
ANNALES DE L’INSTITUT FOURIER

ANTON ZORICH
Finite Gauss measure on the space of interval exchange
transformations. Lyapunov exponents
Annales de l’institut Fourier, tome 46, no 2 (1996), p. 325-370
<http://www.numdam.org/item?id=AIF_1996__46_2_325_0>

© Annales de l’institut Fourier, 1996, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1996__46_2_325_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
46, 2 (1996), 325-370

FINITE GAUSS MEASURE ON THE SPACE
OF INTERVAL EXCHANGE TRANSFORMATIONS.

LYAPUNOV EXPONENTS

by Anton ZORICH

1. Introduction.

Consider an orientable measured fbliation on a closed orientable
surface M2 of genus g with singularities of the saddle type. Throughout the
paper we will assume, that the foliation has neither closed singular leaves,
nor saddle connections. We will also assume, that the foliation is uniquely
ergodic. A generic orientable measured foliation can be reduced to ones
which obey all the indicated properties (see, say [8] or [1]), as a consequence
of unique ergodicity of a generic interval exchange transformation (see [9],
[16]). Recall that we can define an orientable measured foliation as a
foliation of leaves of a closed 1-form uj. Any leaf of the orientable measured
foliation as described above winds around the surface along one and the
same cycle from the first homology group H^(M2, R) of the surface, which
is called asymptotic cycle, see [14]. This cycle is just Poincare dual to the
cohomology class [uj\ of corresponding 1-form. In a sense asymptotic cycle
gives the first term of approximation of dynamics of leaves.

Study of further terms of approximation gives the following picture
(see [22] for details). Computer experiments show, that taking the next
term of approximation we get a two-dimensional subspace in H^(M2R)^
i.e., with a good precision leaves deviate from the asymptotic cycle not
arbitrary, but inside one and the same two-dimensional subspace Ti2 in the
first homology. Taking further steps n = 3,...,p of approximation we get

Key words: Interval exchange transformation - Gauss measure - Rauzy induction - Lya-
punov exponents - Orientable measured foliation.
Math. classification: 28D05 - 28A - 58E05 - 58F.
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subspaces 'Hk of dimension k for the k-th step; collection of the subspaces
generates a flag 7i1 C H2 C . . . C H9 of subspaces in the first homology
group. The largest, ^-dimensional subspace, gives a Lagrangian subspace
in 2^-dimensional symplectic space H\ (M2, R), with the intersection form
considered as a symplectic form. We stop at level g since deviation from
corresponding Lagrangian subspace is in a sense already negligible. The
main conjecture of [22] claims existence of this asymptotic Lagrangian flag
for almost all orientable measured foliations on surfaces as described above.

Having an orientable measured foliation on a surface, one can consider
the interval exchange transformation induced by the first return map on
a piece of transversal. Taking shorter and shorter pieces of transversal
we will get longer and longer pieces of leaf bounded by the point of
first return. Joining the ends of the piece of leaf along transversal we
get a closed cycle, representing an element of the first homology. The
asymptotic behavior of this cycle is what we need to investigate. To
trace modifications of our cycles we use special procedure for shortening
our piece of transversal. Namely, we use iterates of Rauzy induction for
the corresponding interval exchange transformation (see [13] and later
expositions in [16] and [6]). The transformation operator representing
modification of our cycles after k steps of Rauzy induction is the product of
k elementary matrices A^-i • • • AQ related to each step of Rauzy induction.
Each term A ^ , 0 ^ % ^ A ; — 1 , belongs to the finite set of elementary matrices.
We now need to study properties of these products of matrices.

Though the mapping T : IET —>• IET corresponding to Rauzy
induction on the space IET of interval exchange transformations is ergodic
with respect to some absolutely continuous invariant measure on IET
([16]), we can not immediately use multiplicative ergodic theorem to study
products of matrices A k - i ' ' ' A\ since the invariant measure is not finite.

We construct another map Q : IET —>• IET, which assigns to a point
y G IET some iterate Q(y) = T^^y) of the map T evaluated at y ,
where n(y) depends on the point y. The numbers n(y),n(G{y))^... here
are analogous to the entries of continuous fraction expansion for a real
number. In the simplest case of interval exchange transformation of two
intervals the numbers n{y), n(Q{y))^..., n^^/)),... are exactly the entries
of the corresponding continuous fraction, and the map Q coincides (up to
duplication and conjugation) with the classical map of the unit interval to
itself related to Euclidean algorithm. Morally the relation between the map
Q and Rauzy induction T is the same as relation between multiplicative
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and additive continued fraction algorithms described in [2]. We prove that
the map Q is ergodic with respect to some finite absolutely continuous
invariant measure on IET.

Note that initial matrix-valued function A{y) on IET related to
Rauzy induction induces a new cocycle,

B(y) = A^^-^y)). A^"^-2^)) • . • A(y).

This time we are already able to apply Oseledets theorem to study
products of matrices B. Consider the collection of corresponding Lyapunov
exponents 6\ ^ ... > Omi where m is the number of subintervals under
exchange.

We prove that 0g^ = ... = 0m-g = 0, where g is the genus of the
original surface. As for the remaining Lyapunov exponents, we prove, that
they are grouped into pairs Oi = —Om-i-\-i' We calculate explicitly the
largest Lyapunov exponent 0i. We show that general results in [18] imply
Oi > 02'

We prove that Lyapunov exponents of the differential DQ are repre-
sented by 0i + ^i, 02 + 0i,..., 0m-i +0i- It means in particular that all
Lyapunov exponents of the map G are strictly positive.

Presumably Lyapunov exponents 0 2 ^ - ' ' i 0 g are also nonzero, and
hence positive, and all of them have multiplicities one. This conjecture
implies existence of asymptotic Lagrangian flag in the first homology of
the surface, responsible for approximation of the leaves.

2. Interval exchange transformations and Rauzy induction.

In this section we recall the notion of interval exchange transforma-
tion, and of Rauzy induction; see original papers [5], [6], [9], [13], [15],
[16], [17], [18]. Consider an interval X, and cut it into m subintervals of
lengths A i , . . . , A ^ . Now glue the subintervals together in another order,
according to some permutation TT € ©rn and preserving the orientation.
We again obtain an interval X of the same length, and hence we defined
a mapping T : X —> X, which is called interval exchange transformation.
Our mapping is piecewise linear, and it preserves the orientation and Le-
besgue measure. It is singular at the points of cuts, unless two consecutive
intervals separated by a point of cut are mapped to consecutive intervals
in the image.
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Remark 1. — Note that actually there are two ways to glue the
subintervals "according to permutation TT". We may send the interval
number k to the place 7r(A:), or we may have the intervals in the image
to appear in the order 7r( l ) , . . . , 7r(m). Following [16] we use the first way;
under this choice the second way corresponds to permutation 7r~1.

Given an interval exchange transformation T corresponding to a pair

(A,TT), A € R^ TT C ©n, set A = 0, A = E A,, and X, = [A-i,ft[. Define
j=i

skew-symmetric m x m-matrix f2(7r) as follows:

( 1 if i < j and 7r{i) > 7r{j)
(2.1) ^ijW = -1 if i > 3 and 7r(%) < 7r(j)

0 otherwise.

Consider a translation vector

6 = ^(TI-)A.

Our interval exchange transformation T is defined as follows:

T{x) = x + <^, for x 6 X^, 1 ^ i ^ m.

Note that, if for some k < m we have 7 r { l , . . . , k} = { 1 , . . . , A;}, then
the map T decomposes into two interval exchange transformations. We
consider only the class G°^ of irreducible permutations — those which have
no invariant subsets of the form { 1 , . . . , k}, where 1 ̂  k < m.

Having an interval exchange transformation T corresponding to the
pair (A,7r) one can construct a closed orientable surface M2 a closed 1-
form uj on M2, and a nonselfintersecting curve 7 in M2, such that 7 would
be transversal to leaves of ^, and the induced Poincare (first return) map
7 — ^ 7 would coincide with the initial interval exchange transformation
T (see corresponding constructions in [16] and in [9]). The genus g of
the surface is defined by combinatorics of the permutation TT as follows
(see [16]).

Let TT e G°n- Define permutation a = cr(7r) on {0 ,1 , . . . ,m} (see 2.1
in [16]) by

rTr-^l)-! j=0^
<?')= { m j^Tr-^m)

Tr'^Tr^') + l) — 1 otherwise.
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Let

SU) = {3. ̂ 0'), ̂ U)....} C {0 ,1 ,2 , . . . , m} j = 0,1,. . . , m

be the cyclic subset for the permutation a. To each subset S of this form
assign the vector bs C R771, which is presented in components as follows
(see 2.9 in [16]):

(2.2) ^ = xi-1 - X^ 1 ̂  3 ^ rn

where
, f l ifjes^{;0 otherwise.

Let

S(7r) := {set of cyclic subsets for cr(7r)}

(2.3) So(7T) := S(7T)\^(0)

7v(7r) := CardS(Tr).

According to [16] the genus g of the surface M2 is

_ m - (7v(7r) - 1)
9- 2 '

To each permutation TT e ©m we assign m x m permutation matrix

P, , (^)=J1 ^^W^
' J v / [0 otherwise.

We denote by Tk € ©rn, 1 ̂  k < m the following permutation:

Tfc = {1 ,2 , . . . , k, k + 2 , . . . , m, A; + 1} 1 ̂  k < m - 1
Tm-i = { l ,2 , . . . ,m} =id.

Permutation rjc cyclically moves one step forward all the elements occurring
after the element k.

• 7n

Define the norm ||A|| of A € W to be ||A|| = ̂  |A,|. By A'"-1 we
i=l

denote the standard simplex A771"1 = {A | A e R^; ||A|| = 1}. Having an
interval exchange transformation, defined by a pair (A,7r), where vector
A = ( A i , . . . , A y n ) e R^, defines the lengths of subintervals, and TT is a
permutation, TT € ©m, we can renormalize vector A to A/||A|| € A771"1. The
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interval exchange transformation corresponding to the pair (A/||A||, 7r) is
obviously conjugate to the initial one.

Now we remind construction of Rauzy induction [13]. Whenever it
is possible we try to use notations as in [16]. We also use some notations
from [6].

