in the representation dpp are
r\

given by the usual expressions ,— + Oj and hence the vacuum state is the
(JOLi

usual one in the Schrodinger representation, n

Now consider the image of A under the contact transformation \g^ or
more precisely its lift as the symplectic transformation
(5.3.6)
Xg{x,^t,p^p^pt) = (Ax + B^ Cx + D^t.Dp^ - Cp^ -Bp^ + Ap^pt)

of T*X. Of course, it is linear in the given coordinates. We would like to
compare d\g,p{h.p) and A^(p).

PROPOSITION (5.3.7). — Under d\g^p we have, in an obvious matrix
notation:

(a)

X -^ AX + CZ
Ej -^ BX + DE
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(b) ^^B^-^D-9-
9px 9px 9p^

.aL^A^-+C-a-9p^ 9p^ 9p^

(c) ReiHa -^ A(Rezi^) + C(lmiH^
ImiHa -^ B(ReiHa) -h D(lmiHa)

(d) dXg,pBp = g^B^p)

(e) e^ = /^(^*)CA where p, is the metaplectic representation.

Proof. — The formulae in (a)-(b) are easy calculations left to the
reader. The ones in (c)-(d) are immediate consequences. The statement
in (e) follows from the change in the Schrodinger representation under a
change of metaplectic basis [BG]. D

The desired principal symbol is determined by the following proposi-
tion.

PROPOSITION (5.3.8). — Let g = ( ) . Then the inner product\C u )
{e\^ , e\) in the Schrodinger representation equals:

(CA, ,eA)=2?(det(A+D+zB-zG))-i.

Proof. — Let Z = X + iY be a complex symmetric matrix with
V » 0, and let 7z(aQ := e^^'^ be the associated Gaussian. The
action of an element g e Mp(2n, R) is the given by:

y^*"'̂  = rn(g, Z)-la{g}z

where

m(g, Z) = det-^ (CZ + P), a(g)Z = (AZ + B){CZ + D)-1

/'Y.

(see [FL Ch.4.5). We may assume e\ = 1 and since
INI

we have

P'{g^i=rn(g l,^)^g-li

{eA^,eA) =m(g~l,i)(^g-li^i).
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The inner product of two Gaussians is given by

(5.3.9) (7r,7r-) = I e^-^^dd = 1

^ A/det [-i(r - r')]

with the usual analytic continuation of the square root [F]. Putting r =
g^il and r ' = iJ and simplifying we get the stated formula, n

For future reference we will rephrase the previous proposition in the
following form:

COROLLARY (5.3.10). — The Toeplitz operator

Ug := m(^)n^n m(g) = 2^ {det{A + D + iB - iC))^

is unitary modulo compact operators.

We will now see that Ug is actually unitary if g € 5'p^(2,Z) or if g
lies in the image of the natural embedding of 6^(2, Z) in Spe{2n, Z). The
same statements are true for the other elements Spe{^n,T), but we will
restrict to these elements so that we can easily quote from [KP].

5.4. Theta functions.

We begin with a rapid review of the transformation theory of theta
functions under elements g € 5^(2, Z). As above, in dimensions larger than
two, Spe (2, Z) is understood to be embedded in Spe(2n,Z) as the block

matrices ( a n n } with In the n x n identity matrix. For this case,
\^ Cin din )

we closely follow the exposition of Kac-Peterson [KP]. For more classical
treatments of transformation laws, and in more general cases, see [Bai]
[Kloo].

NOTATION. — U^ := {r = x + iy\x,y C R,y > 0} will denote the
Poincare upper half-plane and the standard action of6'L(2,R) on W+ will
be written

( a ^\ _ ar + ̂
\c d ) T ~ cr+cT

U-^ = M71 will denote a real vector space of dimension n, equipped with
a positive definite symmetric bilinear form <, >, and U = U^ 0 C. The
Heisenberg group will be taken in the unreduced form N^ = U^ x U^ x R
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with multiplication (a;,^)^',^) = (x + x1 ̂  + ̂  + ^' + ^[(.z/ Q -
(^/)]). 2

To quantize 5'L(2,Z) as a group action, one has to lift to the
metaplectic group

Mp(2,R) := ̂ ^ y ,^ : j(r)2 =cr+d,j:'H+^C holomorphic} .

Set

V := %+ x U x C
and let Mp(2, R) act on V by

(5.4.1) ( ( a b} - \ ( r . t ) - (aT+b z c<^z>\( ) {{c dJ^J^^-^-^d-^rTd-^^^Yd)-

Also let the Heisenberg group act by
(5.4.2)

(^W(T,^) := (r.z-x^t- < ̂ z > -Jr < $,^ > +J < x^ > +t,).

