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EXTENSION AND LACUNAS OF SOLUTIONS
OF LINEAR PARTIAL
DIFFERENTIAL EQUATIONS

by U. FRANKEN and R. MEISE

The question whether certain zero-solutions of linear partial differen-
tial operators can be extended to larger domains, preserving certain prop-
erties, has a long history, beginning with Riemann’s theorem on removable
singularities of analytic functions. Various types of problems have been
discussed in the literature. As typical examples we only mention Kisel-
man [10], Bony and Schapira [2], Kaneko [10], Liess [12] and Palamodov
[21]. It seems that the extension of all C'*°-solutions of a given operator
to a larger real domain has not found much attention so far. For con-
vex, open sets it was treated as a subcase in the article of Kiselman [10]
and for solutions of systems over convex sets it was investigated by Boiti
and Nacinovich [1]. However, the solution of L. Schwartz’s problem on the
existence of continuous linear right inverses for linear partial differential
operators with constant coefficients, given by Meise, Taylor and Vogt [15]
indicates that this question is of interest in a different context. They show
that P(D) : D'(Q2) — D’(2) admits a continuous linear right inverse if and
only if for each relatively compact open subset w of 2 there exists another
subset w’ D w of Q with the same properties, such that for each f € D'(w’)
satisfying P(D)f = 0 there exists g € D’(Q) satisfying P(D)g = 0 and
flw = glw- For convex sets 2 this property is equivalent to a condition of

Phragmén-Lindelof type for plurisubharmonic functions on the zero variety
V(P)={z€C": P(-z) =0}.

Key words: Whitney extension of zero-solutions — Phragmén-Lindelof conditions for
algebraic varieties — Fundamental solutions with lacunas — Continuous linear right in-
verses for constant coefficient partial differential operators.

Math. classification: 35E05 — 35B60 — 32F05 — 46F05.
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Motivated by these results we investigate in the present paper under
which conditions an analogue of Whitney’s extension theorem holds for
the zero-solutions of a given linear partial differential operator P(D) with
constant coefficients. To formulate our main result, let K be a compact,
convex set in R™ with non-empty interior, denote by Hy its support
functional and let

E(K)={feC(K)| flR’ € C°°(I°{) and (fl;{)(o‘) extends continuously to
K for each o € INy},

ER", K) :={f € C*(R") | flx =0},

both spaces being endowed with their natural Fréchet space topology.
Further, let £p(K) (resp. Ep(IR™)) denote the space of all zero-solutions of
P(D) in £(K) (resp. C*°(IR™)). Then the main results of the present paper
are stated in the following theorem.

THEOREM. — For K and P as above, the following conditions are
equivalent:

(1) the restriction map pg : Ep(R™) — Ep(K), pr(f) = flk is
surjective

(2) the map pk in (1) admits a continuous linear right inverse, i.e.
there exists an extension operator Ex : Ep(K) — Ep(IR"™) satisfying
pk ° Ex = idg, (k)

3) P(D) : E(R™, K) — E(R™, K) is surjective

(4) there exists a continuous linear map Rk : E(R", K) — £(R", K),
such that P(D) o Rk = idg(mn k)

(5) the algebraic variety V (P) satisfies the following condition PL(K)
of Phragmén-Lindelof type: There exist A > sup |z|, k > 0 such that
zeK

each plurisubharmonic function u on V(P) which satisfies () and () also
satisfies (vy), where

(@) u(z) < Hk(Imz) + O(log(2 + |2|)), z € V(P)
(B) u(z) < AlImz|, z € V(P)
(7) u(z) < Hx(Im 2) + klog(2 + |2|), z € V(P),

and where Hy denotes the support function of K.
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Note that the theorem extends a result of de Christoforis [3] who
proved that (3) holding for all compact convex sets K with non-empty
interior is equivalent to P being hyperbolic with respect to all non-
characteristic directions. However, the latter condition is strictly stronger
than those given in the theorem.

Note further that the condition PL(K) implies the condition PL(I% )
which was used by Meise, Taylor and Vogt [15], sect.4, to characterize when

o [e]
P(D) : C*(K) — C*(K) admits a continuous linear right inverse. For
homogeneous polynomials the converse implication holds, too, however, it
remains open whether it holds also for non-homogeneous polynomials.

The main steps in the proof of the theorem are the following: First
we use Fourier analysis, an idea of proof from Meise and Taylor [13] and a
result of Franken [4] improving a theorem of Meise, Taylor and Vogt [16],

to characterize when for convex compact sets K ¢ @ C R", Io( # 0,
the restriction map pg,x : £p(Q) — Ep(K) is surjective. One of the
characterizing conditions is the Phragmén-Lindel6f condition PL(K, Q)
(see 2.9) which also characterizes the surjectivity of pg x : Dp(Q) —
D, (K), where Dp(L) = {p € D'(L) | P(D)p = 0}. From this we obtain
that (1), (3) and (5) are equivalent (see 2.11). Then we show that (1) is
a local property of K and use this to get “fundamental solutions” (see
3.3) having certain lacunas. Together with a particular Whitney partition
of unity in R™\ K these “fundamental solutions” allow the construction of
Rk in (4). By a result of Tidten [24] on the existence of continuous linear
extension operators for the functions in £(K), (2) is an easy consequence
of (4).

In [5] the main results of the present paper are used to characterize
the homogeneous differential operators P(D) that admit a continuous linear
right inverse on C*°(2),  any bounded, convex, open subset of R" in terms
of the existence of fundamental solutions for P(D) which have support in
closed half spaces.

Acknowledgement: The first named author acknowledges the support
of his research at the University of Michigan in Ann Arbor by the “Deutsche
Forschungsgemeinschaft”.
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1. Preliminaries.

In this section we introduce most of the notation that will be used
subsequently and we prove some auxiliary results on plurisubharmonic
functions and weighted spaces of analytic functions on algebraic varieties.

1.1. Spaces of C*°-functions and distributions. — For an open set
Q Cc IR™ we denote by £(Q) the space of all C*°-functions on 2, endowed
with the semi-norms

1£llz.1 := sup sup |F @ ()|, LccQ, e Np.

z€L |a|gl

For a closed set A C IR™ we denote by £(A) the space of all C*°-Whitney
jets f:= (f*)aenz € C(A)N on A, i.e. f satisfies:

l £\
“f”fz = sup sup M

< oo
l —_ b
= ¥€L |o|gl IiE - yl +1-|a
TH#Y

where
1
8!

and L CC A, | € INg. We endow £(A) with the semi-norms

AN ESHOEEDY

|8I<l—|a

et (@) (y — x)?

WA == I+ 1fllLs, L CC A, 1€ N
Moreover for a compact set A C IR™ we define
D(A) := {f € £(R")| Supp(f) C A},

endowed with the induced subspace topology. For an open set 2 C IR™ we
let

D(Q) :={f € £IR") | Supp(f) cC 2} = itd D(L),

endowed with the inductive limit topology. If S is either open or compact
then &’(S) resp. D’(S) denotes the dual of the space £(S) resp. D(S). For a
compact set L C S we define the space of C*°-functions resp. distributions
on S with lacunas in L by

E(S,L):={f€&S)|flL =0}, D'(S,L):={neD'(S)|ulr =0}
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1.2. Remark. — Let A C IR" be closed. By the extension theorem of
Whitney [W] each C*°-function on A can be extended to a C*°-function
on IR™ (which is real-analytic outside A), i.e. the restriction map R, is
surjective, where

Ry : E(R™) — E(A), Ra(f) = (f|a)aen;-

If A is convex and A # @ then the definition of Whitney jets is much
easier:

EA)={f¢€ S(ﬁ{) | for each a € IN} there exists f* € C(A) : f"|2 = fy,

Note that in this case the extension of C°°-functions can be done by a

continuous linear operator. This is a consequence of a general result of
Tidten [T], Satz 4.6.

1.3. Partial differential operators. — Let €[21, ..., 2,] denote the ring
of all complex polynomials in the variables zi,...,z,. For a polynomial
P € C[z,..., 2] of degree m

P(z) = Z a2, z€ C",

|a|l<m

we define the partial differential operator

P(D) := Z aqi~ 9%,

lalgm

where % denotes the a-th derivative in the distribution sense. P(D) is a
continuous linear endomorphism on each of the spaces £(S), D’(S), where
S C IR" is either open or compact. The corresponding spaces of zero-
solutions of P(D) are defined as

Ep(S) = {f € E(S)| P(D)f =0}, Dp(S) :={u e D'(S)| P(D)u=0}.