Consider two maps a, b : ©^ —> G°^ on the set of irreducible
permutations (see [13]):

(24) a(7r) = 7^'^-\rn)
b{7r) = r^rn) • TT

where one should consider product of permutations as composition of
operators — from right to left. Say, b(2,3,1) = (1,3,2) • (2,3,1) = (3,2,1).
Considering permutation as a map from one ordering of l , 2 , . . . ,m to
another, operator b corresponds to the modification of the image ordering
by cyclically moving one step forward those letters occurring after the
image of the last letter in the domain, i.e., after the letter m. Operation a
corresponds to the modification of the ordering of the domain by cyclically
moving one step forward those letters occurring after one going to the last
place, i.e., after Tr'^m), see [6].

Note that

(^Tr))-1^^-1).

In components the maps a,& are as follows, (see [16]):

{ 7r(j) j^TT'^m)
^^Xj) = Tr(^) j = TT~1 (m) + 1

7r(j - 1) other j
(2.5)

{ 7r(j) 7r(j) ^ ^(rn)
b(7r)(j) = 7r(j) + 1 7r(m) < 7r(j) < m

7r(m) + 1 7r(j) = m.

The Rauzy class ^(^o) of an irreducible permutation 71-0 is the
subset of those permutations TT e ©^ which can be obtained from TTQ by
some composition of mappings a and b. We will also denote by the same
symbol ^(^o) the oriented graph, which vertices are indexed by elements
TT € 9t(7To), and which directed edges are either of the type TT i—^ a(7r), or of
the type TT i—^ 6(7r).
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Denote by E identity m x m-matrix, and by lij square m x m-matrix,
which has only one nonzero entry, which equals one, at the (%,j ) place. For
any TT € G°n define matrices A(7r,a), A{^,b) as follows, (see [13]):

(2.6) A(TT, a) = {E + 4-i(^) • P(T,-I(^))

(2.7) A(7r,6)=^+J^-i(^.

Consider the interval exchange transformation T corresponding to
a pair (A.TT-), where A = ( A i , . . . , A y n ) C A771"1, TT e 6^. Compare the
lengths \m and A^-I(^) of the last subinterval in the domain and in the
image of T. Suppose they are not equal. Let v = min(Ayyi, A^-I^)). Cut off
an interval of the length v from the right hand side of the initial interval
and consider induction of the map T to the subinterval [0,1 — y[. According
to [13] the new map would be again an interval exchange transformation
of m subintervals corresponding to a pair (A'.TT'), where

fV TT^ = \ (A~l(7^^a)x^ ^^O) ^m < A^-i(^)
V A 5 7 U KA-^TT.^A.^TT)) \m>\.-^.

Rescaling the vector A' we get the transformation

T : ̂ m-1 x ©^ -^ ^m-1 x ©^

(^"(M--')-
Remark 2. — The fact that the map T is not defined on the

"diagonals" \m = A-^—i^ does not lead to any trouble since we may
neglect any set of zero measure in any further considerations.

Consider restriction of this map to invariant subsets of the form
^m-i ^ 9^(71-). In [16] W.Veech proves, that Rauzy induction T is conser-
vative and ergodic on each A771"1 x ^(pr). It admits unique up to a scalar
multiple absolutely continuous invariant measure, but this measure is infi-
nite.

3. The map Q — a "speed up" of Rauzy induction.

Fix some 71-0 e ©^ and confine ourselves to the class ^H(7To) = 9^. We
denote

(AW.Tr^-r^A.Tr)

(AW.Tr^^A.Tr).
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By A"7"1 x TT we denote the standard simplex A771"1 indexed by an
element TT € 91 from the finite set 91. We subdivide each simplex A771"1 x TT
into two subsimplices

^m-1 X 7T == (A+(7T) U A-(7T)) X 7T

where
A^TT) = {A e A7"-1 | \m > A,-I(^}

A-(7T) = {A € A7"-1 | \m < A,-i(^)}.

Similarly define positive cones A^TI") U A~(TI-) = M771.

For almost all points on A771"1 x 91 we can define the function
(3.1)

,, , . , , ,, , f AW € A-(TrW) when A € A^Tr)7z(A,7n= mm A; such that < ,^ . _ . / /i,^ , , . _ , ^v / fe=i,2,... [ A1^ € A^Tr^) when A € A (7r).

In other words we iterate Rauzy induction and count how many
consecutive transformations of the same type (a or b, see (2.4), (2.5))
we can make.

DEFINITION 1. — We define the map Q related to Rauzy induction T
to be

Q: U (A^UA^TT))^ U (A^UA^Tr))
TTG^ TTG^

^(A^-r^^Tr).

One should consider domain of Q as U (^+(7^) u ^-(7^)) forgetting
Tre^t

that simplices A^TI-) and A~(7r) were once glued into one. Actually,
defining the domain of Q we have to take a complement to a subset of
measure zero, see Remark 2. In particular the common "face" of A^TI-)
and A~(7r) does not belong to the domain of Q.

Note that the map Q maps simplices A~^ to A~ and vice versa.

Define the following matrix-valued function 5 (A, 7r) on a subset of the
full measure in |J (^(^ u ̂ (^ as

Tre^H

(3.2) B(A,TT) := A(A^7r<0))..... A(A^A^-1\7^^A^-1))

where matrix-valued function A(A,7r) is defined by (2.6). By definition of
B(A, 7r) we have

^_ B-^A^.A
||B-i(A,7r).A||
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for the image (A', TT') = G(\, 7r) of the map Q (see also explicit formulae (3.6)
and (3.7) below). Note, that deta(A,7r) = ±1.

We can give also a direct definition of Q as follows. Let

5^ = Am 4- Am-1 + . . . + A7i.-i(m)-H + ̂ m + Am-1 + • . •

n terms

^ = ̂ r-^m) + ̂ Tr-i(m-l) + . . . + A^-l^^+l) + ̂ Tr-^m) + ̂ Tr-^m-l) + • •

n terms

We define
(3.3)

)maxn such that s^ ^ ^-'^•(m} when Xm < ̂ -'^frri}
^M ^\ .̂  n^l v / v /

maxn such that s~^ ^ Am when Am > A^-i^).

We define

(3.4) ^,.):={^) whenA.<A^^
I- ,̂71-) when A^ > ^-^m).

Note that definitions (3.1) and (3.3) of n(A,7r) are equivalent. Consider
an interval exchange transformation T corresponding to a pair (A,7r),
A € A771"1, TT e G°n. Cut off an interval of the length ^(A,7r) from the
right hand side of the initial interval and consider induction of the map
T to the subinterval [0,1 — ^(A,7r)[. The new map would be again an
interval exchange transformation of m subintervals corresponding to the
pair (A',71-'). There would be two cases.

Let
(3.5)

_ (\ \ _ f ^(^? 7r)mod (m — TT (m)) when Am < A^-i(m)
q~q{ ' / ' ~ ^ n ( A , 7 ^ ) m o d ( m - 7 ^ ( m ) ) when Am > A^-^m).

Case a. Am < A^-i^). In this case

TT^TT-T^^

and

(A^ j<7^-l(m)
(3 6) A' = ^-K^n) - ̂ /(^7^) J = '7!•-l(^)

3 Am-7r-i(m)-g+j TT-^m) < J ^ TT-^m) + Q

Xj-q Tr'^m) + g < j ^ m.
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Case b. \m > ̂ -^-{m}' I11 th18 case

7r' =rl(mYV

and

(3.7) A' = { A7 J ̂  m

•7 1 >-m - ^(A, 7r) j = m.

One can see, that the matrix 2?(A, 7r) denned by (3.2) is the matrix
of transformation (3.6) when \m < A^-I^), and of transformation (3.7),
when \m > A^--I(^).

Rescaling the vector A' we get the transformation

(3.8)

g : |J (A^UA^TT)) - J (A^UA^TT))
Tre^H Ti-e^

^'^(M^)-
In other words at one step of the new induction we are shortening one
and the same interval A^-I^) or Ayn, whichever is larger, as much as
possible, cutting cyclically from its right-hand side intervals of the lengths
Am? Ayn- i , . . . . AT,-- i(m)+i m the first case, and intervals of the lengths
^r-i(m)^-i(^_i),..., A^-I(^)+I) in the second case. The lengths of
the rest intervals stay unchanged (up to reenumeration in the first case).

4. Formulation of results.

THEOREM 1. — Let m > 1, and let 91 be a Rauzy class. The map
G on the space of interval exchange transformations [J (A^Tr) U A~(7r))

71-6^

admits the invariant measure

^ = E ̂ w{f^w + f.^-w) ̂  ̂
TTC^

where 6^^ TT € 9^, is the unit mass at TT ; c(7r) are constants specified below;
and ^(Tr) (uj~(^)) is the Euclidean measure on A^TI") (A^Tr)/ For each
TT G 9t the density f^ (correspondingly f ^ ) is the restriction to A^TI-)
(correspondingly A~(7r)^ of a function which is rational, positive, and
homogeneous of degree —m on W^.

The measure p, is finite.
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We define the measure p, in section 5 following analogous definition
in [16]. What is crucial for us is finiteness of the measure, which is proved
in sections 6-7.

THEOREM 2. — Let m > 1, and let ̂  € ©^ be a fixed Rauzy class.
Then the map Q is ergodic on

|jA+(7r)UA-(7r)
TTCSH

with respect to the absolutely continuous invariant probability measure u..

Theorem 2 is proved in section 8.

We remind notation

(41) \o^(x} - (log{x) when^1
[ ) g ^ ' " fo w h e n 0 < ^ < l .

By ||B|| we denote the norm of the matrix B\ the particular choice of the
norm is of no importance for us.

PROPOSITION 1. — Function log^" ||5(A,7r)|| = log ||B(A,7r)|| is inte-
grable over the space |J A^TI-) U A^TI-) with respect to the measure IJL.

TTGSH

f log||5(A,7T)||AW<00.

|_|(A+(7r)UA-(7r))
•n-e^

COROLLARY 1. — Cocycle B^A,?!-) is measurable, i.e.

f log^lir^TOll/^^oo.
|J(A+(7r)uA-(7r))

new.

Denote by

(^)(A,7r))~1 = B-1^-1^^)) ..... B-\Q{\^)) . B-\\^)

the product of matrices B~1 taken at the trajectory of a point (A,7r)
under the action of the map G. Apply multiplicative ergodic theorem to
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the cocycle B-^A,?!-). Let <9i ^ ... ^ ̂  be the corresponding Lyapunov
exponents.

THEOREM 3. — The middle m-2g Lyapunov exponents are equal to
zero

0g+l = 0g+2 = . . . = 0-m-g = 0.

The remaining 2g Lyapunov exponents are distributed in pairs

0k = -Om-k^i for k = 1,..., g.