Let GK be the semi-direct product of Mp(2, R) with A^, with ̂ n^-1 = ^.n.
It acts on functions on Y by

(5'4'3' '(c ̂ f^'^'^ ^(^•2•t))
fU^z,t)=f(n(T,z,t)).

Now let L denote a lattice of full rank in Uy^ such that (7,7') e Z for all
7,7' 6 ^, let £* be the dual lattice {7 : (ex, 7) e Z(Va € L)}. For the sake
of simplicity we will assume L = L* and in fact that L = Z". Then define
the integral subgroup

(5.4.4) Nz = ((x^,t) e NK : x,^ € L,t+ ^(x^} e zl.

The normalizer Gg of N^ in A?R is given by
(5.4.5)

C^KC ^)(^)^M:Q ye..(2,Z);
I 6d(7,7) = 2(a,7)mod2Z,ac(7,7) = 2(^,7)mod2Z,V7 e Z"}.

In particular, 6'p@(2,Z) C GZ.
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DEFINITION (5.4.4). — The space oftheta functions of degree N is the
space T/ijv of holomorphic functions f on Y satisfying:

f\n =f (Vn € TVz), /|(^) = e-^^f.

The entire ring of theta functions is the space

fh := (D ThN.
NCN

We observe that Th\ puts together the holomorphic (pre-quantum)
line bundles

(5.4.5) Cr -^ U / ( L + rL)

over R^/Z271 -torus as the one-parameter family of complex structures
parametrized by r varies. Indeed, following [KP], p. 181 we observe that
the natural projection

7r:Y=H+xUxC-^Hj,xU

defines a holomorphic line bundle. The group N^ := N j , / ' L acts freely by
bundle maps, so the quotient line bundle

(5.4.6) 7f : V/ATz -^ CM+ x [7)/7Vz

defines a holomorphic line bundle which for each fixed r restricts to (5.4.6r).
Similarly for the powers jC0^. Hence Th simeltaneously puts together
theta-functions of all degrees and complex structures in the one-parameter
family above. If we fix r we get the space Th]^ of holomorphic sections of
y^^^, that is, the space of holomorphic theta functions of degree N relative
to r.

5.5. Classical theta functions of degree N
and characteristic /x a la [KP].

We now introduce a specific basis of the theta functions of any degree
and with respect to any complex structure T. These are not yet the theta
functions which will play the key role in Theorem D, but are a preliminary
version of them. We follow the notation and terminology of [KP] except
that we put L = Z71 = L*.
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For ^ e Z^JVZ71, define the classical theta function of degree n and
characteristic p, with respect to the complex structure r by

(5.5.1) 0^(r, z, t) := e-2^ ^ ^N{^<7,7>-<7,.>}.
7eZ-+-^-

When the degree N=1 and [t = 0 this is the Riemann theta function
for the lattice Z"',

(5.5.2) e(T,^t) := e-2^ ̂  g2^r<7,7>-<7^>}
^eZ"

while the general theta function of degree 1 and characteristic ^ € W1 /V^
is given by

(5.5.2/.) e^r,^) := 6[(o,-^o) = e-2^ ^ ^{,r<7,7>-<7,.>}.
7€Zn+/2

One has the following:

PROPOSITION (5.5.3) (see [KP], Lemma 3.12). — Fix r. Then:

{©^Nlyr^eZ"/^71 ls a C-basis of Th]^.

5.6. Transformation laws.

The transformation laws for classical theta functions are given by the
following:

TRANSFORMATION LAW (5.6.1) ([KP], Proposition 3.17). — Let g =

( ( ^ ) ̂ I e ^P^i ̂ ) ^e an e^eme^^ satisfying:^ \ c a / ^

Nbd = 0 mod 2Z Nac = 0 mod 2Z.

Then there exists ^(7V, g) e C such that, for p, € Z,

^ I -.,(Mn\ \^ ,,^7^[^r-lcda2+2N-lbca/x+7V-la^2]^L^,^IP — ^V^O) / ^ e ^a^ca.N'
aez"-

co. mod JVZ"

The matrix ofg with respect to the above C-basis is unitary.

The multiplier i / ( N , g ) is described in detail in [KP], loc.cit and
involves the Jacobi symbol.
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For the generators

S - ( ° -1} T - ( 1 1}
^[l 0;' T-{0 l )

of <S'£(2,Z), and for n = 1, the transformation law reads:
(5.6.25)

e^(-t,^+^)=(-^(AO-^ ^ e-™e^(r.^)
aez/ivz

(5.6.2T) e^v(T+l,^) = C^^O^T,^).