A distribution E € D'(IR™) is called a fundamental solution for P(D) if
it satisfies P(D)E = &y, where 8y denotes the point evaluation at zero.
The principal part P, of P is defined as P,(2) := > an2*. A vector

lal=m

N € R" is called characteristic for P if P,,(N) = 0. P or P(D) is said to
be hyperbolic with respect to N € IR™ \ {0}, if N is non-characteristic for
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P and if P(D) admits a fundamental solution £ € D’(IR") which satisfies
Supp(E) € H*(N), where we let

H*(N):={z € R" | £ (z,N) >0}
and where (:,-) denotes the Euclidean scalar product on R".

In the present paper we are going to characterize the linear partial

differential operators P(D) and the convex compact sets L in IR", E # 2,
for which all elements of £p(L) resp. D’p(L) can be extended to elements of
Ep(IR™) resp. Dp(IR™). To do this we will use Fourier analysis. Therefore,
we show in this section that £€p(L) and Dp(L) are isomorphic to certain
weighted spaces of holomorphic functions on the zero-variety of P. To prove
this we need the following two lemmas.

1.4. LEmMA. — Let K C IR™ be compact and convex with 0 € l%' .
Then there exists a number C > 0 so that for each x € OK there exists
A € GL(n;R) satisfying:

(1) A(fo, ") c K

(2) A(L,...,1) ==

(38) C71z| < |A%(2)| < C|z|, for all z € @™ and the Euclidean norm
[

Proof. — For each z € R" \ {0} let {z/|z|, f2(z),..., fn(z)} be an
orthonormal basis in IR". Then let e := - (1,...,1) and define for 0 < §
the linear map A5 : C* — C" by

Ag,5(2) = (2,€)z + 8(z, fa(€)) f2(x) + . .. + 8(2, fn(e)) fu(2), 2z € T,
where <21,22> = i 21225, 21,22 € C™. Note that Az,g(]Rn) Cc R"™.
Jj=1

By our choices, A; s satisfies (2) for each § > 0 and each z € 0K. Using

a compactness argument, 0 € K and Az 5((1,...,1)) = z it is easy to see
that there exists 6; > 0 such that A; s satisfies (1) for each 0 < § < §; and
all z € K. To show (3) note that

Az 5(2) = (z,2)e + 8(z, fa(@)) fa(e) + ... + (2, fn(2)) fn(e), 2 € T".
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Since {e/|e|, f2(e), ... fn(e)} is an orthonormal basis of €", we have
45 = ePlol’| (2 Z ) P +622 e HE)P, 2 € T

Using the fact that also {z/|z|, f2(x),..., fn(z)} is an orthonormal basis
of €™, the following holds for 6 := 161:

1 3
min (= nf 1ol 36 121 < 145,400)| < (7,,2‘3% |y|,151> el

Hence A := A, s satisfies (3) with a sufficiently large number C > 0 which
depends only on é; and K.

1.5. DEFINITION. — For a compact, convex set K in IR", its support
function Hg is defined as

HK(y) = Sllp(l‘,y), y e Rn
z€EK

In the following lemma we construct certain plurisubharmonic func-
tions. The first inequality in the lemma also follows from Langenbruch
[L], 1.2. To prove the second property we use a different method for the
construction.

1.6. LEmMA. — Let K C R™ be compact and convex with Io( # 2.
For each k > 1 there exist numbers | > k, C > 0 and a continuous,
plurisubharmonic function w : €* — IR such that for each z € C™:
(1) Hx(Im z2) —llog(1 + |2|) < w(2) < Hx(Imz) — klog(1+ |z|) + C
(2) sup{|w(§) —w(2)[|£ € T, [§ —2| <1} < C.

o
Proof. — Without loss of generality we may assume 0 € K.Let k > 1
be given. For T' > 0 we define

T [* log(1+ |t
e+ = LT [ _loslLe 1)

t >
@02+ (y+T)2 di, oy eR, y >0
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By the proof of Meise and Taylor [14], 2.3, there exists a number T' > 0
such that the function u; : € — IR

§|Imz|—kPT(z) if Imz>0
ui(z) := 1
—|Imz|—kPT(E) if Im2<0

is subharmonic on @. Moreover, one can find /; > 1 and C; > 0 such that
|Im z| — {1 log(1 + |2|) — C1 < u1(2) < |Im 2| — klog(1 + |2|)
for all z € €. Next let @ := [0,1]" and

v(2) = 2”: (ul(z] = Im zJ) + nCh.

Then for all z € C" :
(3) Ho(Im z) —nlylog(1 + |2]) < v(z) < Ho(Im 2) — klog(1 + |2|) + nC;.

Now fix z € 0K and let A, € GL(n;IR) be the map in Lemma 1.4. It is
easy to see that the function

w(z) := sup v(A;(2)), z € "
€K

is continuous and plurisubharmonic on €". Let Cs > 0 be the constant in
1.4(3). By 1.4(1), 1.4(3) and (3) above we have

w(2) < sup (Hg,(q)(Im2) — klog(1 + |45 (2)])) + nC:
z€OK

1
< Hg(Imz) — klog(1 + oA |z]) + nCy
2

< Hg(Im z) — klog(1 + |2|) + klog(Cs2) + nCh.

Hence w satisfies the second inequality in (1) with C := klog(C2) + nC;.
To show the first inequality let z € €™ be given. Choose a point € 0K
with Hg(Im z) = (Im z, z) and note that 1.4(1) implies

Hyg(Im z) — nCalilog(1 + |2]|) < Hx(Im 2) — nly log(1 + Cslz|)

< (z,Im2) — nly log(1 + A5 (2)])

< Ha,(g)(Im2) — nly log(1 + |AL(2)])
<

v(4z(2) < w(2).
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Thus the first inequality in (1) holds with [ := nCal;. To show property
(2) note that for each T' > 1 there exists Cz > 0 so that for all 21, 22 € €
with Im(z;) >0, j =1, 2 and |2; — 22| < C we have

|P=(21) — Px(22)| < C5.
This implies for 21, 29 € €™ with |27 — 22| < Ca:
[v(21) — v(22)| < n(C2 + 2kCr).

To show the inequality in (2) fix 21, 25 € €™ with |23 — 22| < 1. Choose
1, T2 € OK such that for all z € 9K : v(A},(25)) > v(AL(z)) — 1, j =
1, 2. Without loss of generality we can assume w(z;) > w(22). Since
| AL (21) — AL (22)] < C2|21 — 22| < Cy, for all z € 0K, we get:

w(z1) — w(z2) < v(Ag, (21)) + 1 — v(4;, (22)) < n(Cs + 2kCr) + 1.
Hence (2) holds if C is sufficiently large.

1.7. DeFINITION. — Let L C IR™ be a compact, convex set with

L # 2, let V C C@" be an analytic variety and let A(V) denote the space
of all analytic functions on V. For B > 1 define

AT p={f € A(V)]
fIE g = sup |f(2)| exp(—H (Im 2) + Blog(1 +2) < oo},

endowed with the induced Banach space topology. Moreover, define

AL (V) := nd Az 5(V), and A} (V) := proj A} g(V).
—0o0 ’ B—oo ’

1.8. ProprosiTioN. — Let K C R™ be compact, convex with Ic;' #+ 2,
let P = P;-...- P, where the P; € @[21,..., 2] are irreducible for 1 < j <1
and pairwise not proportional and let V(P) := {z € €" | P(-z) = 0}.
Then the Fourier-Laplace transform F, defined by

F(p) : 2 (po,exp(—i(z, 2))), z€V(P),
is a linear topological isomorphism between the following spaces:

(1) F: Ep(K)y — Ak (V(P))
(2) F: Dp(K), — Ak (V(P)).
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Proof. — (1): This holds by Meise, Taylor and Vogt [17], 3.4(3) for
w(t) = log(1 +t).

(2): Using standard arguments from functional analysis and the
Paley-Wiener theorem for C°°-functions one gets the following topological
isomorphisms

p(K), 2 D(K)/P(-D)D(K) = AL (C")/PA(C"),
where P(z) := P(—z), z € €. We claim that the map
p: AR (C")/PAL(C") — AR (V(P)), p(f + PAL(C™) = flv(p)
is a topological isomorphism. Using this claim it is easy to check that the
resulting isomorphism is F.

