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EQUIDIMENSIONAL ACTIONS
OF ALGEBRAIC TORI

by Haruhisa NAKAJIMA

1. Introduction.

In this paper, we suppose that all algebraic varieties including group
varieties are defined over an algebraically closed field K of characteristic
zero. Without specifying, varieties are assumed to be irreducible and G
(resp. T) will always stand for a connected algebraic group (resp. connected
algebraic torus). For an affine variety or scheme X (resp. a closed point x G
X), 0(X) (resp. O(X)x) denotes the coordinate ring ofX (resp. the stalk
over x) and, for an affine domain R, Spm R denotes the affine variety defined
by A, i.e., the maximal spectrum of R. When a regular action of G on an
affine variety X (abbr. (X, G)) (cf. [GM]) is given, we say X is a G-variety
and define 0(X)° to be the JC-subalgebra consisting of all invariants of G
in 0(X). Recall that X is said to be conical, if 0(X) is equipped with a
positive graduation 0(X) = 0 0(X), such that 0(X)o = K. In this case,

^o
we say that an action (X, G) is conical, if the induced action of G preserves
the graduation of 0(X). When 0{X)° is finitely generated as a J^-algebra,
we denote by X/G the affine variety associated with 0(X)°, i.e., the
algebraic quotient of X under the action of G and by TTX,G the quotient
map X —^ X/G. In the case where O^X)0 is affine, the action (X,G)
is said to be cofree (resp. equidimensional), if 0(X) is (^(X^-free (resp.
if X —>• X/G is equidimensional). When 0(X)0 is a finite-dimensional

Key words: Equidimensional actions — Cofree actions — Stable actions — Algebraic tori.
Math. classification: 14L30 - 20G05.
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polynomial ring over K^ (X, G) is called coregular (cf. Remark 5.5). Recall
that an affine G-variety X is called a pointed variety with a base point a;,
if x is G-invariant. A conical affine variety X with a conical action of G
is usually regarded as a pointed variety whose base point is associated
with the homogeneous maximal ideal 0(X)+. For a pointed affine G-
variety with the base point x, we define the nullcone A/"(X, G) to be the
affine scheme SpecO(X)/0(X) ' 9Jl^, where 9Jta; denotes the maximal
ideal of functions vanishing on x. In the case where V is a representation
space of a reductive G, the action (V, G) is cofree if and only if A/'(V, G)
is a complete intersection. V.L. Popov [PI] proved (by classification)
that, for irreducible representations of simple groups, equidimensional
representations are cofree, and then he came up with the conjecture
that this should be true for all representations of semisimple groups
(cf. [P2]). Later, V.G. Kac [K] conjectured an argument similar to Popov
conjecture for general connected algebraic groups. Several contributions to
this conjecture have been done by Popov, G.W. Schwarz, O.M. Adamovich,
P. Littelmann and D. Wehlau (see [P3]), however, except [Wl], they
deal with semisimple groups. For a finite-dimensional representation G —>•
GL(V) of a non-semisimple reductive G, the quotient V/[G,G] by the
commutator subgroup [G, G] is an affine factorial variety with the torus
G/[G, G] action. Moreover if the representation is equidimensional, then so
is the action (V/[G, G], G/[G, G]). Thus, in order to study Popov conjecture
for non-semisimple groups, it is natural to ask whether equidimensional
conical actions of algebraic tori on conical factorial varieties are cofree.
The purpose of this paper is to examine this question. Using theory of
associated cones introduced by W. Borho and H. Kraft [BK], [GM], [W2],
we give an affirmative answer for stable actions (cf. Remarks 5.6 and 5.7).
Recall that (X, G) is said to be stable, if X contains a non-empty open
subset consisting of closed G-orbits. Our main result is

THEOREM 1.1. — Let X be an affine conical factorial variety with
a conical stable action of T and let V be a dual space of a minimal
homogeneous T-submodule of 0(X) generating 0(X) as a K-algebra.
Then the following conditions are equivalent:

(1) (X,T) is equidimensional.

(2) (X, T) is cofree.

(3) (V.T) is cofree.

(4) A/"(X, T) is a complete intersection and X is defined by T-invariant
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polynomial functions on V.

The proof of this result will be partially given in Sec. 3 and will be
completed in Sec. 4. This seems to be useful in studying on equidimensional
representations of non-semisimple reductive algebraic groups (e.g., [N4],
[N5]).

Let 3E(G) stand for the rational linear character group of (not neces-
sarily connected) G over K which is regarded as an additive group. For any
\ € 3E(G), we set

0{X\ := {x C 0{X) | a{x) == xW ' x for any a 6 G},

whose elements are called ^-invariants or semi-invariants of G relative to
X in 0(X). Clearly 0{X\ is an 0(X)°-module.

THEOREM 1.2. — Let X be an a&ne conical factorial variety with
a conical action of G. Suppose that O^X)^^ is noetherian, where
T^u(G) denotes the unipotent radical of G. If the action of G on X is
equidimensional, then 0(X)G is factorial and 0(X)^ is ©(X^-free, for
any x € X(G) such that 0(X)^ ' 0(X)-^ ^ {0}.

Wehlau [Wl] and, independently, S. Endo (unpublished) show that
Popov conjecture for tori is affirmative, and Theorem 1.2 is regarded as a
generalization of their result (cf. Remark 5.2).

The content of this paper was announced in a part of a talk at The
14th Symposium on Commutative Algebra (Tokyo, Nov. 24-27, 1992).

The author is grateful to Keio Gijyuku for offering an annual grant
in aid to him and to the referee for pointing out typographic errors to him.

