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DUALITY THEOREMS FOR HARDY
AND BERGMAN SPACES ON CONVEX DOMAINS

OF FINITE TYPE IN C71

by S.G. KRANTZ^*) and S.-Y. LI

1. Introduction.

Let n be a smoothly bounded, convex domain of finite type in C"
(see [Kl] for a discussion of finite type). We define W(^) to be the usual
Hardy space of holomorphic functions on 0 (see [Kl]). We may identity
it as a closed subspace of Lp{9fl.) by passing to the (almost everywhere)
radial limit function / on 90,. Let d be a quasimetric on 90, (see [KL1] or
[CHR] for a discussion of quasimetrics). Then BMO{9fl.) can be defined in
the usual way, in terms of the quasimetric d and the area measure on 90,:
the semi-norm on BMO is

1 r
\\9\\BMO = sup / \g(t) - QB{X^\ da(t).

x,r \B(x,r)\ JB{X,T}

Here the balls B(x^r) are defined using the quasimetric, g B ( x r ) ls the
average of g over the ball, da is (2n — l)-dimensional area measure on
the boundary of ^, and \B(x,r)\ = a{B{x,r)). Of course in practice it
is important to select a quasimetric that is compatible with the complex
structure.

Now BMOA(^l) denotes the space of holomorphic functions in H1^)
whose boundary function is in BMO {90) with norm ||/||^ = ||/||i +

(*) Author partially supported by a grant from the National Science Foundation.
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Finite type.
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I I /UBMO- It is easy to prove that BMOA(^l) is a closed proper subspace
ofBMO(9fl).

Let A^f^) be the holomorphic subspace of the Lebesgue space 1^(0)
with respect to Lebesgue volume measure over ^2. Let B(f^) denote the
usual holomorphic Bloch space over Q, with norm:

\\f\\BW = sup{8(z)\^f(z)\: z € 0} + / |/| dV < oo
JQ

where 6{z) = dist(^,90). We say that a holomorphic function / € Bo(^)
(the little Bloch space) if / C 6(0) and

^^)|V/(^)|=0.

We will prove the following theorems.

THEOREM 1.1. — Let f2 be a bounded convex domain of finite type
in V. Then the dual ofT^O) is BMOA(n). Namely, ifg € BMOA(^t),
then the linear functional on 7i1 (fl.) denned by lg(f) = fg^ f(w)g(w) da(w)
is bounded, and every bounded linear functional on T-i1^) arises in this
way. Moreover, the BMOA norm ofg is comparable to the operator norm
ofig:

C^M. < sup{|^(/)| : ll/ll^i < 1} ^ C\\g\\..

THEOREM 1.2. — Let fl, be a bounded convex domain of finite type
in C". Then the dual ofA1^) is B(n). Namely, ifg € g(0), then the linear
functional on A1^) defined by lg(f) = f^f(w)g(w) dV(w) is bounded,
and every bounded linear functional on A1 (^) arises in this way. Moreover,
the B norm ofg is comparable to the operator norm ofig:

C-^gV < sup{M/)| : II/HAI < 1} < C\\g\\a.

And

THEOREM 1.3. — Let 0 be a bounded convex domain of finite type
in C". Then the dual ofBo(^) is A1^). Moreover, the A1^) norm ofg is
comparable to the operator norm ofig:

C-VA. < sup{M/)| : ||/|bo <. 1} ^ C\\g\\^.

We make an effort in this paper to isolate the particular properties of a
domain, and of its canonical kernels, that are needed to prove Theorems
1.1-1.3.
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In this spirit, in Section 3, we will prove the sufficiency of Theorem
1.1 on a class of "admissible" domains which include smoothly bounded
convex domain of finite type in C71, strictly pseudoconvex domains in C71,
and pseudoconvex domains of finite type in C2. See [KL1] for related results.

In Section 4, we prove that Theorem 1.2 holds for a class of domains
which include the above mentioned three types of domains. The proof of
Theorem 1.1 is completed in Section 5. Finally, in Section 6, we prove that
Theorem 1.3 holds for a class of domains including the above mentioned
domains.

