
ANNALES DE L’INSTITUT FOURIER

TODOR GRAMCHEV

GEORGI POPOV
Nekhoroshev type estimates for billiard ball maps
Annales de l’institut Fourier, tome 45, no 3 (1995), p. 859-895
<http://www.numdam.org/item?id=AIF_1995__45_3_859_0>

© Annales de l’institut Fourier, 1995, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1995__45_3_859_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
45, 3 (1995), 859-895

NEKHOROSHEV TYPE ESTIMATES
FOR BILLIARD BALL MAPS

by T. GRAMCHEV(1) and G. POPOV<2)

1. Introduction.

This paper is concerned with the effective stability of the billiard flow
near the boundary of a strictly convex bounded domain fl, in H/^1, n >, 1,
with an analytic boundary 90., The billiard flow in ^, called as well
generalized geodesic flow, is described by a particle moving with unit
velocity along straight lines inside 0 and reflecting at the boundary by the
law of the geometric optics "angle of reflection equals angle of incidence".
The boundary is invariant with respect to the billiard flow, and if the
particle is on it with velocity tangent to 9^, then it travels with unit
speed along the corresponding geodesic of 90. We are interested in effective
stability estimates for the billiard flow near the boundary, i.e. in stability
for finite but exponentially long time intervals.

The billiard flow induces a discrete dynamical system at the boundary
described by the billiard ball map

B : J ^ J, J = {(x^) e TR^ : x € 90, |$| = 1},

(see Sect. 2) which is easier to deal with. The map B is analytic in J and
it coincides with the identity mapping on the glancing manifold
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K = { ( x ^ ) e J : ($,n(^)}=0},
n(x) being the inward unit normal to 90. at x.

The main problem we are concerned with, is to find an upper bound
for the rate of diffusion of the iterates

B^),.7=l,2,...,

from the glancing manifold K for Q close to K. The plane case is trivial,
because there is a large set of smooth invariant curves of B accumulating at
K [16], [21], which trap any orbit starting close to K inside an annulus. The
corresponding caustics (the envelope of the rays issued from the invariant
circles) are smooth and strictly convex curves situated an a neighborhood
of 90. inside 0 [16]. The picture is completely different when n > 2. It was
shown by Berger [4] that if n = 2 and 90 admits a smooth caustic inside
Q, then 0 is an ellipsoid. Generically, even if there exist invariant tori of
B in J, they are at least of codimension two, and the orbits could escape
any fixed neighborhood of K.

The first effective stability result for perturbations of a completely
integrable Hamiltonian was obtained by Nekhoroshev. The Nekhoroshev
theorem [22], [23], states that the variation of the action of each orbit of an
analytic Hamiltonian i^, close to a completely integrable one HQ^ remains
stable in a finite but exponentially large time interval

(Xt^rexpOr""),
if HQ satisfies certain generic steepness conditions. Since then a number of
new results about effective stability have appeared. Sharper estimates on
the stability exponent a have been proved recently by Benettin, Gallavotti,
Galgani, Giorgilli and others in the convex case (HQ is convex) in order to
investigate stability problems in Celestial and Statistical mechanics [2], [3],
[9]. A new approach to the effective stability of convex Hamiltonians, based
on an analysis near the worst resonances of the system, has been recently
proposed by Lochak [17]. The best exponent a = l/2n in the quasi-convex
case was found by Lochak and Neishtadt [18] and by Poschel [25] who
added new geometric ideas to the traditional proof. Exponential stability
for time dependent potentials has been proved by Giorgilli and Zehnder
[10]

Effective stability results for iterates of a symplectic mapping Pg. close
to a completely integrable one Po have been proved by Kuksin and Poschel



NEKHOROSHEV TYPE ESTIMATES 861

[15]. The main idea there, is to write Pg. as a time-one-shift of the flow of
a 1-periodic analytic Hamiltonian He which is e - close to a completely
integrable one. Bazzani, Marmi and Tarchetti have obtained Nekhoroshev
estimates for isochronous non resonant symplectic maps [1].

The main difference between this paper and the results cited above is
that the billiard ball map is in general far from a completely integrable one
for n > 2. Nevertheless, there exists a smooth "approximate" first integral
< of B defining K, which means that C € C°°(J), < = 0 and d< ̂  0 on K,
and

(1.1) C(^, 0) = C(^ $) + r(x, 0, (a;, 0 € J,

where the function r € C°°(J) is flat at K. Hereafter, we say that a function
r € C°°(J) is flat at K, if r has a zero of infinite order at K, i. e. for
any smooth vector field Y in J and any integer k > 0 the function Ykr
vanishes at K. A natural candidate for C is the approximate interpolating
Hamiltonian of B which has been introduced in a little bit different context
for the corresponding boundary maps 6± by Marvizi and Melrose in [19]
(see also [12]). In our case J is equipped with an analytic two-form o/o
given by the pull-back of the canonical two-form in T^R/14'1 via the natural
inclusion map J —> T^R714"1. Note that the two-form c<;o is symplectic in
J \ K but it is degenerate at K. More precisely, taking n — 1 times the
exterior product of o;o by itself we get

^={^n(x))dv, (;r,OeJ,

where dv is a volume form in J and d{^n(x)} -^ 0 at K since 9fl is
strictly convex (see Sect. 2). In particular, for any (f> e C°°(J) satisfying
d(j){o) =0, V^ e JC, the Hamiltonian vector field H^ of ^ with respect to
0:0 is well defined by the inner product z(H^)u}o = —c^, and H^ is smooth
in J . We will call C, € C°°{J) an approximate interpolating Hamiltonian of
B if < = 0 and dC ̂  0 on K, and for any / C C°°(J) the function

(1.2) R(g) = f(B(Q)) - f (exp (C(^) (^)) , g e J,

is flat at K. Here t —> e'x.p(tH^2) stands for the one-parameter group of
diffeomorphisms of the smooth vector field H^ of ^2 with respect to UJQ.
Making use of the normal forms of glancing hypersurfaces obtained by
Melrose [20], one can find an approximate interpolating Hamiltonian ^ of
B as in [12] and [19].
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The main goal in this paper is to prove the existence of an approxi-
mate interpolating Hamiltonian ^ of B of Gevrey class G2^) (for a de-
finition of Gevrey classes see Sect. 2) provided that the boundary 90, is
analytic and strictly convex. Then the function R in (1.2), respectively r in
(1.1), will be in G2 as well, and since r is flat at K we will get the estimate

1^,0| <^exp(-^),(.,Q^,

with some C, C\ > 0, which leads to effective stability at the boundary.
Note that ^(a:, ̂ ) measures the "distance" in J from a given point (a;, $) G J
to the glancing manifold K.

For any Q € J and any positive integer fc we denote by Tk(g) the
length of the broken geodesic arc issuing from Q and having fc points of
reflection at c%2, i.e.

fc-i
^o?) = ^l^1-^'!,

J=0

where ^ = (a^0), Q3 = (^',^) = B^'Q?), j == l , . . . , f c , and j^'4-1 -^'|
stands for the usual distance in R71'^1.

Our main result is :

THEOREM 1. — Let fl. be a strictly convex bounded domain in
R71"^1, n >_ 1, with an analytic boundary. Then there exists an approximate
interpolating Hamiltonian (" C G2^) of the billiard ball map B. Moreover,
there exist positive constants 6 and C such that for any 0 < e <: 1, and
any Q = (a;,$) e J, 0 < \C,{o)\ < 6, we have

|C(B^))-C(^)| < ^?)2

provided that

0 < W < eIC^exp^K^)!-1).