2. Preliminaries.

Let Zo denote the additive monoid of all non-negative integers. For
any s and x = (a;i,..., Xs) G Zg, put supp(x) = {i | 1 <, i < s, Xi -^ 0}. We
easily have

LEMMA 2.1. — Let a, b be elements in Zg. Jfsupp(a) D supp(b),
then there are natural numbers m, n such that ma — nb € Zg and

supp(a) ^ supp(ma — nb) ~jf) supp(b). D
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Let Hti(J?) denote the set consisting of all prime ideals of a ring R of
height one. For any subset B of a normal domain R, let R • B denote the
divisorialization of B (or of R ' B) in R {i.e., R~B := Ft (JR • B)^^

yeHti^)
whose Well divisor is denoted by div^(B), and recall that the ideal -R • B
is said to be divisorial, if R • B = R ' B. As div^(B) is regarded as a vector
of some Z§, putting

supp^(B) := {p € Hti(^) | B C p},

we can identify this with supp(div^ (£?)).

PROPOSITION 2.2. — Let Rbea normal domain and let 51 and % be
divisorial integral ideals ofR. Then the following conditions are equivalent:

(i) \/a c \/%.
(2) supp^(2l) D supp^(»).

(3) There are natural numbers m, n such that (Sl771 : S71) (/L V^S and
y^rn ^(gn^

Proof. — The implication (3) => (1) follows from the assumption
that ^B is divisorial. For some s G N, we can choose p^ C Hti(-R) and
di, bi e ^o (1 <: i <: s) satisfying the following equalities; div^(2l) =

^ a, • div^(p,) and div^(») = E ̂  • <iivj?(p,). If ̂  C » for a u e N,
Z=l 1=1

then u • Oi > bi (1 < i < s), which shows (1) =^ (2). Suppose that
\/2l C V^S. Putting a = (ai , . . . , Og) and b = ( & i , . . . , &s), by (2) we see
supp(a) D supp(b). So we have the natural numbers m, n stated as in
Lemma 2.1. Then the assertion (3) follows from the implication (1) => (2),
because m ' divj?(2l) — n ' divj^®) is effective. D

COROLLARY 2.3. — Let X be a normal affine G-variety and let 51
and % be divisorial integral ideals ofO(X)G. Then the following conditions
are equivalent:

(1) VH C V^B in 0{X)0.

(2) sMppomW ^supp^)CB).

(3) supp^(^)G(2l) D supp^)G(%).

Proof. — The implication (1) =^ (2) and the equivalence (1) 4=^
(3) are shown in Proposition 2.2 ("divisoriality" is not used in the proof
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of (1) => (2)). The implication (2) =^ (3) follows from the well known
fact (e.g. [M]) that, for any p € Kt^O^X)0), there exists a prime ideal
qj C Hti(0(X)) lying over p. D

LEMMA 2.4. — Let X be a normal affine G-variety. Ifx is an element
ofO(X) such that 0{X) • x D O^X)0 ̂  {0}, then x is a semi-invariant of
G.

Proof. — Let a be any element of G and let ^a ^ Hti(5) to satisfy
^pff 3 (r(x). The ideal ^Po. contains a nonzero element / in 0(X)0. As G
is connected, ^fta is a G-invariant ideal. Hence cr(x) ' 0(X)q^, a power of
^O(X)^, is G-invariant. Consequently, for any ^ G Hti(S'), a(x) e (?
if and only if x € ^P, and one sees a(a;) - 0(X)<p = a* • 0(X)<p. Since X
is normal, 0(X) ' x is G'-invariant. By [M], Proposition 1, we obtain the
assertion of this lemma. D

LEMMA 2.5. — Let A be a graded affine K-domain ^ Ai defi-
i>0

ned over AQ = K and B a graded K-subalgebra of A. Suppose that
B[9ii' • ' 5^m] = A for some homogeneous elements Q{ € -\/B^.' A (1 <
i < m), where B^. denotes the homogeneous maximal ideal of B. Then A
is integral over B and B is finitely generated over K.

Proof. — For any 0 < j < m, set A^ := B[^i,...,^] (especially
^4(0) ^ Q^ which is naturally regarded as a graded subalgebra of A. By
our assumption, we can fix 0 < i < m such that A^"^ is noetherian and
gj C ^B^ • A(^+1) (1 < j < i + 1). Then

g^ = 6iFi + ... + bkFk
for some n, k € N and for some homogeneous by, 6 -B+ and Fy, € A^[<^+i]
(1 < u < k). So A^^ is integral over A^ and, by Eakin-Nagata
theorem, A^ is noetherian. For any maximal ideal m of A^ containing
B+ • A^\ we have a maximal ideal SDt of A^^ lying over m. Then
B+ • A^^ C m • A^"^1) C 9Jt and, by the choice of z, this implies that
W is homogeneous. Thus gj € ^/B^. ' A^) (1 ^ j ^ z), and we inductively
get our assertion. D

We require the following elementary fact:

LEMMA 2.6. — Let \i, 1 < i < n, (not may be distinct) be linear
characters ofT. Then ® \i is a faithful representation ofT if and only

l<i<n
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iff;^'Xi=X(T).
i=l

D

For any finite generating system F of an affine JC-domain A, let Fy
denote the additive free monoid Q) Zo • 7 on F. Let -^[^r] be the affine

7€F
semigroup ring over K associated with ̂ r and ^r the canonical ^-algebra
map ^[^r] —^ A. Since -^[^r] is a J^-space with the base F^i we naturally
regard ^r as a (multiplicative) submonoid of -^[^r]-

LEMMA 2.7. — Suppose that T is diagonalizable and not necessarily
connected. Let X be an affine T-variety and W a Gnite-dimensional rational
T-submodule ofO(X) which generates 0{X) as a K-algebra. Then:

(1) Jfr denotes a K-basis of W consisting of semi-invariants ofT,
then O^XV is generated by some elements in ^r(-?r) H O^X)7' as a K-
algebra and, for any \ € X(T), O(X)-^ is generated by some elements in
^r(^r) H 0(X)^ as an ^(^-moduJe.

