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NECESSARY AND SUFFICIENT CONDITIONS FOR
MATRIX SUMMABILITY METHODS

TO BE STRONGER THAN MULTISUMMABILITY

by W. BALSER and A. BECK

0. Introduction.

Frequently one finds a "solution" of a (non-linear) system of differ-
ential equations in the form of a power series with radius of convergence
equal to zero. This raises the following natural problem which recently has
attracted much attention: Find summability methods summing such formal
solutions (on certain sectorial regions) to an analytic function which also
solves the underlying differential equation.

Recently, J. Ecalle has defined such a summation method which he
named multisummability. Roughly speaking, his method is an iteration of
the classical Borel summability method, and it depends upon finitely many
positive parameters. Given a system of differential equations possessing a
formal solution, one can explicitly compute the "correct values55 for these
parameters and then apply the corresponding method to sum the formal
series. In addition to solving the differential equation, the sum so obtained
has other natural properties; e.g. it is asymptotically equal to the formal
series which we started with (when the variable tends to the origin in the
corresponding region). For a self-contained presentation of the definitions
and results from the theory of multisummability, we refer to [I], or the
survey article of B. Malgrange [6]. Here we will use only some notation and
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basic results from this theory, which are contained in [I], 6.3, Theorem 1
and 4.3, Theorem 2.

The content of this article is as follows: Given an infinite matrix A, we
give necessary and sufficient conditions under which the summation method
defined by A (in series-to-sequence form) sums every formal power series
which is (&i , . . . fep)-summable (in Ecalle's sense) to the same sum, provided
that kp > 1/2. Up to now, the only example of a matrix A satisfying these
conditions has been given by Jurkat [5]. In a second part we then show
existence of formal power series which are summable by Jurkat ̂ s method
but not ( fc i , . . . fcp)-summable for any choice of the parameters A; i , . . . kp.

This paper contains results of the second author's doctoral disserta-
tion [2], written under the first author's direction.

1. Matrix summability methods for formal power series.

For arbitrary d € R, a € R4" and p € R4' U {00} , let

S{d,a,p) := {z=rei(/> : 0 < r < p, \d - (j)\ < a/2}

denote a sector (on the Riemann surface of the logarithm). A closed sector
S is a set of the form

5(d, a, p) := [z = re^ : 0 < r < p, \d - (f)\ < a/2}

with d and a as above, but p e R4" (so a closed sector is automatically
bounded, but does not contain the origin).

Given an infinite matrix A = (am,n) with am,n € C for m,n e No,
we call a formal power series f(z) = ̂  fnZ" (with complex coefficients fn)
A-summable in a direction d € R, if there exist a > 0 and p C R"^, such
that the following two conditions hold:

00

1) The series fm(^) := S ̂ nfn^ have radius of convergence greater
n=o

than or equal to p, for every m € No.

2) The limit f(z) := lim fm(^) exists uniformly on every closed
m—>oo

subsector of 5(d, a, p).

The so-defined function /, which is analytic on S'(d,a,p), will be
called the A-sum of / on S(d, a, p). We sometimes say that / is A-summable
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on the sector S{d, a, p) if S(d, a, p) can be chosen as the sector that appears
in 2). We define the kernel functions corresponding to A by

00

km(z) :=^a^,^71,
n=0

provided that the series converge. We say that A = (am,n) is power series
regular, or for short: p-regular, if every power series f(z) = ̂ /n^71, with
radius of convergence R > 0, is A-summable on the disc of radius R about
the origin to its correct value. We call A strongly regular, if it satisfies the
condition

(The kernel-functions km{z)^ m € No are all entire functions, and
we have

(S) J"^"1 !̂̂

locally uniformly on C \ {.r G M : x >, 1}.

In other words, this means that A is strongly regular if and only if
the geometric series is A-summable to its natural sum on 5(7r, 27T, oo) and
on 5(0, £,1), for some e > 0. It is a well-known fact (see [4], Th. 135,
that a strongly regular method of summation sums all convergent power
series (i.e. series with positive radius of convergence) in their whole Mittag-
Leffler-star to their analytic continuation. It will turn out later that this
is the right kind of regularity if we want to compare our methods with
multisummability.

For k > 0 we say that A = (am,n) satisfies the order condition {Ok), if
the corresponding kernel functions are all entire functions of (exponential)
order < k. Furthermore, we say that A = (am,n) satisfies the growth
condition (Gk) (for k > 1/2), if the following holds:

(The corresponding kernel functions are all entire functions, and
for every K, > k and arbitrary e € (0,27T — T T / K ) there exist
ci,C2 € R"1", such that

(Gk) <
\km(z)\ <C^\

[for every z € 5'(7r, 27T — e — T T / K , oo) and for every m € No.

It is important to notice that the order condition (Ok) does not imply
the growth condition (GA;)) since the constants ci and 02 in the growth
condition have to be independent of m. Finally, we say (for k > 0) that
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A satisfies the comparison condition (Cfc), if for arbitrary p 6 N, d € M
and ^i > /^2 > ... > i^p > k, whenever f(z) is (^i, . . . , ̂ p)--summable
in direction d to sum /(^), then we also have A-summability of f(z) in
direction d to the same sum.