More generally, we prove in Section 2 that Theorem 1 holds for the
billiard ball map associated with any pair of analytic glancing hypersurfaces
having a compact glancing manifold K. In particular, we obtain effective
stability estimates near K for the billiard ball map of any compact real-
analytic Riemannian manifold whose boundary is strictly geodesically
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convex. The main idea in the proof is to find simultaneously a local normal
form

n

(1.3) (TO = 2^id$i A cbi + ̂  d^j A dxj
J=2

for c^o and an approximate local normal form for the billiard ball map in
G2

(1.4) B(a;,0=(a;i+$i,^,...,^,0+^,0,

where K = {$1 = 0}, the function J? belongs to the Gevrey class G2 and it
is flat at K. When the boundary is strictly convex and C°° smooth, Melrose
[20] has found smooth local coordinates (x^ $) such that (1.3) and (1.4) hold
with R = 0. In particular, the billiard ball maps of any two strictly convex
domains with smooth boundaries are locally equivalent to each other in
the C°° category. More generally, Melrose proved that any two pairs of
glancing hypersurfaces are locally symplectically equivalent in the C°° case.
As it was observed by Oshima [24], this is not true in the analytic case. In
fact, the example of Oshima shows even that there exist pairs of analytic
glancing hypersurfaces which are not locally symplectically equivalent in
the Gevrey classes G'5, 1 < s < 2, (see Remark 2.4). Oshima's example
suggests that s = 2 is the best Gevrey regularity for the approximate
interpolating Hamiltonian one can hope for.

The existence of the normal forms (1.3) and (1.4) of UJQ and B is
influenced by the construction of the normal forms in [11] and [20]. The
novelty in this paper is, that we analyse rather precisely the formal power
series arising in the traditional proof. These series do not converge in the
usual sense but they do converge in suitable "Gevrey" spaces of formal
series. Similar idea (to estimate the rate of divergence of formal series
arising in normal forms) has been used in [9] to study the effective stability
for a hamiltonian system in the vicinity of an elliptic equilibrium point.
Our approach is different from those in [9], it is based on certain techniques
which come from the calculus in Gevrey classes (see [5], [6], [13], [26]). The
relationship of the Gevrey classes with this type of problems was pointed
out by Lochak [17] as well. We would like to mention that our method
could be used to treat Gevrey normal forms for the billiard ball maps of
pairs of non analytic Gevrey glancing hypersurfaces as well.

The paper is organized as follows : In Sect. 2 we consider pairs of
analytic glancing hypersurfaces F, C?, in an analytic symplectic manifold
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M and the corresponding analytic involutions Jp and JG in J = F H G
having a common fixed point manifold K. The billiard ball map is given by
B == JF°JG^ and the analytic two-form UJQ is invariant with respect to both
the involutions and it is degenerate at K. Theorem 1 follows from Theorem
2.3 which provides simultaneously a G2 normal form for the two-form UJQ
and the involution Jp and gives at the same time an approximate normal
form of JG modulo an error term of Gevrey class G2 which is flat at K.
Theorem 2.3 is proved in two steps. First we obtain an approximate normal
form for the pair of involutions in G2 (see Theorem 3.1) paying no attention
to the form 0:0- To put 0:0 in a normal form keeping fixed the normal forms
of the pair of involutions given by Theorem 3.1 one could adapt the proof of
Theorem 21.4.4 in [11]. Instead, we give a new proof which is based on the
deformation argument of Moser-Weinstein, exploring the invariance of the
two-form 0:0 under the involutions. Theorem 3.1 is proved in Sect. 4. The
Appendix contains technical lemmas concerning some estimates in Gevrey
classes.

Using the results of this paper we can show that the billiard ball
maps of any two strictly convex domains with analytic boundaries are G3

equivalent to each other. This represents a loss of Gevrey regularity with
respect to the approximate interpolating Hamiltonian of B which has G2

Gevrey regularity. The corresponding result is a subject of another paper
[8].

2. Glancing hypersurfaces.

The billiard ball map in a strictly convex bounded domain can be
associated to a pair of transversally intersecting glancing hypersurfaces.
First we recall certain facts about pairs of glancing hypersurfaces which
can be found in [II], [20]. First we consider a strictly convex domain ^ in
R^1 with a real analytic boundary 90,, n >, 1. Denote by

UJ = d î A d,X\ + . . . + d$n+l A d.Kn+1

the canonical two-form in T^R77^1. Let / be a real analytic function in
R71-^1 such that f{x) == 0, df(x) ^ 0, on (9^2, and f{x) > 0 inside 0.
Set f(x^) = f(x) and g(x^) = 1 — |^|2, and denote by Xf and Xg the
correponding Hamiltonian vector fields with respect to uj. Consider the pair
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of analytic hypersurfaces

F = {M e TR^: /(rc,o = o}, G = {(rc,0 e TR7^1: p(^o = o}.
Since 90, is strictly convex, F and G form a pair of transversal glancing
hypersurfaces [II], [20], i.e. F and G intersect transversally at J = F H G,
and for any Q € J, either the integral curve of Xf (Xg) passing through
Q intersects G (F) transversally or it is simply tangent to G (F). More
precisely, the equality

(2-1) {/^}0?)=0, ^=(o:,OeJ,

(i.e. {^n(x)} =0) implies

(2-2) {/,{/^}}(^)<0, {^{^,/}}<0.

Indeed, the first term in (2.2) is equal to -2\f^(x)\2 < 0 and the second one
is Hfxx(x)^^) < 0. Here {., •} stands for the Poisson brackets in T^R71-^
corresponding to uj while < • , • ) denotes the Euclidean scalar product in
R71-^1. Because of (2.2), the glancing set

K={f=9={f^g}==Q}

is a submanifold of J . Indeed, the differentials df, dg, and d{f,g} are
linearly independent at any Q e K, since df and dg are linearly independent
at Q and

df{Xf) = dg(Xf) = 0, d{f^g}{Xf) ̂  0,

at Q according to (2.2). There are two analytic involutions

JF : J —> J, JG : J —>J,

defined as follows. For any Q in J outside K, Jp{o) (Joio)) is the second
point of intersection with J of the integral curve ofXf {Xg) passing through
Q, and Jp (Jo) coincides with the identity mapping on the glancing
manifold K. The billiard ball map B is defined by

(2.3) B^JpoJc.

Note that J is a manifold of dimension 2n equipped with a two-
form 0:0 which is the pull-back of u via the natural inclusion mapping
J —^ T^R71-^. The two-form 0:0 is symplectic in J\K but it is degenerate
on K^ indeed, in view of Lemma 21.4.7 in [11] we have

(2.4) c^=m^,
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where v is a volume form in J, m(a:,$) = {f,g}(x^), and the differential
of m(o) does not vanish on K according to (2.2). Moreover, UJQ is invariant
with respect to the involutions Jp and Jo- The set of fixed points of both
Jp and JG coincides with K and their differentials are linearly independent
at any point of K.

More generally, we consider an analytic symplectic manifold (M,Ct;)
where M is an analytic manifold of dimension 2n + 2, n >_ 1, and uj is an
analytic symplectic two-form on it. Denote by {•, •} the Poisson brackets in
M corresponding to a;. We consider a pair of analytic transversal glancing
hypersurfaces F, G, in M of the form

(2.5) F = {g € M : /(^) =0}, G = {^ € M : g{o) = 0},

where / and g are smooth functions in M and analytic in a neighborhood
of J = F n G, such that df ^ 0 on F, dg ^ 0 on G, and the differentials
d/ and dg are linearly independent at J . As above we suppose that
equality (2.1) implies (2.2) and we denote by UJQ the pull-back of uj via the
inclusion map J —> M. Moreover, we assume that the glancing manifold
K = {g e J : {/, g}{Q) = 0} is compact. It is easy to see that the involutions
Jp and Jo are well-defined and analytic in a neighborhood Jo of K in J,
and we define B : JQ —> J by (2.3). Moreover, the function t(g), g € Jo,
defined by

exp(t(Q)X,){g)=JG{g)

is analytic in Jo m view of the implicit function theorem (see (2.10)), and
we have =bt(^) > 0 in

J ± = { Q ^ J O : ±{gJ}{g)>0}.