(2) For a x e X(T), ifSym(TV)^ = 0(W^ + {0}, then 0{X\ +
{0}.

Proof. — Let \ be any linear character of T. The -RT-algebra Sym(lV)
can be identified with ^[^r] and ^r induces the surjection Sym(W)^ —>
0(X)^. On the other hand, Sym(TV)^ is generated by some monomials in
FY C ^[^r] as a Syn^W^-module. Thus the assertion in (1) follows from
these observations. Suppose Sym(TV)^ -^ {0}. Then this module contains
a nonzero monomial M in FY C ̂ [^r] and, because X is integral, M does
not vanish on X. So we must have the assertion (2). D

The next proposition is a slight modification of a part of [P3], Chap. 4,
Theorem 3.3:

PROPOSITION 2.8. — Suppose that G is reductive and not necessa-
rily connected. Let N be a closed normal subgroup of G and X an affine
G-variety. Then:

(1) For a point x ofX, ifG-x is closed in X, the orbit G / N ' 7rx,Ar(^)
is closed in X / N .

(2) The action (X, G) is stable if and only if both actions (X, N) and
{X/N, G / N ) are stable. D

Remark 2.9. — For surjective morphisms (f) : X —> Y\ ^ : Y —> Z
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of integral varieties, the equidimensionality of -0 o ^ implies one of '0. As
a special cose of this, we note the following fact: Let X be an affine G-
variety and N a closed normal subgroup of G. Suppose that both 0(X)N

and 0(X)° are noetherian. If the action (X, G) is equidimensional, then
so is the action ( X / N . G / N ) .

Almost assertions of the next result can be found in [S] and are known
in terms of commutative algebra (e.g., [CM], [LR]):

PROPOSITION 2.10. — Suppose that G is reductive and let X be an
affine conical variety with a conical G-action. Then:

(1) Jf(X,G) is co free, then it is equidimensional.

(2) Suppose that X is Cohen-Macaulay. If (X, G') is coregular and
equidimensional, then (X, G) is cofree.

(3) Suppose that (X, G) is cofree. Then X is a complete intersection
if and only if both X/G and Af(X, G) are complete intersections.

(4) Suppose that X is smooth (i.e., an affine space). Then the
following three conditions are equivalent:

(i) (X, G) is cofree;

(ii) (X, G) is coregular and equidimensional;

(iii) A/"(X, G) is a complete intersection. D

For any irreducible representation p of a reductive G and an affine
G-variety X, let ^(X,p) denote the multiplicity of p in

(©(x^/c^x)^) ̂ omo o(x) ̂  o(x)/o{x)G.. o(x).

PROPOSITION 2.11. — Let G -. GL{V) be a finite-dimensional
representation of a reductive G. Suppose that V contains X as a G-stable
conical closed subset, where a conical structure ofV is given by a weighted
polynomial algebra 0(V). Then

(1) M(V, G) is canonically isomorphic to A/'(X, G) if and only if
^(x? ?) = P-(V, p) for any irreducible representation p ofG.

(2) IfX is defined by G-invariant polynomials in V, then the equiva-
lent conditions in (1) are satisfied. Conversely, if (X, G) is cofree and (1) is
true, then X is defined by G-invariant polynomials in V.
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Proof. — The canonical epimorphism v : 0(V) —> 0{X) induces the
J^-algebra map

v : 0(y)/0(Y)^ • 0(V) -> 0(X)/0(X)$ • 0(X).

Because v is G-equivariant and surjective, the equivalence in (1) follows.
Clearly Ker v is a quotient of Ker i//(Kei y}0' 0(V)^ which implies the first
assertion in (2). Suppose that (X,G) is cofree and .A/'(V,G) is isomorphic
to A/"(X, G) via v. Then, by a graded version of Nakayama's lemma, we
see that any 0(X)G-{Tee basis of 0{X) can be regarded as a system of
generators of 0(V) as an ©(l^-module. From this we derive the last
assertion of (2). D

3. Stable actions.

For a (not necessarily connected) G and an affine G-variety or G-
scheme X over K, we define the following notations;

Xx(G) := {x € X(G) | 0{X\ • 0(X)^ ̂  {0}},

^x{G):= n Ker ̂ C G and
X€Xx(G')

GG(X):=K[ \J 0(X)^CO{X).
xe^x(G')

Recall that, without specifying, G is connected.

LEMMA 3.1. — Let X be an affine G-variety. Then:

(1) Xx(G) is a subgroup ofX(G).

(2) GG(X) = © 0{X)^ = © GoW^.
xexx (G) ^eXspec GG m (G/^ (G?))

(3) For a G-invanant dosed subvanety Y of X , 0(X)0 -^ O^Y)0

can.
is injective if and only if Gc(X) —> O^Y)0 induces a monomorphism

can.
GG(X) -^ Gc(Y). In the case where G is reductive, 0{X)° ^ O^Y)0 if

can.
and only ifGG(X) ^ GG(Y).

can.

(4) If linear characters \, ̂  of G satisfy 0{X\' 0(X)^ ^ {0} and
\ + '0 G Xx(G), then both \ and ^ are contained in Xx(G).

(5) Let L be a normal closed subgroup of G and let Z be an affine
G-variety with a G-equivariant dominant morphism X —^ Z which satisfies
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0(Z) ̂  ©(X^ C 0(X) and Xz(G/L) = X{G/L). If linear characters ̂
^ ofG satisfy that 0(X)^ • 0(X)^ ^ {0} and 0(X)m{^^ n °W ^ W
for some m G N, then both \ and -0 are contained in Xx(G).