2. The quasimetric for a finite type, convex domain.

For a convex domain of finite type in C"', let d be the quasimetric
defined in [MS1]. For convenience, we now recall it: Let p € 90 be fixed
with type m, and let U be sufficiently small neighborhood of p. Choose
a local defining function r of 90, H U with the property that the sets
[z € U : r(z) < rj} for -770 < rj < r]o, rjo > 0 are all convex. For
each small 6 > 0 and q € U, let r^q,6) be the distance from q to the
set {z : r(z) = r(q) 4- 6}. If pi e {z : r(z) = r(q) 4- 6} such that
^(o^) = dist(g,pi), parameterize the complex line from q to pi in such a
way that q corresponds to the origin (in parametric space) and pi lies on
the positive real axis of the parameter, this parameter is called coordinate
z\. In complex directions orthogonal to zi, compute the largest distance:
T2(g,<5) from q to {z : r(z) = r(q) + 6}. Let p2 C {z : r(z) = r(q) 4- 6}
such that T^(q,6) = dist(q,p^), we parameterize the complex line from
q to p2 as the coordinate z^. Taking the orthogonal complement of the
span of {^1,^2} and determining the largest remaining complex distance,
we obtain the number T3(g,<?) and the coordinate ^3. This process may
be continued to obtain a full orthogonal coordinate system (^ i , - - - , ^ )
and positive numbers ri(g, 8 ) , ' ' - , Tn(q, 6). We may extend the definition of
Tj(q,6) for 6 large and q not close to the boundary by letting Tj(q,6) = 1
for all 1 < j < n. The polydisc with respect to q and 6 is defined as follows:

P6(q)={z: \Zi\ <Ti(q,6), z = l , . . . , n }
where the components of z are measured in terms of the coordinates
constructed above. McNeaPs construction shows that there are constants
0 < c < C such that, if U is a sufficiently small Euclidean ball in C71, then
there is p € U H 0, and c = dist(p, 90),

Pce(p) cuno
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and
Pce{p)^uno.

The family of balls on 90, is defined as follows: Let p € 90 and
6 > 0. Then B(p,e) is defined to be {z € 90: z G PceCp)}. We define the
quasimetric given in [MS1] on 90 as follows:

d(z,w) = mf{t: z,w € B(z,t) and ^ G B(w,^)}.

One may extend the definition of d to 0 by letting

d(z,w) = |r(^)[4-|r(w)|+d(7r(z),7r(w)), z,w e0.

It is demonstrated in [MCN1], [MNC2], [MS1] that the quasimetric
described here is the right one for the study of holomorphic function theory
on a finite type convex domain in C71. In dimension 2, this quasimetric
reduces to quasimetrics that are well known (see, for instance, [NRSW]).

3. Duality on admissible domains.

Let 0 be a bounded domain in Cn with smooth boundary 90, and let d
be a quasimetric on 90.. Let K(z, w) be the Bergman kernel with associated
Bergman projection P from L2^) to the Bergman space A2^). Let S
denote the Szego projection from L2(90) to ^(O). Let B(zo,6) denote
the ball in 90 with center at ZQ and radius 6 with respect to d, i.e., the set
of points w € 90 with d(w, zo) < 6. For a subset X of 90, \X\ denotes its
2n — 1 dimensional area measure.

We say that 90 has a strongly homogeneous structure with respect
to d if there are constants (3 > 1 and 0 < 7 « 1 such that the followings
conditions are satisfied:

(1) If B(zi,n) H B(z2,r^) -^ 0 and n > r^ then B^r^) C
^i,/3n);

(2) /T^, w) < \z - w\ < (3d{z, w)7;

(3) f3r^ ^ \B{z,r)\ > ̂ r1^ for all z € 90 and all 1 > r > 0;

(4) \B(z,2r)\ < l3\B(z,r)\ for all z e 90 and all r > 0.

We say a bounded domain 0 in C71 has a strongly homogeneous
structure if there is a quasimetric d on 90 x 90 such that 90 has a strongly
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homogeneous structure with respect to d, moreover, we may extend d to
be defined on 0 x 0 by letting

d(z, w) = d(7r(z), 7r(w)) + 6(z) + 6(w)

so that
u(z)V(B(z, 6(z)/(3)) <C ( u(w)dV(w)

JB(zMz}/0}B(^(0//3)

for all plurisubharmonic functions on ^, where B{z,6{z)/l3) = {w G f2 :
d(w,z) < 6(z)/f3}-the hyperbolic ball centered at z € 0.

If ^ is a smoothly bounded convex domain of finite type in C71, and if
d is the quasimetric defined in Section 2, then it is known that conditions
(1)-(4) hold with 7 <, l/(2nm), where m is the maximum type of any
boundary point of the domain (see [ST2], [NSW], [MS1]). In other words,
9^1 has a strongly homogeneous structure when n is a smoothly bounded
convex domain of finite type in C71.

By applying the sub-mean value property in each value separately,
we see that the sub-mean value property holds on the poly discs Pg.

Therefore ^ has strongly homogeneous structure if ^ is a smooth
convex domain of finite type in C71. The concept of homogeneous structure
that we introduce here is closely related to, indeed is inspired by, the
concept of "space of homogeneous type" as introduced in [CW].

For ZQ € 9^1 and 6 > 0, the Carleson region C(ZQ, 6) is defined by

C(zo,6) = {z e Q : 7r(z) e B(zo,6),\r(z)\ < 6} w {z e ̂  : d(z,7r(zo)) < 6}.