On the other hand, for any positive integer k there is a neighborhood U
of K in Jo such that B^J^ n U) C J± for every 0 < j < k. Then we set
To{g) = 0, and define

j'-i
Tj(Q) = ̂  IW^))|, g e J± n £7, 1 ̂  ̂  k.

p=o

The broken bicharacteristic ̂ (g) of G issuing from a point g in J±rW
and propagating for ±t € [O,TA;+I(^)) in the domain

G O = { ( ^ O € G : f{x^)>0}
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will be defined as follows :

^(Q) = exp(^)(B^)), Tj(g) < ±t < T )̂, 0 ̂  j < k.

Let us take for example M = T^B/14-1 equipped with the standard
symplect two-form a;. Let / = /(a:) be independent of $, and assume that
the domain

n = {x C R^1 : /(rr) > 0}

has a compact boundary. Suppose that g has the form

g ( x ^ ) = E - H ( x ^ ) - V ( x )

71+1

in a neighborhood of J where H(x, 0 = ^ g^W^j is the Hamiltonian
^'=1

corresponding to an analytic Riemannian metric in a neighborhood of 9^1.
Then the first inequality in (2.2) is equivalent to

n+l

^ g^^N^N^x) > 0, Vrc C <9^,
zj=l

where N(x) = grad/(a;). On the other hand, if V = 0 and E > 0, the
second inequality in (2.2) means that f2 is strictly geodesically convex with
respect to the geodesic flow associated to the Hamiltonian g.

Before formulating the main results we recall certain basic facts about
the Gevrey classes. If X is an open domain in R" and a >_ 1, we denote by
G^^X) the space of all Gevrey functions in X of index a, namely / C G^X)
iff / G C°°{X) and for every compact subset Y of X there exists C > 0
such that

sup \9^f(x)\ < C^\a\Y, a e Z^.
xCY

Evidently G^X) coincides with the space of all real analytic functions in
X, while for a > 1 there are nonzero compactly supported G^ functions,
namely Ga(X)^}C§o(X) ̂  {0}. We point out that that for any G^ function,
a > 1, which is flat at the hypersurface x-^ == 0, and any compact V, there
exist two constants C and c such that for every a C Zl the following
estimate holds :

\9^f{x)\ < Gl^Wexp (-dmi-1/^-1)) , x, + 0,^ e V.

For more details on Gevrey classes we refer to [17] and [26].
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We formulate now a general result which yields in particular effective
stability estimates for the billiard ball map of a real-analytic manifold with
a strictly geodesically convex boundary.

THEOREM 2.1. — Let F, G, be a pair of transversal glancing hyper-
surfaces in an analytic symplectic manifold (M, a;). Suppose that F and G
are analytic in a neighborhood of the glancing manifold K and assume that
K is compact. Then there exists an approximate interpolating Hamiltonian
( of Gevrey class G2 for the billiard ball map B such that ±C > 0 in J±.
Moreover, there are positive constants 6 and C such that for any 0 < e < 1
and any Q € J with 0 < |C(^)| < ^ we have

|<(B^))~CO?)| < ^)2,
provided that

0 ^ Tk(g) < ^(^exp^ICO?)!-1).

For any Q € G we define the "distance" to the gliding manifold K by

d(Q)= |/0?)| +|{/,</}0?)|.

As a consequence of Theorem 2.1 we obtain

THEOREM 2.2. — Suppose that the assumptions of Theorem 2.1 hold.
Then there exist positive constants 6 and C, and some 0 < C\ < 1 < Ca
such that for any Q C J± with d{o) < 6 we have

C,d(g) < d(^(Q)) < CM,

provided that

(X^^exp^).

The results formulated above are based on an approximate normal
form for a pair of symplectic involutions.

THEOREM 2.3. — Let J be an analytic manifold of dimension 2n and
let u;o be a closed analytic two-form on it satisfying (2.4) where dm ^ 0
on K == {^ e J : Tn(g) = 0}. Let J7j, j = 1,2, be a pair of analytic
involutions such that J^UJQ = 0:0- Suppose that the sets of fixed points of
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Jj^ j = 1,2, coincide with K, and that djj are linearly independent over
K. Then for any po C K there exists a diffeomorphism \ of Gevrey class
G2 mapping a neighborhood of the origin W in R271 to a neighborhood of
go in J, ^(0) == QQ, such that

n

^*(o;o) = (TQ = 2$i<^i A dxz + ̂  d^j A dxj,
J=2

while the involutions J^ = X~1 ° Jj °X^ J = I? 2, become

Jl°(^0=(^ -$!,$'),

J^W) = (^i +^,-^0 +-RM, M e w,
where R belongs to G2(W) and it is fiat at {(x^) eW : $1 = 0}.

Remark 2.4. — Making use of the example of Oshima of analytic
glancing hypersurfaces which are not analytically equivalent (see (7), [24]),
one can show that the Gevrey regularity G2 in the theorem above is
optimal. Indeed, the estimates in [24], p. 57, can be used to prove that
the pair of analytic involutions associated to the glancing hypersurfaces
(7) are not locally symplectically equivalent to the pair J^°, ^, in any
Gevrey class G8, 1 < s < 2.

Proof of Theorem 2.1. — The first statement in Theorem 2.1 follows
from Theorem 2.3 taking J\ = Jp-, Ji = JG^ and then choosing local
coordinates (x(g)^(g)) = ^-l(^) € W where Q € U = x(^0- Then we
have

(X-loBo^)(a;^)=(a•l+$l,^,0+fi(^0

= exp ($1^) Cr,0 + R(x^), (x^) € TV,

where H^ is the Hamiltonian vector field of ^ with respect to (TO, R
belongs to G'^W), and R w 0. Hereafter, we say that R w 0 if R is
flat at {$i = 0}. Since ;c*(^o) = ^o? the G2 function ^(^) = ^i(g) is
an approximate interpolating Hamiltonian of B in U. Moreover, changing
eventually $1 with —$i we can assume that C, > 0 in J+. We are going to
show that ^ is uniquely determined in U modulo a flat function.

Let \Q : WQ —> U be another G2 diffeomorphism given by Theorem
2.3. Denote by (y(Q),rj(g)) = Xo1^) 6 Wo the corresponding G2 local
coordinates in (7, and set Co(^) = ^i^) where ^o > 0 in J+.
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LEMMA 2.5. — The function Co(^) - C(^) is Qat at K.

Proof. Set ^ = ^o-1 o ̂  : W -^ Wo and denote (f>(x, Q = Co(x(^ 0) =
(rji o^)(:r,0. Then ±^(:c,0 > 0 in {(a;,Q e IV : ±$i > 0}. We are going
to show that (/>(x, $) - $1 « 0. Set

Bo(x^) =(^i+$i,a/,0.