Proof. — The proofs of (1) and (4) are easy, and the assertion (3)
follows from (2). Since ^ O(X)-^ is a J^-subalgebra, the equalities

xeXx(G')
in (2) are clear. The assertion (5) is a consequence of (4) and the fact
that 0(X) is a domain, because the inclusion Ker(m(^ + '0)) 3 L implies
m(x+^)eXx(G). n

We denote by Q{R) the total quotient ring of a ring R. If G acts on
R, then it acts naturally on Q(R).

PROPOSITION 3.2. — Let X be an affine factorial G-variety. Sup-
pose that 0(X)0 is noetherian. Then the following conditions are equiva-
lent:

(1) 0(X)^ is ©(X^-free, for any x € Xx(G).
(2) O^X)0 —> 0(X) is no-blowing-up of codimension one (i.e., a

restriction of any ideal of 0(X) of height one to 0{X)0 agrees with zero
or is of height one) and 0{X)° is factorial.

Proof. — First recall that any prime ideal of O^X)0 of height one
is a restriction of a prime ideal of 0(X) of height one (e.g. [M]).

(1) =^ (2): Let / be a prime element of 0{X) such that 0(X) ' f
contains a nonzero invariant of G. Then, using Lemma 2.4, we see that
/ G 0(X\ for some x e X(G). By (1), 0(X) . / H ^(X)^ = / . 0(X)-^
is principal. So 0(X)° —> 0(X) is no-blowing-up of codimension one.
Moreover, since 0{X)0 is noetherian, we also see that it is factorial.

(2) => (I): Let \ C Xx(G) and let / be a nonzero element of
0(X)-^. Clearly (0(X) ' f)^0(X)^^a = Q^X)0)^ for any prime
ideal q? such that ynC^X)^ = {0}. Since 0(X)° -> 0(X) is no-blowing-
up of codimension one,

0(X). / 2 H ^°W' f)v n o(x)^^a)
<P€Hti(0(X))

D F| (ow./now^,
q€Hti(0(X)^)

which implies that 0{X) 'fnO(X)0 is divisorial in (^(X)0. Hence 0{X)^
is 0(X)G-free. D
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We need a slight modification of A.R. Magid's descent method:

PROPOSITION 3.3 (compare [M], Theorem 6). — Let X be an
affine normal G-variety. Then there is a group E, an epimorphism E —>
C1(0(X)6') and an exact sequence

1-.F-^E^C\(0(X)),
where F is a subquotient ofXx{G).

Proof. — Let \ be a linear character which represents an element
of F as in the proof of [M], Theorem 6. We need only to show that F is
regarded as a subquotient of Xx(G). Let / be a nonzero element of 0(X)^
and express

0(X)./=qJ(lal)n...n^m)
for some q3, e Hti(0(X)) and a, e N (1 ^ i <, m), where ^(al)

denotes the a^-th symbolic power of ^. By the choice of \, we see that
Vi H 0(X)° ^ {0} (1 < i ̂  m). So

0(X) • / n o(X)0 D (̂  n 0(X)°) n... n (qĵ  n 0(x)°) ̂  {o},
which implies that \ € 3tx(G). D

PROPOSITION 3.4. — Let X be an affine T-variety. Then:
(1) 6r(X) = 0{X)^^° = 0(X)^^.

(2) If V is a rational T-submodule of 0(X) generating 0(X) as a
K-algebra, then

©r(V*) ^ Sym(V H ©r(X)) == Sym(y^x(T)),
can.

where V* denotes the dual T-module ofV.

(3) Xx(^(T)) = Xx(^(T)°) = {0}.
(4) ^x(T)^ ^x/^(r)(T/^x(r))=X(r/^(T)).

(5) IfX is normal, then CHC^JO^ ̂ ) is isomorphic to a subquotient
ofCl(0(X)).

Proof. — By the definition, if \ is a linear character in 3ix(T),
O(X)W) 3 ©r(X) D 0(X)^ = 0(X/^(r))^^^(T) ^ {0},

for any \ 6 3ix (T) and we easily see

^x(T) ̂  Xx/^(r)Cr/^x(T)).
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Since T/^x(T) acts faithfully on ©r(X), by Lemma 2.7, any linear
character of T/^x(T) is a Z-linear combination of linear characters of
T/^x(T) associated with nonzero semi-invariants of T/^x{T) in ©r (X).
From (1) and (2) of Lemma 3.1, we deduce that XspmGTm(T/fix(T)) =
X(T/^x(T)). Because Xsp^Tm(T/Six{T)) C Xx/^(T)(r/^x(r)), we
must have (4).

Let F be a finite generating set of the J^-algebra 0(X) consisting of
semi-invariants of T and H a closed subgroup of ^x(T) of finite index. Let
Mi (i = 1,2) be nonzero elements in ^r(^r) such that M\ • M^ € 0(X)11

and choose \i (i = 1, 2) from 3t(T) in such a way that Mi € 0(X)^.
Because

O(X)^(T) ̂  O(X)^(T):^(^) 3 (Mi • M^ l̂ ̂  {0},

by (4) of Lemma 3.1 and (4), we see that \i € Xx(T) (i = 1,2), which
implies that Mi e 0(X)^ C @x(T). Consequently, by (1) of Lemma 2.7,
0{X)11 = Gx(T\ which shows (1). Furthermore let ^ be a linear character
of H in XxW, and suppose Tvi e 0(X)^ and ^2 e O(X)-^, belong to
^r^r)- Then, as in the above discussion on M^, we similarly infer that
Ni € 6x(T) (i = 1,2). Since 0(X)^ is generated by some elements in
^r(^r) in 0(X) as an 0(X)^-module (cf. (2) of Lemma 2.7), we see that
0(X)^ C Gx(T) = 0(X)11, which shows ^ = 0. Thus (3) has just been
proved.

To prove (2), we apply Lemma 2.7, (1), (4) of Lemma 3.1 and (1) to
(V.T), and see that

©r(y*) ^ Sym(V H ©T(V*)) = Syrn^^^) ̂  Sym(V)^v'(T).