We note that (5.6.2S) is the formula for the finite Fourier transform
on Z/AT [AT], p. 853.

5.7. The space QT{N) oftheta functions ^^.

We now specify the theta functions which will play the key role in
linking the classical transformation theory to the action of the quantized
contact transformation U^ . They are essentially the (variable degree)
versions of the 'most natural and basic5 theta functions of [M] and coincide
with the span Q(N) of the theta-functions denoted (f)Nj in [AT].

The reader should note that the expression ©^jvin^ ^51) depends on
many variables. In different articles, different sets of variables are viewed
as the significant ones. Here we wish to regard theta-functions as functions
on N^/N^ so we emphasize the n € N^ variable. In other contexts, (r, z)
are viewed as the significant variables (cf. [Bai] [M] [Kloo]).

DEFINITION (5.7.1). —For lie J^IW, put:

W^^t) := e-^^O^I^^^O.O)

-2.iNt y ^[j<^^+^C+^+7)+<^^7,.)]^

7GZ1'1
= e

The significance of these theta-functions is due to the following:

PROPOSITION (5.7.2). — The theta functions ^T ^ satisfy:
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(i) ̂  6 JM^zW;

(ii) As JLA runs over ^ / N ^ , ^^OK,^) forms a basis of the CR
functions of degree (= weight) N on N^\Nyi.

Proof. — First, for [t € l^ /Nl^^ O^,N is TV^-invariant as a function
on V, that is, 6^|n = Q^N for n 6 N^ ([KP], 3.2). It follows that

^,N?^0)) = ©/.,N|n(^,0)(T,0,0) == e^l(^,0)(^ 0, 0)

since |n is a right action.

The CR property is a direct consequence of the fact that the theta
functions are holomorphic on Y. To give a complete proof of this, one
would have to introduce the CR structure Zj on N^\N^ corresponding
to a complex structure Z on the torus N^\N-^/Z (with Z the center),
and verify that differentiation of Q^^l^.^o^^^O) by Zj in the {x^^t)-
variables is equivalent to differentation of O^N^ ^51) in Qz. For the details
of this calculation we refer the reader to [M], p. 22 or [A].

Granted the CR property, the statement that the ^^^'s form a basis
for the CR funtions of weight N relative to the CR structure T follows from
Proposition (5.5.3). D

The proposition has the following representation-theoretic interpreta-
tion: HN(NJ\N-^) is reducible as a unitary representation of7V^ for TV > 1,
and the space H^(N) of CR functions in HN consists of the lowest weight
vectors. For the multiplicity theory, see [A] [AT].

We now record the modified transformation laws for the theta func-
tions ^T ̂  under elements g 6 Spe(^n,Z). It will be these transformation
laws which will be used to prove Theorem D.

PROPOSITION (5.7.3) (Transformation laws for ̂ r^). — As above, let

g = ( ( Y J ' ) G Mp(2,R) be an element satisfying

Nbd = 0 mod 2Z Nac = 0 mod 2Z.

Then there exists v{N,g) G C such that, for p, e l ^ / N I ^ ,

^9'^W=^g)j{g-lrr
^ ^[N-(cd)^+2N-^+N-(a^]^_^^(^^^)

aez"
camodJV^
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with T' = Q ^ r = ————. The matrix of g with respect to the above
-CT + a

C-basis is unitary.

Proof. — We may (and will) set t = 0 on both sides. Then,

^N^ + b^ cx + d^ °) : = ©^N|(a:r+^,ca;+^,0)(^ 0. 0)

= ©^Nip^a^O)^0?0)-

Here, ^ • (a^,0) is the action of (gj) € Mp(2,R) on (a;,$,0) as an
automorphism of A^.

Now recall that in the semi-direct product Mp(2,R)N^, we have
(9j)ri{gJ)-1 = { g ' n ) . Hence

©/x,N|p.(^,0)(^0,0) = ©,z,N|(^)(^,0)(p,j)-1 • (^0^0))
( / =J(^lT)7^[e^|(^)]|(^,o)(^-lT,o,o).
Applying the transformation laws (5.6.1), the last expression becomes

= ̂ (N.gWg-^rY Y^ ^7^[N-l(cd)a2+2N-lbca/.+N-l(ab)^2]

aez"
ca mod NZ"-

©a^-ca^lc^^^^'^^.O)

= ̂ N^Wg-^r ^ ^[N-l(cd)a2+2N-16c^+N-l(ab)^2]

aez71

ca mod JVZ71

<-ca,N(^,^0).