The first Lyapunov exponent is strictly greater then the second one

0i > 02.

Differential D^^Q is also a measurable cocycle on the space of inter-
val exchange transformations |J A+(7r) U A-(7r). Consider the collection

TTG^

of corresponding Lyapunov exponents. The dimension of the space is m-1,
so the differential has m — 1 Lyapunov exponents.

PROPOSITION 2. — Collection of Lyapunov exponents for the diffe-
rential DQ of the map Q coincides with the collection

Ol + 01 > 02 + Ol ^ . . . ̂  0m-l + 01.

In particular all Lyapunov exponents of the cocycle DQ are strictly posi-
tive.

THEOREM 4. — The largest Lyapunov exponent 0i equals

°^-Y, t ( logl l^ '^TO.AII- logl lAII)^
^A^r)

^E / log|detW|^
^A^TT)

(4.2) =-Y^ f log(l-^A,7r))d/.
^^4)

(4.3) -E / |Ml-A.n)-log(l-A,-i^))[^.
^A^r)
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CONJECTURE 1. — The top g Lyapunov exponents are distinct and
strictly positive

0i > 02 > ... > 0g > 0.

5. Construction of the invariant measure.

In this section we remind construction of the space of zippered
rectangles presented in [16]. Then we define some particular subspace in it
and an automorphism of the subspace, which projects to the map Q. Finally
we define a measure on the space of interval exchange transformations
invariant under Q. Since we are extensively using the technique in [16] we
need to remind briefly some definitions and results from there.

For TT C ©^ define H(7r) C M771 as the annulator of the system of
vectors bs, S € S(7r), see (2.2):

(5.1) H(TT) = {h € R7711 h ' bs = 0 for all S € S(7r)}.

Remark 3. — There is a natural local identification of the space H(7r)
with ^(M^R) (see Proposition 4 and Remark 4 below).

Define the parallelepiped Z(/i, TI-) to be the set of solutions a e R"^
to the following system of equations and inequalities (which are equations
(2.3) and inequalities (3.1) in [16]):

hi - di = ^(^)+i - a^(,) (0 ^ i ^ m)
hi ^ 0 (1 ^ i ^ m)
cti ^ 0 (1 ^ i < m)

(5.2) dm ^ -h^-im
hm ^ Cim

^'71—^+1 ^ a7^-l•m
mm{hi, /^+i) > ai (0 < i < m, i ̂  Tr^m)

where following [16] we use "dummy" components ho = hm-^-i = a'o = 0.
Define the cone

H^{7r) = {h G H{7r) | Z(h,7r) is nonempty}.

The zippered rectangles space of type TT is the set of triples (A,^,a),
A € R^^h G H^~(7r)^a E Z(h^). Parameters h and a determine the
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structure of the Riemann surface in the family of flat surfaces corresponding
to the interval exchange transformation (A,7r) (see [16] for details).

Define f2(9^) to be the set of zippered rectangles (A, h, a, 7r) such that
TT € 9Us in a given Rauzy class fH, and A • h = 1. Define also a codimension-
one subspace T(9l) C ^(9^) by additional constraint ||A|| = 1.

In [16] W.Veech defines the flow P\\h,a^) = (e^e-^e-^Tr),
t € R on ^"2(9^) and a one-to-one invertible (a.e.) bimeasurable transforma-
tion U : ̂ (9^) -^ Q(9l)
(5.3)
U(\ h a 7r} = i ^A l(^a)A.AT(7^.a)^a/^W) when \m < A^-i^

v ' ? ' ) l(A-l(7^^)A,AT(7^,^a'^6(7^)) when A^ > A,-^

where matrices A(TT, a) and A(TT, 6) are defined by equations (2.6); trans-
formations a(7r),6(7r) are defined by (2.4) and (2.5); and vectors o! , o " are
defined as follows:

( ctj j < Tr^m
a'j = h^-i^ + a'm-i j = Tr^m

d j - 1 7^~lm < j ^ m

0" ^ [ a3 0 <^j <m
3 I-(/l7^-lm - ̂ 7r-lm-l) J = m.

Define t(x),x e T(^H), by t{x) = -log(l - min(A^,A,-i^)). Consider a
mapping S : T(^H) ̂  T(^), <?o1 = UP^x.

The following measure

(5.5) ^ = ̂  c(7r)^7r
7re9l

on T^) is constructed in [16] as a measure invariant under transformation
S. Here c(7r) are the constants,

c(7r) = (Volume of fundamental domain in Z771 D I:f(7r))~1

and

^-^W^^^-i^A)

(see 11.4 in [16]). Here H^ = {h € ^+(7r)|/i . A = 1}; ^(da) is the
Euclidean measure on Z(h, 7r) in dimension A^TI-)-! ; fJ,\(dh) is the measure
on ̂  induced by the Euclidean metric; ||QA|| is the Euclidean norm of the
orthogonal projection of the vector A on H('jr) ; and ujrn-i(d\) is Euclidean
measure on A771"1.
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Finally we remind that the following diagram

T(^H) —s-^ T(^H)

P I I P
A771-1 x 9^ —z—^ A771-1 x $H

is commutative (see [16]), where p : (A,fa ,a ,7r) \-^ (A,7r) is the natural
projection. Hence the measure prj is invariant under Rauzy induction T on
the space A771"1 x 91 of interval exchange transformations.

* * *

Having reminded constructions in [16] we now modify them to get
a measure ^ on the space of interval exchange transformations invariant
under the map Q. But before we need to prove the technical lemma.

LEMMA 1. —The subset ofT(9^) determined by the equation dm = 0
has codimension one in T(9l), and hence has measure zero.

Proof. — If S(m) e SoW, i.e., if 0 ^ S'(m), the statement follows
easily from results of sections 2 and 3 in [16]. Suppose for some TT € 9^
we have 0 € S(m). Consider the subset Y C T(9l) for which dm vanishes,
dm = 0. Consider the smallest positive I such that c^O = m. Note that
the definition of a implies I ^ 2. System (5.2) implies that the following
equation is valid for any point of Y:

^cr0+l — haQ 4- ̂ O+l — ^O + • • • + ̂ oCT^-IO+I — "(T^O = u

(see also (2.4) in [16]). Rewrite the equation above as h • b = 0. We need to
prove that vector b is linearly independent from the system of vectors bs,
S C SoW, defined by (2.2) ((2.9) in [16]). According to section 2 in [16]
the space H(7v) is defined by the system bs • h = 0. Hence any subset which
satisfies additional independent linear relation is contained in the subspace
of codimension 1, and hence has measure zero.

To prove linear independence of vector b we use an idea of Proposi-
tion 12.8 in [16] (see also Lemma 6 below). Suppose dependence holds, and
replace So(7r) by its smallest subset E& for which dependence holds. We
introduce sets of indices So = {a0, . . . .cr^O} (which is nonempty since
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I ^ 2) and

(5.6) E=SoU (J S.
S^b

By construction (5.6) is a disjoint union and E e {! , . . . , m}. Linear
dependence implies that every point of E is also a point of E + 1 which is
also a disjoint union. We get E = E + 1, which is absurd. Hence vector b
is linear independent from the system bs, S € SoW. D

Define the parallelepipeds

Z+(h^)={a^Z(h^)\am^O}
Z-(/I,TT) = {a C Z(h^)\am ̂  0}.

Define the subcones

^++(TT) = {^ e ^(TT) | Z^.TT) is nonempty}
^+-(7r) = {h (E ^(TT) | Z-(/i,7r) is nonempty}.

For a given Rauzy class 9^ define

^+(^) = {(A, /,, a, TT) e ^OH) | A € A+(TT); h e ^^(TT); a e ^+(/l, TT)}
^~(^) = {(A^a,7r) € ^(^H) |A G A-(TT);/I e ^+-(7r);a e Z-{h^)}.

Define also
T+(^)=T(^)n^+(<H)
T-^^T^n^-^)
T^D^T^UT-^).

Consider the following map T : T±((H) ̂  T(9^):

^(A,^a,7^)=<S7 l(A^(A,/l ,a,7^)

where ?2(A,7r) is defined by (3.1).

LEMMA 2. — The map T is the induction of the map S to the subspace
T^) cT^).

Proof. — We need to prove, that the image of ^ belongs to T^^H),
and, that n(A,7r) is the first return time, i.e., the number of the first
iteration of the map S when the image of a point x = (A, h, a, TI-) e T^D^)
belongs to T± (91). Suppose A € A+(7r). Then^1) = (A^), ^ l),a( l),7^( l)) ==
S(x} is obtained by transformation "of the type V\ see (5.3). Recall the
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remark in [16], saying that the image a' in (5.4) of the transformation of the
"type a" satisfies a^ ^ 0, and the image a" in (5.4) of the transformation
of the "type V satisfies < ^ 0. Hence, if X^ e A+(7r(1)) and a^ ^ 0,
then the point ^1) = S(x) does not belong to T^EH) since a^ < 0. The
first time the iterate would get back to the space Y^^) is the first time
vector A^ = Tk\ would get to the simplex of the type A~ (we neglect the
set of measure zero of the points [x = (A,/i,a,7r) e T(9'l) | a,m = 0}, see
Lemma 1). But this is exactly the definition (3.1) of the function n(A,7r).

The case, when we have A e A^TI") for the initial point is analogous
to one discussed above. D

Since the map S is almost everywhere one-to-one, and the measure T]
from (5.5) is invariant under S we get the following obvious corollary.

COROLLARY 2. — The map T is almost everywhere one-to-one map
on T^^). The measure rj from (5.5) confined to Y^^) is invariant under
F.

Proof. D

LEMMA 3. — The following diagram is commutative:

r±(W) -F—. r±(W)
p i IP

U (A+(7r)uA-(7r)) -Q-. U (A+(7r)uA-(7r)).
Ti-e^H 7i-e9t

Proof. — This is just a straightforward corollary of definitions T =
5n(A,7r) ^ q ^ ^n(A,7r) ^ g^j ̂  commutativity of the initial diagram above.

D

Define measure fi on [J (A^TI-) U A-(7^)) as ^ = prj.
TTC^H

The properties of the measure p, are described by Theorem 1. The
invariance of the measure follows from its definition. The statement about
the concrete form of the measure is just the original theorem 11.6 in [16] for
the initial measure invariant under Rauzy induction T. What is new (and
rather essential for us) is that the measure /^ is now finite, which would be
proved in the next two sections. In other words we claim that the section
T± has finite "area" (while the initial section T chosen in [16] had infinite
"area").
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Morally, we claim that the fiber p'^A.Tr) is "iceberg-like", i.e., there
is a huge "underwater part" specified by inequality am < 0 for A € A4'
(and dm > 0 for A € A~) which gives an impact to the measure leading
to it infiniteness; while the rest part of the "iceberg", which is "above the
water", and which volume gives us our density function, leads to the finite
measure.