For convenience, from now on, we shall use C to denote a positive constant
depending only on /?, 7 and the domain 0, but this constant does not
always have the same value at each occurrence.

DEFINITION 3.1. — Let fl. be a bounded domain in C" with smooth
boundary. We say that fl, is strongly admissible if Q, has a strongly
homogeneous structure and if the Berg-man kernel K for ^l satisfies the
following "homogeneity condition":

(3.1) \K(z,w)\ <. C(d(z,w) . |B(7r(^),d(^w))|)~1.

Note: If Q, is strongly admissible, then fl. is admissible (the definition
of an admissible domain was given in [KL1]).

The main point of this section is to prove:
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THEOREM 3.2. — Let Q, be a strongly admissible domain in C71 such
that S : LP(9fl) -^ WW and P : C°°W -^ W^W are continuous. If
f 6 BMOA{fl,), then If is linear functional on ̂ (fl.) satisfying:

IMoo<<"||/||BMO(^).

We need the following theorem that was proved by the authors in
[KL1]:

THEOREM 3.3. — Let fl. C C71 be an admissible domain. Suppose
that the Szego projection S maps 1^(9^) boundedly onto 7^(0), for all
p € [2,oo) and that the Bergman projection P : C°°(Ti) —> TV1'2^)
is continuous. Then |V' f\2{z)6(z)dV{z) is a Carleson measure for every
f e BMOAW.

As an application of the above theorem, we shall prove the following
proposition.

PROPOSITION 3.4. — Let Q, be a smoothly bounded, convex domain
of finite type in C71. Then

(a) Q, is a strongly admissible domain;
(b) iff e BMOA(Q), then \^f(z)\26(z)dV(z) is a Carleson measure.

Proof. — We remarked before that Q, has a strongly homogeneous
structure respect to the quasimetric defined in Section 2 or in [MS1]. It was
shown in [MCN2] that the Bergman kernel admits the following estimate:

n

\K(z^w)\^C]^n^6)-2

i=l
where 6 = d(z^ w). It is not difficult to see that:

f[T(z,6r2»[V(P(z,6)n^}-^{d(z,w)\B(^r(z),d(^,w))\Yl.
1=1

This shows that f2 is a strongly admissible domain, i.e., (a) holds. Now we
prove (b). Since 0 is a smoothly bounded convex domain of finite type, we
know by a theorem of Catlin [C] that 0 satisfies Condition R.

In order to apply Theorem 3.3, we need the following result from
[MS2].

THEOREM 3.5. — Let fl, be a smoothly bounded convex domain
of finite type. Then the Szego projection is bounded from L'p(Q^t} onto
^(9^) for 1 < p < oo.
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We note that Theorem 3.5 also follows from the T(l) theorem that
we develop in Section 5 of the present paper - in particular, see Remark 1
of that section. Thus the arguments presented here are self-contained.

Therefore all the conditions of Theorem 3.3 are satisfied. This proves
that 6(z)\^7f(z)\2dV{z) is a Carleson measure over ^, i.e., (b) holds, and
the proof of Proposition 3.4 is therefore complete. D

Let u(z) e L^c^). We define a Hardy-Littlewood extension function
M{u) of u from 90. to ^e by

M[u](z)=SMp{ . ( \u^)\da^:B(^r(z))1 \B{ZQ,r)\ JB{zo,r}

cB(zo,r)c9^\

for z € de-

Let u € L1^). We shall use N(u)(z) to denote the radial maximal
function on 90, of u, defined by

N(u)(z) = sup {\u(z + ti/(z))\ :0 <t< c}, z e90.

Then we have the following lemma:

LEMMA 3.6. — Let 0 be a strongly admissible domain in C71. If
u C T^^), then we have

\u(z)\1/2 < CM^dnl1/2)]^) + C\\u\\w, for all zeOe

where C is a constant depending only on 0.

Proof. — The assertion is obvious when z is far away from bound-
ary. Thus we may assume that z C ^ is near to 9fl.. From the construc-
tion of B(z), we have B(z) C B(7r(z),l36(z)) x [0,/3r(z)]. By the pluri-
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subharmonicity of |n(z)|1/2 and ^ is strongly admissible, we have

t{z)\^< ——— ( \u(w)\l/2dV(w)
l-0^)! JB{Z)

u[z)

< C Ll5^)! JB(v(z},13\r(z)\)x[0,/3\r(z)\]
N^u^^daWt

Cf3
^)1 IJB\^ TRf^^ /l-"^! JB(v(i),f)\r(z)\)

^•(|u|l/2)(w)d(^(^(;)

< (7
\r(z

- \r(z)\\B(^z),\r(z)\)\1 v ^yB^),^^)))VJB(

^([^[^^^^(w)

< C
J B {- \B{7r(z)^\r(z)\)\JB^^r^

< CM[N(\u\^)}{z).

