The center of a graded connected Lie algebra is a nice ideal

Annales de l'institut Fourier, tome 46, nº 1 (1996), p. 263-278 <http://www.numdam.org/item?id=AIF 1996 46 1 263 0>

© Annales de l'institut Fourier, 1996, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THE CENTER OF A GRADED CONNECTED LIE ALGEBRA IS A NICE IDEAL

by Yves FÉLIX

In this text graded vector spaces and graded Lie algebras are always defined over the field \mathbb{Q} ; $\mathbb{L}(V)$ denotes the free graded Lie algebra on the graded connected vector space V. The notation $L \coprod L'$ means the free product of L and L' in the category of graded Lie algebras, UL denotes the enveloping algebra of the Lie algebra L and $(UL)_+$ denotes the canonical augmentation ideal of UL. The operator s is the usual suspension operator in the category of graded vector spaces, $(sV)_n = V_{n-1}$.

Let $(\mathbb{L}(V), d)$ be a graded connected differential Lie algebra and α be a cycle of degree n in $\mathbb{L}(V)$. An important problem in differential homological algebra consists to compute the homology of the differential graded Lie algebra $(\mathbb{L}(V \oplus \mathbb{Q}x), d), d(x) = \alpha$, and in particular the kernel and the cokernel of the induced map

$$\varphi_{\alpha}: A = H(\mathbb{L}(V), d) \longrightarrow B = H(\mathbb{L}(V \oplus \mathbb{Q}x), d).$$

Clearly the homology of $(\mathbb{L}(V \oplus \mathbb{Q}x), d)$ and the map φ_{α} depend only on the class a of α , so that we can write φ_a instead of φ_{α} .

DEFINITIONS.

(i) An element a in the Lie algebra A is nice if the kernel of the map φ_a is the ideal generated by a.

(ii) An ideal I in the Lie algebra A is nice if, for every element a into I, the kernel of the map φ_a is contained in I.

Our first result reads

Key words: Differential graded Lie algebra – Inerty – Rational homotopy theory. Math. classification: 55P62 – 17B70.

THEOREM 1. — Let $(\mathbb{L}(V), d)$ be a graded connected differential Lie algebra and a be an element in A_n . If n is even and a is in the center, then

(1) the element a is nice,

(2) There is a split short exact sequence of graded Lie algebras:

 $0 \to \mathbb{L}(W) \to B \to A/(a) \to 0,$

with W a graded vector space isomorphic to $s^{n+1}A/(a)_+$.

In the case n is odd, the Whitehead bracket [a, a] is zero since a is in the center, and thus the triple Whitehead bracket $\langle a, a, a \rangle$ is well defined. We first remark that $\langle a, a, a \rangle$ belongs also to the center. More generally

PROPOSITION 1. — The Whitehead triple bracket $\langle \alpha, \beta, \gamma \rangle$ of three elements in the center belongs also to the center.

THEOREM 2. — Let $(\mathbb{L}(V), d)$ be a graded connected differential Lie algebra and a be an element in A_n . If n is odd, a belongs to the center and $\langle a, a, a \rangle = 0$, then

(1) the element *a* is nice,

(2) B contains an ideal isomorphic to $\mathbb{L}(W)$ with $W = s^{n+1}A/(a)_+$,

(3) the Lie algebra B admits a filtration such that the graded associated Lie algebra G is an extension

$$0 \to \mathbb{L}(W) \amalg K \to G \to A/(a) \to 0,$$

with $K = \mathbb{L}(\alpha, \beta)/([\alpha, \beta], [\alpha, \alpha]), |\alpha| = 2n + 1, |\beta| = 3n + 2.$

THEOREM 3. — Let $(\mathbb{L}(V), d)$ be a graded connected differential Lie algebra and a be an element in A_n . If n is odd, a belongs to the center and $\langle a, a, a \rangle \neq 0$, then

(1) the image of φ_a is $A/(a, \langle a, a, a \rangle)$,

(2) B contains an ideal isomorphic to $\mathbb{L}(W)$ with

$$W = s^{n+1} (A/(a, < a, a, a >))_+,$$

(3) the Lie algebra B admits a filtration such that the graded associated Lie algebra G is an extension

$$0 \to \mathbb{L}(W) \amalg (\gamma, \rho) \to G \to A/(a, \langle a, a, a \rangle) \to 0,$$

with (γ, ρ) an abelian Lie algebra on 2 generators γ and ρ ; $|\rho| = 2n + 1$ and $|\gamma| = 4n + 2$.

COROLLARY 1. — When the element a is in the center, then the kernel of φ_a is always contained in the center and its dimension is at most two. In particular the center is a nice ideal.

COROLLARY 2. — If dim A is at least 3 and if a is in the center, then B contains a free Lie algebra on at least 2 generators.

In all cases, B contains a free Lie algebra $\mathbb{L}(W)$ with W isomorphic to $(A/(a, \langle a, a, a \rangle))_+$.

From those results on differential graded Lie algebras we deduce corresponding results for the rational homotopy Lie algebras of spaces.