6. The cones H^^TT.W) and H^-^.W).

The goal of this section is to prove technical Lemmas 5 and 6 which
we will use in the proof of Lemma 8 at the end of section 9.

This section is parallel to §12 in [16], but dealing with the spaces
H^ (7r) and H~^~ (TT, W) we are able to improve the estimate of Proposition
12.8 in [16]. Here we would not exclude the subsets containing m and ^~^m
anymore.

Let m > 1, and fix TT € 6^. Consider W C { l , 2 , . . . , m } such
that W ^ 0; W ^ { l ,2 , . . . ,m}. Define So(W) (cf. 2.3) to be the set
of S G So(7r) such that

( 5 U { 5 + l } ) \ { m + l } C W

H e r e { 5 + l } = { j + l | j € ^ } .

Next define H^^TT.W) (^"(TT.IV)) to be the subset of those
h € H++(7^) (correspondingly , H~^~{7r)) which are supported on W i.e.,
hj = 0,j i W,h C H^(TT) (correspondingly hj = 0,j ^ W,h € ^+-(71-)).
We use the same definition for -H^TT, W) as in [16], except that we do not
assume 7^~lm^ m ^ W anymore, unless it is specially indicated.

We will need the following statement to prove Lemma 5:

LEMMA 4. — In both of the following cases

(1) me TV, TT^m^W and h e H^-^.W), aeZ-(h,7r);

(2) m i W, Tr^rn C W; and h € H^(7r,W\ a € Z-^Tr);

the following equality is valid:

0 ^ dj ^ hj, hj+i (0 ^ j ^ m).
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Proof. — Case (I): h € H^-^.W), a € Z-(h,'n), and m e W,
7^~lm ^ IV. In this case dm ^ 0. Since 'K~^m ^ IV, we get h^-im = 0.
Since by definition /lyn+i = 0 we may combine equation

^Tr^m — ^-^m = ̂ m+1 — ̂

from (5.2) with inequality a^-ifrn\ ^ 0 to obtain

0 ^ a^-im = o"m ^ 0.

Combining this with inequalities from (5.2) we prove the lemma for this
case.

Case (2): h C H^(TT,W), a e Z^(h^), and m^W, Tr-^m € TV. In
this case dm ^ 0. Since m ^ TV, we get hm = 0. Since from (5.2) dm ^ hm,
we obtain 0 ^ a-m ^ ^m = O? £lnd hence

(6.1) am = 0.

Using the following equation from (5.2)

^Ti-^m — ̂ ^m = ̂ 'm+l — a'm

we get

^'7^'~lm :=: ^'7^~lm•

Combining this equation and equation (6.1) with inequalities (5.2) we
complete the proof of Lemma 4. D

LEMMA 5. — In both of the following cases

(1) meW, TT^m^W andheH+-{7^,W), aeZ-(^Tr) ;

(2) m i W, Tr^m G W; and h € ^++(7r, TV), a € ^(^Tr);

the following strict inequality is valid:

dim Jr^Tr, IV) + Card So (TV) < Card IV.

Proof. — The proof is the same as the proof of Proposition 12.8 in [16],
except that Lemma 12.3 from [16] used in the proof should be replaced by
Lemma 4. D

Now we consider one more case. We stress that the statement below is
formulated for the subcone H^^TT, W) C H+(7c) in the "old" cone from [16].
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LEMMA 6. — Let Tr^m, m e W, where W is as above. Then

dim ̂ (TT, W) + Card Eo(W) < Card W.

Proof. — If Jf+(7r, W) = {0} we can apply the same arguments as in
Proposition 12.8 in [16]. Suppose now that H^^TT.W) ^ {0}. We have to
consider two cases separately.

Case (i). W + {k^k + 1,... ,m}, 1 ̂  k ^ m. In this case we can
apply the arguments similar to those in Proposition 12.8 in [16].

Since W is nonempty, we are able to find i e W, i ^ m, so that
i + 1 i W. Define ̂  1 to be the first integer such that ^i + m and at
least one of a1^ aH + 1 fails to belong to W. Since i + 1 ^ W, we have
ftz+i = 0 for any h e H-^^.W). Since i < m equations (3.1) in [16] (see
also equations (5.2)) imply for any h e H^(TT^W) and a C Z(h^) the
relation 0 ^ a, ^ h^ = 0. By construction a1! ̂  m, and at lea^t one of
^z^z+i is equal to zero for any h e H^{'K,W). If aH ^ Tr^m, then
for any h € H^{^,W} and a € Z(h^) equations (3.1) in [16] (see also
equations (5.2)) provide us with 0 ^ a^, ^ min(/^,/^^) = Q. Note
that TT lm (^W, hence if a1! = TT-^, then o-^ + 1 = Tr-^m + 1 ^ W.
In this case equations (3.1) in [16] (see also equations (5.2)) provide us
with 0 ^ a^-i^ < ^r-i^+i = 0, which is valid for any h e H^^ W) and
aeZ(/i,7r).

Since for any h e Jf+(7r, W) and a e Z{h, 7r) we have a, = a^i, = 0
equations (3.1) in [16] (see also equations (5.2)) provide us with additional
equation

hi - ft^+i + h^ - ... + h^i-i, - h^i,^ =0 (he ir^Tr, W)),

which is valid for any h € H-^^^W) (see (12.6) in [16]). We rewrite it
as h • b = 0, h e H^^, W). We have to prove that vector b and vectors
bs, S e So (TV) are linearly independent. Note that by Lemma 2.12 in [16]
the collection {bs\S e So(7r)} is linearly independent. Hence the collection
{bs\S C ̂ o(W)} is linearly independent on W.

If S(m) ^ So(lV) and for any 1 ̂  j < I we have aH ^ m, then we can
apply the same arguments as in Proposition 12.8 in [16] which complete
the proof in this case.

Suppose 5(m) e So (TV), or aU = m for some 1 ̂  j < I. Suppose
the collection 6, bs, S € So(TV) is not linearly independent. Consider the
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smallest subset E^ C So (TV) for which dependence holds. We introduce
sets So = {^5 • • • ? (T^i}^ 0 if I = 1) and

(6.2) E = {i} U So U |j S.
5eEb

By construction E C TV, and (6.2) is a disjoint union. If there is to be
dependence then every point of E is also a point of

(6.3) E' = (So + 1) U |j (S + 1) U [a1! + 1}.
5eS{,

Now (6.3) is also a disjoint union, and cardinality considerations imply
E = E ' . But ifm ^ -E, then E is invariant under the map j \—>- 07+1, which
contradicts Lemma 12.7 in [16]. On the other hand, inclusion m + 1 G E ' ^
contradicts E C W. Hence we proved linear independence in this case. As
bs, S € ^o(W), and b (restricted to W) are orthogonal to H^(7T,W) we
get the desired inequality.

Case (ii). W = {k, k + 1,.. . , m}, 1 ̂  k ^ m. First note that k > 1
by assumptions on the set W. By assumptions of Lemma 6 Tr^m, m € W.
Since permutation TT is irreducible, we have /^•~lm 7^ m and hence k < m.

Define I ^ 1 to be the first integer such that a'^/c — 1) 7^ m and
at least one of a~l(k — 1), ^(k — 1) + 1 fails to belong to W. Since
k — 1 7^ 7^~lm, m, we conclude that for any h € H^~(^^ TV) and a € Z(/i, TI-)
the equation Ofc-i ^isvalid.Ifa'^-^+l G TV, then o-"^-!) = k-1
and for any h € ^'^(Tr,^) and a € Z(/i,7r) the equation a^-^-i) = 0 is
valid. If cr-^/c - 1) + 1 ^ W, then a~1 (k - 1) < k - 1 and hence both
a'^k — 1), a'^k — 1) + 1 do not belong to W, which implies that for any
h € H^^TT^W) and a C Z(/i,7r) the equation Oa-^fc-i) = 0 is valid. Hence
any h € H^^TT^ W) satisfy the equation

hk — ^(T-^fe-l) + ̂ T-^-^+l — . . . — ^(T-^+^fc-l) + ̂ -^(fc-^+l = 0

which we rewrite as (h • b) = 0. We need to prove that vector b and the
vectors {bs \S € So(HQ} are linear independent. For suppose not, and
replace So(^) by its smallest subset S^ C So(W) for which dependence
holds. Consider sets So = {cr-^^fc - 1),.... a-^fc - 1)} (we let So = 0 if
I = 1) and

E=SoU \J S
se^b
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which is a disjoint union. Note that E C W. If dependence holds, then
every point of E is also a point of

E ' = ((5o + 1) U |j (S + 1) U {k})\{m + 1}
s'eEb

which is again a disjoint union. By the same reasons every point of E ' is
a point of E^ so E = £". Note that if dependence holds, then m C E,
otherwise cardinalities of the sets E and E' differ by one, which leeds to
contradiction.

Note that k G £", and hence k C £", which implies A; + 1 € E', and
then A; + 1 e ̂ , etc. Hence E = W.

Consider the map U : j i—^ aj + 1 on {0 ,1 , . . . , m}. is easy to see that
U{E) = {E U {m + l^Va-^A; - 1) + 1}. By the assumptions on the set
W we have 1 ̂  W. Hence for any j € W, and for any q ^ 1 such that ^(j)
is well-defined, we get inequality Uq{j) -=/=- 1. In particular the set W does
not contain any closed orbits of the map 17, i.e., for any j e W, and for
any q ^ 1 such that Uq(j) is well-defined, we get inequality Uq(j) ̂  j (see
the proof of Lemma 12.7 in [16])). Hence the whole set W is represented
as a single orbit of some jo G W under the action of the map U:

Ji ̂  J2 1-^ • • • ̂  Jm-fc+i

where jm-k+i = 7^~lm, U^Tr^m) == m+ 1. Note that L^ji never equals 0.
Note that Upj\ never equals Tr^Ti-l — 1), since U(7^~l(7^1 — 1)) == 1, and
1 ^ W. Hence for any 1 ̂  p < m — k -{-1 we have

(6.4) ^n = TT-^TT^'i + 1) - 1.