Moreover, using Lemma 2.7 again, we see that ^y*{T) = ^x(T) and
yn©TW=^n©T(^*).

The assertion (5) follows from Proposition 3.3, (1) and (3). D

Refining [Wl], Lemma 2, we obtain

PROPOSITION 3.5. — Let X be an affine T-variety and W a finite-
dimensional rational T-submodule of 0(X) which generates 0(X) as a
K-algebra. Then the following three conditions are equivalent:

(1) The action ofTonX is stable.

(2) 0(X)-^ ^ {0} for any \ € X(T) such that 0(X\ ̂  {0}.

(3) The action ofT on the affine space W* dual to W is stable.
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Especially if these conditions are satisfied and (VF*, T) is cofree, then
(X, T) is cofree.

Proof. — Let { V i , . . . , Yn} be a J<T-basis of W consisting of semi-
invariants of r. Putting V = W* for simplicity, we naturally regard the
affine variety X as a T-invariant closed subvariety of an affine space V with
the action of T dual to W. We may suppose that 0(X)° -^ {0} and that
{YI, . . . , Ym} is a .FC-basis of V D GT(V). Let F denote the linear subspace

{x € V | V^a*) = 0 for i > m}

of V'. By Hilbert-Mumford criterion (e.g., [GM]), we easily see that each
T-orbit in Vyi.....y^ HF is closed. Recall that the basic open subset VM^X
defined by M is non-empty and T-invariant, for any nontrivial monomial M
of { Y i , . . . , Yn} in 0(V). So, if m = n, both (V.T) and (X,T) are stable.
Suppose that m < n. Let a; be a point of V^.....y^i. Then x = ^/ + z
for some 2/ C Vyr....y^ H F and 2; € ^y^+i. Since two distinct r-invariant
closed subsets of V can be separated by invariants, from the canonical
isomorphism O^V^ ^ O^F^', we infer that T ' x is not closed. Thus
VYr...-Yrn+i 8Ln(^ VY^.....Ym+i n ^ are? respectively, non-empty open subsets
consisting of non-closed T-orbits. We have just shown the equivalence
(1) -<==>- the condition that n = m 4=^ (3). The equivalence (2) <==^ (3)
follows from the observation as above and (1) of Lemma 2.7. Suppose
these equivalent conditions are satisfied and that (V,T) is cofree. Then,
since (V,T) is stable, /^(V,x) < 1 for any X ^ X(T), which requires
p,(V, \) = ^(X, \). This shows the last assertion. D

COROLLARY 3.6. — Let X be an affine conical variety with a conical
regular stable action of T. Let V be a dual space of a finite-dimensional
homogeneous T'submodule ofO(X) which generates 0(X) as a K-algebra.
Then (V, T) is cofree if and only if M{X^ T) is a complete intersection and
X is defined by T-invariant polynomial functions on V.

Proof. — Suppose that (V,T) is cofree, z.e., 0(V)^ is monogene as
an C^V^-module for any \ e X(T). For some \, assume that 0(V)^ -^ 0
and 0(X)^ = 0. Since 0(V)^ is generated by a monomial of a basis of V* in
Sym(V*) = 0(V) as an ©(V^-module, this assumption implies that V* is
not canonically embedded in 0(X). Thus we must have ^(V,^) = /^(X,^)
for all \ G 3£(T). Since {X,T) is cofree, the assertion follows from
Proposition 2.10 and Proposition 2.11. Conversely suppose that the latter
half of the equivalence holds. Using Proposition 2.11 again, we have an
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canonical isomorphism J\T(X,T) ^ M(V,T). Since Af(V,T) is a complete
intersection, by Proposition 2.10, we see that (V,T) is cofree. D

COROLLARY 3.7. — Let X be an aSne T-variety. Then GT(X) is
the maximal T-invariant affine K-subalgebra ofO(X) such that the natural
action (Spm©r(X),r) is stable.

Proof. — By (2) of Lemma 3.1, (1), (4) of Proposition 3.4 and
Proposition 3.5, we see that the action (Spm©/r(X),r) is stable. The
maximality of ©r(-R) follows easily from Proposition 3.5. D

Remark 3.8. — Let (X, G) be a stable action of a reductive G on
an affine variety. Then, it seems to be well known that Q(0(X))0 =
Q^OW0) and

dim Q(0(X))0 = dimX- max dimC? • x.
x^X

To show this, we may assume that X is factorial and, by Proposition 2.8 and
[M], Proposition 1, we can derive the first equality also from Proposition 3.5.
The second equality follows from the first one (e.g., [L], [GM]).

For a subgroup H of a group G and a (7-module M, we denote by
H\M the image of the natural homomorphism H —^ GL(M).

LEMMA 3.9. — Let X be an affine T-variety and let /„, 1 < i < n,
be semi-invariants of T in 0(X) which generate 0(X) as a K-algebra.
Suppose that O^X^ ^ K and that ij > 0 (1 < j < n), for any
f? ' f ^ 2 2 ' " ' ' f ^ n n ^ OW^K with i, € Zo. Then:

(1) (X, T) is a stable action.

(2) 0(X) is a polynomial ring of dimension n.
(3)r|^^=n-l.

(4) For a closed subgroup LofT satisfying L|o(x) ¥" ̂ ow, there
is a vector ( f c i , . . . , kn) 6 Z^ with 0 < card({i | ki > 0}) < n such that
f ^ - f ^ ' - ' - f ^ ^ O W .