Let X denote a finite type simply connected CW complex and Y the space obtained by attaching a cell to X along an element u in $\pi_{n+1}(X)$.

$$Y = X \bigcup_{u} e^{n+2}$$

The graded vector space $L_X = \pi_*(\Omega X) \otimes \mathbb{Q}$ together with the Whitehead product is then a graded Lie algebra. Moreover by the Milnor-Moore theorem the Hurewicz map induces an isomorphism of Hopf algebras $U\pi_*(\Omega X) \otimes \mathbb{Q} \xrightarrow{\cong} H_*(\Omega X; \mathbb{Q}).$

Now some notations : we denote by Σ the isomorphism $\pi_n(\Omega X) \to \pi_{n+1}(X)$ and we put $a = \Sigma^{-1}(u)$. For sake of simplicity, an element in $\pi_*(\Omega X) \otimes \mathbb{Q}$ and its image in $H_*(\Omega X; \mathbb{Q})$ will be denoted by the same letter.

Recall that the Quillen minimal model of the space X ([5], [9], [1]) is a differential graded Lie algebra ($\mathbb{L}(V), d$), unique up to isomorphism, and equiped with natural isomorphisms

- (i) $V \cong s^{-1}H_*(X; \mathbb{Q}),$
- (ii) $\theta_X : H(\mathbb{L}(V), d) \cong L_X.$

The differential d is an algebrization of the attaching map. More precisely, denote by α a cycle in $(\mathbb{L}(V), d)$ with $\theta_X([\alpha]) = a$, then the differential graded Lie algebra $(\mathbb{L}(V \oplus \mathbb{Q}x), d), d(x) = \alpha$ is a Quillen model of Y and the injection

$$(\mathbb{L}(V), d) \longrightarrow (\mathbb{L}(V \oplus \mathbb{Q}x), d),$$

is a Quillen model for the topological injection i of X into Y. In particular φ_a is the induced map $L_X \to L_Y$.

The injection $i: X \to Y$ induces a sequence of Hopf algebra morphisms

$$H_*(\Omega X; \mathbb{Q}) \xrightarrow{f} H_*(\Omega X; \mathbb{Q})/(a) \xrightarrow{g} H_*(\Omega Y; \mathbb{Q}).$$

The attachment is called *inert* if $g \circ f$ is surjective (this is equivalent to the surjectivity of g), and is called *nice* if g is injective ([7]). Clearly the attachment is nice if the element a is a nice element in L_X .

The structure of the Lie algebra $L_X = \pi_*(\Omega X) \otimes \mathbb{Q}$, for X a space with finite Lusternik-Schnirelmann, has been at the origin of a lot of recent works (cf. [3], [2], [4]). In particular the radical of L_X (union of all solvable ideals) is finite dimensional and each ideal of the form $I_1 \times \cdots I_r$ satisfies $r \leq \text{LS cat } X$.

We deduce from Theorems 1, 2 and 3 above the following results concerning attachment of a cell along an element in the center.

THEOREM 4. — If n is even and a is in the center, then

(1) the attachment is nice,

(2) there is a split short exact sequence of graded Lie algebras :

 $0 \to \mathbb{L}(W) \to L_Y \to L_X/(a) \to 0,$

with W a graded vector space isomorphic to $s^{n+1}(H_*(\Omega X; \mathbb{Q})/(a))_+$. The splitting is given by the natural map $L_X \to L_Y$.

THEOREM 5. — If n is odd, a belongs to the center and $\langle a, a, a \rangle = 0$, then

(1) the attachment is nice,

(2) L_Y contains an ideal isomorphic to $\mathbb{L}(W)$ with

$$W = s^{n+1}(H_*(\Omega X; \mathbb{Q})/(a))_+,$$

(3) the Lie algebra L_Y admits a filtration such that the graded associated Lie algebra G is an extension

$$0 \to \mathbb{L}(W) \amalg K \to G \to L_X/(a) \to 0,$$

with $K = \mathbb{L}(\alpha, \beta)/([\alpha, \beta], [\alpha, \alpha]), \ |\alpha| = 2n + 1, \ |\beta| = 3n + 2.$

Example 1. — Let $X = P^{\infty}(\mathbb{C})$ and $u : S^2 \to P^{\infty}(\mathbb{C})$ be the canonical injection. Then $Y = X/S^2$ and its rational cohomology is $\mathbb{Q}[x_4, y_6]/(x_4^3 - y_6^2)$. In this case the Lie algebra L_Y is isomorphic to K and the graded vector space W is zero.

Example 2. — Let $X = P^3(\mathbb{C})$ and $u: S^2 \to P^3(\mathbb{C})$ be the canonical injection. Then $Y = X/S^2 \cong S^4 \vee S^6$. In this case W is the graded vector space generated by the brackets $\operatorname{ad}^n(i_6)(i_4), n \ge 1$, where i_4 and i_6 denote the canonical injections of the spheres S^4 and S^6 into Y.