Let ji = Tr'^r). Due to (6.4) we get j-2 = Tr'^r + 1),... ,jm-fc+i =

'7^'-l(r-(-y7^—A;). On the other hand jm-k-\-i = Tr''"1^). Hence r-\-m—k = m,
and r = k. Hence W = {7^~l(k),7^~l(k + 1), • . . .Tr'^m)}. By assumption
W == {A;, A ;+ l , . . . , yn}, 1 < k < 771, which means that permutation Tr"1, and
hence TT is not irreducible. We proved that assumption on linear dependence
of b and {&s|6' G So(W)} leads to contradiction, so this collection is linearly
independent. As 65-, S € So(W), and b (restricted to W) are orthogonal
to H^^TT^W) and linearly independent we get the desired inequality, and
prove case (ii).

Lemma 6 is proved. D
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7. Finiteness of the measure.

In this section we will prove that the integrals of the density functions

/^(A)= ( Volume (^(^Tr)) dh
I j-r~^"^~

(7.1) Hx

./7(A)= / Volume [Z~{h^)}dh
J H ^ -

of the measure [i in Theorem 1 over corresponding simplices A^TI") are
finite. We use the scheme similar to one in §13 in [16]. In particular we use
the following bound (4.12) from there:

(7.2) Volume Z(/i,7r) ^ ]"] B{\,S)~1 for h € H^(7r)
se^oW

where

(7.3) B(\^S)= ^ A, (m^5eSo(7r))
j€SU{S+l}

and

B(\, S(m)) = Mm (A^-i^, \m) + ^ ^ if S(m) e So(7r)
j(E5(m)U{5(m)+l}
j^ir~^"m, m m.+l

(see (4.7), (4.8) in [16]). We apologize for using the busy notation B{\^S)
— we don't want to change the original notation in [16]. Since we would
not use the matrices (3.2) in this section, and since I? (A, 5') has different
arguments we hope that it would not lead to any confusion.

We need to improve slightly bound (7.2). In our situation the equation
"^Tr^m ^ ^m ^ hm is replaced by one of the equations —h^-i^ ^ o"m ^ 0
or 0 ^ dm ^ hm depending on whether A 6 A~ or A C A~. Recall the
bound (4.4) in [16]

Volume Z{h, 7r) ^ J~[ J(h, S) for h G H^(7r)
5'€So(7r)

where

J(h, S) = Mm {h,, ̂ +1 \i e S} for S G Eo (7r), S + S(m)

and

J(h,S(m}} =Min [^-im+i^Tr-im+^m, {hi,hi^\i C S{m),i ^Tr^m.m}]
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assuming S(m) e So(7r).

Let J^(h, S) = J-(h, S) = J(h, S) for 6' 7^ S(m). Let

J^(h,S(m)) = Mm [^-i^+i^m, {^,^+i|% € S'(m),z ^ Tr-^m}]

and

J~(h,S(m)) =Mm [^-1^+1,^-1^, {^,/i,+i|z € 5(m),z ^ Tr-^^m}].

It is easy to see that

Volume Z^ (h, 7r) ^ 1[[ J+ (fa, 5') for /i e ̂  (7r)
S'eEo(Tr)

Volume Z~ (h, 7r) ^ J~[ J- (h, S) for /i € ̂  (7r)
5eSo(7r)

(cf. (4.6) in [16]).

Next define B+(A,S') = B-(\,S) = B(\,S) for 5' e So(7r)^ 7^
S{m). For those S'(m) which obey S(m) € So(7r) define

5+(A, 5(m)) = A^ + ^ A^- if S(m) e So(7r)
j€S(m)U{S(m)+l}
j^Tr"1^,, m Tn+1

(7.4)

B-(A, S(m)) = A^-i^ + ^ Aj if S'(TO) e So(7r).
3eS(m)u{S(m)+l}

j^TT~^-m, m m+1

Note that if A € A+(A,7r), h € li^Tr), 6'(m) € So(7r), then

5+(A, 5(m))J+(^ 5(m)) ^ /i • A

and i f A e A-(A,7r), h e ^"^-(Tr), S(m) e So(7r), then

B- (A, S(m))J- (h, S{m)) ^ h • A

(cf. (4.9) in [16]). Now we are ready to modify bound (7.2).

LEMMA 7. — Suppose h lies in the H(7r) interior of H^^), and let
A € A+(TT) be such that h • A = 1. Then

(7.5) Volume Z+(/i,7r) < ]~] (B+(A,5))~1.
5'CSo(7r)
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Suppose h lies in the H(TT) interior ofH+~(7^), and let X € A~(7r) be such
that h • A = 1. Then

(7.6) Volume Z-(h^) ̂  ^[ (B~(X,S))~1

se^oW
(cf. Proposition 4.10 in [16]).

From now on we fix the permutation TT and one of the subsimplices
A+(7T) = {A € A(7T) | Xrn ^ X^m} OT A-(7r) = {A € A(7r) I Xm ^

^Tr^m}- Corresponding cone H^{7r) in the first case and ^"(Tr) in the
second case can be subdivided to a finite union of cones with simplex base.
Note that this subdivision is not canonical unless H^^n) (correspondingly
H^~~{7r)) is itself a cone with a simplex base. Fix some subdivision.
Each cone C intersects with the hyperplane (h • A) = 1 by simplex AA.
Integral (7.1) decomposes to the sum of integrals like

(7.7) I Volume^ (h, 7r)) dh.
J^x

According to bounds (7.5) and (7.6) each of integrals (7.7) is bounded by

/ Volume (Z-^TT)) dh ^ Volume (A^) • JJ (B+(^5'))-1

AA 5eEo(7r)

( Volume (Z-(h,7r))dh^ Volume (A^) • 1[[ (B-(X,S))~\
AA S-GEoW

Let vi,...,V2g, where 2g = dim^+^Tr) = dimC = m - N(7r) + 1 be
extremals which span C. We can choose vectors vj to be positive. They are
defined up to multiplication by positive scalars, and do not depend on A.
Fix collection of Vj. The vertices of the simplex AA are given by points
Vj/(vj ' A), where vj does not depend on A. Hence

29 1Volume (A^) = const - TT ———±± Vj ' Xj==i J

(cf. 13.5 in [16]) where const is a constant that does not depend on A.

PROPOSITION 3. — For each subsimplex A^TI-), A~(7r), TT € 9^ C ©^,
and for each cone C in the corresponding space H^^Tr) function

(7.8) ^(A)=[n^ n (^(A,5))-1

\j=i 3 ) se^oW
is integrable over the corresponding subsimplex A^TI-).
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Proof. — Consider one of the simplices A^TI-) or A~(7r) in the
standard simplex A7"-1 = {A e R^ | ^ A, = 1}. We use the following

l^z^m
change of coordinates to replace domain of / by standard simplex A971"1.
For A^TI-), that is for subsimplex \m ̂  A^-i^ we define

^71—^ = 9^7^- lm

1 Ayyi = A + - A io Tr^m

Aj = X'j for j? ^ Tr'^m, m.

For A" (71-) we define

!\r-im = A^._i^+ ^A^

(7.10) . _ 1 ,
^rn — ^ A^

A^ = \'j for j 7^ TT"^, m.

Consider vectors z » i ' , . . . , vzg such that

Vj ' A(V) = v/ - A ' 1 ^ j ^ 2^.

Denote

B ' ( \ ' ^ .= J 5+(A(A/). s) if A ^ ̂ W
v ' / - lB-(A(A'),5) i f A e A - ( T r ) .

Consider induced function

( 2 9 1 \
(7.11) / (A / )= / ± (A(A / ) )= HT-^ U B\\^Sr1

\j=i ^ / se^oW

on A7n-l.

LEMMA 8. — Consider a subset W C { 1 , 2 , . . . , m}, 0 < Card W < m.
Then number of factors N^W) in (7.11) which depend only on the variables
with subscripts in W is strictly less than Card W

N\W) < Card W

(cf. the statement following 13.6 in [16]).

Proof. — Note that components of the vectors Vj, 1 ^ j ^, are
nonnegative. All components of (co) vectors B±(\,S), S e SoW, are
nonnegative as well. Coordinates are modified in (7.9) and (7.10) by
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nonnegative matrices. It means that if some factor in (7.11) depends only
on the variables X^ with subscripts in TV, then the corresponding factor
in (7.8) also depends only on the variables with subscripts in W. Hence
N\W) ̂  N(W), where N(W) is the number N(W) of those factors in (7.8)
which depend only on the variables with subscripts in W.

By construction all the vectors vj e H^^Tr) C H+{7^), 1 ^ j ^
2g = dimJT^Tr), are linearly independent. Due to definition (7.3) for every
factor B(A, S')"1, S ^ S(m) with subscripts in W corresponding bs also has
subscripts in W. Note that if S(m) € So(7r) and B'(A, S{m)) has subscripts
in W, then due to definitions (7.4) and to the form of corresponding
changes of coordinates (7.9) and (7.10) we get Tr^m.m e W. Hence
if 5(m) e SoW and B/(X,S(m)) has subscripts in W, then bs^m) is
supported on W.

For those W, such that Tr^m, m ^ W the statement of the lemma
follows from Proposition 12.8 in [16].

For those W, which contain both Tr'"1?^, m C TV, the statement of
the lemma follows from Lemma 6.

Now we have to consider cases of subsimplex A^TI") and A^TI-)
separately. Suppose we started with the subsimplex A+(7r). Then the case
Tr^m € W, m ^ W follows from Lemma 5. Consider the rest case, when
Tr^m ^ W, m C W. Due to our change of coordinates (7.9), each factor
in (7.11) containing variable A^ would necessarily contain A' _i . Hence
none of them would be counted towards N^W) for the W like ours. Hence

N\W) = N'(W \ m) ̂  N(W \ m) ^ Card TV-1,

and we obtain desired strict inequality.

We use similar arguments for the subsimplex A~(7r) to complete the
proof of Lemma 8. n

To complete the proof of Proposition 3 we apply Proposition 13.2
in [16] to function /(A'). For every subset W C { l ,2 , . . . ,m} , 0 <
Card TV < m we define ./W(A') to be the product of all factors in (7.11)
which have subscripts in TV, and we define D{W,\') to be the product
of the rest factors. Functions ./W(A'), and D(W,\') obey all conditions of
Proposition 13.2 in [16], except that /(A') is homogeneous of degree -m
on M^, which does not affect the proof of this proposition. Proposition 3,
and hence Theorem 1 are proved. D
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8. Ergodicity of the map Q.