TVd^/^w^w)

This completes the proof of Lemma 3.6. D

Now we are ready to prove Theorem 3.2.

Proof. — We shall follow the argument given by Fefferman and Stein
in [FS]. For fixed ZQ e ^, we let G(z,zo) be the Green's function for the
ordinary Laplacian on 0. For u € T-i1^) we have, by Green's formula, that

|(/,n)|= / Juda(z)
\J9Q

^(fu)G(z,zo)dV(z) - { fu^G(z,zo)dV(z)
Jo

/ 4^|/9nG^,zo)dy^) +CV(^o)||^o)|<
JQ j=l 3 3

< c( f iv/l^^K^idy^))1/2 ( { iv^M-M^W^))172
\J^ ) vo 7

+ C(l + |V/|(zo)|V^|(^o) + \f{zo)\\u(zo)\)

<c(^lv/121r(^IK^Idy(^)l/2(^lvnl^^/n / \J^

+cK^)l-2n(l+ 11/II^M^i).
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NOW

/ K^l-^v^K^ldy^)J^.
= ( ^\u(z)\\r(z)\dV{z)

JQ

= ( \u(z)\da(z)^ [ \u(z)\^r(z)dV(z)
Jan J^.

< \\u\\^C\\u\\n.<C\\u\\H..

We then apply Theorem 2.4' in [H] and Corollary in [ST2], p.40 to
obtain the estimate

[ ^f\\z)\r(z)\\u(z)\dV(z)
Jn

< I ^f\\z)r{z)M{N(\u\l/2))2(z)dV(z)
JQ

<C||/bMOA||^(Ml/2))||i2^)

<C\\f\\BMOA\\\U\^\\i^

=C\\f\\BMOA\\U\\n..

Thus \{f,u}\ ^ C||A||BMOA||^HI. Therefore, If € (^(O))*; more simply,
/ € (T^1^))* and \\lf\\oo ^ C'H/UBMOA. Therefore, the proof of Theorem
3.2 is complete. D

As a corollary of Theorem 3.2 and Proposition 3.4, we have completed
the proof of the sufficiency of Theorem 1.1. D

4. The proof of Theorem 1.2.

In this section we shall prove a general result that includes Theorem
1.2 as a special case. First, let us introduce the following definition.

DEFINITION 4.1. — Let Q. be a bounded C2 domain in C". We say
Q satisfies Condition D if the Berg-man kernel K(z, w) is also a reproducing
kernel for A^^) and satisfies the following inequality:

(4.1) [ \^,K^w)\dV(w)\r(z)\^C.
Jfl
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The main point of this section is to prove:

THEOREM 4.2. — Let fl, be either a bounded strongly pseudoconvex
domain in C71 or a bounded convex in C71 satisfying Condition D. Then
(A (Q))* = B(^), and the operator norm ofig is comparable to \\g\\K.

The proof of Theorem 4.2 is divided into the following lemmas.

LEMMA 4.3. — Let n be a bounded domain in C71. Then

(a) (T^))* C5(L°°(^));

(b) (A^ycP^00^));

Proof. — This is standard, so we present the proof of (a) and leave
(b) for the reader. Let I be a linear functional on H1^). Since H1^) is
a closed subspace of L^^) then, by the Hahn-Banach Theorem, we can
extend I to be a linear functional on ^(Q^l) with the same norm. Since
I^^Q^Y = L°°(^), there is an / e L°°(<9n) such that for each u e T^(^)
we have

l(u)= [ Juda= [ JS(u)da=(S(u)J)={u,S(f)}= [ ~S(f)uda(z).
JQQ, JQQ, JQQ

Therefore we may identify S(f) as a linear functional on H1^) and
l(u) = {u,S{f)). Moreover

IMoc=||/+kernel(5)|[,o,

the proof of Lemma 4.3 is thus complete. D

LEMMA 4.4. — Let ^ be a bounded domain in C71 that satisfies
Condition D. Then P(L°°(^)) = B(^). Moreover,

ro)ll^ll/+kernel(P)||^.