Theorem 6. — If n is odd, a belongs to the center and $\langle a, a, a \rangle \neq 0$, then

(1) the image of L_X in L_Y is $L_X/(a, \langle a, a, a \rangle)$,

(2) L_Y contains an ideal isomorphic to $\mathbb{L}(W)$ with

$$W = s^{n+1}(H_*(\Omega X; \mathbb{Q})/(a, < a, a, a >))_+.$$

(3) the Lie algebra L_Y admits a filtration such that the graded associated Lie algebra G is an extension

$$0 \to \mathbb{L}(W) \amalg (\gamma, \rho) \to G \to L_X/(a, \langle a, a, a \rangle) \to 0,$$

with (γ, ρ) an abelian Lie algebra on 2 generators γ and ρ ; $|\rho| = 2n + 1$ and $|\gamma| = 4n + 2$.

COROLLARY 1'. — When the element a is in the center, then the kernel of the map $L_X \to L_Y$ is always contained in the center and its dimension is at most two.

COROLLARY 2'. — If dim L_X is at least 3 and if a is in the center, then L_Y contains a free Lie algebra on at least 2 generators.

Example 3. — Let X be either $S^{2n+1} \times K(\mathbb{Z}, 2n)$ or else $P^n(\mathbb{C})$, then the attachment of a cell of dimension 2n + 2 along a nonzero element generates only one new rational homotopy class of degree 2n+3. The space Y has in fact the rational homotopy type either of $S^{2n+3} \times K(\mathbb{Z}, 2n)$ or else of $P^{n+1}(\mathbb{C})$. These are rationally the only situations where L_X has dimension two and the attachment does not generate a free Lie algebra.

Example 4. — Let Z be a simply connected finite CW complex not rationally contractible. Then for $n \ge 1$ the rational homotopy Lie algebra

 L_Y of $Y = S^{2n+1} \times Z/(S^{2n+1} \times \{*\})$ contains a free Lie algebra on at least two generators. It is enough to see that Y is obtained by attaching a cell along the sphere S^{2n+1} in $X = S^{2n+1} \times Z$.

In all cases, L_Y contains a free Lie algebra $\mathbb{L}(W)$ with W isomorphic to $(H_*(\Omega X) \otimes \mathbb{Q}/(a, \langle a, a, a \rangle))_+$. The elements of W have the following topological description.

Let β be an element of degree r-1 in $L_X/(a, \langle a, a, a \rangle)$ and $b = \Sigma \beta$. The Whitehead bracket

$$S^{n+r} \stackrel{[i_{n+1},i_r]}{\longrightarrow} S^{n+1} \vee S^r \stackrel{u \vee b}{\longrightarrow} X,$$

extends to D^{n+r+1} because the element a is in the center. On the other hand in Y the map u extends to D^{n+2} , this gives the commutative diagram

These two extensions of the Whitehead product to D^{r+n+1} define an element $\varphi(\beta)$ in $\pi_{r+n+1}(Y) \otimes \mathbb{Q}$. Now for every element $\alpha = \alpha_1 \dots \alpha_n$ in $H_+(\Omega X; \mathbb{Q})/(a, < a, a, a >)$, with α_i in L_X , we define

$$\varphi(\alpha) = [\alpha_n, [\alpha_{n-1}, \dots, [\alpha_2, \varphi(\alpha_1)] \dots]$$

This follows directly from the construction of W given in section 1.

PROPOSITION 2. — When $\{\beta_i\}$ runs along a basis of $H_+(\Omega X; \mathbb{Q})/(a, < a, a, a >)$, the elements $\{\Sigma^{-1}\varphi(\beta_i)\}$ form a basis of a sub free Lie algebra of L_Y .

Corollary 1 means that the center of L_X is a nice ideal. We conjecture:

CONJECTURE. — Let X be a simply connected finite type CW complex with finite Lusternik-Schnirelmann category, then the radical of L_X is a nice ideal.

We now prove this conjecture in a very particular case.

THEOREM 7. — If the ideal I generated by a has dimension two and is contained in $(L_X)_{even}$, then the element a is nice and L_Y is an extension of a free Lie algebra $\mathbb{L}(W)$ by L_X with $W \supset s^n(U(L_X/I)_+)$.

Example 5. — Let X be the geometric realization of the commutative differential graded algebra $(\wedge(x, c, y, z, t), d)$ with d(x) = d(c) = 0, d(y) =

xc, d(z) = yc, d(t) = xyz, |x| = |c| = 3, |y| = 5, |z| = 7, and |t| = 14. We denote by u the element of $\pi_3(X)$ satisfying $\langle u, x \rangle = 1$ and $\langle u, c \rangle = 0$. The ideal generated by $a = \Sigma^{-1}u$ has dimension three and is concentrated in even degrees, but the element a is not nice.

The rest of the paper is concerned with the proof of Theorems 1,2,3 and 7.