Now we can prove ergodicity of the map Q. In fact, since we have
already proved that the section T"^ has finite "area" ergodicity of Q follows
from the ergodicity of the Teichmiiller geodesic flow on the corresponding
connected component of the corresponding stratum in the space of quadra-
tic differentials, see [9], [7], [19], [20]. We prefer to present an independent
direct proof. The proof is similar to the proof of ergodicity of Rauzy induc-
tion T (c.f. Theorem 13.8 in [16], and Theorem 1.11 in [6]).

Proof. — Let A be a matrix such that detA = 1, with some of the
AA

entries possibly negative. Consider projective linear map TA '. A i—^ .
II^AH

and suppose TA maps some compact subset K C A771"1 into A771"1,
Im {K) C A'71"1. Let JA be Jacobian of TA. Then according to (7.1) and
(7.2) in [15]

JAW fXA"sup ——— ^ sup - .
X.X'CK JA{^) A,Y6K \\/

l^i^m

Consider a subset Ag = {A | \z ^ 6, i = 1,... , m\ ^ \i = 1} Then for
any K C Ag and any matrix A e SL (m) such that A{K) C A771"1 we get
from the estimate above, that

J A W / I ^

^KW^'e) •

Note that this estimate does not depend neither on A nor on the subset K
anymore. We remind that

/ A\ \
^(A,7ro)= T^TIT^ , de tA=l .

\ \\A-A\\ /

Consider the set A^(A, TT-O, k) G A771"1 of (A', 71-0) for which ̂  uses the same
matrix A. Then ^(A.Ti-o) maps AG'(A,TTO,A;) onto one of the (A^TI-),?!-),
(A-W.TT).

Consider analogous subsimplices AT-(A, TTQ, k) corresponding to Rauzy
induction T. It is known that diameters of subsimplices A-r(A,7To, k) tend
to zero as k —> oo for almost all A (see [16] and [6]). (Actually this set of
full measure is exactly the set of uniquely ergodic transformations.) Since
Ag(A, TTo, k) = AT-(A, TTo, l{k)) for some l(k) we conclude, that diameters of
the subsimplices AG'(A, TTQ, k) tend to zero for almost all A as well. Hence up
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to a set of measure zero we can subdivide Ag to subsimplices A^(A^-, 71-0, k),
Xj € Ag Suppose now E is an invariant subset under the mapping Q. If
for some e > 0 we have [i(E H Ae) < /^(Ag), then, probably refining our
subdivision, for any 6 > 0 we will find a subsimplex Ao = AG^AO^O?^))
from our subdivision such that p,(E D Ao)//^(Ao) < 6. Let (A^TI-),^) =
^°(AG(AO, TTO, A;o). Then /^(^(A^, 7r)) ^ ^/e7^. Since ^ is arbitrary small,
we can find some TT, such that ^{E H (A^,^)) = 0. Combining this with
the following lemma we complete the proof of ergodicity of Q. D

LEMMA 9. — The only invariant subcollections of simplices of the
form (A^.TT), TT € ^(71-0) are 0 and (A"^ U A~) x ^(Ti-o).

Proof. — Consider the oriented graph representing Rauzy class 9^(71-0).
Any ordered pair of vertices of this graph can be joined by an oriented path
(see [16]).

Consider the following oriented graph, responsible for the map <?.
We enumerate the set of vertices of the new graph by duplicated set
9^(7ro), providing each TT € 9t(7To) with additional superscript "+" or
"—'". We join TT^ with 71-2', 7ri,7T2 € 9^(7To), by an arrow, if there is some
(A, Ti-i) € (A^Ti-i^Ti-i) which is mapped by Q to (A^^),^). Similarly
we join 7r{~ with TT^", 7Ti,7r2 € 9l(7To), by an arrow, if there is some
(A,7Ti) e (A^Ti-i),?!-!) which is mapped by Q to (A^p^)^). (Note that
points of A^ are always mapped to points of A^.) To prove the lemma we
need to prove that any ordered pair of vertices of the graph just constructed
can be connected by an oriented path.

First note that for each TT € 9^(7i-o) there is a pair of arrows going in
opposite directions joining ̂  and TT". This arrows come from the points
determining g(A,7r) = 0, see (3.5). Next note that for each edge of the
graph, corresponding to Rauzy induction, which goes from the vertex 71-1 to
vertex 7T2, there is corresponding edge of the new graph, which joins either
edges 7T^~ and TT^ or edges TT]" and TT^", depending on whether the initial
edge of the Rauzy graph was of type "a" or "&" correspondingly (see (2.4)).
Note also that there is a natural orientation preserving projection of the
new graph to Rauzy graph, which sends each pair of vertices TT^ and TT~
to vertex TT, and each edge of the new graph to the oriented chain of the
edges of Rauzy graph.

Now having an arbitrary pair of vertices TT^ and TT^" we construct
an oriented path in the Rauzy graph joining 71-1 and 7r-2. Taking into
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consideration remarks above it is easy to "lift this path up" to the new
graph. Lemma is proved, and hence Theorem 2 is proved as well. D

9. Lyapunov exponents.

We will need several facts concerning quotient cocycles.

Consider a map g : Y —> Y preserving a probability measure on the
space y. Consider a cocycle A(^/), y € V, with the values in the group
<7L(m), i.e., a GZ/(m)-valued measurable function on V. We remind that
cocycle C is called measurable if the function log"^ ||(7|| is integrable. Here
||(7|| is some norm of the matrix, and log4' is defined by (4.1). Suppose that
corresponding fiberwise linear mapping on the total space of the trivialized
linear bundle has measurable invariant subbundle K(y) C R771, i.e., A(y) :
K ( y ) —> K(g{y)) almost everywhere. We can consider restriction A\K of A
to K. Subspace K(y) has the natural induced norm; restricted cocycle is
obviously measurable, and collection of its Lyapunov exponents at a point
y coincides with corresponding subcollection of Lyapunov exponents of the
initial cocycle A.

Consider now one more measurable subbundle L(y) C R771 and
assume that L{y) is transversal to K(y) almost everywhere, and that
dim L + dim K = m. Assume for simplicity that we choose the Euclidian
norm as a norm in M971. One can easily generalize the condition below
to the case of other norms. Consider the angle K ( y ) ^ L ( y ) between linear
subspaces K(y) and L(y). We will assume that

logsin(X(y)^(y)) € L\Y,^

which is equivalent to

(9.1) logTOTL(y)) e L\Y^).

This obviously works, say, if we choose L = K 1 ' , or if, say, for almost all
y 6 Y the angle is separated from zero by some constant. We define the
quotient cocycle C on the subbundle L as follows: let

A{y) : v i-̂  ^(1) 4-w^

where v C L(y) and v^ € L{g(y)), w^ € K(g{y)). We define C{y) as

C(y) :v-^(l).
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In other words C(y) := Pr(g(y)) o A(y)\L^ where Pr : R^ -> L(y) is the
operator of projection to L along K. Note that since K is invariant we get

C^(y)=Pr{g^(y))oA^(y)\^.

LEMMA 10. — Under assumptions of condition (9.1) quotient cocycle
is measurable.

Proof. — Since

l|A(y)||
\\C{y)\\ <

sm(K(g(y)),L(g(y)))

we get

^ \\C(y)\\ ̂  ̂  \A(y)\\ - logsin(J^(^L((z/)))

and both functions in the right-hand side of the inequality are integrable.

D

Let

(9.2) e{A^y^v):= lim 1 log \\A^(y) . v\\.
k—»-\-oo K

Define similarly 6 ( C ^ y ^ v ) .

LEMMA 11. — For almost any point y C Y and for any v € L(y) the
limits 0{A, y , v) and 6(C, y , v) exist and

6{A,y,v) ̂  6{C,y,v)

(note that we do not assume ergodicity of g ) .

Proof. — Due to multiplicative ergodic theorem (Oseledets theo-
rem [12]) the limits above exist for both of our measurable cocycles for
the set of full measure in Y. Take the intersection of this two sets of full
measure. We have

||CW(,).«||<————"^••'ll————.
sm(K(gW(v)),L(sW(s)))
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Hence

lim -^log^lC'WQ/)^ lim 1 log-^ ||AW(y)||
fc—»-|-oo /C fc-^+oo /C

- lim ^logsin^W^)^^)^))).
A?—^-T-00 K

Due to Ergodic theorem assumption (9.1) implies that the last limit
in expression above is equal to zero for almost all y € Y. D

Let us prove Proposition 1.

Proof. — Choose the norm

||B|[ := m ' max|B^|.

Recalling the definitions (3.2)-(3.7) of the nonnegative integer matrix-
valued function B (A, 7r) we see, that the following inequalities for the entries
of matrix B are valid:

Bij(\7r) ̂  ^.l(m) < 1 when A € A-(7r)
Ayn \rn

and

Bij(\^) ̂  xm ^ ———— when A C A^Tr).
A7^- l(m) A^-i^)

To prove integrability of the function log ||5(A, 7r) || over [_] A"1" (7r) UA" (7r)
TreOt

with respect to the measure /^, it is sufficient to prove integrability of the
function

^ . f l o g A ^ i f A € A + ( 7 r )
"^-flogA,-^) i f A e A - ( T r ) .

To prove integrability of h, it is sufficient to prove for each TT € 9^
integrability of the product /^^/(A') of h with the function / in (7.11),
bounding the density of JLA, over the standard simplex A7^"1, now already
with respect to Lebesgue measure. We do it the same way, as we proved
integrability of / in section 7. We use Lemma 8 and then trivially modify
the proof of Proposition 13.2 in [16] to fit our case. Proposition 1 is proved.

D

To prove Corollary 1 note that |deti?(A,7r)| = 1. Hence

/ \m~l

IIB"1!! =m.max|B,. l | ^ m - ( m - l ) ! . max|B^| ^ H^IF"1.
ij J \ ij )



FINITE GAUSS MEASURE AND LYAPUNOV EXPONENTS 357

Hence

log^lB-^l^m-l^ogllBII

which implies that the function \og^ HB'^A^TT)!! is integrable. Corollary 1
is proved.

Since the function log4' HB'^A,^)!] is integrable, we can use multi-
plicative ergodic theorem to study products .^^(^(A, 71-)) • . . . • B~^(\, 71-).
To prove Theorem 3 let us first prove the following

LEMMA 12. — At least m—2g Lyapunov exponents are equal to zero,
i.e., there is some j, 1 ̂  j ^ 2g + 1 such that

^3 = ̂ J+l = • • • = Oj^m-2g-l = 0.