Proof. — Applying some simple calculations, one can show that:
P(L°°W) c B(^), and ||P(/)||^) < C\\f + kernel(P)||^. To prove the
converse inclusion, we let / e B(^). By a partition of unity, we may choose
an open cover £/o, Uz,' • • , Um of H so that UQ is relatively compact in ^2
and Ui D 90, -^ 0. Moreover, there are functions Xi with support in Ui and
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m _
^ Xi = 1 on f^, and A^o has compact support in 0. Thus
1=0

f{z)= { K(z,w)f(w)dV(w)
Jn
m r 1

= E / ^(^/(^^(w^),———.^r(^)dy(^)
2=0 J^ ^k^)

m r r 1
= -E [j^Wg^^9^fW(w,z)r(z)dV(z)

-/^.(^^^^^l

+ [ Wf(z)K(w,z)dV(z)
Jst

r r ^ ̂ (^)¥^r(z)=/^(.,.)[^V(.)-E^^
+^.(^))r^(2)]^)

= f K(w,z)g(z}dV(z),
Jn

where
\ a/(z,,)̂ -̂£^S ,̂,J )̂̂ ,

l==l UZk,T\ZZ) \u^k^r^z) )

Since / e B(n), we have ^ € L00^) and ||^||oo ^ C||/||^^). Therefore, the
proof of Lemma 4.4 is completes. D

Therefore, combining Lemmas 4.3 and 4.4, we have (A1^))* c B(Q).

Now we prove the converse. Let us start with the following lemma.

LEMMA 4.5. — Let f^ be a smoothly bounded domain in C71 sat-
isfying condition D and A^Q) is dense in A^Q) for some p > 1. Then
BW CA1^)*.

Proof. — Let / C B(^). Then there is /o C L°°(n) such that
P(/o) = /. Then If on AP(^) is defined as follows:

lf(u)= [{u(w),f(w))dV(w).
J^.
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By Lemma 4.5, there is an /o ^ ^°°(^) such that

f(z) = P(fo)(z).

Thus, by Fubini's theorem and condition D, we have

\lf(u)\= | ((u{w)J(z))dV{z)
U^

= | {(u(w), [ K(w,z)fo(z)dV(z))dV(w)
' JQ J^

= | ((u(w)Jo(w)}dV(w)
1 J^

< ll/o||ooh||Ai^C||/||B(0)||u||Ai.

This completes the proof of Lemma 4.5. D

LEMMA 4.6. — Let flbea bounded convex domain C". Then U(^)
is dense in A^^) for 0 < p < oo.

Proof. — Without loss of generality, we may assume that 0 e ̂ . Let

^(t) = {tw: w e n}, o < t < l.
It is clear that ^i) c ^2) if ti ^ ^2; and ^ = ^(1). So we have
lim_ ^(t) = ̂ . In other words, lim |^\^| = 0. Thus, for each / C A^),

^—>L t—>!.
we let

ft(z) =f(tz), z en, 0 < t < 1.

It is easy to see that ft C T-i(fl.) for every 0 < t < 1. Moreover, one can
easily prove:

I^(^-/(^W^O, a^t-^l- .
./Q

This completes the proof of Lemma 4.6. D

Combining Lemmas 4.3-4.6, the proof of Theorem 4.2 is complete. D

If ^ is a smoothly bounded convex domain of finite type in C71,
then Lemma 4 in [MS1] shows that ^ satisfies condition JD. Moreover,
if ^ is a bounded strictly pseudoconvex domain in C71, then it satisfies
Condition D (see [BEA], [F] or [KL1] for details.) Thus Theorem 4.2 implies
Theorem 1.2.
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5. The proof of Theorem 1.1.

In this section, we shall complete the proof of Theorem 1.1, that is,
we are going to prove that (^(Q))* c BMOA(fl,). By Lemma 4.3 and
Theorem 3.2, it suffices to prove: S(L°°(9^)) c BMOA(^t}.

For convenience, we shall from now on assume that fl, is a bounded,
pseudoconvex domain of finite type in C71 with smooth boundary. By the
result of N. Kerzman in [KER] or in [BEL], and the result of Catlin [C]
on the regularity of the <9-Neumann problem in a domain of finite type, we
have, for each w e ̂ , that K(',w) e C00^), and Condition R holds.

Let y{z) denote the unit inward normal vector to Q^t at z C Q^t. Then
we may choose an eo > 0 small enough that

(5.1) z=7r(z)+r(z)v(7r(z))

foi all z C ^eo- For each a e C00^^), we define kernels S(z,w) and
Se(z,w) on9Q x <9Q by

(5.2) S(z,w)= ( ° a(z-^t^(z))K(z+t^z),w)dt,
Jo

and
^ /•eo

(5.3) Se(z, w)= a(z + t^(z))K(z + iv{z), w) dt.
J e

DEFINITION 5.1. — Let Q, be a smoothly bounded domain of finite
type in C71. We say ^ is a Tl domain if there is a 7 > 0 such that:

(5.4) |̂ ,0| < CW,d(^))|-1 z^ e 9^

and

(5-5)
\S(z^) - 5(w,0| + \S(^z) - S(^w)\ ̂  C^z^d^^^-^B^S^

if z, w e B(zo, 6), ^ e 9^ - l3B(zo, 6) and ZQ € <9Q.

Then we shall prove the following key lemma.

LEMMA 5.2. — Let Q, be a smoothly bounded convex domain of
finite type in C71. Then 0 is a Tl domain.