1. Proof of Theorem 1.

Denote by $(\mathbb{L}(V), d)$ and $(\mathbb{L}(V \oplus \mathbb{Q}x), d)$ free differential graded connected Lie algebras, $d(x) = \alpha$, $[\alpha] = a$.

By putting V in gradation 0 and x in gradation 1, we make $(\mathbb{L}(V \oplus \mathbb{Q}x), d)$ into a filtered differential graded algebra. The term (E^1, d^1) of the associated spectral sequence has the form

$$(E^1, d^1) = (A \coprod \mathbb{L}(x), d), \quad A = H_*(\mathbb{L}(V), d) = L_X, \quad d(x) = a.$$

The ideal I generated by x is the free Lie algebra on the elements $[x, \beta_i]$, with $\{\beta_i\}$ a graded basis of UA and where by definition, we have

$$[x, 1] = x$$

 $[x, \alpha_1 \alpha_2 \dots \alpha_n] = [\dots [x, \alpha_1], \alpha_2], \dots \alpha_n], \quad \alpha_i \in L_X.$

Since a is in the center, if $\beta_i \in (UA)_+$, then $d([x, \beta_i]) = 0$. Therefore the ideal J generated by [x, x] and the $[x, \beta_i], \beta_i \in (UA)_+$ is a subdifferential graded Lie algebra. The ideal J is in fact the free Lie algebra on [x, x] and the elements $[x, \beta_i]$ and $[x, [x, \beta_i]]$, with $\{\beta_i\}$ a basis of $(UA)_+$. A simple computation shows that

$$egin{aligned} d[x,x] &= 2[a,x] \ d[x,eta_i] &= 0 \ d[x,[x,eta_i]] &= -[x,eta_ia]. \end{aligned}$$

This shows that H(J,d) is isomorphic to the free graded Lie algebra $\mathbb{L}(W)$ where W is the vector space formed by the elements $[x, \beta_i]$ with $\beta_i \in (UA/(a))_+$.

The short exact sequence $0 \to J \to A \coprod \mathbb{L}(x) \to A \oplus (x) \to 0$ yields thus a short exact sequence in homology

$$0 \to \mathbb{L}(W) \to H(A \coprod \mathbb{L}(x)) \to A/(a) \to 0.$$

This implies that the term E^2 is generated in degrees 0 and 1. The spectral sequence degenerates thus at the E^2 level : $E^2 = E^{\infty}$.

Denote now by u_{β_i} a class in $H(\mathbb{L}(V \oplus \mathbb{Q}x), d)$ whose representative in $E_{1,*}^{\infty}$ is $[x, \beta_i]$. The Lie algebra generated by the u_{β_i} admits a filtration such that the graded associated Lie algebra is free. This Lie algebra is therefore free, and its quotient is A/(a). This proves the theorem. \Box

2. Proof of Proposition 1.

The elements α , β and γ are represented by cycles x, y and z in $(\mathbb{L}(V), d)$. Since the elements α , β and γ are in the center, there exist elements a, b and c in $\mathbb{L}(V)$ such that

$$d(a)=[x,y]\,, \quad d(b)=[y,z]\,, \quad d(c)=[z,x].$$

The triple Whitehead product is then represented by the element

$$\omega = (-1)^{|zy|}[c,y] + (-1)^{|xy|}[b,x] + (-1)^{|xz|}[a,z].$$

We will show that the class of ω is central, i.e. for every cycle t the bracket $[\omega, t]$ is a boundary. First of all, since α , β and γ are in the center there exists elements x_1, y_1 and z_1 such that

$$d(x_1) = [x, t], \quad d(y_1) = [y, t], \quad d(z_1) = [z, t].$$

We now easily check that the three following elements α_1 , α_2 and α_3 are cycles:

$$\begin{aligned} &\alpha_1 = (-1)^{|tx|+|t|}[t,c] + (-1)^{|xz|+|x|+1+|zt|}[x,z_1] + (-1)^{|zt|+|z|}[z,x_1] \\ &\alpha_2 = (-1)^{|t|+|tz|}[t,b] + (-1)^{|z|+|zy|+1+|yt|}[z,y_1] + (-1)^{|y|+|yt|}[y,z_1] \\ &\alpha_3 = (-1)^{|t|+|ty|}[t,a] + (-1)^{|y|+|ty|+1+|xt|}[y,x_1] + (-1)^{|x|+|xt|}[x,y_1]. \end{aligned}$$

We deduce elements β_1 , β_2 and β_3 satisfying

$$d(\beta_1) = [\alpha_1, y], \quad d(\beta_2) = [\alpha_2, x], \quad d(\beta_3) = [\alpha_3, z].$$

Now we verify that $[\omega, t]$ is the boundary of

$$\begin{split} &(-1)^{|zy|+|ct|+|yc|+1}[y_1,c]+(-1)^{|yc|+|bt|+|bx|+1}[x_1,b] \\ &+(-1)^{|xz|+|az|+|at|+1}[z_1,a]+(-1)^{1+|tx|+|ty|+|xy|}\beta_2 \\ &+(-1)^{1+|yz|+|ty|+|tz|}\beta_1+(-1)^{1+|tx|+|tz|+|xz|}\beta_3. \end{split}$$

