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MAXIMALLY DEGENERATE LAPLACIANS

by Steven ZELDITCH(*)

Introduction.

Let M be a compact manifold and let .Mi denote the space of C°°
Riemannian metrics of volume 1 on M. For each g € M. we will denote by
0 = ^o(g) < Ai(^) < \2(g) < ' ' ' T oo the sequence of distinct eigenvalues
of the Laplacian A^ and by rrik(g) :== multiplicity of \k(g) the eigenvalue
multiplicity function. From work of Colin de Verdiere [CV2] and others,
one knows that if dimM >_ 3, then mk(g) is unbounded as g varies in
M\ for each fixed k > 0. Nevertheless, there is a precise sense in which
certain metrics g have maximal multiplicity functions mk{g). Following
physics terminology, we will call their Laplacians maximally degenerate
(see Definition 1).

The canonical examples are the CROSSes (compact rank one sym-
metric spaces): (5^, can), (RP^can), (CP^can), (HP71, can), (CaP^can).
They have the property that mk(g) = ak6--1 -h O^-2) for certain a > 0;
here, d == dim(M). The exponent d — 1 and coefficient a are maximal, as
one can see from WeyPs law; in fact the lower order terms are also maxi-
mal, as will be clear from the fact that CROSS Laplacians are maximally
degenerate. The maximal growth of m^ characterizes CROSSes (and their

(*) Partially supported by NSF grants DMS-9243626, DMS-9404637.
Key words'. Zoll metric - Eigenvalue multiplicities - Band invariants - Non-commutative
residue fields - Toeplitz and Fourier integral operators.
Math. classification: 58G15 - 58G18 - 58G25 - 35P20.



548 STEVEN ZELDITCH

quotients) among homogeneous spaces. The question is, does it characterize
them among all riemannian manifolds?

Before stating the question precisely, we will need a precise definition
of maximal degeneracy. It is based on the following

THEOREM A. — Let {Md^ g) be a Riemannian d-manifold for which
rrik {g) = afc^"1 + (^(A^"2), for some a > 0. Then g is a Zoll metric: i.e. the
geodesic flow G^ : S*M —>• S*M is periodic.

A Zoll metric in this sense is called a P^-manifold in the book of
Besse ([Besse]). All geodesies are closed, with minimal common period £.
Possibly, some exceptionally short geodesies occur, with lengths £/m for
some m € N. The metric is called Ci if no such exceptional geodesies occur,
i.e. if G^ defines a free S'1 action on S*M. For example, the CROSSes are
Cf. manifolds, but the lens spaces -S^/Zp are only P^. (Here, Zp is a cyclic
subgroup of S'3.) A metric is also called S Cg if each closed geodesic is simply
closed as a curve on M.

It follows that metrics with exceptionally high muliplicity functions
must be Zoll, and in particular the maximally degenerate ones will be Zoll.
To define this maximal degeneracy, we first recall that a P^-Laplacian can
be expressed in the form

(0.1) ^(^'(A^)2^

where A is a positive elliptic element of ^rl with Spec (A) C N, where
Q# ^ \i/o^ [Q#^ A] = 0, and where a is the common Morse index of the £-
periodic geodesies. Here, ^m is the space of m-th order pseudodifferential
operators on M. Thus, the spectrum Spec(Ag) consists of a union of widely
separated eigenvalue clusters

(0.2) G ,={(^ ^ ) 2 ( / c+^) 2 +^ : J= l , . . . , ^}

where dk = #Ck and where |/^-| < M for some M > 0. (See [W], [CV]
or §2, Lemma 2 for more precise statements and references.) The "multiplic-
ity" dk of the A;-th cluster has been studied in depth by Colin de Verdiere,
and by Boutet de Monvel-Guillemin ([CV], [BMG]). In the case of a Ci-
metric, dk = R(k + a/4) for a certain polynomial -R, which is identified in
[BMG] as the Hilbert polynomial of the space (?(M, g) of geodesies. Thus
dk is a symplectic invariant of C?(M, g). In the case of P^-manifolds, dk can
acquire an additional oscillatory term [CV], but it is still an invariant of
the space (now an orbifold) G(M,g). We then say:



MAXIMALLY DEGENERATE LAPLACIANS 549

DEFINITION 1. — A Laplacian A^ is maximally degenerate if it
is a Zoll Laplacian with the property that there is precisely one distinct
eigenvalue in each eigenvalue cluster: m^ = dk.

There is a subtle ambiguity here regarding the definition Ck for a
finite number of small k. Since it will not play a role in the main part
of this paper, we will not discuss it further. However, the cautious reader
may wish to qualify the definition by replacing (V/c) by (VA; >. ko) for some
A : o € N .

The question raised above is therefore:

PROBLEM 1. — Characterize the Zoll metrics with maximally de-
generate Laplacians. What is the relation between the geometry of g and
the width of the eigenvalue clusters Ck7 (See [G3] for the case of potentials.)

A concrete problem of this kind is the following:

PROBLEM 2 ([Yau], Problem 41]). — Let (M2,^) be a surface, and
suppose that rrik{g) = mfc^.can) = 2k -(-1. Must (M2,^) = (S^.can)?

The relation between these problems is as follows: First, if rnk(g) =
2k + 1, then (M,g) must be a Zoll surface and hence M must be either
RP2 or S2 [Besse]. Let us assume M = S2. In §2 we will show:

THEOREM B. — The assumption rrik{g) = 2k - } -1 is equivalent to
the maximal degeneracy of a Laplacian A^ on 5'2.

Hence Problem 2 reduces to the question, is Acan the only maximally
degenerate Laplacian on 52?

In the remainder of the paper, we give a number of partial results on
these problems in the cases where M == 5'2 and M = RP^. The case of
M = S2 is perhaps the most interesting in that the moduli space of Zoll
metrics is infinite dimensional, indeed of functional dimension 2 [Besse].
The case of M = RP^ is the simplest, in that the canonical metric is
probably the only Q-metric; at least, it is known to be the only one with
the property that the time to the first conjugate locus is constant [loc.cit.].

Our results on S2 are contained in Theorems C-E. The first one is of
an operator theoretic nature and prepares the way for the study of residual
spectral invariants of Zoll Laplacians.

THEOREM C. — Let g be a Zoll metric on S2, and let Ag be the
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operator defined in (0.1). Then

(a) Ag commutes with an effective action TT : 50(3) —^ UF{S2) of
50(3) by unitary Fourier Integral Operators.

(b) For any b € C'°°(5'*S'2) invariant under Gt, there exists B e ^°
with (TB = b and with [B, Ag] = 0.

(c) For any geodesic 7 there is a Toeplitz structure H^ on the cone
thru 7 with [Ag.II^} = 0.

(d) The principal symbol of the operator Q* in (0.1) is given by the
non-commutative residue of the Toeplitz operator 2H^^Kg, that is

0^(7) =2res^^v /A^.

(e) IfAg is maximally degenerate, then it commutes with the SO (3)-
action in (a), the operator B in (b) and the operator II/y in (c).

(f) If A^ is maximally degenerate, then

^(^l)2-!^
where S is a smoothing operator (also a function of A^. Hence,
resILy^/Ap" = 0 for all 7.

Thus, the common belief that high degeneracies are caused by symme-
tries is justified in this case. Maximally degenerate Laplacians are evidently
"maximally symmetric." Above, we use the fact that [Q*, Ag} = 0 to iden-
tify OQ# with a function on the space G(5'2,^) of geodesies. Also, we have
normalized the area so that the period £ = 27T. For the definition and back-
ground of the non-commutative residue of a Fourier Integral or Toeplitz
operator, see the remarks at the end of the introduction.

It follows from Theorem C that the complete symbol of Q^ is zero
in the maximally degenerate case. Our next result is a geometric formula
for the principal symbol (JQ#. As will be seen, the subprincipal symbol
^sub(Q^) is zero for any Zoll metric, so the vanishing of (TQ# is the condition
for the clusters to have widths 0(k~2). To state the result, we will need
some more notation: First, as above, G(S2,g) will denote the space of
geodesies of g. The Radon or X-ray transform is then the operator

R : c°°(S2) -. C°°(G{S^g)) J?/(7) := / /.
J/y

Also, the tangent space r^(G(6'2,^)) at a geodesic 7 can be identified with
the space J^- of normal Jacobi fields along 7. We denote in particular by
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Qs the normal Jacobi field satisfying Qs(s) = 0,V9s(s) = y{s). Here, 7
is understood to be parametrized by arclenght s from some basepoint m,
^(s) is the unit normal at ̂ (s) and V is the Riemannian connection on TS2

corresponding to g. r will denote the scalar curvature ofg. Finally, {, } will
denote the Poisson bracket on G(S2,g), which inherits a natural quotient
symplectic structure from r*52, and Hf will denote the Hamilton vector
field of a function /.

THEOREM D. — Let g be a Zoll metric on S2. Then:

(a) (TQ# is determined up to a constant by the formula

[^ - ̂ M^}(7) = -^^(/^(^Ve.Ve.e, ds)

where b C COO(G(S2,g)), and where V denotes any connection on
rG(6'2,^). The right side is independent of the choice of connection.

(b) The clusters Cj, have widths 0(k~2) if and only if

^(r)(7) = 4 /r.^Ve.Ve.e, ds.
J^

Weinstein has conjectured that O-Q^ = C(R{r) — 1/4) for some
constant C [W]. The formula above shows that there is a second term
(which does not vanish [Zl].) By employing special connections V, one can
use it to obtain (lengthier) formulae for the symbol in terms of the curvature
and Jacobi fields along 7. Similar formulae for the lower order terms in the
symbol expansion of Q^ could be obtained by the same method, but as
they rapidly become lengthy we do not display the results. The unfortunate
complication of the second term as well as lack of knowledge of the Radon
transform on a general Zoll surface has made it difficult to characterize the
maximally degenerate metrics more simply; it may be that the canonical
sphere is the only one with cluster widths of order 0(k~2)^ but we do not
see how to derive this from (a).