The unitarity of the matrix of coefficients follows from the usual transfor-
mation rule. D

5.8. 6]v as a Heis (Z^^O-module.

As mentioned above, Q]^ is an irreducible representation for the
finite Heisenberg group Heis(Zn/AO. We pause to define this group and its
action on ©]v. This will clarify the distinguished role of the classical theta
functions as a basis for 9^ and hence will make explicit the isomorphism to
L^Z/AQ, which is the setting for the quantized cat maps in [HB] [dEG.I]
[Kea]. It will also clarify the relation between the dynamics of cat maps as
studied in the semi-classical literature and those studied in [B] [BNS].
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In the following, C^ denotes the unit circle in C, C^(N) denotes the
group of Nth roots of unity, and zLC^(N) denotes the group of elements
-^e^-h.

DEFINITION (5.8.1). — The finite Heisenberg group Heis (Z71/TV) is
the subset of elements of

^/NV x T^/NV x (±C^(AO)

generated by I ^ / N x J ^ / N and C[(N) under the group law

(m, n, e^). « n', e^) = (m + m', n + n', e^a^)^^))^^)).

In the terminology of [M], Heis (Z71/TV) is a generalized Heisenberg
group in the following sense: A general Heisenberg group G = Heis (Jf, ̂ )
is a central extension by C\ of a locally compact abelian group K:

(5.8.2) 1-^C^G-^K-^O

satisfying the following conditions:

(i) As a set G=K x C^;
(ii) The group law is given by

(x, A) • OLA, y) = (\^(x, y), x + y)

where ^ : K x K —> C^ is a 2-cocycle:

^(a;, 2/)^(a; + 2/, z) = ̂ (a;, t/ + z)^{y, z)\

(iii) Define a map e : K x K —> C^ by

e(a-,2/) = .n/.r'''1?/"'1

where .r,^ are any lifts of x,y to G (e(x,y) is independent of the choice).
Also define (j) : K —> K by (j){x){y) = e(x^y). Then <^ is an isomorphism.
Here, K is the group of characters of K.

In the case of Heis ( J ^ / N ) , K = Z^A^ x Z^/TYZ" and ^ is given
by '0(^, w) := e"^1^^'^'^ where a is the restriction of the symplectic form to
Z271. Also, we consider the finite subgroup generated by K and by C^(N).

The analogues of Lagrangian subspaces in the case K = T^R71 are
the maximally isotropic subgroups. Here, a subgroup H C K is called
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isotropic if CHXH = 1 and is maximally isotropic if it is maximal with
this property. Examples of maximal isotropic subgroups of Heis(Zn/A^)
are given by V^/NT^ and by the character group T ^ I N I ^ .

Given any isotropic subgroup, there is a (splitting) homomorphism

(5.8.3) s : H - > G s(h) = (/i, F(h))

such that TT - s = idjf. Here, TT : G —> K is the map in (5.8.2). The map
F(h) satisfies:

F(a+b) =^(a,&) ( a , b € H ) .F(a).F(6) ^'/ ^—-;.

Given a maximal isotropic subgroup H C K and a splitting homo-
morphism s : H —^ G, one defines the Hilbert space:
(5.8.4)
H = { f : K ^ C : f e L2{K/H),f{x-^h) = FW-^^x)-1/^) V/i e H}

and the representation p of G on 7<

p(fc,A)/(o;):=A^,fc)/(a;+fc).

Then: p is an irreducible representation, and is the unique irreducible with
the given central character.

The choice of Z^^Z^^ gives a close analogue of the Schrodinger
representation in the real case. The associated Hilbert space may be
identified with L^Z^IVZ71) and the representation is given by
(5.8.5)
EW)/(6) = W) y(a,o,o)/W = e^^fW ?7(o,^,o) = /(&+a).

Now let us return to 6]^. We first observe that Q^,N is constructed
from Q by:

^ 9^(r,^)=e^(r,^)
Q^(T,^t)=e|(o,_^)(T,^t)

where QN is the same as 9 except that the complex quadratic form < •, • >
is replaced by N < • , • > .

We further observe with [KP] (3.10), that
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Q^N\ ^ ^e^^Q^
(5.8.7) y'0)

^^(O^o) ̂ /^-^N

where ^// e vary over Z^A^. Since 6^ depends only on p, mod
AW, we see that (5.8.7) defines the same representation of Heis(Zr7AQ
as in (5.8.5).