Then we have ̂ -1 o Bo o ̂  — BQ w 0, hence,

exp ((^42) - Bo = ̂ -1 o exp ('niH^} o ̂  - BQ w 0,

and for any smooth function / and any integer N > 1 we obtain the equality

f(xi + $i,^,0 ^ / (exp {<t>H^} (x^))

=/(^o+E ̂ ^^^o+oo^oi^4-1).
JVz

fc=l

Set

^=E(^o^+^o^).
Taking f{x, $) = ^-, 1 < j ^ n, we get /3y « 0. In the same way we obtain
ai w 1 and a, « 0 for 2 < j < n. Hence, d<^2 = -1(^2)00 « d^, and we
obtain <^ » $1 since 0 and $1 have the same sign. D

Patching together in G2 the local approximate interpolating Hamil-
tonians obtained above, we get an approximate interpolating Hamiltonian
C of B in a neighborhood of K of the Gevrey class G2.

We are going to prove the second statement in Theorem 2.1.

LEMMA 2.6. — There exist positive constants C, C\, and 6 such that

(2.6) |C(B^)) - C(^)| < 201.7 exp(-C|C(^)|-1) < 2eGi|C(^)|3

for any 0 < |<(^)| <, 6 and 0 < e <, 1 provided that

(2.7) O^^elC^^exp^lC^)!-1).
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Proof. — Taking / == ^ in (1.2), and using the equality

C(exp(Cff^))=C(^),

we show that the G2 function ((B(g)) -C(^) is flat at K. Hence, there exist
positive constants (7, (7i, and 6 such that the estimate

(2.8) |C(B(^)) - C(^)| < Ci exp(-G|C(^)|-1)

holds if 0 < |<(^)| < 36. We have shown that (2.8) is valid for j = 1. Fix j
such that (2.7) holds. Suppose that (2.6) is valid for some 1 < k < j. Then
the inductive assumption implies

(2.9) |C(B^)) - C0?)| < 2C7iA;exp(-G|Ca?)|-1) < 2eCi|CO?)|3 < ^

if 62 < (2Ci)~1. Now using (2.8) we get

ICGB^))-^)! < |C(Bfc+l(^))-C(Bfc(^))|+2Clfcexp(-C'|C(^)|-l)
<Crlexp(-C|C(Bfc(^))|-l)+2Clfcexp(-Cf|C(^)|-l).

On the other hand, for 0 < 6 < (4(7i)~1 estimate (2.9) implies

|C(Bfc(^))|-l>|C(^)|-l-4£Cl|C(^)|,

which yields for 6 < (^CC\ )~1 In 2 the inequality

exp(-C7|C(^(^))|-1) < 2exp(-C7|C(^|-1),

and using (2.7) we get (2.6) for B^4'1^). The proof of the lemma is
complete. D

LEMMA 2.7. — There exists a € C°°{J), a > 0, such that

t(e) = a(^)C(^)

in a neighborhood ofK in Jo-

Proof. — The manifold K is defined in J by {^, /}(^) = 0, (d{^, /} ̂
0 on K) and we have C(^) = 0, dC(^) ¥" 0, Q ^. K. Hence,

{^ /}(?) = ai(^)C(^), ^ € Jo,

and we can suppose that ai > 0 since C > 0 in J-^-. Applying Taylor^s
formula to

f(exp(t(g)Xg)(Q)) = f{Q) = 0, Q € Jo,



872 T. GRAMCHEV, G. POPOV

we obtain

(2.10) {(/, f}{Q) + ̂  {^ {^ /}}(^) + 0(t{g)2) = 0,

which proves the assertion. D

LEMMA 2.8. — There exists 6 > 0 such that (2.7) holds if0<e<,l,
0 < |C(^)| < 6, and

(2.11) ^(^^^IC^I'exp^lC^)!-1).

Proof. — Let 0 < k < j and suppose that Tj satisfies (2.11) and

fc^lC^exp^lCQ?)!-1).
Clearly Lemma 2.6 and Lemma 2.7 lead to

fc k

T^(Q) = ̂  |^(^(^))| > Co E 1<(^(^))1
p=0 p==0

> (fc + l)Go|C(^)|(l - 2Ci^2) > {k + 1) ̂  |C(^)|,

if ^2 < l/4Ci. Now (2.11) yields

k+ 1 < ̂ C^exp^K^)!-1) ^ ̂ (^^exp^K^)!-1)
^o

for <$ < Co/2, which proves the assertion. D

Making use of Lemma 2.6 and Lemma 2.8 we complete the proof of
Theorem 2.1. D

To prove Theorem 2.2 we note that

^)=l{/^}(^l=^i(^)IC(^)l , ^eJo ,
and use Theorem 2.1.

3. Normal forms of pairs of analytic involutions.

We are going to find a G2 normal form of the pair of analytic
involutions J\ and J^ given in Theorem 2.3. If n > 3 and y € R71, we
set y = (2/1,2/Q = (y^y'^Vn), V" = (1/2,.. • ,2/n-i). We have :
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THEOREM 3.1 — Let f and g be two real analytic involutions in a
neighborhood of the origin in R71, n > 2. Suppose that f and g coincide
with the identity on K = {yn = 0} and that the differentials df and dg are
linearly independent at the origin. Then there exists a diffeomorphism u
of Gevrey class G2 in a neighborhood U of the origin such that the maps
f° = u o f o u~1 and g° = u o g o u~1 have the form

f°(y) = (2/1, y " . -2/n), g°(y) = (yi + y^y^ -yn) + W,
where R belongs to the Gevrey class G2^) and it is flat at K.

The proof of Theorem 3.1 will be given in Section 4.

Proof of Theorem 2.3. — According to Theorem 3.1 there exist G2

coordinates (a*, $) in a neighborhood U of (0,0) in R71 x R71 such that

Jl(x^)=(x,-^^/), Mx^)=Jo(x^)+R(x^), (x^)eU,

where JQ stands for the involution

^oM^i^i,^,-^),

R C G2^), and R is flat at K = {(x, $) eU : $1 = 0}. Using the invariance
of UJQ with respect to the involutions given above, we are going to show that
it has a quite simple form which allows us to use the deformation argument
of Moser - Weinstein.

First we introduce the following notations : We set $1 = Q and
^ =$ ' ,$= ($i,0 € R71. Next, for given r e C°°{U) we say as above that
r w 0 if r is flat at K. More generally, for a given fe-form uj in T*(R71) we
say that uj w 0 , if all the coefficients of uj are flat functions at K.

Now, using the equality J^Q = 0:0 we write the two-form UJQ as
follows

(3.1) o;o = ^ Oij (x, 0^ A dxj + ^ bij {x, ̂ )dxi A dxj
l^j^ l<i<j<n

+ ^ c^(rc,O^A^,
Ki<j<n

where the functions a^(.r,$), 6^-(a;,$), and c^(rc,$) belong to (^(E/) and
they are even with respect to $1, i.e.

(3.2) J^aij = dij, Jfbij = bij, J^Cij = Cij.
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Now, condition (2.4) reads

(3.3) ^ = ̂ dv,

where dv is a volume form in U and we have taken n times the exterior
product ofo;o.

PROPOSITION 3.2. — Let UJQ be a closed two-form in a neighborhood
of the origin in T^R") with G2 coefficients satisfying (3.3). Suppose that
J^UJQ = 0:0, j = 1,2. Then there exists a local diffeomorphism ̂  e G2^)
in a neighborhood U of g° = (0,0) such that

^ o Ji = Ji o ̂ , ip o Jo = Jo o ̂ , in U,

and

(3.4) ^o- ^ ^QA^Ac^+ ^ W^dy^dy,
l^j^ l<z<J<n

+ ^ ^ (2//? ̂ )d^ A d^ + UJ^
l<i<j<n

where uj w 0, r] = (77^, 77'), and

(3.5) a;iQ/^) = 1, a^y^rj) = 0, ^(2/',77) = 0, 2 ^ z < n.

We postpone for a while the proof of the proposition. Now we
can apply the deformation argument of Moser - Weinstein to the form
a\ = ̂ UJQ.