3. Proof of Theorems 2 and 3.

We filter the Lie algebra $(\mathbb{L}(V \oplus \mathbb{Q}x), d)$ by putting V in gradation 0 and x in gradation 1. We obtain a spectral sequence $E_{*,*}^r$. We will first compute the term $(E_{*,*}^1, d^1)$ and its homology E^2 . We will see that E^2 is generated only in filtration degrees 0, 1 and 2. The differential d^2 is thus defined by its value on $E_{2,*}^2$. Under the hypothesis of Theorem 2, we show that $d^2 = 0$ and that the spectral sequence collapses at the E^2 -level. Under the hypothesis of Theorem 3, we show that the image of $d^2 : E_{2,*}^2 \to E_{0,*}^2$ has dimension 1 and that a basis is given by the class of the Whitehead bracket $\langle a, a, a \rangle$. We will compute explicitly the term $E_{*,*}^3$. This term is generated only in filtration degrees 0 and 1, so that the spectral sequence collapses at the E^3 -level in that case.

3.1. Description of (E^1, d^1) .

The term
$$(E^1, d^1)$$
 has the form

$$(E^1, d^1) = (A \coprod \mathbb{L}(x), d), \quad A = H_*(\mathbb{L}(V), d) = L_X, \quad d(x) = a.$$

We denote by I the ideal generated by x,

$$I = \mathbb{L}([x, \beta_i], \text{ with } \{\beta_i\} \text{ a basis of } UA),$$

and by J the ideal of I generated by the $[x, \beta_i]$ with β_i in $(UA)_+$.

$$J = \mathbb{L}([x, [x, \cdots [x, \beta_i] \cdots], \text{ with } \{\beta_i\} \text{ a basis of } (UA)_+).$$

For sake of simplicity we introduce the notation

$$\varphi_1(\beta) = [x, \beta], \quad \varphi_n(\beta) = [x, \varphi_{n-1}(\beta)], n \ge 2.$$

Lemma 1.

(1)
$$d(\varphi_1(\beta)) = 0$$
 for $\beta \in (UA)_+$.
(2) $[a, \varphi_n(\beta)] =_{(J^2)} -\varphi_n(a\beta), n \ge 1$.
(3) $d(\varphi_n(\beta)) =_{(J^2)} -(n-1)\varphi_{n-1}(a\beta), n \ge 2$.

In the above formulas $=_{(J^2)}$ means equality modulo decomposable elements in the Lie algebra J. Proof.

(1) $d\varphi_1(\beta) = d[x,\beta] = [a,\beta] = 0.$

(2) The Jacobi identity shows that $[a, \varphi_1(\beta)] = [a, [x, \beta]] = -[[x, a], \beta]$ = $-[x, a\beta]$. By induction we deduce $[a, \varphi_n(\beta)] = {}_{(J^2)} [x, [a, \varphi_{n-1}(\beta)]] = -\varphi_n(a\beta)$.

(3)
$$d\varphi_n(\beta)$$
) = $[a, \varphi_{n-1}(\beta)] + [x, d\varphi_{n-1}(\beta)] = {}_{(J^2)} - (n-1)\varphi_{n-1}(a\beta).$

Lemma 2.

(1) $d\varphi_1(a) = 0, d\varphi_2(a) = 0$ (2) $d\varphi_n(a) \in \mathbb{L}(\varphi_1(a), \cdots, \varphi_{n-2}(a))$

(3) $d\varphi_n(a) + \alpha_n[\varphi_1(a), \varphi_{n-2}(a)]$ is a decomposable element in $\mathbb{L}(\varphi_2(a), \dots, \varphi_{n-3}(a))$, for $n \ge 3$, with $\alpha_3 = 1$ and for $n \ge 4$, $\alpha_n = 5 + \frac{(n+3)(n-4)}{2}$.

Proof. — We first check that $[a, \varphi_1(a)] = 0$ and that

$$[a,\varphi_2(a)] = -[\varphi_1(a),\varphi_1(a)]\,.$$

Now, using Jacobi identity we find that

$$[a, arphi_n(a)] = -\sum_{p=1}^{n-1} inom{n-1}{p} [arphi_p(a), arphi_{n-p}(a)] \, .$$

Using once again Jacobi identity we find

$$[x, [\varphi_n(a), \varphi_m(a)]] = [\varphi_{n+1}(a), \varphi_m(a)] + [\varphi_n(a), \varphi_{m+1}(a)].$$

The derivation formula valid for $n \ge 2$

$$d\varphi_{n+1}(a) = [a,\varphi_n(a)] + [x,d\varphi_n(a)],$$

gives now point (3) of the lemma.

3.2. Computation of $E^2 = H(E^1, d^1)$.

LEMMA 3. — The homology $H(\mathbb{L}(\varphi_n(a), n \ge 1), d)$ is the quotient of the free Lie algebra $\mathbb{L}(\varphi_1(a), \varphi_2(a))$ by the ideal generated by the relations $[\varphi_1(a), \varphi_1(a)]$ and $[\varphi_1(a), \varphi_2(a)]$.