The same situation holds for the theta functions ̂  ̂ , but we rephrase
things slightly. First, with [AT] let us set

(5.8.7) ^(x.^t) := e-27^ V" e27rz[A^+7^+7)+<7,^
7eZn

One can verify that ^T'1 = ̂  ̂ . Then define the Heisenberg dilations

(5.8.8) I^:A^TVK - D^^t)={mx^^mt)

which are automorphisms of TV^. Associated to them are the dilation
operators

DN : Om -^ QNm DN! = f ' DN.
Then we have

(5.8.9) DN^ = ^,N = e-2^^ y e27rz7V[5^+7^+^+^,^]^
7eZ71

(5.8.9^)

^N=^N\^-^^=e-27^^Nt ̂  e27^^7v^<-^^+^-^^+7>+(^-^7^]
^eZ"

as stated in (5.7.1).

Consider in particular the case of dimension n = 1. Then relative
to the baaic theta functions i9^ the elements V = (o, -3-, l) and U =
/ 1 \ \ -/V /
^? °' y of Heis ̂ /N^ are ^P^sentated by the matrices

V : ei -^ 62, . . . ,en -^ ei £7 := diag(l,e2^,... .e2^^-1)^)

where ^il ^^tes the standard ba^is of C^. These elements satisfy
UV = e^frVU hence generate the rational rotation algebra MJL with
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Planck constant h == —. Hence QN determines a finite dimensional rep-
resentation TT of this algebra, with image the group algebra C[Heis (Z/j?V)]
of the finite Heisenberg group. Moreover, the transformation laws define
Spe{2, Z/AT) as a covariant group of automorphisms of C[Heis (Z/N)]. From
the dynamical point of view, these automorphisms are very different from
the automorphisms defined by Spe{2, Z/7V) on Mj. (as in [B] [BNS]): In-
deed, the representation TT kills the center of M. j_, and since it is finite
dimensional representation the automorphisms have discrete spectra.

5.9. Finite degree Cauchy-Szego projectors and change
of complex structure.

As mentioned several times above, we would like to view the transfor-
mation laws as defining a unitary operator on the space 8^ of theta func-
tions with a fixed complex structure. However, as things stand, the trans-
formation laws (5.7.3) change the complex structure r into r ' = ————.—c+ dr
The purpose of this section is to use the degree N Cauchy-Szego projector
to change the complex structure back to r.

It is right at this point that the Toeplitz method differs most markedly
from the Kahler quantization method of [AdPW] [We]. In the Kahler

^ -y^ ,̂ ^-

scheme, the unitary (BKS) operator carrying Th^ back to Th^ is parallel
translation with respect to a natural flat connection on the vector bundle
QN over the moduli space of complex structures, whose fiber over r is the

~ -y-

space Thpf. As discussed in these articles, the connection is defined by the
heat equation for theta functions. Since the classical theta functions are
solutions of this equation, they are already a parallel family with respect
to the connection-hence the unitary BKS operator in the Kahler setting
is simply to 'forget5 the change in complex structure r —> r ' . Thus, the
unitary matrix defined relative to the classical theta functions is precisely
the quantization of g in the Kahler sense. It is also the quantization of [BH]
[dBB] [dEGI] [Ke], as the interested reader may confirm by comparing
their formulae for the quantized cat maps with the expressions in the
transformation formulae.

Our purpose now is to show that the Toeplitz method leads to the
same result.
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LEMMA (5.9.1). — Let n^ be the orthogonal projection onto H^ (N) =.
^ and let II^ := II^II^ : 6^ -^ 6^. Then: II]̂ *!!̂  =6L and let iKf := II^m; : Q^ -^ 6^. Then: IlW^

(ImrlmrOi 2
(47r) / ^_./_——=7TTT ^N-(-STT^T-T7))!! N '

Proof. — Let / G ©^, and ^ C ©]^, for any pair of complex structure
T,T'. As elements of L2{N^/N^) their inner product is given by

(f\9) := I (f\n)W)dn
JNT\NR/NZ\NR

with dn = dxd^dt the A^-invariant measure on N^\N^. Our main task is
to calculate the inner products

(̂ ,Nl<N)

in HN(N^\N^). The lemma is equivalent to the following:

CLAIM (5.9.2).

(^N I <,̂ ) = <Wvol (Rn/Zn)(-27^^(T - ̂ l)-^.

Proof of Claim. — Using the expressions in (5.7.1)-(5.8.9/x), we can
rewrite the inner product in the form
(5.9.3)
(^r 1 y' _. _ Y^ [ f e2^N[4r<7+^+^7+^+$ >+(7+^+^o:>]
(^l^.)-^^^6

g-27r^7V[^77<7/+^+^,7/+^+0+<7/+^+^)] ^^^

The da; integral equals

f ^(.,N(7-y)+(^/)>^^^^^^,^,
JRn/^n

Since

^7V7+^,7V7/+^/ = ̂ n+-^,Zn+^^^/

the expression in (5.9.3) simplifies to

y^ f ^27rzN{i(r-^)}<7+:|7+^7+^+^ = /> ^^{^(r-^)}^)^^
———JR^/^n J^
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The last expression is an inner product of Gaussians, so by (5.3.9) it equals

(5.9.4) <7r,7r/) = (-27rW(T-^))-^

proving the claim.