LEMMA 3.3. — Let a\ be a closed two-form in a neighborhood of
the origin in R271 with G2 coefficients given by (3.4) and satisfying (3.3)
and (3.5). Suppose that J^UJQ = c^o, j = 1,2. Then there exists a diffeo-
morphism (f) € G2^) in a neighborhood U of g° = (0,0) such that

n

0*cri == o-o ^ 2771^771 A dy^ + ̂  drfj A d%,
J'=2

and

0 ° J\ = J\ o <^, <^ o Ji ̂  Ji o (^ in U.
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Proof. — After performing a linear change of the variables
n

zi = yi + ̂  (a?j(o)2/j + c?,(o)%), Ci = m,
.3=2

{ z ' ^ ' ) = A ( y ' , r , ' ) , det(A)^0,

which commutes with both J\ and JQ we can suppose that u\ = OQ + a'z,
where 0-2 has the form (3.4), its coefficients satisfy (3.2) ( J^a'i = (T^), and

(3.6) a°^y',rj) = 0, b°u(y',r)) = 0, 1 ^ i ^ n,

"?,(0) = 6?,(0) = c?,(0) = 0, 1 ̂  z . j ^ n.

We interpolate a\ and ao by the family

O-t = O-Q -{- t{(7\ — 0-o), 0 < t < 1.

We are looking for a time dependent vector field Xf such that

(3.7) (^)*<7t = ao,

where 0* is defined by

-^=X^), 0°=Id.
d^

Differentiating (3.7) with respect to t we get

^XtCTf+O-l -0-0=0,

where Cxi = ^x^ 0 d + ^ o %x< is the Lie derivative, zjci being the inner
product by Xf. Since Of is closed, we arrive at the equality

(3.8) d(zxt^t) =0-0-0-1.

We have o"o — o'i = da, Q;(^°) =0, where a can be chosen in the form
n n

(3.9) a ̂  Y^a^y'^dy, +^^(^,77)^,
J=2 j=l

in view of (3.4) and (3.6). We can suppose that aj and f3j are G2 functions.
Moreover, taking {J^a + a) /2 instead of a we can arrange J^a = a
still keeping (3.9), which implies /?i(^/\T]) = rj^{y^r)) with 7 in G'2. Set
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BO = J\ o Jo. In view of (3.9) we have B^a w a which implies J^a w a
since JQ = J\ o BQ.

Now (3.8) leads to the equation zx^t = OL which has a unique solution

^=E^'7?)^+E%•(y'T?)^•
Indeed, since ^(y^rj) = r ] ^ { y ' , r ] } and the coefficient of dz/i in a is flat at
771 = 0, taking into account (3.6) we obtain an (algebraic) non-degenerate
linear system for pj and qj with G2 coefficients wich has an unique solution
inG2.

We are going to show that (/) = (f)1 is the desired diffeomorphism. We
have to prove that (f) commutes with J\. Setting

-iYt=J!Xt=(dJ^-LXtoJ,

we get

a = J! (zx^t) = ZYt (J^t) = zy,o-t,

which implies JfXt = Xt. Hence, J\ o ̂  == ̂  o J^. In the same way we
show the relation JQ o (^ w ^ o JQ which implies J^ ° ̂  w ^ ° J2- The
proof of Lemma 3.3 is complete. D

Now, Theorem 2.3 follows immediately from Theorem 3.1, Proposi-
tion 3.2 and Lemma 3.3.

Proof of Proposition 3.2. — To put 0:0 into a normal form, keeping
the involutions J\ and JQ fixed, we use the following

LEMMA 3.4. — Let p C C°°(U), J^p = p, and J^p w p . Then
Qp/Qx^ w 0.

Proof. — Consider the Taylor expansion at (a;, 0, $') of the smooth
function

P(^i +$i,^,0 -P(x^) = Bo*p( ,̂0 -p(x^) ̂  0,

where Bo = J\ o Jo. For any integer {3 >_ 0 the coefficint of ̂ +1 is equal to

/3 ^+1-7 .

E E ^W.pW^o-
^=0 Q=l " '
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By inductive arguments with respect to f3 we get

^^p(^0,$')=0,

which proves the assertion. D

The equality B^UJQ w (JQ yields the identities

B^an w an, B^dij w aij, 2 < i < n, 1 < j < n,

B^bij w bij, 1 <i < j <n,

B^ w aj, 2 < i < j < n .

^^ij + oT-^6^ ^ ^^ 2 < j < n ,^si

^C1J - 2^^aJl ^ clj' 2 < j < n '
Now Lemma 3.4 implies

aii(x^) w a?i(a;',0»

%-(^^) w ^?j(^»0^ 2 ̂  i < n, 1 < j < n;

^•(^0 ^ &?,(^0, K^<J<n,

Cz,(^0 ^ ^.(^,0, 2 ^ z < j < n .

A similar argument has been used by Melrose [20] in a little bit different
context. Applying Lemma 3.4 to Qx^ij and ftciCij we obtain

aij{x^) w a^.(^0+a;ia^(a/,0, 2 < j < n

cij(x^) ^ c?,(^,0+^ci,(^',0, 2 ^ j < n

where
(3.10)
^•(^0 = -—^-(^O^G2 since 61, (^O,^) = 0, 2 < j < n,

(3.11)
^•(^0 = —^i(^.O^G2 since a,i(a/,0^') = 0, 2 < j ̂  n.
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Moreover, we can suppose that

(3.12) a^{xf^^f)=l.

Indeed, we have

LEMMA 3.5. — There exists a diffeomorphism {x^) = ^(y^rj) in a
neighborhood of g° = (0,0) having the form

x, = VQ/, 77)2/1, x1 = y ' , ^ = XQ/,^), ^ = T/,

where X and Y are G2 functions,

Y{g°) > 0, XO/,0,7/) = 0, dX(Q°) + 0,

such that J\ o ip = ̂  o J^, BQ o -0 = ̂  o BQ, and the coefficient ofdrj^ A dz/i
in a = ̂ UJQ is equal to 1.

Proof. — Taking into account (3.3), (3.10), and (3.11), we can suppose
that a^i(O) > 0. The coefficient of drf^ A dy\ in a is equal to

r)Y
^Wy^))Y(y\^^(yf^)=l.

Moreover, -0 commutes with BQ iff X ( y ' , r ] ) = Y ( y / , 77)771, and we obtain
the equation

c)X
a^y'^X^X^y'^ = 771, X^^rf) = 0.

The solution of this equation is given by

(3.13) 2 / a^(y'^')tdt=r^.
J o

Set

p(2/ ,^7/)=2 [ a;iQ/\t,r]')tdt.
J o

Thenp(^/', n, T/) = u^q^y', u, rj')2, g(0) = -/a^(O), where q is a G2 function,
and we obtain the equation Xq{y1\ X, T/) = 771, which has a unique solution
X(y1', 77) = 77l^(^/, 77), where T is a G2 function and T ( y ' , 0,77') > 0, in view
of the implicit function theorem in Gevrey classes. Moreover, J7i*p = p^
and we obtain Ji*T = T which implies Ji o -0 = '0 o j7i. D
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From now on we suppose that (3.12) holds for the form a = ̂ o
We have a = o-i + 2/1(72 + a^ in (7, where

^= ^ a°,^AA/,+ ^ b^dy^dy^ V c^A^,,
l<lj<n Kz<J<n K^<n

^ n

(3.14) a2 = ̂  al,d77i2 A ̂  + ̂  cl,^ A ̂ -,
J=2 j=2

ri=(^^^ rf), and 03 w 0. We are going to explore the two-form (72. Since a
is closed and the coefficients of a, do not depend on y^ we have da^ ^ 0.
Then ̂  = da + a Q/, 77)^1, where the coefficients of the one-form a do
not depend on y^ and a does not contain multiples of A/i and d^i In
other words, one can consider a as one-form in (y^rf) depending on the
parameter ̂ . Now (3.14) implies dy.^a = 0, hence a = ̂  +p(y^rj)drj,
where 7,? e G2^), and we get

(72 = dp A ^771.