To prove our claim, note that by the open mapping theorem it
suffices to show the bijectivity of p. To see that p is injective let f €
AR (T") satisfy f lv(py = 0. By hypothesis, P is equal to a product of
irreducible polynomials, hence Hansen [Ha], 2.2, implies f/P € A(C").
By the Malgrange-Ehrenpreis lemma (see Hansen [Ha], A.1) we have
f/P € AL (C™). Hence p is injective.

To show that p is surjective let f € Ak (V(P)) be given. Then for each
k € IN choose a plurisubharmonic function wy : €* — IR and (k) > k,
C(k) > 0 as in Lemma 1.6. By the estimates for f and 1.6(1) there exist
numbers C;(k) > 1 such that for each k € IN :

17 (2)] < C1(k) exp(wi(2)), z € V(P).

By 1.6(2), the functions wg, k € IN, satisfy the hypothesis of Hansen [Ha,
2.3 (Extension theorem). By the proof of Hansen [Ha|, 2.3, there exist
numbers M > 0 and Cz(k) > 0, k € IN, so that for each k£ € IN there exists
a function f; € A(C™) satisfying fx|v(py = f and

3) |fi(2)] < Ca(k) exp(wi(z) + M log(1 + |z])), z € ™.

By Hansen [Hal, 2.2, and A.1, there exist numbers C3(k) > 0, k € IN, and
functions gy € A(C™) such that fry1 — fx = Pg, and

|9k ()] < C3(k) exp(wx(2) + M log(1 + |2]))
< O3(k)eC® exp(Hg (Im 2) — (k — M) log(1 + |2])), z € T™.
Now observe that for k € IN there exists a function bx € A% (C™) such that:

lgx(2) — br(2)| < 2 % exp(Hg (Im 2) — (k — M)log(1 + |2|)), z € @™
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This implies that the following function is well-defined:

k-1 0o
hii=—3 b+ (95— by)
j=1 i—k

Moreover hy € A(C™) and there exist numbers C4(k) > 0, k € IN such
that:

(4)  [hx(2)| < Ca(k) exp(Hk (Im 2) — (k — M) log(1 + [2[)), =z € @".

By definition we have g = hg — hg41. This implies that the following
function is well-defined:

g := fx + Phy, where k € IN.

From the inequalities (3) and (4) it follows that g € A% (V(P)). Obviously
plg) =1

2. The P(D)-extension property for compact, convex sets.

In this section we introduce the P(D)-extension property for compact
sets K C R™ with K # @. We show that it is equivalent to a certain
condition of Phragmén-Lindelof type holding on the zero-variety of P. Also,

it is equivalent to the surjectivity of P(D) on the space E(IR", K). Thus
our results extend those of de Christoforis [Ch].

2.1. DeriNiTION. — Let K C @ C IR™ be closed, convex sets in R"™
with K # @ and P € @[z, ..., 2.

(a) We say that (K,Q) has the P(D)-extension property if for each
f € Ep(K) there exists g € Ep(Q) with gl = f. If @ = IR™ we say that
K has the P(D)-extension property.

(b) If the conditions in (a) are satisfied for D'p instead of Ep, and if K
and @ are compact we say that (K,Q) (resp. K) has the P(D)-extension
property for D’.

Thus, K has the P(D)-extension property, if the analogue of Whit-
ney’s extension theorem holds for the zero-solutions of P(D). The following
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lemma, shows that it makes no difference to extend zero-solutions or arbi-
trary solutions of P(D).

2.2. LEMMA. — Let K C Q C IR™ be closed, convex sets with K # &
and P € QC[z,...,2,). The following assertions are equivalent:

(1) (K, Q) has the P(D)-extension property,

(2) for each u € £(K) and v € £(Q) satisfying P(D)u = v|k there is
w € £(Q) with P(D)w =v and w|g = u,

(3) P(D) : £(Q,K) — &(Q, K) is surjective.

Proof. — (1) = (2): Suppose (K, Q) has the P(D)-extension property
and let u, v be given as in (2). Using Whitney’s extension theorem and the
fact that P(D) : E(R™) — E(IR™) is surjective, one can find a function
h € £(Q) such that P(D)h = v. Then we get P(D)(u — h|g) =0 in £(K).
By (1) there exists a function g € £(Q) with P(D)g = 0and g|x = u—h|k.
Hence w := g + h has the required properties.

(2) = (3): Let v € £(Q, K) be given and define v = 0 on K. By
hypothesis there exists w € £(Q) with P(D)w = v and w|g = u = 0,
hence w € £(Q, K).

(3) = (1): Let f € Ep(K). By Whitney’s extension theorem there
exists F' € £(Q) with F|g = f. Then P(D)F € £(Q, K). The property (3)
implies that we can solve the equation P(D)G = P(D)F with G € £(Q, K).
Then the function g := F — G is in £p(Q) and satisfies g|x = f.

2.3. Remark. — Lemma 2.2 holds too if we replace “P(D)-extension
property” by “P(D)-extension property for D', “€” by “D"” and if Q is
compact.

The following lemma shows that it suffices to consider irreducible
polynomials in order to decide when a pair (K, Q) of compact and convex
sets satisfies the P(D)-extension property.

2.4. LEmMA. — Let K C Q C IR" be compact, convex sets with

K # @, P, P, € Clz1,...,2,] \ {0} and let P := P, - P,. Then (K, Q)
has the P(D)-extension property (for D’) if and only if (K, Q) has the
P;(D)-extension property (for D'), where j = 1,2.

Proof. — We prove the lemma only for the class £.
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: Let g € £(K) with Py(D)g = 0. There exists § € £(K) with
Pz(D) g = g. This implies P(D)g = 0. By hypothesis there exists Ge&Q)
with P(D)G = 0 and G|x = §. Then G := Py(D)G satisfies P;(D)G =0
and Gl =g.

“<” : Let g € E(K) with P(D)g = 0. There exists a function
g1 € €(Q) with Py(D)g; = 0 and g1|xk = P»(D)g. Choose a function
g2 € £(Q) with Py(D)gs = g1. Then P3(D)(g — g2, ) = 0. By hypothesis
there exists f € £(Q) with flk = g — g2|lk and Py(D)f = 0. We set
G := f + go. Then we have P(D)G = P,(D)(P2(D)f) — Pi(D)g; =0 and
Glk =flk+ 921k =9

To formulate a characterization of the P(D)-extension property in
terms of a condition on the zero-variety V(P) of P we need the following
definitions.

2.5. DEFINITION. — Let V' be an analytic variety. A function u :
V — IR U {—o0} is called plurisubharmonic if u is plurisubharmonic in
the regular points Vieg of V' and locally bounded on V. In order that u is
upper semicontinuous on the singular points Viing of V' we let

U(C) = limsup u(z)1 e ‘/sing-
Vregaz—"’c

By PSH(V') we denote the set of all plurisubharmonic functions on V' which
are upper semicontinuous.

2.6. LEMMA. — Let Q,K C IR™ be compact and convex sets with
K C Q. Moreover let V. C @™ be an algebraic variety.

(a) We say that V satisfies the Phragmén-Lindeldf condition PL(K, Q)
if for each k > 1 there exist I > 1 and C > 0 such that for each u € PSH(V)
the conditions (1) and (2) imply (3), where:

(1) u(z) < Hx(Imz) + O(log(1 + |2])), z€ V
(2) u(z) < Ho(Imz) + klog(1+|2]), z€ V
(3) u(2) < Hx(Imz) +llog(1+|2)) +C, z€ V.

V satisfies APL(K,Q) if the above implications hold for all plurisub-

harmonic functions u = log | f|, where f is a holomorphic function on V.