It follows first that for each r the basis {^jy^ ^ V'fW} is
orthonormal up to the factor (47^iVImT)-2n. If we normalize the basis to
^ := (47^MmT)in^^ then the projection IT^ onto the space H^{N)
of degree N ^ 's may be written in the form

(5.9.5) n]y= ^ <N®^V-
^6Z"/Ar2'1

We then have

n^*ny =i^nw

= E K^ivl^N)!2^®^
^e^/NZ71

-(^'(^^Tl'S^8^

proving the lemma, n

COROLLARY. — Let

U^ : H^{N)-. H^(N)

be the unitary opeator

P/T^ ._ \ ^ ,aT ^ ̂ T'*
^N '— / . ^N^^N-

^€Z/NZ

Then

'̂(-'̂ (^^Tl̂ '

We can now complete the
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5.10. Proof of Theorem D.

(a) Since ITT^II is block diagonal relative to the decomposition (5.2.6)
it suffices to show that each block Tl^T^Tl^ is unitary up to a constant
independent of N.

For simplicity of notation let us rewrite the unitary coefficients under
the sum in (5.7.3) as u^(g, N). Let us also observe that the norm of \\07' ^[[
varies with r. Hence the transformation laws (5.7.3) take the following form
in terms of the y ^/s:
(5.10.1)

\Wg~l'i\\
^^^^-^^=^(,-l,)"N_^ll,(,^)^- ^ u^W:^.

" P',N\\ a6Z71

camodTVZ71'

Using Corollary (5.9.6) and simplifying, (5.10.1) becomes

^-^W9~l'^r^NW~l^ ^ u,^N)^;_^
aez"

camod^Z71

(5.10.2) =^-^i)3^-ir^N) ^ ^(g,N)^_^.
aez71

camodJVZ71

Noting that jg{g~1 • i) = /^-l,^) and comparing with Proposition (5.3.8)
we see that

(5.10.3) irr^IT = W)e^ e^N

where

(5.10.4) U,,^:=v(g,N) ^ u^(g,N)^_^.
aez71

coimodJVZ71

Hence by Corollary (5.3.10) we have

Ug,N = m(^)tfT^n1

with m{g) = W)e^ e^)-1 = 2-5(det(A + D + iB - zC7))i. D

Comparing (5.10.2) and Corollary (5.3.10) we see that the principal
symbol is indeed the complete symbol.

(b) It is a classical fact that the transformation laws define the metaplec-
tic representation of 5^(2, Z/7v). We have defined the multiplier m(g)
precisely to obtain this representation.
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Remark. — In the case of the real metaplectic representation,
Daubechies [D] finds that Wj(S) = rjj^PjUs\nj, where: Wj(S) denotes
the metaplectic representation, realized on the Bargmann space Hj of J-
holomorphic functions; Us denotes left translation by S'""1, Pj; Pj denotes
the orthogonal onto Uj\ and rjj^s := (^lj,Wj(S)fl.jY~1 [D], p. 1388. It is
evident that in our notation g = S~1 and that m(g) = rjj^s^ corroborating
that m(g) is the correct multiplier to get the metaplectic representation.

(c) The index of \g is by definition the index of any Toepltiz Fourier
Integral operator IIAT^II quantizing %g with unitary principal symbol.
We have seen that m(g)HT^n. has a unitary principal symbol, and by (a)
it is actually a unitary operator. Hence its index is zero. D

(d) The ergodicity and mixing statements follow from Theorem B together
with the fact that symplectic torus automorphisms are mixing if no
eigenvalue is a root of unity [W].

(e) We have:

u^nUg = nr^nairr^n
as the remaining constant factors cancel. The formula in (e) follows since
T* IIT^ is precisely the Toeplitz structure corresponding to the complex
structure g ' i . It also follows that the matrix elements of a Toeplitz operator
relative to the eigenfunctions ̂  jy of Ug^N satisfy:

(naiî l̂ ) = {Ug^Wk^Us^N} = <n<r • xgW^K^

where <^=^3^. o

Remarks.