2. The main result.

In what follows, we give necessary and sufficient conditions for a
summation method A to satisfy the comparison condition (Gk)i for k > 1/2.

LEMMA 1. — Let k > 1/2 and A be an infinite matrix, satisfying
(5), (Ok) and (Gk). Then A satisfies (C^).

Proof. — Let d € R, p € N and M > ^2 > • • • > i^p > k be given
00

and consider a series f(z) = ^/n^, which is ( /^ i , . . . ,/tp)-summable in
o

direction d. Using basic theorems from the theory of multisummability (cf.
[I], Theorem 1 and 4.3, Theorem 2) we can decompose the series / into
a convergent series plus finitely many so-called moment series; so without
loss of generality we can restrict / to be one of these moment series, i.e.

'--L^-
where a € C \ {0}, 7(0) is the path from 0 to a along argw = arga, and '0
is a function, L-integrable on 7(0), satisfying

(2) |^(w)[ < de-52!"!"'

for some ci, 02 > 0 and some k > k. It remains to show that this series is
A-summable to the sum

[ ^(w)
(z) = / —-—- dw,W = I

J^(/'y(a) ^ - Z

for z € «S'(arg a + TT, 27r — Tr/fc, oo). Using (1) and (2) one can easily see that
for m € No and e > 0, condition (0^) implies existence of ci, 03 > 0 with

00 yl"! p/^T^^g"^ °° \y\n

EK,"/nN"</ y( , ) Sl̂ l'ir^
^-n ^0 'L ^-n x
n=0 </u ' x 'n=0

fHcie-W ,,m^/^Icie^l^ cJ^.< / ——————Cle2!35! drc.
Vo ^
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The right hand side is finite if we take e small enough, so we can conclude
that

E^/n^Y ^U^d^
^0 A(a) ^ ^/

for every m € No and every z € C.

Now let S'i be a closed subsector of 5'(arga + TT, 27T — TT/^, oo). Then
we can choose r > 0, £• > 0 and K, € (fc, fc) so that 5 C 5(arga + TT, 27r —
£ — T r / K ^ r ) . Doing so, we conclude from (Gk) existence of ci, 02 > 0
(independent of m) so that

\km (z/w)\ < ci e^l^l^6 V^ € 5i, Vm e No.

From this estimate we find

^ f Wk^ (i) dw = /(.),
m•^OOJ^a) w vw7

uniformly on 5i. D

In the following converse to Lemma 1, it is interesting to note that
we only assume our matrix A to sum a very special one-parameter family
of formal power series. From this we conclude that for multisummability
these series play the same role as the geometric series for the question of
p-regularity:

LEMMA 2. — For k > 1/2 and a p-regular matrix A, assume that
the series

00

/^):=^r(i+n//^"
n=0

are A-summable in direction d, for every K > k and d € (0,27r). Then A
satisfies (5), (Ok) and (Gk)-

Proof. — Under the above assumptions, the series
00

fm,.(z) := E a^F(l + n/^
71=0

have positive radius of convergence (and using that K, > k is arbitrary, this
radius of convergence must even be infinite), thus represent entire functions,
for every m G No and K as above. Termwise integration of the series can be
justified to show

(3) km(z) = —— ( U^fm^u)^^ d(u-^
2m A.,e(r)
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with a path of integration 7^,e(T) from 0 along aigz = r + (e + 27r)/(4^)
to a finite point z\ in 5(71-, 27T - T T / K — £, l/3r(27r - T T / K - £•)), then along
the circle \z\ = |2;i| to the ray argz == r - (e: + 27r)/(4/t) and from there
along this ray back to the origin (with arbitrary real r and sufficiently small
e>0).

By assumption, for every d as above there exist e(d), r(d) > 0 so that
the functions fm^(z), as m -> oo, converge uniformly on 5(d, e(d), r(d)) to
a function f(z) which is independent of d. For every a (small), we conclude
(using the compactness of the interval [a, 27r-a]) existence ofr(a) such that
the convergence is uniform (hence the sequence is uniformly bounded) on
5(7r, 2(7r-Q;), r(a)). Choosing r such that 7/c,e(T) lies in 5(7r, 2(7r-a), r(a)),
we can estimate (3) in a straightforward manner, and varying r, we so
obtain (Gk). Moreover, letting m —^ oo in (3), and observing that uniform
convergence allows interchanging limit and integration, we find that the
kernel functions tend to 1/(1 - z) in S'(r,£/(2^),oo). Varying r and using
that K can be taken arbitrarily large, one can easily prove (S) (note that
p-regularity implies convergence of km(z) in the unit disc). D

Lemma 1 and Lemma 2 together now imply our main result:

THEOREM 1. — Let k > 1/2. A p-regular matrix A satisfies the
comparison-condition (Ck) if and only if it satisfies the conditions (S),
(Ok) and (Gfc).