The analogous calculations for a Schrodinger operator — A + V are
much simpler and do show that a maximally degenerate Schrodinger
operator has a constant potential. They also simplify in the case of a Zoll
metric of revolution. From results of Bruning, Guillemin, Widom we have:

THEOREM E.

(a) If Acan + V is a Schrodinger operator on S2 with mk(Y) =
2k + 1 (VAQ, then V = const.
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(b) Ifg is a metric on S2 carrying an effective S1-action by isometrics,
and mk(g) = 2k + 1 (VA;), then g = can.

So far, we have been concentrating on the case where M = S2. As
mentioned above, in the case M = RP2, the situation is much simpler,
since can is the only SC^-meinc on RP2 (by Green's Wiedersehenflache
Theorem (cf. [Besse]). We will prove:

THEOREM F (a). — Suppose g is a metric on RP2 for which m^ (g) =
m/c(can). Then g = can, i.e. (MP2, can) is determined by its multiplicities.

In the case of higher dimensional RP^'s, we will prove a slightly weaker
result (as a consequence of the Berger-Kazdan Wiedersehenraum Theorem
[Besse]):

THEOREM F(b). — Suppose g is a metric on RP^d ^ 2) such
that mk{g) = mfc(can), and such that additionally (^.vo^RP^)) =
(^(can^vo^RP^can). Then g = can.

Here, £(g) is the minimal period of the geodesic flow G^. By rescaling
g , we may of course assume with no loss of generality that vo^R?^) =
vo^RP^can). The assumption is then that the periods of Gt and G^n
are equal. This equality follows from Weinstein's integrality theorem (cf.
[Besse]) if g is Q metric. Hence, the extra assumption in (c) is ony needed
if g is a Pp^-metric on RP^ with exceptionally short closed geodesies. No
such metrics are known, of course, but the proof of the Berger-Kazdan
Wiedersehenraum theorem does not extend to them. It is natural to
conjecture that the only P^-metric on RP^ is can, which would immediately
imply that (RP^.can) is determined by its multiplicities. In fact, this
statement would follow from the much weaker conjecture that the Weinstein
integrality theorem holds for P^-metrics on RP< Modulo the period-
assumption, (c) shows for example that the Casimir operator on SO(3)
is determined by its multiplicities.

Remarks.

(a) Since Theorem C(f) only determines Ag spectrally up to a
smoothing operator, we are compelled to study residual spectral invariants
of a Zoll Laplacian and of the various Fourier Integral or Toeplitz operators
associated to it. The main problem is then to calculate these invariants in
sufficiently explicit geometric terms that they may be used to determine
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the metric. By residual we mean that the invariants are defined as non-
commutative residues of certain Fourier Integral operators V. We recall
that the residue is defined as follows:

res(y):=ResC(5,V,P)
s=0

(C(5, V, P) := TrVP-8 for Res > 0)

with P a positive elliptic pseudodifferential operator of order 1. Just as in
the case of pseudodifferential operators, res(V) is independent of the choice
of P and is a conjugacy invariant of V. In Theorems C-D, the relevant FIO
is of course the Toeplitz operator ILyV^II/y. In Theorem E, it is essentially
the composition II^L^II/.;, with 11̂  the (coisotropic) projection to the space
of weight-A; vectors for the rotation action, and with Ut the wave group.
Note that the residues of the wave operator and its time derivatives at t = 0
give no useful information in dimension 2, and those at other periods are
equivalent to the calculation of the symbol of Q^.

In the case of pseudodifferential operators, there is a unified local
formula for the non-commutative residue due to Wodzicki and Guillemim:
namely, the residue of a ^DO A is given by the "symplectic residue" of
its complete symbol (cf. [K] for terminology). No such unified formula is
known for Fourier Integral or Toeplitz operators, and perhaps none can be
expected. A naive analogue for a Toeplitz operator A of the local formula
for ^DO's might give res(A) as the symplectic residue of the complete
symbol of A along the symplectic cone associated to A. In the case of
resELyy/A^, this naive analogue coincides with the conjecture ofWeinstein
mentioned above. Unfortunately, it seem to be incorrect; we hope to take
up the study of the correct formula in the future. The case of the coisotropic
operator IIfcL^IIfc on a general Zoll surface is yet more complicated because
Hk involves the unitary group expit L generated by a ^DO L which is not
generally the root of a partial differential operator: namely, expit L is the
conjugate under a unitary Fourier Integral operator of a one parameter
group of isometries of the standard metric (see the proof of Theorem C).
This leads to a lack of locality in the computations except in the case
of surfaces of revolution where L is a vector field. In this case the wave
(actually, the essentially equivalent) heat expansions have already received
a detailed study by Bruning [Bru], and simple qualitative properties of
this expansion already suffice for applications to the inverse problem here
(Theorem E). It would be of interest to understand the nature of the non-
commutative residue in the general case as well.

(b) As H. Donnelly and C. Gordon have pointed out to the author,
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Theorem (D.2) has already been proved by M. Engman [Engman], by a
different method.

(c) The calculation of O~Q# is an outgrowth of joint work with
A. Uribe. We used a very different method (quasi-modes and Toeplitz
operators) to determine this symbol. The method presented here leads
more rapidly to simpler formulae for the symbol, although they are still
not as transparent as we would like. In [Zl] we present yet another method
of calculating the symbol, based on constructing the cluster projections
as semi-classical Lagrangean distributions. Residual invariants for many
other operators can be calculated in a similar way. Our attention to the
Zoll case is in large part because it provides the simplest model for the
local calculation of residues.

1. High multiplicities implies Zoll: proof of Theorem A.

Assume the distinct eigenvalues 0 < \i(g) < Ai(^) < • • • of (Md,g)
satisfy the hypothesis:

(1.1) (HM) mk{g) = a^-1 + O^-2) (for some a > 0).

We wish to show that the geodesic flow Gt on S'*M, i.e. the Hamilton flow
of the norm function |^|, is periodic.

The proof is a variation on Ivrii's estimate of the remainder term

R{\) in the Weyl law, N{\) = volvs ^A^ + R(\). His estimate is that

R(X) = o^X^1) if and only if the closed geodesies form a set of measure 0.
We refer in particular to the exposition in [HoIV], XXIX, which we will
closely follow

Let H* be the microlocal period function on r*M\0, i.e.

y^^^(mf{T>0:GT(x^)=(x^)}
L O if no such T exists.

For any T > 0, set

rr={(a;,o:n*(.r,o>r}.
Since II* is lower semi-continuous, FT is an open cone in T*M\0.

Now assume for purposes of contradiction, that Gt has a non-periodic
point. Then FT ^ (f) for any T > 0. Fix a large T (to be determined later)
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and let ̂  = {A e ^° : TYF(A) C Fr}, i.e. ̂  is the space of zero-th
order ^DO's with microsupport in FT. For B € ^^, set:

7V(A,B*B):= ^*TYB*Br^
\/^<A

where ̂  * denotes the sum over distinct eigenvalues, where Ek is the A-
eigenspace of eigenvalue A^. The function N(X^B^B) satisfies a modified
Weyl law, given in [HoIV], Theorem 29.1.5. Before stating it, we make
some simplifying observations. First we may assume that the sub-principal
symbol b8 of B*B equals 0. This will be the case if, for instance, B is chosen
to be self-adjoint. Second, we note that the term

9> I (l^+1^^})^^
J\fi\<\ v 2 /

in the remainder estimate in [HoIV], Theorem 29.1.5 is automatically zero
in our case, since \^\8 = 0 and since the integral of {6, |^|} vanishes for any
b. It follows that

(1.2) AT(A, B*B) = (2^)-^ ( ( b dx d^ + R(\, B*B)
J J\^<\

where b is the principal symbol of £?*B, and where the remainder term
satisfies

(1.3) Jm\-^\R{^B-B)\ < Q] I f b dx d^x-^00 1 J J\^<i
where Cd is a constant depending only on the dimension. We refer to
[HoIV], loc. cit. for the proof of (1.3).

Next, we observe that

(1.4) Tr B*B \E, = N(^/\k + 0, B^B) - N(V\k - 0, B^B)

where, as usual, f(x ± 0) = lim/(a: ± e). Since the principal term
el0

(27^)-d JJi^, , b dx d^ in the Weyl law is continuous, we get

(1.4b) TrB^r^^^+O.B^-^v^-O.B*^).

It follows from (1.3) that

(1.5) \R^yB)\^cd-1-\ I f bdxd^X^1 ' ^ ^ I ^ K I
for sufficiently large A, say for A > Ao(T). Hence, we have

(1.6) TrB-B\E, < 2Q—1| /Y b dx d$ \^
1 '^KII
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for ^/\k ^ Ao(T). Hence

(1.7) ^(A.irB)^^^-^ ^Ap+OrO)
V^<A

where 6 = ff^^b dx d^.

Now let us use the multiplicity assumption to show

(1.8) CLAIM.

E^d-l/2 ^ \ d . . Q / \ d - l \Afc =(7iA +0(A )
V>k<\

for a certain (computable) C\ > 0.

Proof. — Indeed, by the usual Weyl law,
N(\) = ^* mult(Afe) = (2^-^01(5* M)Xd + C^-1).