1. On the index problem: Weinstein's index problem actually concerns
Fourier Integral operators quantizing homogeneous canonical transforma-
tions on T*M [Wei]. Of course, such a transformation is the same as a con-
tact transformation on S'*M. Moreover, it is known that any FIO can be
expressed in the form IIAT^II where 11 is a Toeplitz structure on the sym-
plectic cone generated by the canonical contact form on S*M in T*(S'*M)
and where A is a pseudodifferential operator on S*M. Thus II is a Szego
projector to a space ^(^M) of CR functions on 5*M. The Boutet de
Monvel index theorem for pseudodifferential Toeplitz operators and the
logarithm law for the index reduce Weinstein's index problem to that of
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calculating indices of operators of the form IIT^II. It is possible that the
index of such an operator always vanishes; we have just seen a non-trivial
example of this (i.e. an example not homotopic to the identity thru contact
transformations).

The fact that the index vanishes for the symplectic torus automor-
phisms above is due to the fact that their quantizations commute with an
elliptic circle action. Hence they are direct sums of finite rank operators
and the index, being the sum of indices of finite rank operators, has to
vanish. It would be interesting to see if the seemingly more difficult index
problem for Zoll surfaces (the original problem in [Wei]) cannot be solved
by a similar argument. The main difference is that the contact map arising
there intertwines two different elliptic circle actions.

2. On the quantum ergodicity: The quantum ergodicity theorem for
cat maps of S^/Z2 has previously been proved in [d'EGI] and [BdB] by a
different method. These papers also allow for non-trivial characters of the
fundamental group.

6. TRACE FORMULAE FOR QUANTIZED
TORUS AUTOMORPHISMS

The purpose of this section is to prove an exact trace formula for the
trace TrUg^ of a quantized cat map in the space of theta functions QN of
degree N. The standard complex structure r = il is fixed throughout. In the
following we assume that g is non-degenerate in the sense that ker (J — g)
is trivial. The square root ^/det (J — g) is defined by the usual analytic
continuation [F].

THEOREM E (6.1). — With the notations and assumptions of Theorem
D, and with the assumption that g is non-degenerate, we have

rrvrr _ 1 V^ z7r^[<m,n)-(7((m,n),(J-^)-1 (m,n))]
-*-^9,N — i \-(J_—T / ^

aelvi ~ 9 ) [(m,n)]€Z2n/(J-^)-iZ2"

Proof. — Our starting point is the explicit form of the Szego kernel S
from L2(N]^) on N^ (cf. [S]). It is a convolution kernel S(x^y) = K(x~ly)
with

(6.2) ^(^^(t+zlCl2)-71



QUANTIZED CONTACT TRANSFORMATIONS 357

where Cn is a constant whose value we will not need to know, and where
x = (C^). The Szego kernel S{x^y) is singular along the diagonal, but it
can be regularized in a well-known way (see [S]) and we can safely pretend
that it is regular. In fact, we will not need the full Szego kernel, but only
the part of degree N , and this is regular.

The kernel ofIIT^II on ̂  is then given by S{x, g{y)) = CnK{x~lg(y)).
Since g is an automorphism, the kernel on the quotient is

Cn ̂  K^rgW).
r€Nz

Actually, it will prove convenient to put the quotient kernel in a slightly
different form by passing to the quotient in two stages. First, we sum over
the central lattice N^ n Z/VR to get the kernel of the Szego projector on the
reduced Heisenberg group ff6^

5red(^2/):=^5(^,(0,0,fc)2/).

fceZ

Since the part of degree N on HF^ is given by

(6.3) SN(X^)= { ^ed(^2/(0,0,0))e-27^^N^,
Jo

we may express it in the form

SN{x,y) == / 5(^(0,0.^e-27"^.
m

The degree N part of TiTgIl on IF^ is therefore given by

(6.4) SN(x,g(y)) = [ S(x^g(y)(0^0))e-27riNed0.
JR

To pass to the full quotient we must further divide by the covering
group r of H^ over N]^/N^. It is not quite Z271 since the latter is not
a subgroup of the Heisenberg group. Rather Z271 is a maximal isotropic
subgroup of K = R271 and we must embed it in Iffl^ by the splitting
homomorphism

s : Z271 -. H^ 5(m, n) = (m, n, e^^)

wiihF{x,y)={x,y}. (cf. §5.8).
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Since g is an automorphism of the reduced Heisenberg group, the
kernel of the degree N part of IIT^II on the full quotient can then be
expressed in the form

(6.57V) ILvT^ILv = CnY^ I K(x-^g(y)(^ 0,0))e-27-^.
^r^

Now denote a fundamental domain for N^ in TV^ by P. Then we have

(6.67V) MLvT^n^ =Cn^ [ I K{x-^g{x)(^ 0, O^e-^^dOdx
^jRJv

To simplify (6.6N), we define an equivalence relation on F:

(6.7) 7 ~ 7' = 3M e r :

y = M^-yg^M).