Next we write (7 = a? + a^ + (73, where (73 ̂  0,

/ ^ n \

^2 = ^ ̂ °i(2/', ̂  - ̂  6?,(2/', 77)d% A dy, + 2/ldp(2//, 77) A dn^v=i j=2 y
whik the two-form a°, does not contain multiples ofdy^ and the coefficients
of (7i are functions of (z/, 77) only. Our aim is to show that aS w drj2 A dy,
Notice that da^ w 0 which implies

n n

^da°^ A d77, - ̂ db0^ A dyj + dp/\drj^ w 0.
z=l j=2

Therefore,
n n

^ a°id77, - ̂  b°^dyj w dr - pdrj^,
z=l j=2

where r e ^(L^), and we have

(72 = dr A c^/i - prf77i A ch/i - 7/1^7/1 A dp.

On the other hand, since (7? is invariant with respect to BQ, we get
B^a^ w a^ which gives

r(y\ r]) w -p(y^ rj)^ + ̂ i), q e G^R),
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while (3.12) yields
Q

-gr-(y/^)-p(y/,^^)=2^.

Hence, r satisfies the equation

'ni-g7- +r» 9(771)+27^.

Then v(y1, 77) = r ( y / , r]} - r(0,771,0) should satisfy the equation

9v
rn^+^0,

and we obtain v w 0. Therefore,

a^ wdr^/\dy^,

which completes the proof of the proposition. D

4. Proof of Theorem 3.1.

Consider the real analytic involutions / and g. As in [11] we can
suppose after a local analytic change of the variables that

f{y) = (y^ -yn) for y e B71^), o < 6 < i,

where Bn(6) = {z e R71 : \Zj\ < 6, j = 1,. . . , n}.

Then as g ( y ) is analytic in Bn(6) we can write g(y) = { g ' ( y ) , 9n(y)), y e
B^) in the following form :

(4.1) g\y) = y/ + f>;W), a^y') = {a{(y^.... <_,Q/)),
j=i

(4.2) ^(^)=-^+^^IA,(^).
j-i

Moreover, there is (7 > 0 such that

sup W{y')\<C^a\^ aeZ^- l,J=l,2,...,
^ea71-1^)
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where q3 stands either for a^., r = 1,..., n — 1, or for Aj. The requirement
that the differentials of / and g are linearly independent on their fixed set
yields

a\y')^Q for y' € B71-1^).

Under the assumptions above Theorem C.4.6 in [11] provides a C°°
smooth change of the variables u = u(y\ u(ff) = 0, which preserves / and
transforms g into u~1 o g ou = QQ^ where

9Q(y^y"^yn) = (yi -^-yn,y",-yn)'

We are concerned here with the problem whether u can be found in a
suitable Gevrey class G^ provided that the involutions are analytic. Fix an
integer p > 2. As in the proof of Theorem C.4.6 in [II], making an analytic
change of the variables, we can assume from the very beginning that

(4.3) ^(^(l, (), . . . ,()), A, (2/')=0, Kj<p-l.

First we consider u(y) as formal power series in yn

u(y^yn) =j^yW\y^ynuUy/^ u01^) == y\ u^y') = 1,
j=o

with the subsequent compositions obeying the rules of the calculus for
formal power series expansions.

LEMMA 4.1. — Ifu(y) satisfies f o u = u o f then u{y) has only even
powers in yn, namely

00

u{y'^n) = ̂ ^'(^'(2/'),^<(i/')).
J=0

Proof. — We have

f(u(y)) = (u\y^-Un(y)) = f^^O/), -y^u{(y')\
j=0

u(f{y)) = u(y\ -yn) = ̂ ((-^)^^(^), (-^+i<Q/)).
j=0
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Evidently the last two identities imply that / ou = uo f iff u3^') =
(^'V), <(^)) = 0 for all j odd. D

So we look for u{y) given by the formal power series in Lemma 4.1
and satisfying

(4.4) u(g{y)) = go{u(y)).

First we write explicitly the left and the right hand side of (4.4) as
formal power series in yn. We check easily that formally

(4.5) go(u(y)) =f^y2nj (ni0/) + y^y1)^"^')^ -^<Q/)) .
j=0

Further we obtain in view of (4.1), (4.2) and Lemma 4.1 that
00 00

u(g{y)) = E(-^ + E^-W))2'
j=0 r=l

( 00 00 00 \

x ^J/(2//+E^as(^)),(-^+E^+lA,(^//)K(2//+E^as 0/)) .
5=1 r=l s=l /

Next we recall the power series expansions
00 / 00 \

{-Vn + E ̂ +lAr(2//))J = ̂  (-1)' + E ̂ Wn '
r=p \ y=p /

(4.6) A^(y') = ̂  J! . .(-^(A^yO)^ ... (A,(y'))^,
JO-JP' • • ' Jv

where the latter sum is taken over the set Zo(j, v} of all

Oojp^+i,...^)ez^+2

such that

Jo + Jp + Jp+i + . • . + 3v = J, PJp + (? + l)jp+i + • • • + ̂  = ̂

We denote by Z+ the set of the non-negative integers and by N the set of
the positive ones. We set by convention

A,,o = (-1)^, A,̂  = 0, for 1 ̂  v ^ p - 1.
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Moreover,

00 OQ r\P - . / /N

/^F^w-E^ E ̂ Q/)^^
^^ ^=0 |/3|<^ p'

(4.7) a^O/) = ̂  ̂ -^ (^)).1... (aWr\

where the latter sum is over the set of multiindices Z(/3,^) of all
(71,... ,7^) € (Z!^-1)^, where 7s e Z^;-1, 0 ^ s ̂  ̂  and

7' + 72 + • . • + 7" = A J71! + 2|72! + ... + ^[7^| = ^.

We have used the notations

\7s\=-rsl+•••+^,V\=^...•^_,l^s=^,...,^_^

and

(aV))^ =^(^...<_i(^-i.

We set by convention ao,o = 1, and a^ = 0 if \(3\ < ̂  and Z(/z, /3) is empty
which happens for example when ^ ^ 1 and /3 = 0.

LEMMA 4.2. —Let/3 = (^,... ,/^_i) e Z^-\ /3 ̂  0, and let ^i= \{3\.
Then, a^ = 0 i f / ? ^ ( ^ , 0 , . . . , 0), and a^ = l i f / 3 = ( / , , 0 , . . . , 0).

Proof. — Let (71 , . . . , 7^) e Z(/,, /3). Then

|71 |+|72 |+...+|7 / ' |=|/?|=/.=|711+2|72 |+...+/.|7^|,

and we obtain 72 = . • . = 7^ = 0 and 71 = f3. Now, using (4.3) and (4.7)
we prove the assertion. Q

The power series expansions given above yield

00

^) = u(g(y)) = ̂ (w^),^^/)).
k=0

with

^= E E E A^(,Qa^,_^(,Q<^,
Q<3^k/2 y=Q \(3\^k-2j-v ^ '
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^)= E E' E A^+i^^Offlfc-^-^^)^!^
0<J<fc/2 ^=0 |^[<fc-2j-i/ '

Now, taking into account (4.5), we obtain from (4.4) the equalities

w2k(yf)={uk/(yf)^-ukn(yf)), k € Z+,

(4.8) w2^')^^), A:CZ+,

The resolution of (4.4) in the C°° category shows that one has only to solve
(4.8) for each fc, since the other sequence of identities involving w2^ follows
from (4.8) taking into account the fact that g is an involution (cf. case (a)
in (C.4.3), [11]).