Proof. — By Theorem 5.2 [MCN2], we have the estimates

\K(z-^ty{z)^)\ < C\B(z,d(z^))\-ld{z^)-\ O ^ t ^ e
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and

?+^(^01 < GIBM^O)!-10^, 0 < t < e

for some small positive e depending only on Q. So we have

/•^,0)
?01 < c \ iBM^oi-1^)-1^

^0+r iBM.,o)i-̂ dt
./d(^) ^

< C|B(^, d(z, 0)|-1 + C|B(^, d(^ 0)|-1

< C\B(z^d(z^))\-1.

This completes the proof of (5.4).

Next we prove (5.5). We first consider

fco-5(w,o|
/-co

= | / a(z^-ty(z))K(z^ty{z)^)dt
Jo

/-co
- / a{w+ty{w))K{w^tv(w)^)dt\

Jo
yeo

^ / \a{z^tv{z)-a{w^ty{w)\\K(z^-tv{z)^)\dt
Jo

/-co
+ / |a(w+^(w))| • |^+^(z),0 -^(w+^(w),0|^

Jo
= Ji(^,W,0+J2(^W,0.

Observe that

|a(<z + tv(z)) - a(w + ty{w))\ < C\z - w + ̂ (^) - ̂ (w))|
< C(l-^t)\z-w\
< G(1+^<C'^,

for some 7 > 0 depending only on the type of Q. (In fact, we may choose
7 > 0 such that Tn(z,6) < C6^ if 6 < 1 and if z is near the boundary.)
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Therefore we have
h(z,w,A(^w,Q^ C6^ F \K{z^ty{z)^)\dt

Jo

^ C6^{^\B(z^{z^))\-ld(z^)-l

+ r \B{z^d(z^))\-ld(z^dt}

dt

Jd(z,^ t2 )Jd{z^

< C6^B(z^d(z^))\-1

^ C\B{z^d(z^))\-l\B{z^6)^

< G^B^o,^^))!-1-72!^^)?2.

Now we turn to the estimate of I'z(z^w^). First we fix ZQ € 90,. By
Theorem 5.2 in [MCN2] there is a neighborhood U of ZQ so that, for all
multi-indices a and /3, there is a constant C such that

|V^,w)| < C^f[r^d(z,w))-2r^d(z,w))-l.
j=l %=1

We choose a curve (f)(s) from [0,1] to 90 such that

</>(0) = 2;, 0f(l) = w, (f)(s) = exp ( ̂  o^(s)^
z=l

and

/ \a^s)\ds<Cr^6), j = 1,2, • • . ,n.
J o

Therefore
\K(z-^t^z)^)-K{w+tv(w)^)\

r 1 9
< j ^^(5)+^(5)U) ds

< [ ^\D,KWs)+t^{sm^(s)\d.
J o — 1

s))\\a-j(s)\ds
.7=1
n /. in< C ' E [ n^^^w5)^))"2^^)^^)-^)"1!^^^„•_1 Jo ._1E / n^^^^w5

j^l^O i=l
n n^ ^En^^'^'^)"2^^'^^))"17-^2^))-

j=l i=l
If we keep track of t in the above computation, we also have
\K(z + tv{z\ $) - K(w + ̂ (w),0|

n n

^ c E IIr^ d^ ̂ t-\(z, d(z, O)-1^-^, 6)d{z, $)2.
j=l i=l
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Therefore, since \B{z,d{z^))\ w d(z^) f[ r^,d(^,0)2, we have
J=2

/,(,,»,OiciBM,,a)i-'g^^

U^O 1 yeo .

x . ^^L)^'2^

< CWAO)|-^^^

< C\B(z,d{z^))\-^\B{z^\
for some small positive 7 depending only on the type of fl.

Similar arguments also give the desired estimate for \S(^, z)—S(^, w)\.
Therefore the proof of Lemma 5.2 is complete. D

To complete the proof of Theorem 1.1, we recall a proposition proved
in [KL1] or [NRSW]:

PROPOSITION 5.3. — Let 0 be a bounded pseudoconvex domain of
finite type in C" with smooth boundary. Then the Szego projection has the
following property:

S(f) = A(f) + ES(f), f^L^m,

where
Qj. ^ /•eo Q^

^-I^^7?.' ^^ / -^(z-^t^z))K(z+tv(z)^w)dt^
j^ U7'3 3 JO ^^J

and

E = -1^ ̂  + |̂  + Q^ Qe.{S(f)){z) = S{f){z + e^(z)).

PROPOSITION 5.4. — Let ^ be a Tl domain in C^ Then the
singular integral operator A defined above is bounded on LP{Qfl,) for all
1 < p < oo.