\^k<\
Now let

7V*(A)= ^*1
v^^A

be the number of distinct eigenvalues < A. Then A^*(v/Afc) = A;, so the
(HM) assumption (1.1) may be put as follows:
(1.9) (HM) mk^^a^^^+O^N^^Xk)^-2).
Hence,
(1.10) N{\)= ^ ((^(vW-'+OaA^^Afc))^2)

\AT$A
/•A ,A

= a / A^*(A)d-ld^•(A) + 0( / ^(A^-^A^A))
* __

where dN*(\) == ^^(A — \Afc). Performing the integration, we get
k

(1.11) N(\) = ̂ (A^ + OG/V^A^-1)

= (27^)-dvol(5*M)Ad + (^(A^-1).
It follows that TV* (A) = CiA+0(l), where Ci = (d/a(27^)-dvol(6'*M))l/d.
Therefore

(1.12) ^ A7'= ^X^dN^X)
v^A 70

/>A

= A^-^^A) + (d - 1) / A^A^dA
^0

=C7lAd+0(Ad- l),
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proving the claim. D

Now we combine (1.7)-(1.8) to get

(1.13) 7V(A, B*B) < ̂ h^ + O^-1) + Or(l)

for a certain constant D > 0 depending only on n and vol(M). But (1.13)
contradicts the Weyl law (1.2), since the pair imply

(27^)-db\d + O^-^ < ̂ b^ + O^-1) + Or(l)

which is impossible if T is chosen to be sufficiently large and if we let
A —> oo.

The contradiction shows that all geodesies of (M, g) must be periodic.
By Wadsley's theorem [Besse], (0.40), the closed geodesies must have a
common period £ < oo, i.e. (M,^) must be a Zoll (i.e. P^-) manifold. D

2. Laplacians on S2: proof of Theorem B.

In this section we assume (M2,^) is an orientable P^-surface, i.e. that
G^ = id. Necessarily M2 = S2 since 7Ti(M2) is finite [Besse], 4.3. We will
normalize g so that area (S2,^) = 47T. Below, a will denote the common
Morse index of all closed geodesies of period £.

Proof of Theorem B. — We begin with the standard Lemma 2.1
([CV], Theorem 1.1).

LEMMA 2.1. — Let (M^g) be a P^-manifold. Then there exists a
positive elliptic A € ^rl and aQ- iG^" 1 such that:

(i) Spec(A) C N

(ii) ^^(A+^+Q-,

(iii) A and Q-i are functions of A.

Proof. — It follows from [DG], Theorem 3.1, that exp(-^(\/A -
a/4)) = Id+(7, with C G ^-1. We then wish to define Q_i € ^-1 by:
exp(^Q-i) = (Id+C)"1, i.e. by Q-i = -—Log(Id+G). The question is

%-c
how to determine the branch of Log.
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Since C e ̂ -1, its eigenvalues C^ = exp(-^(A^ -a/4)) -1 tend to 0
as n -^ oo. Fix no so that \Cn\ < 1/2 for n > no, and let Log(l+Cn) denote
the principal branch. Then choose any branch for the finite number of
remaining eigenvalues. Log(Id+C) is then defined by the spectral theorem,
and its power series expansion shows that it is in ^-1.

Set A := ^/A - a/4 - Q_i. Then expz^A = Id, and the properties
(i)-(iii) are easily verified. For further details, we refer to [CV]. D

COROLLARY 2.1. — A = (27^)^+0/4)2 +Q^ where Q* e ^°.

Hence, Spec(A^) c U^4, where

^[(^^-M^^M.
with M = I IO^H. For sufficiently large fc, the intervals h are disjoint and
we can unambiguously define the A;-th cluster by Ck = Spec(A) n h. The
eigenvalues of A in Ck may be written in the form

(2-2) ^=^)\k^)\^ (r=l,...,^)

where dk = #Ck and where -M < ̂ i < • • • ^ ^dk < M. Let us also
denote by Ek the span of the A^-eigenfunctions ^.r with A^r e Ck. Then
dim£'fc = dfc, A^ = k, and Q*\Ek has eigenvalues ^,r.

Now let us specialize to the case of Zoll surfaces (52,^) with the
multiplicities mk(g) = 2A;+1. To prove that there can only be one eigenvalue
in each cluster, i.e. that rrik = dk, we use a formula, due to Colin de
Verdiere [CV], Theorem 1.4 and Boutet de Monvel-Guillemin [BMG] for
the multiplicity dk of Ck. In the case of surfaces it reads:

N rnj-1

(2-3) ^^^EE^A
j=l p=l

where 61 e Q, ^^p = exp {^-p-} and where R, p e C. The second,\ rrij / -'" '
oscillatory term, is caused by the exceptional short closed geodesies, which
can occur on a Resurface. It is absent on a C^-surface, and possibly cancels
on a given P^-surface.

It follows from (2.3) that

dk =^A;+0(1).

We wish to prove that &i = 2; this implies Theorem B, given the rigidity
of the other constants.
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In the case of C^-surfaces, the proof is simple: first, ^/\k,r = ̂ /tk +
0(1), so by Weyl's law,

N(\)= ^ dk+0(l)

k<^>

=^)^+O(A)
= (27r)-1 area(6'2,ff)A2 + 0(A)

or

<2-4' ^•(^
If g is Cf, then Weinstein's integrality theorem [Besse], Theorem 2.21
implies that

2 x area^.g) (2^ _
^'^-area^ffo^TJ - L

Hence, by our normalization of ^, 2 ' K / i = 1 and 61 = 2.

If g is only Pa this proof apparently breaks down, since i(52,^) is
possibly not equal to 1. Therefore, we need an independent proof that
works in both cases. The proof is contained in a couple of lemmas.

LEMMA 2.2. — Let ko be any index so that Cjc is well-defined for
k > ko, let d^ be the number of distinct eigenvalues in Ck, let A^*(A^i)
be the number of distinct eigenvalues < \ko,i anc^ ̂  d^. = lim d^. Then:

k—>oo

(i) d^ = d^. for sufficiently large k > k\

(ii) h = 2(^)2, and d\ = ̂

(iii) dk = 2(^)2(A; - 1 - fco) + 27V*(A^.i)^ + (d^)2 for k ̂  fci.

Proof. — We have

(2.5) dk = ̂  mult(A^) = ̂ (2n(A;, r) + 1)
r==l r=l

where the sums run over distinct eigenvalues in Cki and where \k,r =
^n(fc,r)- Here, as always, 0 < Ai < Aa < • • • denote the distinct eigenvalues of
Ag. Observe that n(k,r) = n(k, l)+r-l and that n(k+l, 1) = n{k, l)+dfc..
Hence

(2.6a) ^=2d^(fc,l)+(^)2

=24 ^ ^+2^n(A;o,l)+(4)2 .
ko<:j<k-l
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Now split up the first term using cR = 1 -h (oR — 1), to get

(2.6b) dk = 2d^(k - 1 - ko) + 2^ ^ (^* - 1) + 2^n(A;o, 1) + (d^)2.
A;o<j<fc-l

It follows from (2.3) and (2.6b) that 2d^ < &i, so that the last two terms
are 0(1). Let us write the second term in the form 2d^a^(k — I — h o ) ,
i.e. a^ = -—.—— ^ (cR — 1). It is obvious that a^ = 0(1), that

k—l—ko ko<j<k-i
(fc—A;o)a^ = (k—l—ko)a^+{d^—l) and hence that a^^ — ^ = = 0(1 / k ) .
Moreover, we have b\ = 2d^(l+a^) (VA; >_ ko). Hence, (d^—o^)(l+a^) =
0(11'k). Since a^ > 0 and d^ is N-valued, it follows that d^^ = d^ for
sufficiently large k^ proving (i).

It follows then that a^ must eventually be constant; and this constant
is easily seen to be d^. — 1, proving the first part of (ii). The second part
follows easily. Finally, (iii) follows from (i)-(ii) and (2.6b). D

COROLLARY 2.2.

(i) ^eN.
(ii) The oscillatory term in (2.3) vanishes.

LEMMA 2.3. — If the oscillatory term in (2.3) vanishes, then 27r/^ =
1 and hence b\ = 2.

Proof. — The Zoll geodesic flow Gt lifts to an S1 action Cf on 53,
with all orbits exactly twice as long as those of Gt. According to [Jac], any
5'1 action on S'3 is (homeomorphically) conjugate to a linear action, i.e. one
give by

1-y.t -|

^)= r1 .J
^2.

with
t _ [" cosk£t sinfe-^1

rk ~ [-smkft cosk£t\ '

In particular Gt either has two exceptionally short orbits (the case where
fci and &2 are relatively prime) or no short orbits (the case where ^1=^2).
Since all orbits split in the same way under the double cover S3 —^ S'*(5'2),
it follows that either Gt is C^ or else it has two exceptionally short orbits
with different primitive periods. The first case was covered above, so we
only need to consider the second.
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We now use Corollary 2.2, (ii) to show that the second case cannot
occur under the multiplicity assumption. Indeed, the oscillatory term must

k j - l

be of the form ^ ^ uj^ Rj p. Since k\ and k^ are relatively prime, the
j=l,2 p=l

oscillatory term can only vanish if Rj^p = 0 (Vj,p). Let us now evaluate
Rj^ following [CV] and [GU], §7.