Proof.— Put F = { / i 5 - - - ? / n } and consider the T-equivariant
J<r-epimorphism <^r : ^[^r] -^ 0(X). Applyng Lemma 2.7 to our
assumption on invariant monomials, we immediately see that K^r]71

is a one-dimensional polynomial algebra over K isomorphic to 0{X)T'.
Furthermore, using Lemma 2.7 again and Proposition 3.5, we see that both
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actions (X,T) and (SpmK^r], T) are stable. Suppose that <l>r is not an
isomorphism. Since Ker <I>r is T-invariant, there is a nonzero semi-invariant
g e K[yr]x H Ker^r for a ^ e X(T). Recalling that (Spm^[^r], T) is
stable, we have K^r}-^ ^ {0}, which implies (Ker^r)71 ^ ^ • K^r}-^
This contradicts the fact that (Ker^r)71 = {0}. Hence X ^ Spm^[^r].
Because (X, T) is stable, by Remark 3.8 and the proof of Proposition 3.5,

dimX - dimX/T =max dimT • x = dimTlv^n ,.,./ xex '^i^
Thus the assertions in (1) ~ (3) are shown. The assertion in (4) follows
easily from (3). D

4. Equidimensional actions.

Let (y,Ti) be a conical regular operation of Ti ^ K* on a normal
affine conical variety Y. Let fl. be a finite gererating system of 0(Y) as
a ^C-algebra consisting of homogeneous semi-invariants of Ti. Fixing an
isomorphism v : X(Ti) ^ Z, we define the following subsets of 0; 0+ :=
{x € n | x € 0(V)^, ̂ (x) > 0} and n- := {x e ̂  | a; € 0(V)^, z/(^) < 0}.
Using Wehlau's result [W2]* on associated cones, we obtain

LEMMA 4.1. — Let f € n+ and g e fl- be elements such that
^/0(Y)f (resp. ^0(Y)g) is maximal in {^/0(Y)x \ x e ^+ (resp.
x C ^-)}. If(y,Ti) is equidimensional and stable, then:

(1) 0(V) is integral over O^Y)^ [/, ̂ ].

(2) (Spm^y^/.^r^iscofree.

(3) If^ is any non-zero linear character ofTi, then there is a u € N
depending ^ such that (P{Y)^Y C 0(Y) • / or (O^Y)^ c 0(Y) ' g.

Proof. — Let h be any element of ^_ and suppose h ^ ^/0(Y)g.
We choose natural numbers a, 6, c and d in such a way that fagb C C^V)^
and /c^ e ^(y)^. Put a: := fagb and i/ := /c^.

Suppose that ^/0(Y)^x (/_ ^/0(Y)^y. Then, there is a maximal
ideal OTt of 0{YY11 such that 9Jt ^ a; and 9Jt 3 2/. Let ^ : C^y)^ ^
O^Y^/yjl ̂  K be the canonical ^-algebra map. Since

mt • 0(Y) 3 h^x0 - /^c)) - g^y^

* The author is thankful to Prof. D. Wehlau for sending this preprint to him.
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^0(Y) ' W 3 h. Thus, by [W2], Theorem 2.5, we have

h e ^ / 0 ( Y ) ' 0 ( Y ) ^ .

Next suppose ^0(Y)^x C ^/0(Y)^y. By Proposition 2.2, we can
choose n, m from N and z from O^Y)^ in such a way that x71 =ym-z and
VO(YV^Z (JL ^0(Y)T.x. Then /— . g^ = /— . ̂ - . ̂  Assume that
a • n < c . m . Since ^-n = f^-a-n . ̂ .m . ̂ e_ft_0(y), by the maximality
of ^0(Y)^g, we see that ^0{Y)^g = ^0(Y)^h. This contradicts the
choice of h (cf. Corollary 2.3). Hence a - n - c - m - l i s non-negative. We
express as

j^d-m-a . ̂ a ̂  ̂  ra-(a-n-c-m-l) ^ fc.(a.n-l)

Let 9T be a maximal ideal of 0(Y)T1 satisfying that 9T ^ ^ and 9T 3 x and
/< the canonical J^-algebra map ©(V)^ -^ ©(V)^/^ ̂  J<T. Then we see

91 • 0(Y) 3 a: • ^-(^-^m-l) . ̂ .(a.n-1) _ .̂m.a . ̂ a _ ^(^))^

which implies h € ^^(V). From [W2], it follows that

^0(YyO(Y)^3h.

We can continue this procedure, and consequently we conclude that
both ^- and f2+ are contained in ^0(Y) • (O^)71!/,^. By Lemma
2.5, the first assertion has just been shown.

By Lemma 3.9, the action (SpmK[f,g], Ti) is cofree. Since
(C^y)^ [/, g])^ ^ e X(ri), is generated by K[f, g}^ as an 0(Y)^ -module,
the second assertion follows from this observation.

We now show the last assertion. Let \ C X(T) satisfying 0(Y)^ ^ {0}
and let v be any nonzero element of 0(Y)^. By (1), we can express as

^+wi -v1-1 +...4- wi =0

for some w, e e)(^)Tl[/,5r] and I e N and may assume that all w, are
semi-invariants of Ti. Say i/(^) > 0. For any rj € X(Ti) such that y[r]) > 0,
(2) implies that

{0{y)Tl[f.9}^=0{Y)T^fe.gt

for some e e N and t e Zo, if this module is non-zero. Thus v1 e 0(Y) ' f.
Because 0(Y)^ is finitely generated as an 0(y)71 -module, for a sufficiently
large u e N, we have (O^Y)^ c 0(Y) - f. D

From now on, we suppose, in this section, that T is of arbitrary rank
and X is an affine conical normal T- variety such that the action of T on
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X is conical. The action (X,T) is said to be radially-co free, if, for any
\ € X(r) with 0(X)^ -^ {0}, there is a natural number m such that
0(^0n.m^ n € N, are free as ©(X^-modules.