(b) We say that V satisfies PL'(K, Q) if for each | > 0 there exist
k > 1 and C > 0 such that for each u € PSH(V) the conditions (1) and
(2)" imply (3)', where:
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(1) u(z) < Hx(Imz2) — jlog(1+ |2|]) + O(1), z€ V, forall j > 1
(2) u(2) < Ho(Imz) — klog(1+ |z|), z€ V
(3) u(z) < Hg(Imz) —llog(1+|2|) + C, z€ V.
V satisfies APL/ (K, Q) if the above implications hold for all plurisub-
harmonic functions u = log | f|, where f is holomorphic on V.
(c) We say that V satisfies PL(K, Q) if there exist [ > 0 and C > 0
so that for each u € PSH(V) the conditions (1) and (2) imply (3), where:
(1) u(2) < Hx(Imz) + O(log(1 + |2])), z€ V
(2) u(2) < Hg(Imz), z€V
(3) u(2) < Hxk(Imz2) +llog(1+|2))+C, z€ V.

Remarks. — A similar but different Phragmén-Lindel6f condition was
used by Hormander (7] to characterize the surjectivity of linear partial
differential operators on A(€2), the space of all real-analytic functions on a
convex open set Q in IR™. Hormander was the first one who noticed that
conditions of this type arise in connection with certain problems for partial
differential equations.

The conditions formulated in 2.6 are close to those used by Meise, Taylor
and Vogt [15] to characterize when P(D) admits a continuous linear right
inverse on £(Q2) or D’(Q2), Q as above. For references to other PL-conditions
we refer to the comprehensive article of Meise, Taylor and Vogt [18].

2.7. ProposITION. — Let K C Q C IR"™ be compact and convex sets
with K # @ and P € €[z, ..., z,]. The following assertions are equivalent:

(1) (K, Q) satisfies the P(D)-extension property

(2) V(P) satisfies APL(K,Q)

(3) V(P) satisfies PL(K, Q).

Proof. — (1) < (2): By Lemma 2.4 we may assume that P is a product
of irreducible polynomials which are pairwise not proportional. Then the
Fourier transforms Fg : Ep(K), — Ag(V(P)) and Fg : £p(Q), —

Ago(V(P)) in 1.8 are topological isomorphisms. By definition, the pair
(K, Q) has the P(D)-extension property if and only if the restriction map:

R: €p(Q) — &p(K), f+ flk,
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is surjective. Obviously, the map ¢ := Fg o R' o .7-';{1 is equal to the
inclusion map Ay (V(P)) — Ag5(V(P)). Hence R is surjective if and only
if Ax(V(P)) is a topological subspace of A5(V(P)). Since both spaces
Ak (V(P)) and Ag(V(P)) are (DFS)-spaces Baernstein’s lemma (see e.g.
Meise-Vogt [20], 26.26) implies that this is equivalent to

(@) for each bounded set B C A5(V(P)) the set BN Ay (V(P))
is bounded in A (V(P)).

Since for each convex, compact set L C IR™ with I°, # 0 the sets
Bm,p :={f € AL(V(P))| sup [f(2)|
2€V(P)
exp(—Hr(Imz) —mlog(l + |2])) < 1},m € N,

form a fundamental sequence of bounded sets in A} (V(P)), (4) is equiva-
lent to

for each k > 1 there exists [ > 1 and C > 0 such that

(5) Br,oNAg(V(P)) c CBy k.

Obviously, property (5) is equivalent to the Phragmén-Lindelof condition
APL(K, Q).

(2) & (3): This follows from Franken [F2], Thm. 10.
Remark. — The equivalence of the conditions 2.7(1) and 2.7(2) also

follows from Thm. 3.2 of Boiti and Nacinovich [BN] who investigated when
solutions of systems can be extended.

2.8. ProposiTiON. — Let K C Q C IR™ be compact and convex sets
with K # @ and P € Q|z1,. .., 2,]. The following assertions are equivalent:

(1) (K, Q) satisfies the P(D)-extension property for D’

(2) V(P) satisfies APL' (K, Q)

(3) V(P) satisfies PL' (K, Q).

Proof. — (1) & (2): As in the proof of 2.7 one can show that (1) is
equivalent to

(a) for each zero-neighborhood U C A} (V(P)) there exists a zero-
neighborhood V' C A% (V(P)) satisfying V N A (V(P)) C U.
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Since for each compact, convex set L C IR™ with 2 # & the sets
ULk :={f € AL(V(P))| sup |f(2)|
z€V(P)
exp(—Hp(Im 2) + klog(1 + |2|)) < oo}, k€N,

are a fundamental sequence of zero-neighborhoods in Af (V(P)), (4) is
equivalent to

) for each [ > 1 there exist £k > 1 and C > 0 such that
CUQ,k N A}(V(P)) C UK,l-

It is easy to check that (5) is equivalent to the Phragmén-Lindelof condition
APL/(K, Q).
(2) < (3): This follows from Franken [F2], Thm. 10.

2.9. THEOREM. — Let K C Q C IR™ be compact, convex sets with
IO{ # @ and P € €[z, ..., 2,|. Then the following assertions are equivalent:

(1) (K, Q) has the P(D)-extension property

(2) (K, Q) has the P(D)-extension property for D’

(3) V(P) satisfies PL(K, Q)

(4) V(P) satisfies PL' (K, Q)

(5) V(P) satisfies PL(K, Q).

Proof. — (1) & (3) and (2) < (4) hold by Propositions 2.7 and 2.8.

Hence the proof is complete, if we show that (3), (4) and (5) are equivalent.
In doing this, we let V := V(P). '

(3) = (4): Let I’ > 1 be given-and choose ly > 1, Cy > 0 according to
PL(K, Q) for k = 0. Then define k' := I’ + Iy and let u € PSH(V) satisfy
the inequalities 2.6(1)" and 2.6(2)" with k’. Then the function

v(z) ;== u(z) + k' log(1 + |2]), 2 € V

satisfies the inequalities 2.6(a)(1) and 2.6(a)(2) for k = 0. By the property
2.6(a)(3) we have:

u(z) + (I' +lo)log(1 + |2|) < Hx(Im 2) + lplog(1 + |2]) + Co, z €V,

which implies 2.6(3)" with the numbers I’ and Cj.
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(4) = (5): It is easy to see that (2) implies the existence of kf > 1,
and Cj > 0 such that for each number X € [1,2] and for each u € PSH(V)
the conditions (i)’ and (i) imply (iii)’, where:

()" w(z) < Hag(Imz2) — jlog(1+|2]) + O(1), z€ V
()" w(2) < Hxg(Imz) — k) log(1 + |2|), z€ V
(iil)" u(z) < Hag(Im2) +Ch, z€ V.

Now let u be a plurisubharmonic function on V' satisfying (1) and (2) of
PL(K, Q) and fix 29 € V. Choose a function ¢ € D([—1,1]™), §(20) # 0 so
that:

log|2(2)| < [Im 2| — jlog(1 + |2[) + C'(4), C'(0) =0.

By 1.6 there exist w € PSH(C") and numbers l; > 2kg, C1 > 0 such that
for all z € C™:

Hig(Imz) —l1log(1 + |z|) < w(z) < Hx(Im 2) — 2k{log(1 + |2|) + Ci.
For € > 0 let
ve(2) 1= 3 (u(2) + (2)) +elog|B(2)], 2 € V.
By the properties of u and w, the function v, satisfies
(5) ve(2) < Hxk(Imz) +¢|Imz| —jlog(1+ |2|) + O(1), z€V all jeIN
and
(6)  ve(2) < Ho(Imz) +¢|Im 2| — kylog(1 + |2]) + %Cl, zeq".

Now fix A € |1,2]. By Dini’s theorem there exists € > 0 such that for all
0<é<e:

Hi(y)+6lyl < Hik(y), ye R"

Ho(y) +46lyl < Hxo(y), y € R™.
(6) and (7) imply that the function v, — %Cl satisfies (i)’ and (ii)’ for the
sets AK and AQ. From (iii)’ we get for all 0 < 6§ < ¢:

%(u(z) +w(z)) + 6log |@(2)| < Hxgx(Im2) + C) + %Cl.

Passing to the limit § = 0 this implies

1 1
E(U(ZO) + w(ZQ)) < H)‘K(ImZ()) + 06 + 501
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Since 2o was arbitrarily given and the above inequality holds for all A € ]1, 2]
we get

u(2) 2Hg(Im 2z) — w(z) + 2C + C;

<
< Hg(Imz)+ i log(1 + |2]) + 2C§ + Ch.
Hence u satisfies (5) of PL(K, Q) with /; and C := 2Cy + Ch.