Consider the sum
00

r(e[t)=^dkeikt

k=0

which lies in the Hardy space H^.(S1) of distributions on 51 = IR/27rZ
with only positive frequencies. Since 1(6^) = TrexpitA, T^e^) is a
Lagrangean distribution on 51, with singularities at the points ujj =
expitj eS'1 such that G^ has fixed points. Thus, singsuppTt^e11') = {c<;o =

£ £1, expip—.expiq— : p = 1 , . . . ,A;i — 1; q = 1 , . . . ,k'z — 1}. Let pj be a
k\ /C2

cut-off function on S1 with only ujj in its support. Then
00

(2.7) p^W = ̂  a,(m)^-"1 (^ - ̂ )
m=0

where dj is the degree of the singularity at t = ujj, and where ^(m) can
be calculated from knowledge of A microlocally near Fix(GtJ). One then
has,

(2.8) d,-f^a,(m)^^-^
m==0 <jJj

(see [GU], Lemma 7.1).

We recognize the expansion (2.3), in particular that do = 1 (resp.
dj = 0 if ujj 7^ 0) and ao{m) == 0 if m > 2 (resp. aj(m) = 0 if m >_ 1 and if
c^ ^ 0). The main point is that the coefficients Rj^p in (2.3) are precisely
the principal coefficients Q^(0) in (2.8), i.e. Rj^p is the principal symbol of

/ £ \T^e^) at exp (zp— ). Hence, Rj^p vanishes if and only if the symbol of T
\ Kj /

vanishes at the corresponding ujj.

This symbol can easily be calculated, since the principal symbols of
Tr e^ ̂  and Tr e^ A agree at each singular point, and since the exceptional
short closed geodesies are necessarily non-degenerate. If we denote by 71,
resp. 72? the exceptional geodesies, we get:

^e^m(^)
(2.9) ar(L^ = ;; , + 0

|det(J- P^)|2
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(see [DG] for relevant notation). This contradicts the vanishing of the
Rj,p^, shows that no exceptional geodesies occur; and completes the proof
of Lemma 2.3. D

Thus we have proved: &i=2. Since a=2 for any C^-metric on S2 [Besse]
one concludes that ^=2^+1=771^. Hence A^ is maximally degenerate. The
converse is obvious. This completes the proof of Theorem B. D

3. Maximally degenerate Laplacians on 6'2: symmetries
and normal forms. Proof of Theorem C.

In preparation for the proof of Theorem C, let us recall the basics of
the theory of band invariants of Zoll spectra ([Gl], [CV]). Band invariants
arise from the asymptotics of the eigenvalue cluster measures d^k ''=
dk
S 8{^k,i) o11 ̂ - The main result is
i=i

THEOREM 3.1 ([CV], [W]). — Suppose (M,g) is a P^ -manifold of
dimension n. Then there exist classical symbols R of order n— 1, resp. Ri,m
of order ni - 1, with values in P'(-M, M) so that for any p € C°°{K),

(a) fpd^k = ! pdR(k + ^) + E 'E ^p t pdR^p{k), where as
JR J v 4 / i==l p=l JR

t —> 00,

(b) R{t) ~ ̂ n-1 -h ̂ n-3 + • • • (Vj € ̂ (-M, M)),

(c) Ri^t) ~ ^,p,î -1 + ̂ ,p,2^1-2 + • • • (̂ ,p,r € ^(-M.M)),
m <, n — l).

In (b), all of the even terms ^ktn~2k vanish. This is due to the fact
that A has the transmission property [CV].

Let us apply this theorem to the case of maximally degenerate
Laplacians on 5'2; similar results would hold on a general Zoll manifold. By
definition of maximal degeneracy, A and hence Q^ have just one eigenvalue
in the fc-th cluster eigenspace Ek' Since 27T/S = 1 by Lemma 2.3, and since
a = 2 for any Zoll metric on S2 [CV], [Besse] on we have that

(3.2) Ar^^+D'+^jld

where Q^ [̂  = p^ Id. Hence,
(3.3) d^ = dk8{4) = (2k + 1)6(/^),
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at least for k sufficiently large. If we let p(x) = x in (Theorem 3.1(a)), we
get

00 / 1 \ 1-2? N 'mi~l °°

(3.4) (2fc + 1)^ = ̂  c2, (k+ J) + E E E '^p^-1-^
j'=o 1=1 p=i j=o

with Cj = f x dvj, resp. c^ = Ja; dvipj.

An immediate consequence of (3.4) is that p^ = co/2 4- 0(k~1). It
follows then from part (a) of the Theorem that dz/i = 2^(co/2), hence that
O-Q# (the principal symbol of Q^) is a constant.

Let us now give a preliminary normal form for maximally degenerate
Laplacians on S2 (with minor modifications, the same normal form is valid
for such Laplacians on any Zoll manifold).

LEMMA 3.5. — If ^g is maximally degenerate, then Ag = F(A)
where F is a symbol (polyhomogeneous function) of order 2. Thus, there are

( ] \ 2 ] ^ oo , 1 \ — J
constants c^j such that A^ - A^^) -7+EC2J(A+-) (mod^-°°),

2 / 4 7==i ^ " ^
with asymptotics in the sense of^*.

Proof. — Since Q* \E^ = ̂  and A|^ = k, we have by the spectral
theorem and by (3.4) that

00 ^ , _^ .

(3.5a) (2A+1)Q^=^^(A+1) "'
j=0

N mi—1 oo

+^ ̂  ̂ CipjAn^~l-jexp2m(-p-A} (mod^-00).
i=l p=l j=0 xmi /

It is clear that Q* is a function of A (not only mod^"00).

We now observe that the second term on the right side must vanish.
00

Indeed, (2A 4- \)Q* and ^ c^{A + 1/2)1-2^' are ^DO's, so the second
3=0

term on the right side must be a '0DO. But exp (2m-p-A^ is never a ^DO
\ mi )

ii 1 ̂  P < ̂  - 1, since its underlying canonical relation is G271^ 7^ id.
Consequently, (3.5) simplies to:

00 _ _oi.

(3.5b) Q# = ̂  cafe (A + -) ~ (mod ̂ -°°).
fe=0

This proves Lemma 3.5, since A = (A + 1/2)2 + Q^. D
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We now relate maximal degeneracy to the symmetries of A^ on S2.

Proof of Theorem C.

(a) By the argument of Weinstein [W], there exists a canonical
transformation \ : T*S2 —^ T*S2 conjugating the geodesic flows G^g and
G^n^ ana a unitary Fourier Integral operator U\ quantizing \ such that
(3.6) £/i*Acan^i=A^+Q (Qe^°).
We can then use the argument of Guillemin [G2] to construct a unitary
pseudodifferential operator eB {B e ^ro) such that U = U\e3 satisfies:
(3.7) £/*Acan^=A<,+^, [Q^A]=0.
Indeed, Guillemin's argument only used the maximal degeneracy of Acan-

We now claim that
(3.8) U^A^anU = Ag (modulo finite rank operators)
where Acan = v — c a n + V 4 — 1/2. Indeed, it is obvious from (3.7) that

U"A^U=Ag (mod^-1).

Hence U^AcanU satisfies:

(i) Spec([/*Acan^) C N

(it) £/*Acan^€^1

(iii) p7*Acan^]=0

(iv) Ag=U"A^U (mod^-1).

We now observe that (i)-(iv) imply Ag = U^AcanU: By (iii),
£/*Acan^ : Ek -^ Ej,. Then by (i), (ii) and (iv) ^*Acan^ = A\E, =
kId-Ek ^ov sufficiently large A:, which implies U^AcanU = Ag, at least off a
finite-dimensional subspace; since we are free to adjust the definition of Ag
on an initial finite dimensional subspace, we may assume the formula holds
on all of L2.

The same unitary Fourier Integral operator U conjugates the isomet-
ric action Ti-can '' 50(3) —^ UF(S2, can) to an effective action TTg = U^TlcanU
of 50(3) on L^S'2,^). Since U conjugates Acan to Ag, TTg commutes with
Ag. D

(b) Let b G (7°°(5'*M) be invariant under Gi'. Using any quantization
Op from symbols to operators, we set

B := Op^W := 1 / U! Op(b)Utdt2^ Jo
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where Ut = expitAg. In the well-known way, [Ag, Op^^)] =0. D

(c) Let 7 be any closed geodesic of (-S2,^), and let ^(7) be the
conjugate closed geodesic of (52, can). There is a natural Toeplitz structure
11̂  associated to the cone thru ^(7): indeed, the circle of rotations which
preserve ^(7) defines a Cartan subgroup of 50(3) and hence in each
eigenspace of Acan there is a unique (up to scalars) vector of highest weight
for this circle action. We let 11̂  denote the orthogonal projection onto the
span of these highest weight vectors; it is well-known to be define a Toeplitz
structure on the cone thru ^(7) and it evidently commutes with Acan- Hence
its conjugate under U will define a Toeplitz structure for the cone thru 7
which commutes with Ag. D

(d) For the calculation of the residue we set P = Ag +1/2. By Lemma
2.1(ii), with H = 27T and with a = 2 we have

res n^ ̂ /Kg = res IIy (Ag + -\ + res II^Q_i.

Since we know the spectrum of Tl^(Ag + 1/2) we can explicitly calculate
that resILy(A^+l/2) = 0. Indeed, the zeta function TrIl^^Ag+l/^)-8^1 =

CO

^ (k + 1/2)~8^1 is a Hurwitz zeta function and has only a simple pole at
fc==0
5 = 2 . Hence there is no pole at s = 0. (See the proof of (f) for more
details). On the other hand, since Q-i has order -1,

resIIyQ-i = / (TQ_^(IS.
A

This is a special case of the general fact that for a a Toeplitz operator
of order —d, with d half the dimension of the associated symplectic cone,
the residue is given by the symplectic residue of its principal symbol. The
claimed formula then follows since (JQ is constant on 7. D

(e) A maximally degenerate Laplacian is a function of Ag. D

(f) We must improve the normal form given in Lemma 3.5. Note
that it was the transmission property of A which was responsible for
the vanishing of the odd power terms. We will now use that the non-
commutative residue of A is zero to show that in dimension 2 the negative
even power terms also vanish. At the same time, we will carry out the
analogous analysis of the Schrodinger operators —Ao 4- V on L2^2).