Proof. — Since A is a Calderon-Zygmund type operator on 90, by
Proposition 5.2, the boundedness of A on LP(90) for all 1 < p < oo can be
reduced to proving that A is bounded on L2^^) (see [KL1] for reference).
Since the Szego projection S : L2(9Q,) —^ ^(c^) is bounded, and the
identity of Proposition 5.3, we have

A(/)=5(/)-E5(/), feL^m.
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Therefore, A is bounded on L2^) if and only if ES is bounded on L2^).
It is obvious that Q,,S{f)(z) = S{f)(z+eoi^(z)) for all z € <9^. So Q^6' is
bounded on L2(9^). Now we may write the operator E-Q^ as an integral
operator with kernel given by

n n

(5.6) E^^^-E^^^-^M)^^^)
3 J=l

and
Mw)-r^)|<G|^-w|.

Since fl, is finite type, then we can easily see that

/ |A^,w)|Ar(w)+ / |A^,w)|da(^C
^a^ JQ^.

for all 2;, w e n. The Schur's lemma (se [BL]) shows that E-Q^ is bounded
on Lq(9^) for all 1 < q < oo. Since 5' is bounded on L2(9^), we have ES
is bounded on L2^). Therefore A is bounded on L2{9^), and the proof
of the proposition is complete. Q

Remark. — Note that, as a corollary of Lemma 5.2, Propositions 5.3
and 5.4, we obtain a proof of Theorem 3.5.

We need the following theorem from [KL1].

THEOREM 5.5. — Let ̂  be a n domain in C71 and let Ig is bounded
on L^W. Then I^L°°(9^)) c BMO{9^\ and \\I^f)\\BMO <. C\\f\\^.

In fact, one may modify the proof to get /„ is bounded on BMO{9^).

Next we prove the main theorem of this section.

THEOREM 5.6. — Let ̂  be a Tl domain in C71. Then S{L°°{9^)) C
BMOAW, and \\S(f)\\BMO < C\\f + kernel (S) ||oo.

Proof. — Let / € L°°(<9^). Since

S(f){z)=A(f){z)-^ES(f)(z)^ z^9^l

where A and E are given in Proposition 5.2. By Theorem 5.5, we have
J^.(/) € BMO(9^) and \\I^f)\\BMO < C\\f\\^. Since Vr(^) e C1^),
and any BMO function multiplied by a C1 function still belongs to BMO,
then A(/) e BMO(^), and ||A/HBMO < C\\f\\^. By (5.6) and the
fact that ^ is finite type domain in C71 with \Tj(w) - rj(z)\ < C\z - w|,
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we have further that Nj(z,-) e Lp(9fl.) uniformly in z C 9^1 for some
p = l -(- ̂ /4 > l. That is, we have

WZ^)\\LP^<C^ for all zec^.
Since / e L°°(<9Q), by Remark 1, we have S(f) e LP\Q^) where p' is the
conjugate exponent to p. Therefore S(f)(-)Nj{z, •) € L^c^) uniformly for
z e 9^. So we have E(S(f) € L°°(9n) since Qeo is a smoothing operator.
Combining the above estimates, the proof of Theorem 5.6 is complete. D

Combining Theorem 5.6 and Theorem 3.2, the proof of Theorem 1.1
is complete. D

6. Proof of Theorem 1.3.

In this section, we shall prove a general result which contains Theo-
rem 1.3. Thus the main point of this section is to prove:

THEOREM 6.1. — Let Q, be a bounded pseudoconvex domain in C71

satisfies Condition D and Condition R. Then 2?o(^)* = A^).

In order to prove Theorem 6.1, let us start with the following lemma:

LEMMA 6.2. — Let fl, be a smoothly bounded domain in C71 satis-
fying- conditions D and R. Then P(Co(n)) = Bo(^).

Proof. — First we show P(Co(^)) C 2?o(^). We need only show that:
lim ^)|VP(/)(z)|=0,

z—>d\l
for any / G Co {fl.). Since

VP(/)(^) = / V,̂ , w)/(w) dV(w)
Jfl

= l ^ t ^^K(z,w)f(w)dv(w)
Jfl.6 J^ls

= Ji(^,6)+J2M)
and since ^ satisfies Condition R, we have (see [BB])

I^M^c^-^
where m^ is some positive number depending only on ^. Since ^ satisfies
condition D, we have

l̂ , 6)\ < C6{z)~1 max{|/(w)| : w € ^ \ ̂ }.
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For any e > 0, since / € Co(^), there is a 6 > 0 such that

max{|/(w)| : w C ^2 \ ̂ } < e.

Thus
I^M)|<^)<Cc.

Fix this number 6. Then there is 60 > 0 such that when 6(z) < SQ, then we
have

6^)06-^ < e.

Thus
Ji(z^)6(z)^e

for all z G 0 and <^) < 60. This proves that P(/) e Bo(^).