Proof. — We need to consider only nontrivial case when m > 2g.
Consider the (m - 2^)-dimensional subspace K(7r) = Ker(^(7r)) — the
kernel of the "degenerate symplectic form" ^(TI-), see (2.1). Let

(A^,7r^)=^)(A,7r).

According to [17] K{^) = B-l(A,7r)Jf(7^), i.e., the kernel is preserved by
our cocycle. The collection of vectors bs, S C So(7r), (see (2.2) and (2.3))
provides the canonical basis in K(7r), see [17]. Moreover, our cocycle
maps the canonical basis in K(7r) to the canonical basis in K(r:^)^ see
Lemma 5.6 in [17]. For any vector bs(^) from the canonical basis one has
1 ^ ll^71')!! ^ m f01* anv 7r- Since (f?^(A,7r)) maps this basis to the
corresponding canonical basis in K(TT^) one has

l^||(BW(A,7^))-1.6(7^)||^m.

For every point (A, 7r) having infinite orbit under iterations of the map Q
we have presented m - 2g linearly independent vectors &5(7r), S € So(7r),
such that

lim ^^[[^(A.TT^-^^II^O.
K—>oo n/

Hence at least m — 2g Lyapunov exponents of the cocycle B'^A,?!-) are
equal to zero. Lemma 12 is proved. D

Recall, that there is natural local identification between the space
Ry of interval exchange transformations with fixed permutation TT e ©^
and the first relative cohomology ^(Mj, {saddles} ;R) of corresponding
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surface M2 with respect to the set of saddles of corresponding foliation
(see [4]). Recall that the saddles are enumerated by the classes S € S(7r)
(see section 6 in [16]). Consider the following terms of the exact sequence
of the pair {set of saddles} C M^

0= H°{M^ {saddles} ;R) -^ H°{M^,R)=Z -^ H° (saddles ;R) -^
-^ ^(M^, {saddles} ;R) -^ ^(M^R) -^ H1 (saddles; M) = 0.

We present now two statements based on the results in [22].

LEMMA 13. — Under identification with cohomology, vector bs re-
presents the image of the element in H° (saddles^ R) dual to the saddle
corresponding to the class S. In particular the (m — 2g)-dimensional image
of H° {saddles', R) is spanned by vectors bs, S C S(7r) and hence coincides
withKer(^(n)).

PROPOSITION 4. — Under local identification of the space of interval
exchange transformations with relative cohomology H1 (M2 saddles'^ R) the
quotient space over the subspace spanned by vectors bs, S € S(7r), coin-
cides with the absolute cohomology ^(M^R). The symplectic structure
induced by f^(7r) on the quotient space coincides with the intersection form
on cohomology.

Remark 4. — Recalling the definition (5.1) of the space H(7r) as
the annulator of the subspace spanned by vectors bs, S € S(7r), we see,
that H(7r) is locally identified in our setting with the absolute homology
rr / 7l/f2. 'n"D\H-i{Mg^K).

Remark 5. — Suppose (^(A,?!-) preserves the permutation TT. In [16]
W. Veech constructs the pseudo Anosov diffeomorphism determined by
the matrix Bk{\^'7^). We note that the automorphism in cohomology
^(M^R) defined by £?^(A,7r) above, coincides with the automorphism
in cohomology, induced by the corresponding pseudo Anosov transforma-
tion.

Now let us prove the relation

Ok = -Om-k+i for k = 1,.. . , g.

Proof. — Matrix ^(n) defined by (2.1) provides us with the "dege-
nerate symplectic form" in the fibers of (A7'1"1 x 9^) x V. This form is
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preserved by the cocycle (f?^)~ (see, say, [10]):

W = ((B^Tr))-1)7' . ̂ (TrW). (BC^Tr))-1.

In those rare cases, when Rauzy class 91 determines nondegenerate
form Q the statement follows directly from result in [3], where it is proved
that if a cocycle has values in symplectic matrices then the Lyapunov
exponents appear in pairs 0, —0. The fact, that our symplectic structure
is different over different simplices A771"1 x TT, where TT € 91, does not
affect the statement. Indeed, we can induce our map to some simplex
A771"1 x TT. The induced cocycle would now preserve the fixed symplectic
form f^Tr), and hence the result in [3] would be directly applicable. But
Lyapunov exponents of the induced cocycle are proportional to the ones of
the initial cocycle with coefficient of proportionality equal to the inverse of
/^(A^1-1 x 7r) (see [21]).

In general ^(7r) has a kernel. This kernel determines (m — 2g)-
dimensional subbundle J<T(A,7r) = K(^) C IR771 in our trivialized vector
bundle over (A771"1 x 9^). This subbundle is invariant under the action of
the cocycle B'^A.Tr). According to Lemma 12 all Lyapunov exponents of
the cocycle B"1^^) restricted to the subbundle K are equal to zero.

Consider the quotient cocycle on the quotient bundle R771/^. Since we
are taking the quotient over the kernel of ^(TI"), we can induce the form f^Tr)
to the quotient bundle to get there nondegenerate symplectic form. This
symplectic form is obviously preserved by the quotient cocycle. Applying
the arguments mentioned above to the quotient cocycle we see that the
Lyapunov exponents of the quotient cocycle are distributed into pairs ^,
—^, 1 ^ i ^ g . Applying Lemma 11 to our case we see that the whole
collection of Lyapunov exponents of the cocycle B'^A.TI") is obtained by
joining (m — 2^) zero ones (corresponding to the cocycle restricted to K),
with the rest ones, which are in the one-to-one correspondence with ones
of the quotient cocycle. Moreover, for every pair we have inequality

(9.3) 0, ̂  0,.

Now note that the sum of all Lyapunov exponents of the quotient cocycle
equals zero, since it is symplectic. The sum of all Lyapunov exponents of
the cocycle B~l{X,7v) is also equal to zero since det£?(A,7r) == 1. Hence
in (9.3) we have equalities for all pairs of exponents. D

To complete the proof of Theorem 3 we have to show that Q\ > 0^.
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Proof. — It is easy to find a point (Ao, Ti-o) and a positive k such that
the matrix B := ^(Ao.Ti-o) is strictly positive. (In fact, almost all points
have this property.) There is a whole neighborhood 0(A, TT, k) of the points
sharing the same matrix Bk(X, TT-) = ^(Ao, TTo) = B; this neighborhood has
nontrivial measure. The following strict inequality is valid for the matrix
B :

min B-^ > o.
%,J,r,s BisBjr

The map Q is ergodic with respect to finite measure, and hence the general
results in section 6 of [18] imply the desired inequality 6>i > 6^ Theorem 3
is proved. Q

Let us prove now Theorem 4.

Proof. — Denote

(A^,7r^):=^(A,7r).

We see, that vectors (B^)(A,7r)^ • A and A^ are proportional. Let

IIB-^A.TO.AIIr(A,7r):=
v / / 1|A| |

be coefficient of contraction for one iteration. To prove that some number
6 belongs to the collection of Lyapunov exponents it is sufficient to present
for a set of points (A,7r) of nonzero measure a vector ^(A,7r) € R771 such
that

, -i
1 |l(BW(A,7r)) ^(A,7r)||

lim - log —^———„ / ,„————— = 0.fc^+oo k ||^(A,7r)||
Let

v{X,7r) :=A.

Then

1 llfB^A.Tr))"1^!
fc^

= ^ M^"1 (^ ̂ )) • • • • r(G(\ TT)) . r(A, TT))

= ^ (log r(A, TT) + log r(0(A, 7r)) + ... + log r(^-1 (A, 7r))).
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Applying Ergodic theorem to the sum above we prove that the
following number 0 is present in the collection of Lyapunov exponents

(9.4) 0=^ f ( l og l lB-^A^^ .AI I - log l lAI I )^ .

^^4)
Note that in fact we have absolute freedom in choosing the norm || ||.
Choosing the norm \\v\\ := |^i| + ... + \Vm\ we will get for A € ^±

log \\B-\\ TT) . A|| - log ||A|| = log(l - ̂ (A, TT)) - log 1

where z/(A, 7r) is defined by (3.6). Choosing for v e R771 x TT another norm

IHI = H+. . .+K-i(m)-l|+K-i(m)+l|+. • .+|^m-l |-hmax(|^|, K-i(^)|)

we get

log||B(A,.).A||-log||A|| = {^i1-^1^^ ~'og{l~xrn\ fo^AeA.W
[ log(l - \rn) - log(l - A^-I(^)) for A € A^TT).

Remark 6. — Note that the second norm is different for the spaces
R771 corresponding to different A^Tr). In fact, we should consider R771 as
a fiber of a trivialized vector bundle over |J A^TI-) U A^TI-), and we can

TTG^H

even choose the norm, which would differ (continuously) from fiber to fiber.
It is easy to see, that the integral (9.4) would be the same anyway.

Note that expressions (4.2) and (4.3) for Q\ in the statement of
Theorem 4 differ from the corresponding expressions for 6 above only by
a sign. Since we already proved, that Q\ = —Qrni to complete the proof of
Theorem 4 we just need to prove, that Lyapunov exponent 0 computed
above is the smallest one, i.e., that 0 = 6m- This is true since for almost
every point (A,7r) G A^TI-) and for every w € A^Tr)

BW{\^)w
fc^o ||^)(A,7T)W||

Hence the whole space R771 is asymptotically contracted by B^(A, 7r) to the
one-dimensional subspace spanned by A as A; tends to infinity. Theorem 4
is proved. D

We complete this section by proving Proposition 2.

Proof. — We remind that the cocycle B'^A,?!-) has a nice invariant
one-dimensional subbundle corresponding to the smallest Lyapunov expo-
nent —^i. The fiber of this subbundle over a point (A,7r) is just (A)^, i.e.,
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it is spanned by the vector A. We will call this subbundle as tautologi-
cal bundle. Consider the quotient vector bundle and the induced quotient
cocycle on it.

As a representative of the cohomology class of the quotient cocycle
we can choose the quotient cocycle C~l{\, TI-) on the hyperplane L = {v 6
R171 v\ +.. .+^m = 0}, or any other hyperplane transversal to any A C R^.
We can identify the quotient bundle R^^A)]^ with the trivialized vector
bundle with the fiber L. Since min^^m-i sin(A, L) > 0 by the choice of the
hyperplane Z/, we conclude that condition (9.1) is valid and Lemma 10 is
applicable to our case. Hence cocycle C^^A,?!") is measurable with respect
to the measure ^.