First, let us recall the basic facts about the non-commutative residue,
res ([K]). For any ^DO B and any positive, elliptic first order ^DO P, we
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form the zeta function C(s,B) := TrBP-^Res > 0). The operator BP-8

is of trace class for sufficiently large Res, and CO?, B) has a meromorphic

continuation to C, with simple poles only among the points Sj = w - / .
Here, m is the order of B and n = dimM. We refer to [Sh], Theorem ^2.1
for the relevant background.

By definition, res(B) := Re^<(5',B). This residue is independent of
the choice of P and can be expressed in terms of the -n-th term b-n in
any complete symbol expansion for B by

res(B) = (27T)-71 / ^dxd(-
J S - M d\^\

(see [K]). In particular, res B = 0 if B is a partial differential operator.

We now let P = (A + 1/2) and B = A771 to get:

(3.9) 0 = res(Am) = ResT^A^A + ̂ -Y8.
s=Q \ 2/

On the other hand, we can express Tr A^A + 1/2) ~8 in terms of the
CO

Hurwitz zeta function, C(s, a) = ^ (fc + a)-5 [I]. Indeed, we note first that

((••(^n^^r"
(3.10) -^(t+D-^'

fc=o

=2C(.-/.-1,J)
under the usual multiplicity assumption. Using the polyhomogeneous ex-
pansion for A, we can express TrA^A + 1/2)-s as a linear combination
of Hurwitz zeta functions.

Before doing so, let us recall that ^(s, a) has a meromorphic contin-
uation to C, with only a simple pole at s = 1 and with residue 1 there.
Hence,
^Q-m ( A 1\IJ' f 2 /^=-2
^ -^+2) = { o ^-2.

Since,

M^ ̂ r= <(•. (̂  in + IM-. (A ̂ n
j=0

oo

=C(s-3^)+^>,c(.+2j-l,J),
j=0
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we have: res(A) = 2c2. Hence, 03 = 0.

In general we have, by induction, that A771 = (^m^)c_2m(A-^-l/2)-2+
B, where B is a Laurent series in (A+1/2) with no term of exponent (-2).
Hence, res A771 = 2(^)c-2m = 0, i.e., c_2m = 0 for m ^ 1. Therefore,
A = (A + 1/2)2 + co (mod^-00), i.e. A = (A + 1/2)2 + Co + 5, where
S € ^-00. 5 is obviously a function of A. Also, we can determine Co by
using the heat trace, which in dimension 2 reads,

(3.12) ^ [ Y e - t A = t - l + l + a 2 t + • • •
o

(since area(5'2, g) = 47r). The smoothing term S only affects terms of order
0(1), and (A + 1/2)2 is isospectral to Ao + 1/4, so we get:

(3.13) Tr e-^ = Tr e-<(Ao+(i+co)) 4- o(t).

Since Tre"^0 = t~1 + 1/3 + 0(1), we must have 1/4 + Co = 0, completing
the proof D

Remark. — The use of the non-commutative residue in the lemma
above breaks down somewhat in higher dimension. For instance, in odd
dimensions, the transmission property of A coincides with the vanishing
of ^es(Am). Hence, the argument above eliminates no new terms in the
polyhomogeneous expansion. In even dimensions ^ 4, ^es(Am) is a linear
combination of several coefficients C2j, so its vanishing does not immedi-
ately suffice to simplify the polyhomogeneous expansion to the extent of
Theorem C(f).

We now prove the analogue of Theorem C(f) in the case of Schrodinger
operators -Acan+V on L2(S2 can). Thus, we assume the eigenvalues \j(V)
of -Acan + V have the multiplicities, mu\t(\j{V)) = 2j + 1, and seek a
normal form for —Acan + V m the sense above. The analogue of Lemma
2.1 is due to Guillemin [Gl].

LEMMA 2.1' ([Gl], Lemma 1). — Let -Acan 4- V be a Schrodinger
operator on (52, can). Then there exists a Q* e ^° such that [Acan, Q*} =
0 and a unitary ^DO F € ^° such that F(-Ao + V)F~1 = -Acan + Q*'

Next we give a preliminary normal form. We will use the same
notations as in the case of Zoll Laplacians: {p^kj} will denote the eigenvalues
of Q^ \Ek ? ^k will be the fc-th eigenvalue cluster measure, etc. We have:

LEMMA 3.5'. — Assume mu}.t(Xj(V)) = 2j + 1 (Vj). Then there
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exists a unitary ^DO F € ^° such that
ex? -. _g.

F(-Acan + V)F-1 = -Acan + ̂  €2, (A + ̂ ) (mod ̂ -°°),

J=0

where A\Ek = ^-

Proof. — It suffices to show that Q^ has such a polyhomogeneous
expansion. As above, Q^\Ek = P^ anc^ A^ nas precisely the expansion
(3.4), except that the oscillatory terms automatically vanish since go is a
C^Tr-metric. The argument then proceeds precisely as in Lemma 3.5. D

We then have

THEOREM C(f)'. — With the same assumptions as in Lemma 4,
F(-Acan + V)F-1 = -Acan + S, where S € ^-°°.

Proof. — As above, we use that res(-Acan + V)^ = 0 (Vm > 0).
Since res(AB) = res(BA) for A, B € ^*, it follows that res((F(-Acan +
V)F~l)'m) = 0 (Vm > 0). These residues are calculated precisely as in
the Zoll case, and the conclusion for the csj follows as above. D

4. Calculation of resILy\/A = (TQ: proof of Theorem D.

(a) We begin with some preliminary remarks and simplifications.
First, one will get a formula for (TQ of the type described in Theorem
D for any choice of quantization Op and of coordinate system. The natural
choice is to adapt the coordinates and Op to 7: Thus we let exp : N^ —>• M
denote the exponential map along the normal bundle, and choose an
initial point XQ on 7 and a parallel orthonormal frame ^i , . . . , Vn' We let
p = exp^\(^^^) define the associated Fermi normal coordinate system,
with 7(5) a unit speed parametrization of 7 starting at 7(0) = XQ. We then
let Op denote the Weyl calculus in these coordinates (see [HoIII] for the
definitions and background).

We also define A and A so that they operate on 1/2-densities rather
than on functions. Using the natural trivialization given by ^/dvg (the
volume 1/2-density), the local expression for A is then

(4.1) A , J-1'^^ + J-"1^ ̂ "J^"
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where dvg = J(s, y)dsdy. Of course the usual Laplacian is unitarily equiva-
lent to the 1/2-density Laplacian, so the condition of maximal degeneracy
is the same for both. The advantage of the 1/2-density Laplacian is that
its complete symbol in the Weyl calculus has the form

(4.2) ^complete(A)Or, $) = |$|2 + a^x)

where as above |^|2 is the length-squared of a covector and where

(4.3) ao{x) = Al(;r)

is a function on the base. We note -and emphasize- that cro(.r) depends
on the choice of coordinates and of Op. The fact that the first order term
vanishes is because the 1/2-density Laplacian has zero subprincipal symbol,
and because in the Weyl calculus this is the first order term [HoI-IV],
loc.cit.

Now let us calculate the commutator in the Weyl calculus. Let
aw(x^D)^ resp. bw{x^D) denote the Weyl pseudodifferential operators
on R71 with complete symbols a(x^) resp. &(a;,$), and let * denote
the composition (*-product) on complete symbols arising from operator
composition: i.e. (a * ̂ (.r, D) = aw{x, D) o bw{x, D). Then one has

(4.4) a * b - b * a ~ {a, b} + P3(a, & ) + • • •

where { , } is the Poisson bracket and where Pn is the n-th order
bidifferential operator given by

(4.5) Pn(a,&) = l(^a;(^,^,^,^)/2)na(^,0&(2/,r7)|(^)=(^).
Ti\

Here, uj is the standard symplectic form. We note that only the odd Pj's
occur in the commutator. See [HoIII], Theorem 18.5.4 for further discussion.

Proof of Theorem D. — We now apply this formalism to outline
the calculation of (TQ on an arbitrary Zoll manifold and complete it in
dimension 2.

We first recall that, as in Theorem C(b), given any bo € C°°{S*M) the
averaging method produces an operator B € ^°(M) with the properties:
[B,A] = 0,aj3 = &o- From the expression in Corollary 2.1 (§2), this implies

(4.6) [A-Q,^]=0

where Q is short for Q^. Now denote the complete symbol of B by
—00

&~^b_,
j=0
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with b-j homogeneous of degree —j. Since bo is invariant under the geodesic
flow, the principal symbol (of order 1) of [A, B] vanishes. Moreover, since
only odd Pj 's occur in the complete symbol of the commutator and since
^complete (^) nas ^ly even terms, the even indices in b decouple from the
odd, and we find that the equation of order -1 in the complete symbol of
of [A - Q, B\ = 0 is given by

(4.7) {ao, bo} - {CTQ, bo} + ̂ (^l2, bo) = {|$|2, b^}.t
The right hand side vanishes upon integration over any closed geodesic 7.
Using the invariance of CTQ, b and the Poisson bracket, we therefore have

(4.8) {OQ, 6o}(7) = I ^(l^l2, bo) + {.R(ao), M(7).
J^ t'

We observe that the Poisson bracket is invariantly defined and de-
scends to the Poisson bracket on the quotient G(M,^); hence the left side
defines a first order differential operator applied to bo C COO(G(M,g). On
the other hand, the right side is not invariantly defined (both o"o and ?3
depend on the choice of operator calculus and local coordinates on M)
and involves the third derivatives of bo. To obtain a more explicit formula,
we now evaluate o~o and P^ in coordinates which are adapted to 7 and to
the symplectic geometry of G(M^g). Regarding the symplectic structure
on this quotient, we recall that since G(M,g) is a space of geodesies, a
tangent vector X € TyG(M, g) can be identified with a normal Jacobi field
along 7. The symplectic structure on the vector space J^~ of such Jacobi
fields is then given by the Wronskian u(X, Y) = g(X,Y)' - g(X'', V); here
X' is the covariant derivative of X along 7.