THEOREM 4.2. — Suppose that (X,T) is stable and equidimensio-
nal. Then

(1) For a linear character \ ofT, if (0(X)^ ' 0(X))^ = 0(X) ' g for
a nonzero element g € 0(X), we have 0(X)^ = O^X)7' • g. Consequently,
under the extra condition that X is factorial, the action (X, T) is cofree.

(2) The action (X, T) is radially-co free.

Proof. — ( I ) : Since 0(X)^ ' 0(X) is T-invariant and {0{X\ '
0(X))" is the smallest divisorial ideal of 0(X) containing 0(X)^ ' 0(X),
we can choose -^ from X(T) in such a way that g e 0(X)^. Then
0(X)^ = 0(X)^^ • g and 0(X)^^ ^ {0}. We assume \ - ̂  ^ 0.
Clearly OpC)1^1'̂ -^ is normal and by Proposition 2.8 and Remark
2.9, the natural action of T/Ker(^ - -0) ^ K* on (^(X)1^1'^-^ is
stable and equidimensional. Applying the last assertion of Lemma 4.1 to
{X/ Ker(^ - -0), T/ Ker(^ - ̂ )), we get an m e N and a non-unit element
w € ^(X)^^^-^) satisfying (^(X)^^ C w • (^(X)^^-^. Then
0(X). ̂ m = ((0(X)^ . ̂ (X))-)771)- = ((0(X^ . ©(X))7")-

= ((0(X)^^ . gr . 0(X))- = ((0(X)^ • ©(X))771)- . ̂ m

C 0(X) • ̂ m . w.
This inclusion implies that w is a unit-element of 0(X), z.e., w C -?C*,
which is a contradiction. So we must have \ = ̂  and the assertion follows
from this equality.

(2): Let \ be any non-zero linear character of T such that 0(X)^ -^
{0}. We apply the last assertion of Lemma 4.1 to the induced conical
stable and equidimensional action (X/Ker^, T/Ker^), and then, for any
a € N, we can choose a natural number u(o) depending on a and a semi-
invariant / G 0(X)Kerx of T not depending on a in such a way that
(^(X)^^ C ©(X)^^ . /. Clearly T/Ker^ ^ ^* acts faithfully on
0(X)^ a submodule of ^(X)^^ and so, by Lemma 2.6,

X(T/ Ker \) = Z . ̂  mod Ker ̂ .
Thus / is regarded as an element of 0(X)s^ for some s G N. Let b be
any natural number. By Lemma 4.1 and Proposition 2.2, we can choose m,
n € N and a divisorial integral ideal 3 of 0(X) such that

(((o(x)^.o{x)r)mr=fn'3
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and 3 t ̂ 0(X)f. Since

(«o(x)^. owrrr = ww^r. o(x))-
c^W^.^.^o^))-./71,

we have 3 c (0(X)(^_^.^ . 0(X))-. If 6. m > n, then

(OW^.^)^771--)-) c 0(X) • /,

which requires 3 c y^W • /. Hence 6 • m < n and

(OpO,.^)771. 0(X) c 0(X) . y^.

Because (O^),.^ 3 /^, we see (^(X),.^)771 = /^ . ©(X^ Moreo-
ver, since 0(X)b.s^ 3 /b and

(((0(X)^ . OWn-r = ((^(X),,̂  . 0(X)r = 0(X) . /b•m,

we must have (O(X)^O(X))- = 0(X) • f\ Thus the assertion follows
from (1). Q

Let r be a minimal homogeneous generating system of 0(X) consis-
ting of semi-invariants of T. The action of T on 0(X) can naturally be
lifted to the action on K[J='r] and <^r is T-equivariant. For any subgroup H
of r, we denote by F^ the submonoid K[y'r}11 H ̂ r of ^r and clearly T^
is a normal affine semigroup (cf. [TE]). So its minimal generating system
as a semigroup, which is denoted by FUND(^), is uniquely determined
(cf. ibid.). Put A = ^r(FUND(^)) and let

Amin := {q € A | ̂ 0(X)q is maximal in {^0{X)h \ h e A}}.

Remark 4.3. — Since any element in ^r(^?) is expressed as a
product of elements of A, for any q e A, q e Amin if and only if ^0{X)Tq
is maximal in {^/0(X^Th | h e ̂ r(^?)} (cf. Corollary 2.3).

PROPOSITION 4.4. — Let h, {i = 1,2) be elements ofA^in. Suppose
that hi (E ^/0(X)y {i = 1,2) for a non-unit y e 0(X) such that
y C ^r(^r) or y ^ O^X^. If (X,T) is stable and equidimensional, then
V/0(X)fti = ^0{X)h2.

Proof. — By Lemma 2.7 and Theorem 4.2, we note the following fact:
For any nonzero \ e X(T) with 0{X\ ̂  {0}, there are a natural number
n and a non-unit / £ 0(X)n^ n ̂ r(^r) satisfying (0(X)^)71 c ©(X)71 • /.

Suppose that y ^ ©(X)71. Because y is a semi-invariant of T
(cf. Lemma 2.4), by the fact as above, we see that y G -^/0(X)z for a
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non-unit z C ^rC^rAOpO^ Then there are natural numbers n, and semi-
invariants Wi (i = 1,2) such that h^ = z'Wi. Applying the above fact to the
character associated with w^s again, we can choose a natural number m and
a semi-invariant g e ^r(^r) in such a way that wf1 e g ' C^X^ (i = 1,2).
Then both fai and /i2 belong to ^/0(X)zm • g. Since z^ ' g e OW^ ex-
changing i/, we may assume that y € ^rG^i^ri^PO7^ whether the original
y belongs to O^X^ or not. The assertion follows from the maximality of
^/0(X)h^s, which is pointed out in Remark 4.3. D

THEOREM 4.5. — Let V be the dual of a minimal homogeneous T-
submodule of 0(X) which generates 0(X) as a K-algebra. Suppose that
X is factorial. If the action ofTonX is stable and equidimensional, then
(V, T) is cofree.