(5) = (3): Let k > 1 be given and fix u € PSH(V) satisfying 2.6(a)(1)
and 2.6(a)(2) for the number k. By 1.6 there exist w € PSH(C") and I’ > k,
C’ > 0 such that

Hi(Imz) —U"log(1+ |2]) € w(2) < Hx(Im z) —klog(1+|2|)+C’, 2 € C".
Next let
1
v(z) = §(u(z) +w(z) - C'), z€ V.

Obvioq_sly, v satisfies (1) and (2) of f’i(K ,Q), hence it satisfies condition
(3) of PL(K, Q) by hypothesis. This implies for z € C"

u(z) < 2v(z) —w(z)+C’
< Hg(Imz)+ (2L +1)log(1+ |2]) +2C + C".

Thus we have shown that V satisfies PL(K, Q).

Remark. — As the proof of Theorem 2.9 shows, the conditions (3),

(4) and (5) in 2.9 are equivalent for any algebraic variety V' and not only
for V(P).

Recall that an algebraic variety V is called homogeneous, if for each
z € V and each A € @, also Az belongs to V.

2.10. ProrosiTioN. — Let K € Q C IR™ be compact, convex sets
o
with K # @ and let V be an algebraic variety.

(a) IfV is homogeneous then V satisfies ﬁ(K , Q) if, and only if each
u € PSH(V) satisfying condition (1) and (2) in 2.6(c) also satisfies

w(2) < Hxk(Imz), z€V.

(b) If V satisfies ﬁJ(K ,Q) then 'V also satisfies ﬁ,()\K , AQ) for each
A>0.
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(c) The condition ﬁ.(K , Q) is not changed if condition (1) in 2.6(c)
is replaced by

u(z) < Hx(Im z) + O(1).

Proof. — (a) Choose [ and C' according to 2.6(c) and let u € PSH(V)
satisfy (1) and (2) in 2.6(c). Since V is a homogeneous variety, for each
R > 0 the function ug(z) := Ru(z/R), z € V, is plurisubharmonic on V'
and satisfies (1) and (2) in 2.6(c). By 2.6(c)(3) we get

u(z) < —1-uR(zR) < Hx(Imz) + ! log(1+ |2R|) + ¢ for z€ V.
R R R
Since the right hand side tends to Hk (Im z) as R tends to infinity, u satisfies
(3)-
(b) This is easy to check.
(c) This can be shown as in [MTV1], 2.8(a).

2.11. TueoreM. — Let K C IR™ be a compact, convex set with

K # o and let P € Q[z1,...,2,]. Then the following assertions are
equivalent:

(1) K satisfies the P(D)-extension property

(2) (K, Q) satisfies the P(D)-extension property for each compact,
convex set Q in R™ with K C Q

(3) (K, Q) satisfies the P(D)-extension property for some compact,
convex set ) in R™ with K C 63

(4) P(D) : ER™, K) — E(IR™, K) is surjective

(5) K satisfies the P(D)-extension property for D’

(6) (K,Q) satisfies the P(D)-extension property for D' for each
compact, convex set Q in R™ with K C Q

(7) (K,Q) satisfies the P(D)-extension property for D' for some
compact, convex set Q in R™ with K C Q
(8) P(D): D'(R",K) — D'(IR", K) is surjective

(9) V(P) satisfies ﬁ,(K, Bja) for some A > 0 with K C éA, for
By :={z € R"||z| < A}.
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Proof. — (1) = (2) = (3): This is obvious.

(3) = (4): Without loss of generality we may assume that 0 € K.
Choose p > 1 such that uK C Q. By hypothesis (K, uK) satisfies the
P(D)-extension property, hence V(P) satisfies PL(K, uK) by 2.7. Hence
2.10(b) implies that V(P) satisfies PL(u" 1K, u"K) for each n € IN.
Consequently, by 2.7 and 2.2, the pair (u" ! K, u" K) satisfies the condition
2.2(2) for each n € IN. Let now g € £(IR", K) be given. Set fy := 0 € £(K).
By 2.2(2) we can find recursively functions f, € E(u"K), n € IN such that
falyn-1g = fn-1 and P(D)fn = g|unk, n € No. Obviously the function
f € E(R™, K) defined by f|,~k := fn, n € IN satisfies P(D)f = g.

(4) = (1): By Whitney’s extension theorem, (4) implies that P(D)
is surjective on £(Q, K). Hence (1) holds by Lemma 2.2.

The proof of the equivalence of the properties (5) — (8) is the same
as the one of the equivalence of the properties (1) — (4).

(3) & (7): This follows from Theorem 2.9.
(2) = (9) = (3): This follows from Theorem 2.9.

Remark. — Theorem 2.11 extends a result of de Christoforis [Ch],
who proved that condition 2.11(4) holding for all convex, compact sets K
with non-empty interior is equivalent to P being hyperbolic with respect
to each non-characteristic vector. As we show in Example 3.13, there exist
operators P(D) which are not hyperbolic at all and convex, compact sets

o
K in R", K # @, which have the P(D)-extension property.

From Theorem 2.11 and Proposition 2.10(b) we get the following
corollary.

2.12. CorROLLARY. — If a convex, compact set K C R"™ with non-
empty interior has the P(D)-extension property, then AK has the P(D)-
extension property for each \ > 0.

2.13. CoroLLARY. — Let K C IR™ be a convex, compact set with
o
K # o andlet P € Clzy,...,2n,].

(a) If K has the P(D)-extension property then P(D) : € (I% ) = & (Io( )
and P(D) : E(R™) — E(IR™) admit a continuous linear right inverse.
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(b) If P is homogeneous and if P(D) : 6([0() — 5(10{) admits a
continuous linear right inverse then K has the P(D)-extension property.

o
Proof. — (a) Without restriction one may assume 0 € K. Then it

follows easily from Corollary 2.12 and Theorem 2.11(6) that Q = K and
Q = IR" satisfy condition 2.1(3) of Meise, Taylor and Vogt [MTV]. Hence
(a) and (b) follow from [MTV], Thm. 2.7.

(b) By Meise, Taylor and Vogt [MTV], the hypothesis implies that V(P)
satisfies the condition PL(?), stated there. Since P is homogeneous, it
follows from Meise, Taylor and Vogt [MTVl] that V(P) satisfies the

condition PL(K Q) for each convex set Q with Q D K. By Theorem 2.11
this implies (b).

2.14. CoroLLARY. — Let P € (@[z,...,2,] be a non-constant
polynomial and let P,, denote its principal part. If the convex, compact

set K C R" satisfies K # @ and has the P(D)-extension property then K
also has the P,,(D)-extension property.

Proof. — By Corollary 2.13(a), the operator P(D) : S(Io{) — 8([2')
admits a continuous linear right inverse. Hence it follows from Meise, Taylor
and Vogt [MTV], 4.5 and [MTV1], 4.1, that P,,,(D) has the same property.
Thus the result follows from Corollary 2.13(b).

3. Local and linear P(D)-extension property.

In this section we show that the P(D)-extension property for a
compact convex set K is equivalent to some local P(D)-extension property,
to the existence of “fundamental solutions” with certain lacunas and to the

existence of continuous extension operators for the zero-solutions of P(D)
on K.

Notation. — For € > 0 and z € R" let B.(z) :={y e R" | |z —y|<e}.
3.1. LEmMA. — Let K C R™ be compact, convex with Io{ #0, x €
OK and P € @[z,...,2,). Then the following assertions are equivalent:

(1) there exists € > 0 such that for each f € Ep(B:(z) N K) there are
0<é<eandg € Ep(Bs(x)) satisfying g|,)nk = f1Bs(z)nk-
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(2) there exists € > 0 such that (Be(z) N K, Bc(x)) has the P(D)-
extension property.