Let us first evaluate -Psd^l2,^) m Fermi normal coordinates along%
7 : Since |^[2 is a quadratic polynomial in ^ we have, in any coordinates
(Xi^i),

(4.9) ^(g^m^ bo) = -^( .̂...̂ ^Cn^e^^o)

-eeL.P7"^^ ,̂̂  + GQ^g-Q^bo.
Here we have used the summation convention that repeated indices are to
be summed; and of course 9x := 9/9x. Now consider the Fermi normal

( n v
coordinates XQ = s, Xj = yj{j = 1,... , n), with p = exp^) ^ yia) with

z=2 /

7(0) = m some initial point and {e^} some parallel normal frame along 7.
In these coordinates we have
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g03 =o (j ^ i)
(4.10) g°°(s, y) = 1 + K^(s)y,y, + L^{s)y,y^ + • • •

(^"(5, y) = 6^n + K^(s)y,yk + L^{s)y^yk + • • •

for certain expressions K^ L in the curvature and its covariant derivatives
[Gr], Ch. 9. Let the symplectic dual coordinates be denoted ^g, 771 , . . . , rjn'
The equation of 7 is given by yi = rjj == 0, $5 = 1 in these coordinates. The
expression for P^ thus simplifies in Fermi normal coordinates to

(4.11) \P^n^ = _^[^^.^00^3^^^

-6<^°°^M^ 0,1,0).

Note that at least two normal (^-derivatives must occur in each term. We
also have

(4.12) aoM) = -J^^J(^)|^o = -JE^ +^0^ = -\r
i=l i=l

where p (resp. R) is the Ricci (resp. Riemann) tensor [Gr], Theorem 9.22.

We now specialize to the case dim(M) = 2. Then
^11 EE <711 = 1

^2 00 _ 9 o3 00 _ 9^ r
c7^ — ZT' ^s^ — zysT

^3 00 _ 90 ^3 00 _ Q
y y y ' 1 ~ - ^ v ' l ^ssyQ ~u'

We then have

(4.13) (dimM=2)

^P^g—M^ = -^[6^r(^o + 29,̂ ^ - 12r^^6o](^0,1,0)

(7o(5,0)=-^T(5,0).

The expressions simplify further if we change coordinates to polar
coordinates (p,0) in the cotangent planes T^^M, with ^s = pcosO^rf =
psm0. Using the p—independence of 60, and evaluating the coefficients at
y = 0, rj = 0, ^s = 1 we get (along 7)
(4.14) O^bo = -20^ O^bo = -We + 9^ Q^bo = 0^o.

Hence we have
(4.15)

^(l^^o)^ = -^[2^T^36o+(-12T^^26o-12^T^2&o)-4^T^6o]|-y.
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Integrating over 7 in s, we observe that the Qj-teim cancels. Hence

(4.16) {<TQ,6o}M = -j{7?(r),MM - ̂ 3, /Wo ̂ r

-4^6o<9i/r](s,0,l,0)ds.

Recalling that by is invariant under the flow, and regarding it as a
function on G(S2,g), we can write bo(s, 0,1,0) = bo^o)) where 7(^) is
the geodesic with initial vector {s,0) € S^S2. More precisely, consider
the maps
(4.17.1)

$ : S^S^S^ -^ S*S2, (t,s,0) -^ Gt^(s),cos0 V{s)+sm0 i/(s)),

the natural projection
q•.StS2^G{S2,g),

and the composition

(4.17.2) 0 : S1 x S1 -^ G(S^g) 0 = q • ̂  . z,

with i : S1 x S1 -^ S1 x S1 x S1 the inclusion (s,0) -^ (0,s,0). We have:
(/){s, 0) = 7(s,0), 6(7(s,0)) = ^*^o- Note that ( / ) is a blow-down map along 51

at 0 = 0, TT so that QQ pushes forward to a circle of vectors at 7.

Now let V be a connection on TG(S2, g}. We will not specify it further
for the moment. Under the map (j) it pulls back to a connection V^ on
T(S'1 x S1) (see [Besse], 1.77), and hence V^ is well-defined as a vector
field there. To simplify the notation, we will confuse Qe with the vector field
6 := (f)^9e along 0 and regard Ve9 as a vector field on G(52,^). It is of
course a well defined vector field except at the point 7. We then write:

(4-1^) ^&(7(^)) = db(Q)

^(7(.,0)) = Ve(d&)(6) + d6(Ve9)

(̂7(.,6o) = V^Q, 9, G) + 2V^(Ve6,9) + d6(VeVee).

Let us substitute the expressions in (4.18) back into (4.16). We then
introduce a symplectic basis U, V for J^ given by the initial conditions (at
7(0) == m)

( U ( Q ) V(0) \_ ( I 0\
YW(O) w ( o ) y ~ v o i ) '

As mentioned above, at 0 = 0,0 is a circle of vectors 65 € TyG(5'2, ̂ ). For
fixed s,Qs corresponds to the Jacobi field 65 (t) = 9e\e=Q^{s,e) along 7; it
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is the element of J^- satisfying: Qs(s) = 0,V6s(5) = j/(s) where i^{s) is
the unit normal field along 7. Hence we may write

Q^t)=a(s)U(t)+(3(s)V(t)

with a(s) = o;(6s,V),/3(5) = —(^(Qs^U). In dimension two we may also
write U(t) = u(t)v(t),V(t) = v(t)v(t). We claim:

(4.19) a(s) = -v(s) (3(s) = u{s)

so that

(4.19.1) 6,(t) = (-v(s)u{t) + u{s)v{t))^(t).

Indeed, let
_/^) v(t)\

^-{u'W v ' ( t ) ) -

The conditions ©s(s) = 0, V9s(s) = v{s) give

p^^M^^l/w
and hence (4.19). We thus have

(4.19.2) Q,=-v(s)U+u{s)V

as vectors in TyG^S'2,?).

Since V and b are well-defined on G(5'2,^) they are independent of s
in (4.16). We claim first that

(4.20) ( Q^b{Qs, Qs, Qs)ds = 0.
J^

Indeed, using (4.19.2) we see that it contributes nine terms of which the
first (and typical) one is

^2^
(4.20.1) Qyrv(sfds) V b(U, U, U).

We now observe that the integral in this term (and the other eight like it)
vanish. Indeed, let Y = yv be a Jacobi field along a geodesic 7 on a Zoll
surface, and let 77. be a corresponding curve of closed geodesies. For each r,
differentiation in r produces a Jacobi field Yr along 77. and hence solutions
of

2/"(t;r)+r(t;r)2/(t;r)==0.

Here the primes indicated t-derivatives. Differentiating in r, we get

y '^( t ' , 0) + 9^ 0)y2 + r(t', 0)yr = 0
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with subscripts denoting r-derivatives. We also use that 9y.T(t;r) = y9^r.
Multiplying by y and integrating the ^-derivatives by parts we see that the
first and third terms vanish. Hence we get

(4.21) ( y^Q^rdt = 0.
J^

Setting y = u -\- w extends (4.21) to products u^v of solutions as well, and
proves that (4.20) equals zero.

Although the <9j-term in (4.15) cancelled, we record that also

(4.22) ( ^TV^O,, Q^ds = 0.
A

Indeed, from the Jacobi equation we get

y^ + Qsry + rQ^y = 0.

Multiplying by y and integrating by parts twice again kills the outer terms,
leaving

/ Qsry^ds = 0.
J-y

Then (4.22) follows from (14.9.2) and from the previous argument.

Thus we have: for any connection V on TG(S2,g),

(4.23) [aQ + ̂ (T),6o} = -^y I [2^r[2V\(Ve,e,,9,)

+^o(Ve.Ve,e,)] + -4^r^o(e,)] ds.

We now observe that for any torsion-free connection V

(4.24) /tV\(Ve.e„e,)d5=0
J^

for any &o- Indeed, the left side of (4.23) defines a derivation on
C^^G^S2^)). Hence if we set bo = 6162? the cross term involving
db\ 0 db^ + d&2 ^ db\ must vanish. Evaluating at 7, db\ (g) db^ + db^ 0 db\
can be any symmetric tensor of the form $1 0 $2 + $2 (^ $1 • Since any sym-
metric tensor is a sum of such terms, and since Vd6o is symmetric if V is
torsion-free, we get (4.24).

Therefore (4.23) simplifies to
(4.25)

{aQ+J^(r),6o} = -^y/1 [2^T^o(Ve.Ve.9.)-4^T^o(e,)] ds.
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Let us again write Qs = -v{s)U + u(s)V so that

IQ^rQsds = ( ( Qyr(-v{s))ds\U-}-( ( Q^r(u(s))ds\V

-d^R(r)(V) • U + d^R(r)(U) • V.