We write the equations (4.8) explicitly, replacing w^ by the corres-
ponding expressions given above. Using (4.3) we obtain

(4.9) 9y,u\y1) = ^Q/)ei - G\u\

where e\ = (1,0,..., 0), G° = 0, and the operator Gk\ k >, 1, is given by

.*(.)(.•) =E E W^l.
j=0 |/3|<2fc+l-2j ''

Here

r. ̂  - f^') ° 1
wy ' ~ ( 0 T^y') J

is n x n matrix with
2fc+l-2j-|/3|

(4.10) r^Q/) = ^ A2,>(2//)a2fc+l-2,-^(2//)^n-l,
1^=0

2k-^-l-2j-\(3\

(4.11) r^(2/') = ^ A2^l,.(2//)a2fc+l-2,-^Q//),
i/=0

En-i being the unit matrix in R71"1.

Before solving equations (4.9) with suitable initial conditions, we
rewrite G^ as a sum of two terms, grouping in one of them all T^ g with
\f3\ = 2k- 2j + 1. Let (3 = (/3i,... ,/3n-i) e Z7^-1, /3 ^ 0, and let
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|/31 = 2k - 2j + 1 for some positive integers k and j. Then z/ = 0 in
(4.10) and (4.11), and Lemma 4.2 implies that either

r^ = 0

i f /3^(2A;-2 j+l ,0 , . . . ,0 ) ,o r

pfc - P ° 1r^ - I o -i J
if (3 = {1k - 2j + 1,0,..., 0). Hence,

Gk='pk+nk,
where

(4.12) rk(uW=k^ ^ I^Q/)^-^,
j=0 |/3|<2fc-2j p'

and

(4.13) 7^)(,/)= P 0 1 g ̂ -2J+1^)
v / v / I 0 -ij ̂  (2A;-2j+l)! •

Denote by S the real analytic hypersurface in B71'1^)

5:={2/ / eB n - l (^ ) :2 / l=0} ,

and consider the system of equations (4.9) with initial conditions

(4.14) n°|5=((W,l), ^ 1 ^ = 0 , ^ = 1 , 2 , . . . .

They can be solved successively for every k € Z+, and the correspon-
ding solution uk(y/) is analytic in Bn~l(6).

To estimate sup ^ ( y ' ) } as k —> oo, we introduce suitable
y/^n-l^)

Banach spaces of formal power series which are adapted for the calculus
with the Taylor series of Gevrey functions. Similar spaces have been used
in [6] to study the calculus of classical formal pseudo-differential operators
in Gevrey classes.

Let FA{6, n — 1) be the set of all sequences

h:=h(y/)={ho(yf)^l(y/)^..}
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of analytic functions /^ in B71"1^). For any T > 0, k € Z+, and a C Z^~1

we set
^3A;+|Q:|

(4.15) AW : T) = sup |^,^(^)|
(^+ |a|j! y^B71-1^)

and denote

(4.16) ||^||T=^M^:r)

where the sum is taken over all k € Z+ and a G Z7^."1. Let

E(T)={heFA(6,n-l): ||/i||T<oo}

be the corresponding Banach space.

PROPOSITION 4.3. — There exist constants 6 > 0 and C > 0 such
that

sup |95^(2/0| < Ck^a\(2k)\a^ V A ; e Z + , VaeZ71-1.
^CB^-l^)

Proof. — To prove Proposition 4.3 we have to show that

(4.17) u^y') = {^Q/)^1^/),...} G ^(T) for some T > 0.

Indeed, we observe that (4.16) and (4.17) imply

sup \Q^u\y')\ <, ^t^——^ <, C/c+l+lal(2A;)!a!,
y^Bn-l(6) J.W-IQ'I

where Gi > 1, 0 < T < 1, and C = C(C^,n,T).

We are going to prove (4.17). To do this, we rewrite the Cauchy
problem (4.9) and (4.14) into a system of n integral equations. In this way
we obtain an equation

u(y'} = H(P(u})(y') + H(n{u)){y') + U\y')^ u G FA^ n - 1),

where U0^) = {(0, y " , 1), 0 , . . . , 0,...} and the operator H : FA{6, n - 1)
-> FA{6, n - 1) is defined by H(v)° = 0 and

/ /•2/1 />t \ ryi
H^ = -( / v^y^dsdt) e, - / ^(t^dt^ k^ N.

Vo Jo / Jo

The idea is to prove that the linear operator H o P - ^ - H o K i s a ,
contraction in E(T), provided that 0 < T < 1 and 0 < 6 < 1, and then to
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use the fixed point theorem in the Banach space E(T). First we show that
H is a contraction in E(T).

LEMMA 4.4. — There exist positive constants 60, TQ and Co, such that

H : E(T) 3 v -^ H{v) e E(T)

is continuous and

ll^)||T<W+r)|H|r, We^(r), rc(o,ro], 6e(^6o}.

Proof. — For any fixed a = (ai , . . . , On-i) € Z^~1 and k e N, we
consider the semi-norm M^{v : T).

There are two possibilities :

i) ai = 0. In that case 9^ = Q^,', and the definition of H(u) implies
that

M^H(v):T)<6MS(v:T).

The second possibility is

ii) (^i > 1- In that case

W'" r~1 ̂ (t^dt = %-l^;(^(y/))•
Jo

Hence, setting a = (ai — l.a"), we obtain

M^(H(v) : T) < ̂ ——M^v : T).

The estimates above show that

\\H{v)\\T=^M^(H:T)<{6^T)\\v r, v C E(T),

where the sum is taken over all k € Z+, a € Z^~1. D

LEMMA 4.5. — There exist positive constants 80 and To, such that

H o U: E(T) 3 u —> E(T)

is continuous, and

\\H(n(v)) \\T <3r||^||r, v^e^(r), re(o,ro]^e(o^o].
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Proof. — Let k C N,a = (ai,... ,0^-1) € Z^-1, and v C E(T).
According to (4.13) we have

HW)\y')=-{E OI^^M^-^MO^)
' / I 0 -ij ̂  (2fc-2j+l)!

^ y1 ^2fc-2J-l^(y/) - Q^-^v^y") - y^-Vv^y")
1 ^ ( 2 k - 2 j + l ) l •

Hence,

M^^ff^d,)) : T) < 3^ ^7+1)! (^r-2^01'0'0^ = T)

^^(2fc-2j+a,-l,a")^;^\

Summing up with respect to k € N and a € Z^~1, and setting p = k - j
we obtain

l|ff(W)||T ^ 6^f^ ——-——M^"1-1-"''^ : T)
p=lj=0 a \ P ' )'

^E^DilHlT^riHi,,

for all T e (0, To], and To > 0 sufficiently small. D

It remains to show that the operator u —^ P(u), given by (4.12) is
continuous in E(T).

PROPOSITION 4.6. — There exist To > 0 and C > 0 such that the
linear map

P : E(T) 3v —> P(v) e E(T)
is uniformly continuous for 0 < T <, To, and

(̂  \\W\\T<C\\V\\^ vre(o,To).