Proof. — Obviously, it suffices to show that (1) implies (2). To do
this, choose € > 0 according to (1) and consider the Fréchet spaces

E =€&p (BE(QS) N K) , F,:=&p ((BE(IL') N K) U B%(.’E)) , n€IN.
Further define

Tn:Fp — E, "”n(f) = f'Bs(E)nK'

To show that E = |J rn(Frn), fix f € E. By (1) there exists n € IN
n€lN

and g € Ep (B% (z)) satisfying g|s, (c)nkx = f|B< (z)nk- Hence g can be

extended to § € F, satisfying r,(§) = f. By Grothendieck’s factorization

theorem (see Meise and Vogt [MV], 24.33), E = |J r,(F,) implies the
N

existence of some m € IN satisfying v, (Fp,) = E. Tc:L ;rove that this implies
(2), let n:= % and fix f € £ (By(z), By(z) N K). By Whitney’s extension
theorem there exists F' € € (Be(x), Be(z) N K) such that F|g, ;) = f. Next
choose G € £ (B.(z)) satisfying P(D)G = F and note that G|p, (z)nk
is in Ep (Be(z) N K). Hence there exists b € Ep ((Be(z) N K) U Be (z))

satisfying h|p, (z)nk = GIB.(s)nk- Consequently, g := G|, () — h|B,(z) is
in £ (By(x), By(x) N K) and satisfies

P(D)g = P(D)G|B, ) = FlB, @) = [-
Thus, P(D) : £ (By(z), By(x) N K) — E(By(z), By(z) N K) is surjective.

By Lemma 2.2 this proves (2) for € = 7.

o
3.2. DerFiNiTION. — Let K C IR™ be compact, convex with K # &
and let P € C[z,...,2,] be non-constant.

(a) We say that K has the local P(D)-extension property at x € 0K
if one of the equivalent conditions of 3.1 holds.

(b) We say that K has the local P(D)-extension property if each
point of 0K has this property.

3.3. LEMMA. — Let K and P be asin 3.2. If K has the P(D)-extension
property then it has the local P(D)-extension property, too.
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Proof. — Fix x € 0K and € > 0. By Lemma 2.2 it suffices to show
that
P(D) : £(B:(z), B:(x) N K) — E(B:(x), Be(z) N K)

is surjective. To prove this let f € £(B:(z), Be:(z) N K) be given. Then
F € £(B.(z) U K, K), defined by F|p ;) = f and 0 otherwise, extends
f. By Whitney’s extension theorem there exists F; € £(R", K) such that
F is the restriction of F; to Be(z) U K. Since K has the P(D)-extension
property, Theorem 2.11(4) implies the existence of G € £(IR"™, K) satisfying
P(D)G = Fy. Obviously g := G|p, (z) isin £(Be(x), B:(z)NK) and satisfies
P(D)g = f.

3.4. LEMMA. — Let K and P be as in 3.2. If K has the local P(D)-
extension property then the following holds:

for each A, \ > 0 there exists an equicontinuous set B C D'([-A, A]"),
(*) so that for each z € OK there exists E, € B satisfying P(D)E, = 6y
and E; |p((- 4, A" nA(K—z))= 0.

Proof. — By hypothesis, for each z € 0K there exists e(z) > 0 such
that (B.(z)(x) N K, B¢()(z)) has the P(D)-extension property. Obviously,

m
there exist points z1, ...,Zm € OK such that 0K = |J Bg(s,)(z;) NOK.
Jj=1

Let Bj := Be(z;)(z;) and choose a number ¢ > 0 so that for each z € 0K
there is 1 < j < m with Bs(z) C B;. Next fix A,A > 0 and find A\; > A so
that for all z € 0K :

(1) /\1(35(.’17) NK - 1:) D )\(K - :1:), B,\15(0) D [—A, A]n.

By Hormander [H2), 10.7.10, the operator P(D) has a fundamental solution
E € D'(R™). For z € R"™ define the shift operator

7z : D'(R™) — D'(R"), 7(u)[¢] := pu(e(- +))

and let E, := 7,(E). Then for each z € R™ we have P(D)E, = 6,. It is
easy to see that for each 1 < j < m the map

Tj 0K N Bj — D;:()\l(Bj n K)), T +— Ekle)\l(BjﬂK)
is continuous. This implies that

Dj = {Eklzl)q(ij‘lK) |:L‘ € 0K N Bj}
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is compact in Dp(A(B; N K)). Since (B; N K,B;) has the P(D)-
extension property, 2.11(6) and 2.10(b) imply that the restriction map
p;i : Dp(MBj) — Dp(Ai(B; N K)) is surjective. Hence p; lifts compact
sets. Therefore, there exists a compact set C; in Dp(A\1B;j) satisfying
p;j(C;) = Dj;. Now fix z € 0K, choose j = j(z) such that Bs(z) C B,
and find F; € Cj such that p;(F;) = Ex,z|x,(B,nk)- Then note that (1)
implies

A (Bj —z) D M(Bs(z) — z) = Bx,s(0) D [-A4, A"
and

)\1(Bj NK — Z) D) )\1(35(.’17) NK — .’L') D /\(K - .’17)
Therefore E; : D(A1(B; — z)) — €, defined as

Eo(p) i= (Bxizlns, - B ) (9(- = \i2))

is in D' (A (B — ), \(B; N K —z)) and satisfies P(D)E, = §. From
the construction it is obvious that

B := {Eyl[—A,A]" I ES 6K}

is compact, hence equicontinuous in D’([—A, A]™). Therefore B has all the
required properties.

3.5. LEMMA. — Let K C IR™ be compact, convex with I% # @ and
A > 0 such that K C [—A, A]™. There exists a collection of closed cubes
(Qj)jen in R™ and functions (¢;)jew in E(IR™) such that:

WR\K= U Q;
(2) there exist 0 < mg < 1 < My < oo such that for all z € Q;:
mo diam Q; < dist(z, K) < Mp diam Q;
(3) for all j € IN with Q; N [—A, A]™ # @ we have diam Q; < 1
(4) there exists C > 0 such that for all j € IN:
HieNIQ:NQ; #2}<C

(5) there exists A > 0 such that for each j € IN with Q;N[—A, A]" # @
there exists x; € OK satisfying

K—QjC/\(K—.'Ej)



EXTENSION AND LACUNAS OF SOLUTIONS 453

(6) Supp(p;) C Qj, for each j € N

(7) for each m € IN there exists Cp, > 0, so that for all j € N, z €
R"™:

15 (2)] < Crm(diam @) 71!, |a] < m

(e
(8) 1= 3 pj(x), for eachz € R" \ K.
i=1

Proof. — Without loss of generality we may assume that 0 € I% .
Then there exists ¢ > 0 such that B.(0) C K. Forl € Z and r € (27'Z)"
let Q(I,r) := [-27!, 274" + r. Then diam Q(l,r) = /n2~"*1. We define
M; == {Q(l,7)|r € (27'Z)"}. For B > 1 we denote by M, p the set of all
cubes Q(I,r) € M, satisfying

g diam Q(I, 7) < dist(Q(L, 7), K) < 2B diam Q(l, 7)

and we let MB := | J{M, p|l € Z}. For a sufficiently large number B > 1,
which will be fixed later let (Q(l;,7;))jew be some collection of the cubes in
M8 _For j € N define Q; := Q(l;—1,7;) and note that there exist functions
(¢j)jen in E(IR™) so that the properties (1), (2), (4), (6), (7) and (8) hold
for arbitrarily given compact sets K whenever B > 1 is sufficiently large
(see e.g. Stein [S], Chap. 6).

To show the properties (3) and (5) observe that for each j € IN the
following holds:

B .
(Z - 1) diam Q;

—g diam Q(l;, r;) — diam Q;

< dist(Q(l4, rj), K) — diam Q; < dist(Q;, K)
< dist(Q(l5, r;), K) < 2Bdiam Q(1;, ;)
< Bdiam Q);.

Hence (3) holds whenever 4(y/nA + 1) < B. To prove (5), note that the
convexity of K and the choice of € > 0 implies

Ba-xe(Ar) C K for each x € K, X €[0,1].