Here we use that for any Jacobi field Y = yv along 7,

d^R{r){Y)= Iy{s)9^rds.
J^

The second term on the right side of (4.25) is then —{.R(r),&o}-
Moving this term to the left side, we get

(4.26) {aQ - ̂ (r),6o} = -^y^f^e.Ve.6^).

D

Remark. — It follows from (4.26) that the vector field

V^:= /Ve.Ve.e^
J^

is a Hamilton vector field on G(52,^), and that

HaQ ~ ~\2HR{r} = v'
Here, Hf denotes the Hamiltonian vector of / with respect to the symplectic
form uj. The Hamiltonian / for V is given by

(4.27) df{X) ̂ ^{H^X)=^f g(^V(t)^X{t)) dt

=2yy l^(^(Ve.Ve.e,)(t),X(t)) ds dt.

Examples of V. — A nice connection V on TG^S2^) is defined
in [Besse], 2.41: namely, the Riemannian connection for the metric ~g on
G(52,^) given by

^(X,y)= Ig(X^Yt)dt
J^t

where Xt^Yt are the Jacobi fields along 7 corresponding to X,V. The
connection is given by

v^y:=p^(Vxy)
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where P^ is the Z^-orthogonal projection onto the space of normal Jacobi
fields along 7. Note that if ̂  is a curve in G^S2^) with initial tangent
vector X, then both X,Y are vector fields along the map (s,t) -^ 7^).
The expression V^Y means to hold t fixed and to differentiate in s.

Also, if one uses the natural (Kaluza-Klein) connection on S * S 2

obtained from g and from the Riemannian connection of g, one obtains
very explicit formulae for (TQ in terms of the Jacobi fields and curvature
along 7. The expression is a good deal lengthier than the above and we
omit the details.

Proof of (b). — Let us denote by R the operator 27r fA+a) (= A+1

in dimension 2). We easily find that

(^•l) <^=|^ <W^)=0.

We then observe that

(4.28.2) a^OpW^) = 1 F Gt *^ub(0p(6))^.Z7r Jo
Indeed, we can replace Ut in the definition of Op^)^ with expitJ?.
Following [G3], we then set

Bi= f e-'^^B^^di
Jo

with B = Op(6). We note that

B'^=[R.B[}
where the primes denote ^-derivatives. It follows that

asub(BO={|^asub(BO}
hence

^ub(BQ = Gt *0sub(5).

Integrating we get (4.28.2).

Since the complete Weyl symbol b of Op(6) is homogeneous of degree
zero, we see that

^(Op^6) = 0.

Hence the complete Weyl symbol of Op^)^ has the form
(4.28.3) 6+^+—

Writing out the equation [A, Q] = 0 symbolically we also find that
{^-i? 1^1} = 0, i.e. that g_i := asub(<3) is invariant under the geodesic flow.
Hence it may be viewed as a function on G(5'2,^).
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We now return to (4.6). Using (4.28, 1-2) we find that the order (-2)
part of the equation reads
(4.29) {g-i,6o}=0

for all bo e C^^G^S2^)). It follows that <7sub(0) is a constant. Since Q
has the transmission property, the term g_i is an odd function on S * S 2

hence odd with respect to the involution 7 —>' 7~1 on G(52,^). It follows
that the o-sub(Q) = 0.

The above applies to any Zoll metric on any manifold. If we now
assume that aq = 0 we see that Q is of order —2.

Now suppose that the equation in the statement of Theorem D(b)
is true. Then (TQ is constant, so A = [(A + 1/2)2 + C]mod^~2. (The
constant C could of course be determined). Hence the clusters have widths
0{k~2). Conversely, if the widths are of order 0{k~2) then (TQ == C for
some constant (7, and by (a) the equation in (b) will hold. D

Remarks. — As mentioned in the introduction, the condition for
the widths to be 0(k~3) could be determined by carrying out the same
sort of calculations one step further. We only wish to observe here that
the stronger results of [Gl], [G2] in the case of Schrodinger operators on
CROSSes have no easy analogues in the Zoll case. The difference is that
Schrodinger operators are perturbations of known operators (Laplacians)
by known operators (potentials), whereas in the Zoll the Laplacian is a
perturbation of the unknown operator R2 by the unknown operator Q^.

5. Schrodinger operators and surfaces of revolution:
proof of Theorem E.

Proof of Theorem E(a). — If —Acan + V ho-s the multiplicities
mult(Aj(y)) = 2j'+l, then the eigenvalues must be of the form j(j+l)+/^,
where ^ = O^'"^) (V7V > 0). However, in the case of Schrodinger
operators, the symbol and sub-principal symbol of Q^ are calculable, and
one gets a contradiction if even /^ = o(j~2). Indeed, (TQ# = V (the Radon
transform of erg), so V = 0 if p^ = 0(j~2). This implies V is odd. By
studying the "first return operator" W = exp(27ri(—Acan + V)1/2) — Id,
Guillemin [G2] and Widom [Widon] have shown that the clusters c/c
have widths o(k~2) if and only if V = 0. This immediately implies the
theorem. D
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Proof of Theorem E(b). — By a Zoll surface of revolution we mean
a metric having 5'1 as an effective isometry group. Such an action has
precisely two fixed points N and S. There is a natural parametrization of
S2 - {N, S} in which

g = dr2 +c2(r)cL;2.

One has:

(5.1) c^O) = c^l) = 0 ,c'(0) = -c(l) =1 (Vp > 0)

(see [Besse], Ch. IV). Here, we have normalized things so that the distance
from N to S is 1.

Each (f) € C°°(S2) can then be expanded as

^(r^)= f^ ^Me——
n=—oo

and one has
A^> = ̂ (A^e^ -

n

where
/ d2 0 ' d 2. 2\ .An^ = ——^ - -— + n20-2 ^\ dr2 0 dr )

where dvol = 0(r^)dr dw = c(r)dr duj. An is unitarily equivalent to

(5.2) Dn=-^+[(3{r)+n20-2}

where

(5 3) 0(r) - 2<rm ~ c/(r)2
(5-3) W)- 4^)2

More precisely, A^ is unitarily equivalent to the Friedrichs extension of
•Dnfcy[0,l]-

Following [Bru], p. 174, we write Dn in the form
d2 a»(r)
d r 2 ' r 2 ( l - r ) 2 '

By (5.1) we have

. . an(r) ^ 2c(r)c"(r) - c^r)2 + 4n2 ^ -1 + 4n2 b,(t - r)
^•^ ^(1 - r)2 4c(r)2 4(r -1)2 ^ - r
as r —> i, where i = 0,1 and where 6» is smooth and odd:

(5.5) ^2fc) (())=() ( fc^O).
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Now, let us calculate the trace of the heat kernel generated by Dn
in two different ways. The first is to use our knowledge of the spectrum,
spec(-Dn). We have
(5.6a) Spec(Dn) = {£(£ +1) + ̂ f : i > |n|}.
Hence the heat trace, 9n(t) = Tre"^, is given by

(5.6b) 6|,|(t) = ̂  e-^^e-^ = e^n{t) + r,(t),
e>\n\

where

Bcan^E^^
^=0

and where Tn(t) € C'°°(R). Here, we use that ^f = 0^-^) for all N.

On the other hand, the asymptotics of 0\n\{t) as t —^ 0^ has been
calculated by Briining [Bru]. Specializing his results to our situation, we
have ([Bru], Main Theorem):

(5.7) en(t) ~ (47^t)-l/2^/2(A, +B,)
j>o

where Ao = 1, Asj+i = 0 = Baj+i.

Let us pause to discuss (5.7), and especially its relation to Briining's
calculations.

In general, the heat trace tr e"^ of a self-adjoint singular Sturm-
Liouville operator on L^O, 1] has two types of additional terms: (i) Bjt312

terms, where Bj is a universal polynomial in the boundary values a'n (0),
a^l) of an(r); and (ii) c^(logt)^72 terms. As Bruning has pointed out
[Bru], p. 174, no log t terms occur in the case where L arises from separating
variables in ^-symmetric Laplacians. Moreover, we can also check that no
Bjt3/2 terms arise either if j is odd. This can be dug out of the proof of the
Main Theorem [Bru], pp. 194-195. First, we observe that the coefficient Bj
in the statement of the Main Theorem is the coefficient A} in [Bru], (6.4);
see p. 195. This coefficient has the form:
(5.8) A} = ^ ^(O)... b^-^WCe^

£>1, m>0
e+m+l=j, |/3|==m

More precisely, we get one such term from each endpoint z; and b = bi from
(5.4).

We now observe that (at either endpoint) A^ = 0 if j is odd. Indeed,
by (5.7), only terms where all ft are odd contribute to A^. Hence m = \f3\ =
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is a sum of i - 1 odd numbers, and thus has the parity of { - 1. Then
j = ^ 4- m + 1 must be even, as claimed.

It follows therefore that all powers of t occuring in Qn(t) are half-
integral and never integral. But the remainder term rn(t) in (5.6) is smooth,
and hence has only integral powers of t. We conclude:

(5.9) r^r^O^) as t-^0 (V7V)(Vn).

On the other hand,

r"^ - E ̂  E ̂ '̂ W
fe==l • t>\n\

^-^e-^+^f+O^2)
£>_\n\

=-t^^+0{t2)
£>\n\

where we use repeatedly the rapid decay of the pf's.

We therefore have,

(5.10) ^ A ^ = 0 for all |n|,
e>\n\

i.e.

(5.10.1) ^=0 (W).