272

Proof. — Since the differential d is purely quadratic, the graded Lie algebra $(\mathbb{L}(\varphi_n(a), n \ge 1), d)$ represents a formal space Z with rational cohomology $H^*(Z; \mathbb{Q})$ isomorphic to the dual of the suspension of the graded vector space generated by the $\varphi_n(a), n \ge 1$.

The rational cup product in $H^*(Z; \mathbb{Q})$ is given by the dual of the differential. This means that $H^*(Z; \mathbb{Q})$ is generated by elements u_1 and u_2 defined by $\langle u_i, s\varphi_j(a) \rangle = 1$ if i = j and 0 otherwise. The description of $d(\varphi_5(a))$ yields the relation $u_1^3 = \frac{9}{8}u_2^2$. Now since the Poincaré series of $H^*(Z; \mathbb{Q})$ and $\mathbb{Q}[u_1, u_2] / \left(u_1^3 - \frac{9}{8}u_2^2\right)$ are both equal to $\frac{1}{1 - t^{n+1}} - t^{n+1}$, there is no other relation. Therefore

$$H^*(Z;\mathbb{Q}) \cong \mathbb{Q}[u_1,u_2]/\left(u_1^3 - \frac{9}{8}u_2^2\right).$$

The Lie algebra $H(\mathbb{L}(\varphi_n(a), n \ge 1), d)$ is thus isomorphic to the rational homotopy Lie algebra L_Z ; its dimension is three and a basis is given by the elements $\varphi_1(a), \varphi_2(a)$ and $[\varphi_2(a), \varphi_2(a)]$. This implies the result.

The differential ideal J is thus the free product of two differential ideals

$$J = \mathbb{L}((\varphi_n(a)), n \ge 1) \quad \coprod \quad \mathbb{L}((\varphi_n(\beta_i), \varphi_n(a\beta_i), n \ge 1, \\ \text{with } \{\beta_i\} \text{ a basis of } (UA/a)_+).$$

Each factor is stable for the differential. Therefore

The short exact sequence of Lie algebras

$$0 \to J \to A \coprod \mathbb{L}(x) \to A \oplus \mathbb{Q}x \to 0,$$

closes the description of the term E^2 of the spectral sequence

COROLLARY. — The term E^2 satisfies $E_{0,*}^2 = A/(a)$, and $E_{+,*}^2 = H(J)$. In particular E^2 is generated in filtration degrees 0, 1 and 2.

3.3. Description of the differential d^2 .

Recall that a is in the center. The element $[\alpha, \alpha]$ is thus a boundary : there exists some element b with $d(b) = [\alpha, \alpha]$. Then the element $[b, \alpha]$ is also a cycle and its homology class is the triple Whitehead bracket $\langle a, a, a \rangle$.

LEMMA 4. — Denote by $[\varphi_2(\alpha)]$ the class of $\varphi_2(\alpha)$ in the E^2 -term of the spectral sequence. We then have

$$d^2([arphi_2(a)])=-rac{3}{2}\langle [lpha,b]
angle,$$

where $\langle --\rangle$ means the class of a cycle in the E^2 term.

Proof. — We easily verify that in the differential Lie algebra $(\mathbb{L}(V \oplus \mathbb{Q}x), d)$, we have

$$d\left(arphi_2(lpha)-rac{3}{2}[x,b]
ight)=-rac{3}{2}[lpha,b].$$

Since [x, b] is in filtration degree 1, and $[\alpha, b]$ in filtration degree 0, this gives the result by definition of the differential d^2 .

3.4. End of the proof of Theorem 2.

If $\langle [b, \alpha] \rangle = 0$, then $d^2 = 0$, the spectral sequence degenerates at the E^2 level and Theorem 2 is proved.

3.5. Computation of the term $E^3_{*,*}$.

Henceforth, we suppose $\langle [b, \alpha] \rangle \neq 0$. A simple computation using Jacobi identity gives the following identity.

Lemma 5. — $d^2([\varphi_2(a), \varphi_2(a)]) = 3[\varphi_1(a), \varphi_1(\langle [\alpha, b] \rangle)].$

Let $\{\beta_i\}, i \in I$, denote a basis of $(UA/a)_+$ such that $\langle [\alpha, b] \rangle = \beta_{i_0}$ for some index i_0 . The elements $\varphi_1(a)$ and $[\varphi_2(a), \varphi_2(a)]$ together with the elements $\varphi_1(\beta_i)$ generate an ideal M in the graded Lie algebra $E^2_{+,*}$. The Lie algebra M is generated by the elements $\varphi_1(\beta_i)$, $[\varphi_2(a), \varphi_1(\beta_i)], [\varphi_2(a), \varphi_2(a)]$ and $\varphi_1(a)$ and satisfies the two relations $[\varphi_1(a), \varphi_1(a)] = 0$ and $[[\varphi_2(a), \varphi_2(a)], \varphi_1(a)] = 0$. Denote by N the graded