Here ^(M) denotes the value of g e_Sp(2n^) on M in H^. We denote
the set of equivalence classes [7] by [F]

It follows from (6.6N), and (6.7) that the trace may be re-written in
the form

(6.87V) ^n^II^c,^^ / [K^M-^gWg^W))
M Mer^^

e-^^dedx.

We now use that g is an automorphism to rewrite g(M)g(x) as g(Mx).
Changing variables to x ' = MX and noting that [JMV = M271 x 5'1 we
have
(6.97V)

TY^^T^^^=^ E ^^^^^"'M^M^O^))^-2^^^.

We now observe that the central part of x cancels out, so that we may
replace the reduced Heisenberg group by R271. We henceforth denote points
in this space by ^ = (a-, ̂ ).

Since s : Z271 -^ r is an isomorphism, the equivalence classes [7] in
r are in 1-1 correspondence with the cosets [m,n] in ̂ /(g - 1)^. We
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denote the latter set of equivalence classes by [Z271] and rewrite (6.9N) in
the form

(6.107V) Cn Y^ [ [ ^((-C, 0)(m, n, ̂ (m, n))(pC, 0)(0,0,0))
[(m^letZ^]^271^ 2

e-^^dOdxd^.

We now multiply out the argument in K. Since it is somewhat more
convenient, we express the result for the reduced form of the Heisenberg
group:

(6.11) (-^^((m^)^^^71))^!)
= ( ( n — JV -L (^ ^\ g^^((^^)-C^C)g-^^(C5(w,n))gi7rF(m,n)\

Then write (m, n) == {g — I)v and change variables (^ —> C + ^- Then
(6. ION) becomes

(6.121V) en Y, ^NF^ ( f K{{g - J)C, 0)(0,0,0))
[(m,n)]e[Z2-] m2n 7R

^i7rNa(g((:-v),(:-v)^Na({g-I)v,{g+I)[(:-v]^-2niNe^^

Next we recall (cf. [S]) that the Fourier transform K as a function on
ĵ 2n+l ^g g^^ ^y

^(^, v, r) = 2ne-7rK^li (r > 0).

Hence the partial Fourier transform in the 0-variable equals

Ke{^N)=2nc^Nne-7rN^2

for another constant c^. Therefore, (6.12 N) has the form

(6.13^) 2nC^Nn ^ gZ7rNF(m,n)

[(m.^jetZ2-]
f ^N^g-I^^TrNaW-v^^-v^^Na^g-I^^g+I^-v})^^

7R2n

This is a Gaussian integral, and hence can be explicitly evaluated. To do
so, we first simplify the exponent.

First, the quadratic terms in ^ in the exponent are:

-TrMKp-^CP-^^C)]
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while the linear terms are:

i7rN[a(g^ -v) + a(-gv, C) + (r((g - I)v, (g + J)C).

The terms independent of C, come to

i7rN[a{gv, v) + a{(g - I)v, (g + I)(-v)) + F(m, n)\.

which simplify to

Z7r7V[F(m,n) — cr((m,n),t;)]

since g is symplectic. The terms linear in ^ cancel out.

Hence,

(6.147V) TrTlNT^IlN = 2nC^NnIg^ ^ ^N[F(m,n)-a((m,n),v)]

[(m,n)]€[Z2n]

with

Ig N = I e-^^-^lY^^^dC.
7]R2n

This integral has been evaluated in [D], p. 1386, and equals

(6.15) N-^de^I - g - iJ(I + g))}-^ [del (J - g)}-^

for some normalizing factor c^'. It follows that

(6.167V) Trn^T^n^ = yWet (I - g - iJ(I + g))]-^ [det (J - g)]-^
V^ ^7^N[^(7n,n)-<7((m,n),<y)]

[(m,n)]e[Z2n]

for some constant Cn. Using the remark after Theorem D(b) and using the
formula

(6.17) 2n[{det(7 - g - iJ(I + g))]-^ = m(g)-1

from [D], p. 1388, we see that

(6.187V) TrUg^ = Cn[det (J - g)}-^ ^ ^N[F{m,n)-a{{m^^}
[(m,n)]€[Z2n]

for some constant Cn. We can determine this constant by computing
one non-degenerate example; the example we choose is the finite Fourier
transform .F(TV), whose trace is given after the statement of Theorem E in
§1. Comparing with (6.18N) we find that Cn = 1. n
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