The following result shows that from matrices A satisfying (Ck) we
can construct other matrices satisfying (C^), for some 0 < k < fc, by
deleting certain columns of A.

THEOREM 2. — Let k > 0 be given and A = (a^n), m,n e No
satisfy (Ck). If we define B = (bm,n) by bm,n '-= am,2n, m,n € No, then B
satisfies (Ck.).

Proof. — Let d € R, (^i, . . . , Kp) € R^ with ̂  > ... > K,p > fc/2
00

be given. If f(z) = ^ /n^ is (/^i, . . . ,^p)-multisummable in direction
n=o

d to sum f(z), then it is well-known (see [1]) that the series f(z2) is
(2/ti, . . . , 2/<p)-multisummable in direction d / 2 to sum f(z2). Since 2^p > k
and A satisfies (Ck), there exist a,r > 0, such that

00

S ̂ mftnfnZ^ -^ f(z2) (m -^ Oo)
n=0
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uniformly on closed subsectors of S(d/2,a,r). Hence we get that
00 00

^ bm^nfn^ = ̂  O'm^nfnZ71

n=0 n=0

converges to f(z) uniformly on closed subsectors of S(d, 2a; r2). D

As an application of Theorem 2, consider a matrix Aa depending
upon a parameter a, and assume that (Cfc) holds for every a. If for every
a there exists an a such that for every m, n

0"m,n(oi) = am,2n(o),

then Theorem 2 implies that each Aa satisfies (C^/s). Repeating this
argument we eventually obtain (Co). For Jurkat's method (see the following
section) one can use this technique to prove (Co).

3. Jurkat's method.

In 1993, W.B. Jurkat [5] studied the matrices Ja = (jm,n(^)) with

Om,n(<^)) = exp(-6m A(an)),

where 6m may be any positive sequence tending to zero as m —> oo, a is a
positive real parameter, and

\(u) = u \og(u + 3) loglog(n + 3).

This method had already been introduced by G.H. Hardy in [3] in connec-
tion with summing special power series with rapidly growing coefficients.
Jurkat showed that his method satisfies (Co), but it was open whether his
method was strictly stronger than, or even equivalent to multisummability.
The following Theorem 3 settles this question.

Let S be a fixed but arbitrary sector (of small opening). By C(Jo, S)
we denote the set of all formal power series that are Ja-summable on
S'(d, a, r). Given a formal power series f(z) = ̂  fn^ € C(Ja, S) we define

/m(^):=^Jm,n(a)/^71.

71=0

Hence / e C(Ja, S) implies that

f(z) := lim fm(z)
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exists uniformly on closed subsectors of S(d,a,r). Now let ~Sk, k € No
denote a sequence of closed subsectors of 5'(d,a,r), that satisfies ~SQ :=
S'(d,_a/2, r/2), ̂  C Sk+i VA; e No and V^ e ^(d, a, r) 3ko e No such that
z € 5'fco. Furthermore, let pk be a sequence in (0, r) with p^ —)• r. It is easy
to see that for arbitrary fc e No and m e No

||̂  := sup sup \fm(z)
m€No ^Sk

and

ll/IL,m := SUp \fm{z)\
\^<Pk

are norms on C(J^S). The linear space C{Ja,S) can be seen to be a
Frechet-space with respect to the above norms. To show the existence of
/ € C(Ja,S) that is not multisummable in any direction, we proceed as
follows: For lm := ^/\og\og(m-}-3), define

' g-2m log(m+3)Zm ^rg-2mlog(m+3)Zm ^ ^
lin ^ —————.———, -——I

^ m! ^m! J
c^ := mm< ———.———, ——— ^ m C No,

I m! iim^m \
where

hm := sup _sup ^jp^(a)r(l 4- Zm^)^
p€No ^eS'(d,a,r) n=0

(note that ̂  is finite since ]^r(l + ̂ n)^ € (7(^,5')). Furthermore,
the series

00

fn ••= ̂  c^r(l + l^n)
m=0

converges for all n e No and therefore

fW ••= E (£ c'"^(l + ̂ 7l)) 's"
71=0 \m==0 /

is a well-defined formal power series. By checking that there exist no
positive constants C, K, k such that \fn\ < CK^l + n / k ) for all n e No,
we conclude that / cannot be multisummable in any direction. Consider
now the sequence fj of formal power series

j / oo \

w ' ' = ' E E^1^-71)^1
m=0 \n=0 /

which is a linear combination of series being in C(JQ,S), hence itself is
in C(Ja,S), for every j e No. Because of our definition of the Cm the
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series fj may be shown to be a Cauchy sequence in C(Ja'S) (with respect
to the above norms). Since C{Ja^S) is a Prechet-space, this shows that
/ C C(Ja, S). Altogether we get the following

THEOREM 3. — There exist formal power series, that are not
multisummable, but Ja-summable by Jurkat's method.
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