Choose a point (A,7r) and consider the limits 0{B~1^ (A,7r),v) and
0(C~1, (A, 7r), v) defined by (9.2) We will show that in our case inequalities
from Lemma 11 become equalities:

LEMMA 14. — For almost any point (A,7r) € A771"1 x 91 and for any
v e L the limits 0(B~1^ (A, TI-), v) and 0(C~1, (A, TI-), v) exist and coincide :

0(C-1(X^)^)=0{B-1(\7^)^).

Proof. — Due to multiplicative ergodic theorem the limits above exist
for both of our measurable cocycles for the set of full measure in A771"1 x ^H.
Take the intersection Z of this two sets of full measure. Obviously i^(Z) = 1.

Choose some small neighborhood Oe € A771"1 of the point (1/m,...,
1/m). Let

a := inf inf (A, v)
\e0e o^eS^VR^uR^)

where H^^RT U R771) is the complement to the union of positive and
negative cones, and (A, v) is the angle between two vectors. By construction
of Oe we have a > 0.

Note that since 2?^(A,7r) is nonnegative matrix for any (A,7r) we
have

r?(A;)/\ —\ . /TOm i i TD>yyi\ v /"TO)7"' i i TD>^\D' ' (A^TT) : (Ki U K_ ) —> (Ki UK_).

Since L [\{^ U Mr) = 0 we conclude that for any 0 7^ v € L we have

(B^\\,7r))~1 'v i (R^ usr1).
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For a set of points (A,7r) of full measure trajectory (A,7r), C?(A,7r),
<?(^(A,7r)) , . . . will visit Oe x TT infinitely many times. Let Z, /^(Z) = 1,
be intersection of this set with the set Z. Then for any (A, 7r) € Z both
limits ^(-B'^A, 7r), v) and ^C^A, 7r), v) exist for any v ^ L. On the other
hand whenever 0^(A,7r) € Oe the angle between (l?^(A,7r)) • v and A
is greater than or equal to a. Hence for such values k the norms

||(^))-l(A,7^)^||^al||(GW)-l(A,7^)^||

||(G^)-l(A,7^)^||<a2||(BW)-l(A,7^)^||

are mutually bounded by means of positive constants ai and 02 depending
only on the choice of L and Og. Since by construction for any point
(A, 7r) € Z we have infinitely many values k for which the relations above
are valid we proved coincidence of our limits. D

Since we already know the Lyapunov exponents of the cocycle B~1,
and we know that the Lyapunov exponent corresponding to the tautological
subbundle is equal to Om{B~1) we get the following obvious corollary of
Lemma 14:

COROLLARY 3. — The collection of Lyapunov exponents of the
cocycle G-^A.TI-) coincides with 6^1 (B-1),^^-1),... ,0m-i{B~1) (i.e.,
the collection is obtained by omitting the least Lyapunov exponent of the
cocycle B'1^^)). D

Consider the trivialized vector bundle with the base |J A^TI-) U
TTG^H

A~(7r) and a fiber R771. The map Q and the cocycle B'^A.Tr) define the
map on the total space of this bundle (x^v) \—>- (G(x)^B~l(x)v)^ where
x = (A, 7r) is a point in the base, and v is a vector in the fiber. Note, that
the quotient of the trivialized bundle over tautological bundle is isomorphic
to the tangent bundle over our base. Moreover, it is easy to see, that
the composition of the induced action in the total space of the quotient
bundle with fiberwise homothety with coefficient HB^AH""1 coincides with
the action of the differential DQ under suggested identification. In fact,
we just use canonical isomorphism TG\(m) ^ Hon^^^), where 7 is
the tautological, and ^•L is the normal bundle to the Grassmann manifold
G\(m) = RP777"1. The impact of the homothety can be easily computed
since homothety commutes with our induced cocycle in the quotient bundle
(and, actually with any fiberwise linear mapping). This impact is just a shift
of all Lyapunov exponents by 6\. Proposition 2 is proved. D
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10. Appendix. Examples of Gauss measures.
Values of Lyapunov exponents for m = 2 and 3.

For the interval exchange transformations of two and three subinter-
vals we know all Lyapunov exponents.

In dimension two there is only one Rauzy class containing the only
one permutation (2,1)

^2:= W.I)) ={(2,1)}.

Corresponding map Q is conjugate to the duplication of the classical map
x i—> {1/x} related to Euclidean algorithm and to continuous fraction
expansion. The highest Lyapunov exponent is equal to

^1(^2) = —r—— = L 1 2 V 1 ) w 1.1865691104156254528...lv 2" 121og2 Lii(-l)

where Lin{x) is the n-poly logarithm. Note that ^1(9^2) ^s exactly the
Levy constant responsible for the growth rate of denominator of continued
fraction. The second Lyapunov exponent equals the first one taken with
the opposite sign:

W2)=-W2).

In dimension three there is again only one Rauzy class containing three
permutations:

^3 := W, 2,1)) = {(3,2,1), (2,3,1), (3,1,2)}.

The highest Lyapunov exponent is equal to

7T2 _ Li2(l)
^1(^3) = 6(l+21og2) l-2Lii(-l)

2Li2(-l)
2Lii(-l)-l

0.68932571507073294...

The second Lyapunov exponent vanishes, and the third one is equal to the
first one taken with the opposite sign:

W3)=0 W3) =-0l (^3).

The first completely nontrivial case is interval exchange transformations of
four subintervals. There are two Rauzy classes here; the following one is
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interesting for us:

^4:= ^((4,3,2,1))

={(4,3,2,1), (4,1,3,2), (2,4,3,1), (3,1,4,2), (2,4,1,3),
(4,2,1.3), (3,2,4,1)}.

Corresponding surface has genus 2; corresponding measured foliation on
this surface has single 6-prongs saddle. The other Rauzy class for m = 4
corresponds to surface of genus 1.

The measures of corresponding simplices A^TI-), TT € 914 are as
follows. (We do not normalize the total measure to 1 to avoid fractional
expressions.)

/x(A+(4,3,2,l)) =^log2-JC(3) » 1.91797

^(A+(4,l,3,2)) =^(A+(2,4,3,1)) =JC(3) » 0.901543

/^(A+(3,l,4,2)) -;u(A+(2.4,l,3)) = 5 C(3) « 0.751286
0
0

/^ (4,2,1,3)) =/,(A+(3,2,4,1)) -V10^2 ^1.14018.

Rauzy class ̂  is invariant under operation of taking inverse permu-
tation. The measures of the simplices A~(7r), TT G ^4 satisfy the following
relation:

/^-(^/.(A^Tr-1)).

In this normalization the total measure is equal to

/ . f [JA ± (7^))=3C(3)+ 5 7^ 2 1og2
W<n / 6

(10.1) = 3Li3(l) - 10Li2(l)Lii(-l) w 15.00798.

Here <(3) == Lis(l) w 1.20206 is the value of the Riemann zeta function
at 3.

The densities of the measure p, on the simplices A^TI-) in our
normalization are as follows (compare with analogous densities in [16]):
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Density on A"^, 3,2,1), A4 ^ Ai is equal to:

y^m = 1 1 1 1
Ai 4- Aa Aa + As As 4- A4 A2 4- A3 4- A4

- 1 1 1 1 1 1
~~ A i 4 - A 2 A24-A3 1-Ai "h 1 - (Ai 4- A2) A 2 + A 3 1 - A i '

Density on A"^, 1,3,2), A4 ^ Ai is equal to:

/4132^) = A 2 + A 4 A 3 + A 4 Ai + A2 + As ^2+A3+A4

1 \
+ Ai 4- A2 + As + A4 )

- 1 1 1 1 1 1
- A2 4- A4 1 - AI 1 - A4 A 3 + A 4 1 - AI 1 - A4

1 1 1
A2 + A4 A3 4" A4 1 — Ai

Density on A'^2,4,3,1), A4 ^ A2 is equal to:

A2 ~t~ A3 A3 + A4 Ai + A3 4- A4 Ai + A2 4- A3 + A4
- 1 1 1

A2 4- A3 A3 4- A4 1 — A2

Density on A"* ,̂ 1,4,2), A4 ^ A3 is equal to:

f m = J_ 1 1 1
•'3142V / A4 A i + A a + A 4 A i + A 3 + A 4 A i + A 2 + A 3 + A 4

- J- 1 1
- A4 1 - A 2 1 - A 3 '

Density on A+(2,4,1,3), A4 ^ Aa is equal to:

f f\}= 1 1 1 ( 1

• /2413V / A3 + A4 Ai + A2 + A3 Al + A2 + A3 + A4 V Al + As + A4

1 \
+ A2 + AS + A4 )

_ 1 1 1 1 1 1
- AS + A4 1 - AI 1 - A4 A 3 + A 4 1 - A 2 1 - A4 '
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Density on A"^, 2,1,3), A4 ^ Ai is equal to:

/4213(A) ==
1 1 1 / 1

A2 + AS A2 + A4 AI + A2 + AS + A4 \ AI + A2 + A4
1

+
A2 + AS + A4 ^

1 1 1 1 1 1
A2 + AS A2 4- A4 1 — AI A2 + AS A2 + A4 I — A S

Density on A"^, 2,4,1), A4 ^ As is equal to:

/324l(A) = ——
A4 AI + A2 A2 + AS + A4 AI + A2 + AS + A4
1 1 1
A4 AI + A2 1 — AI

The densities on the simplices A~(7r), TT C 9^4 are obtained from
ones on the corresponding simplices A'^Ti-"1) by means of the change of
coordinates dictated by the corresponding permutation.

The highest Lyapunov exponent ^1(^4) is equal to the ratio

W4) = o————\———— ( I /432i(A)(log(l - Ai) - log(l - A4)) d\
^(^J^^^A^l)

+ / /4132(A)(log(l - Ai) - log(l - A4)) d\
JA+(4132)

+ / /243l(A)(log(l - A2) - log(l - A4)) d\
^A+(2431)

+ I /3142(A)(log(l - As) - log(l - A4)) d\
^A+(3142)

+ I /2413(A)(log(l - A2) - log(l - A4)) d\
JA+(2413)

+ / /4213(A)(log(l - Ai) - log(l - A4)) d\
^A+(4213)

+ / /324l(A)(log(l - As) - log(l - A4)) d\Y
^A+(3241) ^
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The approximate value of this exponent is as follows : ^1(9^4)
0.48679. Presumably

.. >'
3^3)+^^2

Actually we have the approximate values for Lyapunov exponents for all
Rauzy classes up to m = 10. These values are obtained by computer
experiments; presumably precision is four significant digits. We will discuss
these experiments in another paper.
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