Proof. — For any k > 1 and a € Z71"1 we have

M^P(.) : T) ^ g ^ ^ sup |^Q/)|
J=0 |7|<2fc-2j p+0=a ^B^-IO?)
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(4 19) (2j+|7|+H)!(p+^)! 3fe-3^1-H M^^ • n1 9) (2A:+|^+0|)!p!0! J ( n } *

To estimate the right hand side of (4.19) we are going to use the
following

LEMMA 4.7. — There exists a constant C\ > 0 such that

(4.20) sup 1̂ 1̂ )1 <, C^6^ (2k^ 0\,
y/eBn-l{6) W)'

for any 7,0 e Z^~1, and 0 < j < k - 1, 0 < |7| < 2k - 2j.

Lemma 4.7 will be proved in the Appendix. Assume for the moment
that (4.20) is valid. Plugging it into (4.19) we arrive at the quantity

,,^ (2fc-H)!(2j+H+|/>|)!(g+p)!
' ' (2j)\(2k+\p\+\0\)\p\e\

First we suppose that |7| = 2k — 2j. Then (4.21) is estimated above by

(2k+\p\)\(\p\+l)...(\p\+\0\)
(2k+\p\+\e\)W

(2k + |p|)! (2k + \p\ + 1)... (2fc + \p\ + H) ^ 1
{2k+\p\+\e\)\e\ e\'

We remind, that for any z = (2:1,.. .,Zn-i) € Z^~1 we have |,z| =
z\ + • • • 4- -Zn-i, and that, by convention O! = 1.

For |7| < 2k — 2j, we estimate (4.21) as above by

(2j + H + \P\ + W (2J + 1) . . . (2j + (2fc - 2j - H)) ^ 1
(2k+\p\+\e\)\ffl. - Q\'

Hence, (4.21) is estimated by - , , and we obtain
V

k-1 l(~i T^-J+W
MWv):T)<C^ ^ ^ l-1-^———M^(v:T).

j=0 |7|<2fc-2j p-\-0=a

On the other hand, we have

^ E E^^^t: W^T^^
fc==j+i \^f\<2k-2j eez^-1 P=1 0ez7^-1
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for any T e (0,7o], and To sufficiently small. Therefore,

IIWr = E E WW : T) ^ Mr,
^Z+^Z^-1

which completes the proof of the proposition. D

Now we pass to the Gevrey realization of the formal change of the
variables u(y) and to the proof of the theorem.

PROPOSITION 4.8. — Let uk(y) = ^'{y'^u^ (?/)), k G Z+ satisfy
the estimates in Proposition 4.3. Then there exists a vector-function
u{y) = {u'(y),Un[y)) e G2^^)) such that

^yQ/,0) = (2A;)!^V), ^+VQ/,O) =0, k e z+

^n^.O) = (2A: + 1)!^(2/), ^(2/,0) = 0, k G Z+,

i.e. 'u(^) is a G2 realization of the formal solution from Proposition 4.3.

Proof. — We observe that in view of Lemma 4.1, u ' ( y ) must be an
even function with respect to yn-

We put /2j+i(2/') = 0, f2j{yf) = (2J)!^/(^), j e Z+. Then Proposi-
tion 4.3 yields after straightforward calculations that {fj(y')}°9^ satisfy

sup |^A(2/ /)|<G /c+lal+ la!(A;!)2, k C Z+, a C Z7^-1,
^eB^-1^)

where G > 0.

Now we can use the Whitney extension theorem in Gevrey classes
which has been proved in different cases by many authors e.g. [7], [13],
[14]. In our case, applying Lemma 1 in [13], or more generally Theorem
4.5 in [14], (see also Theorem 3.9 in [7]) we find a function u ' ( y ' , y n ) €
G^JE?71"1^)) having as a Taylor expansion in powers of yn the next formal
sum

00 .T^ f -vl
j \

j=0 J'
2^ ,t j^

One deals similarly with Un(y) (which must be an odd function with
respect to yn) by defining f^(y') = 0, /2j+i(^) = (2.7 + 1)!<(^), J G Z+.

The proof of Theorem 3.1 is complete. D
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5 Appendix.

A.I. We are going to prove Lemma 4.7. Since Y^^{y') is holomorphic
in the polydisk B^^S) in C71-1, it is enough to prove (4.16) for 0 = 0
(then one uses the Cauchy integral representation formulae in the polydisk
Bn~l{26) with y ' € B71-1^) for 0 < 8 < 1). We are going to estimate
separately A^y and a^. We have

(A.I) A^o = (-1)^ and A^ =0, 1 <, v < p - 1,

according to (4.3) and (4.6), where p > 2 is fixed.

LEMMA A.I. — Let y > p > 2. Then there exists a constant C > 0
such that

(A.2) sup |A^O/)| < C^1174-^——^
T/^B——1^) l7 - 1) '

for any j € Z+, j > 1.

Proof. — Since ^(?/) is analytic, there exists C > 0 such that

sup IA^Q/)!^^, r = l , 2 , . . .
^ea—1^)

Hence, in view of (4.6) we obtain

1^(^)1^ E j^f j,^'
/ . . • \ r» / • \ JU'JD* • • • JL/'Oo,Jp,...,J^)€Zo(j,^)

for ?/ C Bn-l(^). Denote by m the minimum of j and the integer part of
v I P . To estimate the right hand side of the inequality above, we consider
for any j > 1 the function

h(t)= f 1+7-^7) , ^e(- l . l ) , p>2.
\ L b /

Expanding h(t) in power series, we get

( 00 \ 3 OQ ___ ..

h(t)= i+F^ -E E -m7—-^-^-^ / z-^ z-^ 7n 771 • . • ?Jr=p / ^=o (jojp,...j.)ezo0» JOJP Jv

On the other hand,

h^+t{i.)^-
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Hence, for any v '>_ p >_ 2 we have

V^ J' _ 1 <yh
(̂ ,...zrezo0>)̂ ^

^.^{ff^^-^-0

=^E(0(^)(sp) !s(s+ l)•••(s+^/-sp- l)
s—1

m

^ Z '̂ - 1) • • • U - s + 1) (s + v - sp - 1)!
s=l
m

^ ^J'O' + 1)... (j + s - l)(s + ^ - sp - 1)!
8=1

^v^(J+^-^-2)-2)!

~h y-1)'
04^2)!

- 0--1)! '

Evidently the inequality above yields the desired estimate. D

LEMMA A.2. — There exists a constant C > 0 such that

(A.3) sup \a^{y')\ < C^
^eB71-1^)

for any ^ € Z+, and 7 C Z^~1, 0 < [^l < /^.

Proof. — The demonstration is similar to that of Lemma A.I. We
have

sup |a^(y')|^ ^ ————^c>t•
V'^-W (^,...,^6Z(^)T1!•••^•

Let /i be an analytic function in R"~1. One observes that the right hand-
side of the inequality above coincides with the coefficient a^-y(C') in the
identity

( Ct Ct \ v- v- - (^hw^h[^^ctJ••-^~^)= S E^^-^r'
-yez^-'^M
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which leads to

^^^^(i)'^17^1-^"171) |t==0

— C^ ^ ~ ' < OCA^
~ (/.-H^H-I)!^^ 5

provided 7 € Z^~1, 0 < H < fi. D

Proof of Lemma, 4.7. — Fix 7, A;, and 0 ^ j < k — 1, so that
|7| < 2k - 2j. Using (4.10) - (4.11) as well as (A.I) - (A.3), we obtain

2fe+i-2j-n r9.4-,. n»r^d/} < r2^1-2^ 4- V^ ^2fc+i-2.7 w •r v ~ 1)'i^^; _ ^ -r- ^ ^ ^^,

^--^(2.-2,+i-H)(2^ <^•(2yyD!,
with Gi > 0 satisfying C2^^^ +1) < Cf, 5 > 1. The proof of Lemma 4.5
is complete. D
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