Next we show that Bo(^) C P(Co(^)). Let / e Bo(^). By a partition
of unity, we may choose an open cover UQ, £/i, • • • , Um of ^ so that UQ is
relatively compact in f^ and Vi H Qfl, ̂  0. Moreover, there are functions Xi

m _
with support in Ui and ̂  Xi = 1 on ^, and ^b has compact support in 0.

i=o
Furthermore, for each Ui 1 ̂  ^ < m, we may choose a local holomorphic

coordinates such that | | e [1/2,1] for all z e Ui and some 1 < ki < n.
u^'k^

With the same argument as the proof of Lemma 4.4, we have:

/(z)== [ K(w,z)f(z)dV(z)
Jfl

= [ K(w,z)g(z)dV(z)
J^

where
'rn y

,(,)» ̂ (,)/(,) - g a^^W) - &.. (9^))^(^)/M.
Since / C Bo(^), we have g e Co(^) and ||^||c(o) < C\\f\\^Y This
completes the proof of Lemma 6.2. D

Proof of Theorem 6.1.— First we prove A^Q) c ^o(^)* with
IIVoo < H^HAI for all g e A1^). Let g € A^) and / = P(fo) e ^o(^)
with /o ^ C?)(^). Thus

| [(g(w),P(fo)(w))dV(w) =| [ (g(w)Jo(w))dV(w) ^ ||/o||oo||^||Ai.1 J^ ' 7^
Since Co^) is dense in Co(^), we have ^ C ^o(^). We shall prove the
converse.
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Let I be a bounded linear functional on Bo(^)- Then we define a linear
function L on Co (Q) as follows:

L(/) = Z(P(/)), /€C7o(^).
By Lemma 6.2, we know that L is bounded linear functional on Co(^). By
Riesz's representation theorem, there is a regular Borel measure d^ on ^
such that

Z(P(/)) = L(/) = /> /(w)d^(w), / G Co(^).
Jo

From the definition of L, one can see that

f f(w)d^w) = l(P(f)) = l{0) = 0
Jo

for all / € Co(^) HA^)-1-. We claim that d/2 is absolutely continuous with
respect to dV. By the Radon-Nikodym decomposition theorem, we have

dfi = u{z)dv{z) + d{jLQ
where d^o is a bounded singular measure. We shall prove that dfiQ is
identically zero. Let F be compact set in ^ with V{F) = 0. We shall
show that l^o{F) = 0.

Let gk € Co(^l) be such that 0 < gk < 1 and g = 1 on F and
lim gk = ̂ Fi the characteristic function of F. Thus

k—>oo

l{P{9k))= f 9kd^= t u(z)gkdV(z)-^- f gkd^o{z) -^ / ^(z)d/2o(^)
JQ ^ J^i ^/Q ^^ ^ ^"

and
|^(Pte))| < ||;||oo||P(^)||^

HooSUp^^J
^eQ 1 7 o
iup{̂ ) { V,K(z,w)gkdV(w)
;eo Jo

< Cdis^F,^)-^ f gkdV(z)
Jo.

\-mQ,

J^

= Cdist^Q^-^^kh^w-

Since ||^HLI(O) = ̂  we have lim ||^HLI(O) = 0^ and so

lim \\l(P(gk)) ||5=0.
fc—^oo

Thus Uo(F) = lim / gk{z)d^o = lim (P(^fc) = 0 for all compact subsets
fc—»-oo JQ k—>oo

F in n with V(F) = 0. This implies that ^o = 0. Therefore dp. is absolutely
continuous with respect to dV. Thus

L{f)= [ u(z)f(z)dV(z)^ and M )̂ = ||̂ ||.
Jo
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To complete the proof of Theorem 6.1, it suffices to prove that u is
holomorphic in fl. Since

/ f(w)u{w) dV(w) = 0
Jfl.

for all / e Co(^) H A^-S then for any (f) e Cg°(^) we have

t^nWV^^
Jfl ^J

(since —)- e C^W andc/z j

|^fWV^=-|^9-f^dV(.)=Q
JQ ̂ j JQ OZj

for all / e A2^)). Therefore ^-u == 0 in the sense of distributions. Thus u is
holomorphic in ̂  and u € A^). This completes the proof of Theorem 6.1.

It is known from [BEA], [F], [NRSW] and [MS1] and Lemma 4.6, that
f2 satisfies conditions D and R if f2 is one of the following three domains:
strictly pseudoconvex domains in C71 (for this case, L. Chen [CHE] has
created a different proof by using an asymptotic expansion of the weighted
Bergman kernel), convex domains of finite type in C71, or pseudoconvex
domains of finite type in C2. As a consequence of Theorem 6.1 and the
above remark, the proof of Theorem 1.3 is complete. D
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