Hence, Ag is isospectral to Acan. But it is well-known (and easy to see)
that Acan is spectrally determined. Let us recall the simple proof [BGM],
p. 227, since it will be relevant to the general case. First, the heat trace
0(t,g) = e"^ has the following small t expansion on any surface (M,g):

Q(t,g) = (47^)-l(ao 4- a^t 4- a^t2 + • • •) (0.1)
where

^ al^LT'

ao = area(M, g)

a! = o / ^^g6 J M

02 ̂ /M^-

Here, Tg is the scalar curvature and dvg is the volume form. On a sphere
of area 47T, we have

e (^ )=^- l ( l+ j t+a2^+•• • ) .
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By the Schwartz inequality

a rgdvg} <area(M,^)/ r]dyg
.A / J M

with equality if and only if Tg is constant. Hence, if (52, g ) is isospectral to
(S^can), Tg must be constant. D

Let us carry this reasoning a little further, in view of its potential
applications to the general case.

PROPOSITION 5.12. — Suppose g is a metric on S2, such that Ag is
isospectral to Acan + S, where S is a smoothing operator which commutes
with Acan. Then: Q{t,g) = Q(t,go) - tTrS + 0(t2). Hence g is isometric
to can if and only if Tr S = 0.

Proof. — We have

Q^g)=Tre-t^c^s}

=Tre~tAcane~t6'
00 / +\k

^Y^L^s^-^-/-^ k\
k=0

00 (—+\k
r\(+ r. \ _L X"^ v / TV C^^-^^an= ̂ (^ 9o) + ̂  „ 1L 0 e

fc=l

Since
uu (—-I-}71

TrS^-^- = ̂  <-^- T^^A^
n=0

(which converges since S'̂  € ^-oc), we see that

6(t, ̂ ) = e(^, ̂ o) - ^ ̂  ̂  + ̂ 2 ̂  (^Acan + 252) + ' " •
D

Now, we have
00

(5.13) TiS=^(2£+l)4.
t=0

In the case of a metric of revolution, the equivariant traces of S are given
by
(5.14) TiUnSTIn = ̂  V^

i>,\n\
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where Tin is the orthogonal projection onto the eigenspace of (-^) of\ i dO7
eigenvalue rr. Hence TrS = 0 if TrIIn5TIn = 0 for all n; and we proved
the latter above.

6. Maximally degenerate Laplacians on
proof of Theorem F.

Let us first recall the facts of life on MP^. The eigenvalues, multiplici-
ties, lengths and Morse indices of primitive closed geodesies of the canonical
metric are given by:

Afe(can)

2k(d-{-2k-l)

mfc(can)

(d+2fc-2)!
(2fc)!(d-l)!(dll'v 1)

^(can) a (can)

d 1

27T/ a\—{k+- )
^ V 4^

/ d-l\^ 4 )
(6.1)

In this table, can is normalized so that W>d = 3d / ± 1, where
gd Q ]^d^-l is the unit sphere. The formulae in this table can be found
in [BGM], C.II.l and [Besse], 8.8.

Further, we will need to use the

WIEDERSEHENRAUM THEOREM 6.2 (Green-Berger-Kazdan). —
The only SC ̂ -metrics on RP^ are the (constant) multiples of can.

We can now give the

Proof of Theorem F.

(a) Suppose that g is a metric on RP^ with rrik(g) = rrifc(can). Then
g is a P^-metric. In view of the Wiedersehenraum Theorem, it will suffice
to show that g is a 5Q-metric.

As in §2, we will begin by comparing eigenvalue multiplicities mk and
cluster multiplicities d^.

In dimension d, one has [CV], Theorem 1.43:
N rr i j - l

(6.3) d, = R(k + ̂ ) + ̂  ̂  (c^)^(A;)
j=i p=i
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where cjj p = exp (2m— }, and where
\ nij /

(6.4) R{t) = 6i^-1 + b^-3 + .. • + bd
is a polynomial of degree d - 1 with the parity of d - 1. (We refer to [CV]
for details.)

Prom WeyPs law, we also have

(6.5) b,(g) = (27^)-dyo\(Sd-l ca^vol^,^^)^

See, for instance, [CV], p. 517; keep in mind that g is normalized there
so that £ = 27r. It follows that b^g) == &i(can) if {£(g), volQRP^)) =
^(can^vo^RP^can)). Hence, b^(g) = &i(can) under the assumptions of
Theorem F.

Now let us consider the relation between rrik{g) and dk(g) if rnk(g) =
mfc(can). By an argument similar to that in Lemma 2.2, we can see that
the number d^ of distinct eigenvalues in Ck eventually becomes a constant,
day cCj_. We have

^
dk = y^mult(Afc,r)

r=l

^(2n(fc,r)+d-2)!
=^(2^,r))!(d-l)!(4n(^r)+d-l)

4^^^^)}
where (as in §2) Ck = {Afe,r} and \k,r is the n(^,r)^ eigenvalue in
increasing order. The leading order behaviour of dk can be determined
from this, as in §2:

4.od-2 ^

^-(^nyE^^-1
\ / y.̂ ;]̂

(6-6) ^^I^4 '̂7'̂ "1

4.2<;^-2 / ^-^ \d-i~^<(J^) .
Since dj = d:'j. for sufficiently large j, we have

(6-7) dfc ~ ̂ I^^^2^"1 + o(kd~2)•
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In the above, ~ denotes equality modulo terms of order O^"2).

Comparing (6.7) and (6.5) as in §2, we see that

(6.8) h(g) = ̂ ^«)2 = (27^)-dvol(5d-l,can)vol(RPd^)(^)d.

9 (^TT^

Since (d - l^volfS^'^can) = — v / ,, we get¥01(5°, can)

(6 9) (d* )2 - g-(d-n^(M^g)f27T^
^ vd+) ~2 vol^can)^^ •

With no loss of generality, we may rescale g so that vo^RP^ff) =
vo^RIP^can) = 1/2^1(6"*, can). Then we have the unconditional formula,

(6.10) «)2 = (^/.

In the case of a general P^-metric g on a manifold At, Weinstein has
proved the integrality theorem

^fiin _d_iVQl(M,g)/27r^-i^
^•^ m "voil̂ ^ 6N

where m is a certain integer (the least common multiple of the orders of
the isotropy groups of the exceptional orbits, see [Besse], p. 61). In the case
at hand, this implies

(6-12) ^-(i^r6"-
Hence by (6.10)-(6.12) there exits M G N so that

<6-13' i,)-^^-^"^
hence —— is rational. But by (6.10), —— = (d^)2^. It follows that (d^)2^

\ i ' / \!y /

is rational, hence integral. Thus, £(g) = -r—Tr where Nd € N. It seems
^d

almost obvious that Nd should equal one, since vol^F^, g) = vol^F^, can).
Below we will prove that Nd = 1 when d = 2. Unfortunately, we do not see
how to prove Nd = 1 for d > 2, so we have added this assumption to the
hypotheses of Theorem F(b). We conjecture that it follows from the other
hypotheses by some modification of Weinstein's integrality theorem.

Let us prove N^ = 1. Just as in the proof of Corollary 2.2, we first ob-
serve that the multiplicity assumption forces dk to be a polynomial. Hence,
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the oscillatory term in (6.3) must vanish. But it is a linear combination of
principal symbols, so it vanishes only if complete cancellation takes place
between the terms coming from each period of G^. In particular, there must
be at least two exceptional closed geodesies with the minimal period. Now
the flow G\ lifts under the composition of covers, 5'3 -^ S*(S2) —> 5*(RP2),
to an S1 action on 53, which has at most two exceptionally short orbits, and
(as mentioned above) these two orbits would have to have unequal primitive
periods. Since all orbits are cut in half under the projection to 5*(52), the
same description applies there. Thus, g lifts under the natural projection
5'2 —> S 2 / o ' to a metric g whose geodesic flow G* has least common period
27r and (possibly) two exceptional geodesies say a and /?, of lengths < 27r.
Here, a is the antipodal map. Since a(a) ̂  /3 and a(a) cannot be a third
exceptional geodesic, we must have a(a) = a. Similarly a{/3) = /3. hence,
both a and /? get cut in half under the projection S2 —^ RP2. Since the un-
exceptional geodesies must also get cut in half, we see that RP2 has at most
two exceptional geodesies of unequal primitive periods. If follows as in §2
that the contributions to dk from the exceptional geodesies cannot cancel
unless they are absent. We conclude that they are absent, so that g is (7^.
Let g be its lift as a metric on S2. Then for each a; € 52, all the geodesies
starting from x meet again at time TT. To apply Green's Wiedersehenraum
theorem, we also need that the distance to the first conjugate locus is the
constant TT at each x. But we have Og = Ocan = 1, so the rendezvous point
at time TT is the first conjugate point along each geodesic. Hence g = can.D

(b) Let us now prove g = can when d > 3, under the additional
assumption £(g) = TT. To this end, we first observe that the oscillatory
term in (5.3) must vanish since dk — R{k + a/4) is a polynomial. Hence,
dk = R(k + a/4) = b^(k + a/^-1 + 0((d + d/^-3). Since b^g) =
&i(can) if £{g) == TT and since mk(g) = dk(g) if d\. = 1, we see that
mk{g) = &i(can)(A; + a^-1 4- 0((k + a/^-2). Since rrik{g) = mfc(can)
by assumption, we have d(g) = a (can). Again this implies that, for any
closed geodesic of length TT, there are no conjugate points in the interval
(0,7r) (cf. [Besse], 8.8). Hence, (5^,^) is a Wiedersehenraum in the strict
sense of the Berger-Kazdan theorem: that is, the first conjugate time along
any geodesic is a constant. Hence g = can, so g = can. D
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