Lie algebra

$$N = \mathbb{L}(\varphi_1(\beta_i), [\varphi_2(a), \varphi_1(\beta_i)]) \quad \coprod \quad \frac{\mathbb{L}([\varphi_2(a), \varphi_2(a)], \varphi_1(a))}{([\varphi_1(a), \varphi_1(a)], [[\varphi_2(a), \varphi_2(a)], \varphi_1(a)])}$$

Since M and N have the same Poincaré series they coincide. Therefore as a Lie algebra, M can be written

$$M = \mathbb{L}(\varphi_1(\beta_i), [\varphi_2(a), \varphi_1(\beta_i)]) \quad \coprod \quad \frac{\mathbb{L}([\varphi_2(a), \varphi_2(a)], \varphi_1(a))}{([\varphi_1(a), \varphi_1(a)], [[\varphi_2(a), \varphi_2(a)], \varphi_1(a)])}$$

The equation

$$d^2[arphi_2(a),arphi_1(eta_i)]=rac{3}{2}arphi_1(eta_i[a,b]).$$

shows that the Lie algebra M decomposes into the free product of three differential graded Lie algebras, the first one being acyclic :

$$M = \mathbb{L}(\varphi_1(\beta_i \cdot \langle [\alpha, b] \rangle), [\varphi_2(a), \varphi_1(\beta_i)], i \in I) \coprod \mathbb{L}(\varphi_1(\beta_i), i \in I \setminus \{i_0\}) \coprod K,$$

$$K = \mathbb{L}(\varphi_1(\langle [\alpha, b] \rangle) \quad \coprod \quad \frac{\mathbb{L}([\varphi_2(a), \varphi_2(a)], \varphi_1(a))}{([[\varphi_2(a), \varphi_2(a)], \varphi_1(a)], [\varphi_1(a), \varphi_1(a)])}$$

We thus have

$$H(M) = \mathbb{L}(\varphi_1(\beta_i), i \in I \setminus \{i_0\}) \prod H(K).$$

To compute the homology of K we put $t = \varphi_1 \langle [\alpha, b] \rangle$, $y = \varphi_1(a)$ and $z = [\varphi_2(a), \varphi_2(a)]$.

LEMMA 6. — Let $(\mathcal{L}, d) = (\mathbb{L}(y, z, t)/([y, z], [y, y]), d)$ be a differential graded Lie algebra with t and z in \mathcal{L}_{even} , y in \mathcal{L}_{odd} , and where the differential d is defined by d(t) = d(y) = 0 and d(z) = [t, y]. Then $H(\mathcal{L}, d)$ is a Q-vector space of dimension two generated by the classes of t and y.

Proof. — Denote by R the ideal generated by t. As a Lie algebra R is the free Lie algebra generated by t, w = [t, y], the elements $u_n = ad^n(z)(t)$, for $n \ge 1$ and the elements $w_n = ad^n(z)[t, y]$, for $n \ge 1$.

Using the Jacobi identity, we get the following sequence of identities:

$$\begin{array}{l} d(t) = 0 \\ d(w) = 0 \\ d(u_1) = [t, w] \\ d(u_2) = 2[u_1, w] - [w_1, t] \\ \dots \\ d(u_n) = n[u_{n-1}, w], \quad \text{modulo } \mathbb{L}(u_1, \dots u_{n-2}, t, w_i) \\ d(w_1) = -[w, w] \\ d(w_2) = -3[w_1, w] \\ \dots \\ d(w_n) = -(n+1)[w_{n-1}, w], \quad \text{modulo } \mathbb{L}(w_1, \dots w_{n-2}). \end{array}$$

This shows that the cohomology of the cochain algebra on R is $\mathbb{Q}[w^v] \otimes \wedge(t^v)$, with w^v and t^v 1-cochains satisfying $\langle w^v, w \rangle = 1$ and $\langle t^v, t \rangle = 1$. The interpretation of H(R, d) as the dual of the vector space of indecomposable elements of the Sullivan minimal model of $\mathcal{C}^*(R)$ shows that $H(R, d) \cong \mathbb{Q}w \oplus \mathbb{Q}t$.

The examination of the short exact sequence of differential complexes

$$0 \to (R,d) \to (\mathcal{L},d) \to (\mathbb{Q}y \oplus \mathbb{Q}z,0) \to 0,$$

shows that $H(\mathcal{L}, d) \cong \mathbb{Q}t \oplus \mathbb{Q}y$.

This shows that H(M) is isomorphic to the free product of $\mathbb{L}(\varphi_1(\beta_i), i \in I \setminus \{i_0\})$ with the abelian Lie algebra on the two elements $\varphi_1(a)$ and $\varphi_1(\langle [\alpha, b] \rangle)$.