For j € IN there exists a unique z; € 0K with z; € ]0, r;] (where
la,b) = {(1 = Xa+ Ab | XA €]0,1]}). Now fix z € K \ (IRr;) arbitrarily.
Then there exists a unique z’; € ]0,z] such that z’, — z; € R(z —r;). Then

B(1-jz}/lepe () C K.
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Obviously we have: |z%|/|z| = |z;|/|r;|. Since dist(r;, K) + |z;| < |r;| we

get
(- )2 o= ) g

| ldls‘c(QJ,K) ir I(B l)diamQ]-.
T

For all j € IN with Q; N [—A, A]™ # @ we get from (3):

T2 D B — 1) diam Q; =: 65 diam Q;
E VRA+1 7 d

By the definition of x;, for each j € IN there exists A\; > 0 with
T —rj = Aj(z; — z;). Further, there exists A > 1 so that

5 = 2=l _ Il

Een Rl P € [— A] for each j € IN with Q;N[-A4, A|" # @.
i~ %5 j

Now fix B > 1 so large that 6 > max(\,4(v/nA + 1)), let §; € Q; be
arbitrarily given, define s; := 5; — r; and note that

T—§j=x—1;—8; =)\ (x}—ﬁ—wj>.
Aj
For j € IN with Q; N [-A, A]" # @ we now have

Isil
X

z’
< Alsj| € Adiam Q; < 6p diam Q; < (1 - lllel) £,

hence
.
2= 3 € Ba-iaji/iene (@) C K
J
and consequently
T—35; € )\](K - 1‘]') C MK - :L'j).
Thus we have shown
(K \ (Rrj)) — Q; C A(K —zj),

for all j € IN with Q; N [—A, A]™ # @, which implies (5).
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3.6. LEMMA. — Let K C IR"™ be compact, convex with Io( # @ and
let P € @[z1,...,2y]. If 3.4 (¥) holds then P(D) : E(R™,K) — £(R", K)
admits a continuous linear right inverse.

Proof. — (a) First we show that for each compact, convex set L C IR™
with K C L there exists Ry g € L(E(IR", K)), satisfying

1) PD)eRyk(f) |lc=fl., fe&ER"K).

To prove (1) choose A > 0 such that L + [-1,1]" C [-A, A]". For A
and K let (Q;)jew and (¢;)jen resp. A > 1 be as in 3.5 resp. 3.5(5).
By hypothesis, there exists an equicontinuous set B C D'([-3A4,34]")
so that for each j € IN there exists E; € B with P(D)E; = & and

Supp(E;) C [~34,3A]" \ MK — x;), where z; € 0K is as in 3.5(5).
Choose a function x € D([—-3A4,3A]") with x | [-24, 2A]" =1 and define
the operator Ry, x by

(2) Rix(f)= 3 (xB)*(psf), f€ER"K).
QjJ:Ll;éz

To show that this formula is well-defined let r € IN and L' CC R" be
arbitrarily given. Since B C D’([—3A4,3A]") is equicontinuous there exist
L; ccR™ C; >0 and [ > r such that for all j € IN:

I(xE;) * h||r/» < CillhllLyi, he€ER™).
Choose a constant Cy > 0 so that for all || <l and z € L;:
|R®) (2)| < Callh|| Ly 204ns1 dist(z, K) L h € E(R™, K),

where Ly CC RR" is sufficiently large. By 3.5(3) for each j € IN with
LNQ; # @ we have diam Q; < 1. This implies for all j € IN with Q;NL # @
and f € ER™, K):

I(XE;) * (93 H)llzy,» < C1 sup sup |(9; )P ()]
|Bl<lz€Ly

é; (5) @B~ (z) fFO ($)|

0B (x)l If(v) (x)‘

< Cf sup sup
|8l<lz€Ls

< C12" sup sup
18It z€ L4
¥<B

< C12'C2C)| fll 1 204 n+1 (diam Q) ™ (Mo diam Q)™+

= C3||f|l L3, 214n+1(diam Q;)"*,
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where C] is the number in 3.5(7) and C3 := C12'C2C]. Let C be the
constant in 3.5(4). Then for all f € E(R", K) the following holds:

o0
IRL &k (Fllerr < Csll fllLoztanss », (diam@;)"*?

=1

Q;NLxe
oo

< C3||fllzg,214n+1 Z Z (diam Q;)™**
k=0 Z“k—lsdiamQj$2‘k

QjNL#0

et 1 n+1
< G| fllLg 214041 Z Z (27)

k=0 2—k—1lgdiam stz—k
Q;NL#2

oo

< Cs| fll Lo, 204n+1C (4\/7_1A)" Z gkn—k(n+1)

k=0

= 2C3C (4v/nA)" || fl| L2 214mt1-

Thus the formula in (2) defines a continuous linear operator Rp, k :
EMR™, K) — E(R™). To show Rp x(E(R™, K)) C E(R", K), note that for
all j € IN with Q; N L # @ and = € K the following holds:

Supp ((p;f)(z—-)) Cz - Q; C K - Q; C MK — ;).
This implies
(XEj) * (pi f)(x) = (XEj, (@ f)(z —)) =0 forall z€ K.

Hence we have shown that Ry g maps into £(IR", K'). Moreover, for all j €
IN with Q; N L # @ and = € L we have Supp ((¢; f)(z —-)) C [-24,24]™.
Then for all f € E(R",K) and z € L:

(XEj) * (05 f)(@) = Ej * (0, f) ().
This implies

P(D)oRpk(f) L= Y P(D)E;x(¢;if)Ir

QjNL#e

oo oo
= > box(piNle=| > w@i|lfle=Flo.
QjJn=Ll;éz QjJ:Ll#ﬂ
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Hence we have shown property (1).

(b) To construct a continuous linear right inverse for P(D) :

EMR™",K) —» E(R™,K) assume 0 € K. Then note that for each p>0
the set pK also satisfies the condition 3.4 (x). Therefore we get from part
(a) the existence of R(; 11k jx € L(E(R", jK)) satisfying

P(D) ° R(j 1)k, (f) lG+1yx = f lg+yk, € ER",JK).
Next define the sequence (¢;)jen in L(E(IR™, K)) recursively by
(3) u = Rek K, tj+1 =t + Rijro)k, (j+1)k °© (idemn, k) — P(D) © 1;).

To show that the operators v; are well-defined we claim that for each
f € E(R™, K) the following holds:

(4) P(D);(f) lg+nk = f lG+1k

(5) ti+1(f) lg+nx = 4(f) lG+yk.
Obviously ¢; = Rok k has property (4). If ¢; satisfies (4) then

(idemn, k) — P(D)4;)(f) |G+ =0 |G+1)k -
Hence the operator
Fj == Rj1o)k,(j+1)k°([dgmn, k) — P(D)oy;) : E(R™, K) — E(R™, (j+1)K)
is well-defined. Moreover for f € E(R", K) we get

P(D)j41(f) lG+2yx = P(D)e;(f) lG+2)k + (f = P(D)e;(f)) lj+2)x
= flg+2)k -

Hence ¢4 satisfies (4). Property (5) follows from the fact that the operator
F; maps into E(R", (j + 1)K). Now (5) implies that the sequence ¢1,2,. ..
converges to a continuous linear operator Rk : E(R", K) — £E(R", K). By
(4) this operator is a right inverse for P(D) : E(R"™, K) — £(IR", K).

3.7. DeFINITION. — Let K C IR™ be compact, convex with Io( # 92
and let P € @[zy,...,2,]. We say that K has the linear P(D)-extension
property if the restriction map pk : Ep(R") — Ep(K) admits a continuous
linear right inverse.
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o
3.8. LEmMA. — Let K C IR"™ be a compact, convex set with K # &
and let P € Q[zy,...,2,). Then the following assertions are equivalent:

(1) K has the linear P(D)-extension property.

(2) Let Hx := {(u,v) € E(K) x E(R™) | P(D)u = v|k}. There
exists tx € L(Hg,E(IR™)) such that

P(D)ig = T2, pk°Lk =T1,

where m;,1 = 1,2, denotes the projection map to the i-th factor.

(3) P(D) : ER™, K) —» E(R™, K) admits a continuous linear right
inverse.

Proof. — (1) = (2): Let ok : Ep(K) — Ep(IR™) be a continuous linear
extension operator for the zero-solutions of P(D) on K. Since (1) implies
trivially that K has the P(D)-extension property, we get from Corollary
2.13 that P(D) : £(R"™) — £(IR™) admits a continuous linear right inverse
R. If (u,v) € Hg is given then

P(D) (u - R(v)|x) = P(D)u— P(D)R(v)|x = v|x —v|x = 0.

Hence u — R(v)|x € Ep(K). This implies that the following map is well-
defined:

vk Hk — E(R™), tk(u,v) := R(v) + ok (u — R(v)|k).
Note that tx is continuous, linear and has the following properties:
P(D)tk(u,v) = P(D)R(v) + P(D)ok(u — R(v)|x) = v,
ik (u,v)|k = R(v)|k + ok (v — R(v)|k)|lk = R(v)|k +u — R(v)|x = u.
This implies (2).
(2) = (3): Obviously the map
jk : E(R™, K) — Hg, jk(v)=(0,v)

is well-defined, continuous and linear. By (2) the map txojx : E(R™, K) —
E(IR™) is continuous, linear and has the following property:

tg o Jx (V)| =tk (0,v)|x = m(0,v) =0, ve &R K).