3.6. End of the proof of Theorem 3.

From the short exact sequence of chain complexes

$$0 \to M \to E^2 \to E^2_{0,*} \oplus \varphi_2(a) \mathbb{Q} \to 0,$$

we deduce the isomorphism of graded vector spaces

$$E^{3} = H(E^{2}, d^{2}) \cong H(M) \oplus A/(a, \langle [\alpha, b] \rangle).$$

Since E^3 is generated by elements in gradation 0 and 1, the spectral sequence degenerates at the term E^3 , $E^3 = E^{\infty}$. This closes the proof of Theorem 3.

276

4. Proof of Theorem 7.

We suppose that the ideal generated by a is composed of a and b = [a, c]. We choose an ordered basis $\{u_i\}, i = 1, \ldots$ of L_X with $u_1 = c$, $u_2 = a$ and $u_3 = b$. We consider the set of monomials of UL_X of the form $\beta_i = u_{i_1}u_{i_2}\ldots u_{i_n}$ with $i_n \leq i_{n-1} \leq \ldots \leq i_2 \leq i_1$ and $i_j \neq i_{j+1}$ when the degree of u_j is odd. This set of monomials forms a basis of UL_X .

The ideal generated by x in $L_X \coprod \mathbb{L}(x)$ is then the free Lie algebra on the elements $[x, \beta_i]$. For sake of simplicity, we denote x' = [x, c].

In particular the ideal J generated by the elements [x, x], [x', x'] and the $[x, \beta_i]$ for $\beta_i \notin \{1, c\}$ is a differential sub Lie algebra that is a free Lie algebra on two types of elements:

 $\begin{array}{ll} \text{First type:} & [x,x], [x,x'], [x',x'], [x',[x,x']], [x',[x,x]] \\ \text{Second type:} & [x,\beta_i], [x, [x,\beta_i]], [x', [x,\beta_i]], [x', [x,\beta_i]]], & \beta_i \neq 1,c. \end{array}$

We have

$$\begin{split} d([x,x]) &= -2[x,a] \\ d([x',x']) &= -2[x,cb] \\ d([x,x']) &= -[x,ca] - [x,b] \\ d([x,[x,x]]) &= -2[x,[x,b]] + 2[x',[x,a]] \\ d([x',[x,x]]) &= 0 \\ d([x,[x,\beta_i]]) &= 0 \\ d([x,[x,\beta_i]]) &= -[x,\beta_ia] \\ d([x',[x,\beta_i]]) &= -[x,\beta_ib] \end{split}$$

 $d([x',[x,[x,\beta_i]]]) = -[x,[x,\beta_ib]] + [x',[x,\beta_ia]]$ modulo decomposable elements.

Looking at the linear part of the differential we see directly that H(J) is isomorphic to the free Lie algebra on the element [x, ca] and the elements $[x, \beta_i]$ with β_i a non empty word in the variables u_j different of a and b.

Example 6. — Let X be the total space of the fibration with fibre S^7 and base $S^3 \times S^5$ whose Sullivan minimal model is $(\wedge(x, y, z), d)$, d(x) = d(y) = 0, d(z) = xy, |x| = 3, |y| = 5 and |z| = 7. If we attach a cell along the sphere S^3 we obtain the space $Y = (S^5 \times S^{10}) \vee S^{12}$.

BIBLIOGRAPHY

- H.J. BAUES and J.-M. LEMAIRE, Minimal models in homotopy theory, Math. Ann., 225 (1977), 219-242.
- [2] Y. FÉLIX, S. HALPERIN, C. JACOBSSON, C. LÖFWALL and J.-C. THOMAS, The radical of the homotopy Lie algebra, Amer. Journal of Math., 110 (1988), 301-322.
- [3] Y. FÉLIX, S. HALPERIN, J.-M. LEMAIRE and J.-C. THOMAS, Mod p loop space homology, Inventiones Math., 95 (1989), 247-262.
- [4] Y. FÉLIX, S. HALPERIN and J.-C. THOMAS, Elliptic spaces II, Enseignement Mathématique, 39 (1993), 25-32.
- [5] S. HALPERIN, Lectures on minimal models, Mémoire de la Société Mathématique de France 9/10 (1983).
- [6] S. HALPERIN and J.-M. LEMAIRE, Suites inertes dans les algèbres de Lie graduées («Autopsie d'un meurtre II»), Math. Scand., 61 (1987), 39-67.
- [7] K. HESS and J.-M. LEMAIRE, Nice and lazy cell attachments, Prépublication Nice, 1995.
- [8] J.-M. LEMAIRE, «Autopsie d'un meurtre» dans l'homologie d'une algèbre de chaînes, Ann. Scient. Ecole Norm. Sup., 11 (1978), 93-100.
- [9] D. QUILLEN, Rational homotopy theory, Annals of Math., 90 (1969), 205-295.

Manuscrit reçu le 3 avril 1995, accepté le 6 septembre 1995.

Yves FÉLIX, Institut de Mathématique 2, Chemin du Cyclotron 1348 Louvain-La-Neuve (Belgique). felix@agel.ucl.ac.be