EXTENSION AND LACUNAS OF SOLUTIONS 459
Hence 1k o jx (E(R™, K)) C E(R", K). Moreover

P(D)ik o jk(v) = P(D)g(0,v) =v for ve &R K).

This implies that tx o jk is a right inverse for P(D) : £(R™, K) —
EMR™, K).

(3) = (1): By 1.2, the restriction map px : E(R") — £(K) admits
a continuous linear right inverse Ex. Let now f € Ep(K) be given.
Then P(D)Ek(f)lxk = P(D)f = 0, hence P(D)Ek(f) € E(R",K). By
(3), there exists a continuous linear right inverse ux € L(E(IR™, K)) for
P(D) : E(R",K) — E(R", K). Therefore, the following map is well-
defined, continuous and linear

ok : Ep(K) = E(R"), ok(f):= Ex(f) — pk (P(D)Ek(f))
and satisfies
P(D)ok(f) = P(D)Ek(f) — P(D)pk (P(D)Ek(f)) =0 for f € Ep(K).

This implies ok (Ep(K)) C Ep(IR™). Since px (P(D)Ek(f)) |k = 0 the
map ok is a continuous linear right inverse for pg.

Now we can formulate the main theorem of this section:

3.9. THEOREM. — Let K C IR" be a compact, convex set with K # @
and P € @[z,...,z,)|. Then the following assertions are equivalent:

(1) K has the P(D)-extension property
(2) K has the local P(D)-extension property
(3) property 3.4 (x) holds

(4) P(D) : ER™,K) — E(IR™, K) admits a continuous linear right
inverse

(5) K has the linear P(D)-extension property.
Proof. — The implications (1) = (2) = (3) = (4) = (5) hold by

Lemma 3.3, Lemma 3.4, Lemma 3.6 and Lemma 3.8, while the implication
(5) = (1) holds trivially.
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To show that condition 3.4 (x) becomes more explicit if K contains

flat pieces of dimension n — 1, we prove the following lemma, which is also
used in [FM].

3.10. LEmMA. — Let Q := [-1,1]", K := {z € Q|z, < 0} and
P € Qlz,...,2,). If (K,Q) satisfies the P(D)-extension property then
P(D) admits a fundamental solution E € D'(IR™) satisfying Supp(E) C
Ht:={zeR"|z, > 0}.

Proof. — By Hérmander [H2], 10.7.10, there exists E; € D'(IR") with
P(D)E; = éo. By Theorem 2.9 the pair (K,Q) has the P(D)-extension
property for D'. Since ép|x = 0, there exists F € D'(Q) with P(D)F =0
and F|g = Ei|g. Then E; := Ei|g — F satisfies P(D)E; = 6 and
Supp(E3z) C @ N H*. Choose a function ¢ € D(Q) with ¢|[_1/2,1/9» =1
and define E5 := @Fj. As in the proof of Hérmander [H2], 12.8.1(i) =
(ii), we get C > 1 such that the inequality (12.8.3) in [H2] is satisfied. By
[H2], 12.8.1, this implies the existence of the required fundamental solution
E € D'(IR™) with support in H™.

3.11. TueoreM. — Let K C IR" be a compact, convex set with

Io{ # @ and let P € Q|zy,...,2,]. Assume that for some N € S"1
and o € R the set K is contained in {x € R" | (z,N) < a} and that
D :=90Kn{zx € R | (z,N) = o} contains a point £ which is in the
interior of D relative to the hyperplane {x € R" | (z, N} = a} and that
K has the local extension property at £&. Then P(D) admits a fundamental
solution E € D'(IR™) satisfying Supp(E) C HT(N).

Proof. — Without restriction we can assume N = (0,...,0,1),a =0
and & = 0. By hypothesis, there exists € > 0 such that (B, N K, B;) has
the P(D)-extension property for B, := B.(0). Then let Qs := [—§, 6]™ and
Qj :=[—6,6]""1x[-6,0] for § > 0 and choose § < & so small that Qs C B,
and Q; C B.NK. Next fix f € £(Qs, Q; ) and define F € £(B., B.NK) by
F =0o0n B.NK and F' = f on Qs\B:NK. By Whitney’s extension theorem
[W] there exists F' € £(B,, B:NK) satisfying F' |g,uB.nk) = f |Qsu(B.nK)-
By Lemma 2.2 the hypothesis implies that there exists G € £(Bg, B N K)
such that P(D)G = F. Hence § := G |, satisfies P(D)g = f on Qs \ éé_
and § vanishes on | — 6, §[*~!x[—n, 0] for some 0 < 7 < §. Therefore, there
exists g € £(Qs,Q; ) satisfying P(D)g = f. By Lemma 2.2, this implies
that (Qs, Q5 ) has the P(D)-extension property. Hence the result follows
from Lemma 3.10.
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3.12. ProPosITION. — Let K be a polyhedron and P € [z, ..., z,].
The following assertions are equivalent:

(1) K has the P(D)-extension property

(2) for each N € S™ ! which is an outer normal to any (n — 1)-
dimensional face of K there exists a fundamental solution En € D'(IR™)
of P(D) with Supp(En) C H*(N)

(3) K has the linear P(D)-extension property.

Proof. — (1) = (2): By Theorem 2.11 there exists a compact, convex
o

set @ satisfying @ D K such that (K, Q) has the P(D)-extension property.
Hence (2) follows from Lemma 3.3 and 3.11.

(2) = (3): Obviously, (2) implies condition 3.4(*). Hence (3) holds
by Theorem 3.9.

(3) = (1): This is obvious.

As a direct consequence of Proposition 3.12 we get the following
corollary.

3.13. CoroLLARY. — Let K1,...,K,, € R" be polyhydra such that
K = ({K;|1 < j < m} has non-empty interior. Let P € C[z1,...,2y].
Suppose that K; has the P(D)-extension property for each 1 < j < m.
Then K has the P(D)-extension property, too.

3.14. Example. — (1) In Meise, Taylor and Vogt [MTV3] it is shown
that for each polynomial P € €[z, ..., 2,] of the form

T n T n—1
P(zl,...,zn)=2z]2-— Z z? resp. P(zl,...,zn)=Zz]2-— Z z?+Azn

j=r+1 j=r+1

where 1 < r < nresp.1 <r <n-—1and XA € R\ {0}, the operator
P(D) admits a fundamental solution Ey with Supp Exy C H*(N) for each
N € S™~! which is characteristic for P. From this and Proposition 3.12 it
follows that each polyhedron K in IR™ for which all (n — 1)-dimensional
faces are characteristic for P, has the P(D)-extension property.

Particular examples are

Q(xay;2)=x2_y2+z and R(Zl,...,z4) =z¥+zg—z§_zz,
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which both are not hyperbolic with respect to any direction. Note that the
boxes

Ko(a,0,7) = {(z,9,2) e R® | |z —y| <, [e+y| <B, |2] <7}
resp.

KR(avlga7,6) = {-'L' (S 1R4 | l.’l?l —173] <aq,

|z1 + 23| < B, |22 — z4| <7, |T2 + 74| < 6}

satisfy the Q(D)- resp. the R(D)-extension property whenever a, 3, v, > 0.

(2) Whenever P(D) is hyperbolic with respect to N € IR", then there
exist compact, convex sets K which have the P(D)-extension property. To
show this, assume without restriction that N = (0,...,0,1) € RR". For
O0<a<llet

B;&;(a) ={.’L‘€IR,"‘I$%++$%_1+($nia)2<1},

K(a) := By(a) N B_(a).

Since P(D) is hyperbolic with respect to N there exist fundamental solu-
tions Ex+ € D'(IR™) and closed, convex cones I'y in IR™ with Supp(E+) C
'y, where

ry\ {0} c{z eR"| £z, >0}

Now it is easy to check that there exists 0 < a9 < 1, depending on I'y and
I'_ so that K(a) satisfies condition 3.4 (*) for each 0 < a < ap. Hence
K () has the P(D)-extension property for these a, by Theorem 3.9.
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