The rest of this section is devoted to the proof of Theorem 4.5.
Hereafter we suppose the following extra conditions are satisfied; X is
factorial and that the action of T on X is stable and equidimensional.
Clearly {divo(^-)(/) | / 6 r} consists of distinct prime divisors. For any
/ € ^r(fr), we put

Supp(/) := {g e r | / e 0(x) .^},
which satisfies {diyo{x){g) I g ^ Supp(/)} = supp^^{f). By Proposition
4.4, the subsets Supp(ft), h e Amin, of F are pairwisely disjoint. For any
subset A of r, JC[A] denotes the J^-subalgebra of 0(X) generated by A on
which T acts naturally. The symbol U is denoted to one of a disjoint union.

LEMMA 4.6. — Let h be any element of^r(^). Then

Supp(/i) = [_\ Supp(^).
ff^Amin

Supp(g)CSupp(h.)

Proof. — Suppose that h is a non-unit. Since h is a multiple of
elements in A,

Supp(/i) = \J Snpp(g).
gCA

Supp(g)CSupp(/i)

So, there is an element v of Amin satisfying Supp(^) C Supp(/i). Then,
because X is factorial, by Proposition 2.2, we can choose natural num-
bers m, n and an element h' e $r (^iQ such that h^ = v1^ • ft' and
Supp(ft') ^ Supp(ft). The assertion of this lemma follows inductively from
this observation. D
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LEMMA 4.7. — |j Supp(fa) = r.
^eAmin

Proof. — Let / be any element of F and \ a linear character of
T satisfying / e 0(X)^. Because the stability of (X,T) implies that
0(X)-^ ^ {0} and this (^(X^-module is generated by 0(X)-^ n^r(^r)
(cf. Lemma 2.7), the element / is a divisor of an element of ^r(^F). Thus
the assertion is a consequence of Lemma 4.6. D

Let Mi e ©(X)71 and m C N be denned to satisfy

Amin = {MI,...,M^}.

For each M^, let Vi denote the subspace of 0(X) generated by Supp(M^).
Clearly Vi is naturally regarded as a T-module of dimension card(Supp(Mi)).
Denote by /Q the kernel of the representation T —^ GL{Vi). The action
of T/JCi on K[Vi\, the JC-subalgebra of 0(X) gengerated by V,, is stable
(cf. Proposition 3.5) and faithful. We easily see that K^^ = K[Mi]
(cf. Lemma 2.1 and Lemma 3.9).

LEMMA 4.8. — T\y, = f D ^j) Ivz for alll < i < m.\ j^i /
l<j<m

Proof. — Suppose that T\y^ ^ fC^. By (4) of Lemma 3.9, there
is a non-unit N G ^r^^2) satisfying Supp(AQ C, Supp(Mi), and by the
minimality of Supp(Mi), we see that N € 0(X)^ for some \ € X(T)
vanishing K,^. Since the action otT/JC^ on SpmT^Vy is faithful and stable,
from Lemma 2.6, Proposition 3.5 and Lemma 2,7, we get an element
N ' e K[V2]-^n^r(7'r)' Then N ' N ' e ̂ r(^F), which contradicts Lemma
4.6. Consequently, for a natural number 2 <, k <: m, we may assume that

T\v^(^^)\v,(ie{^...^m}\J)^
j'eJ

if J C { ! , . . . , m} satisfies card(J) < k. Moreover, for an instance, we
suppose that

T|yi^2n...n/c,+i)|v,.
There is a non-unit

Ni e ^r(^r) n ̂ [Vi^-^+i
satisfying Supp(^Vi) ^ Supp(Mi) (cf. (4) of Lemma 3.9). Clearly A/i e
0(X)^ for a non-zero \ € X(T) vanishing on )C^ H ... H /Cfc+i. As

(/C2n...n/Cfe)|v^=r|v^,
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the closed subgroup
(/C2 n... n /Cfc)/(/C2 n... n /Cfc n /c^+i)

of r/(/C2 n ... n /Cfe ft /C^+i) is connected and its action on Spm JC[T4+i] is
faithful and stable. So, regarding xl(A:2n...nK:fc) as a nnear character of

(/C2 n... n /Cfc)/(/C2 n... n /Cfc n /c^+i),
we choose a nonzero element

^+1 e <M r̂) nW+i](-^, .,,̂
(it may be equal to 1). Let '0 be the linear character of T satisfying
M -A^+i CO{X)^. Since

(/C2n. . .n/Cfc-i) |v ,=T|v, ,
the closed subgroup

(A:2 n... n JCk-i)/(K,2 n... n /C^-i n /CA;)
is connected and its action on Spm^l^] is faithful and stable. Clearly
'0 vanishes on the subgroup IC^ F t . . . H /Cfe, and hence we similarly get a
nonzero element

^ € ^r(^r) n ̂ [^](-^)|^n...n^_,)-
We continue this procedure and, for any k > i > 2, consequently choose
Ni from ^r(^r) H ^[V^] in such a way that N^ ' N^ • . . . • A^+i € ^(X)1.
Then
Supp(A^i • N^ • . . . • A^fc+i) = Supp(TVi) U Supp(A^2) U ... U Supp(7Vfc+i)

£ Supp(Mi) U Supp(M2) U ... U Supp(Mfc+i),
which contradicts Lemma 4.6. We inductively get the assertion as
desired. D

Proof of Theorem 4.5. — We may regard the dual V* of V as the
subspace of 0(X) generated by r. By Lemma 4.7, we have V* = ® V^,

l<i<m

and by Lemma 4.8, we see that

T\v=( n ^)\vx( n ^)\vx'-x( n ^)i^
l^j<m l^J<Tn l^J<Tn
j^l j^2 j^m

Since Sym(y,*)(nl<J<m•J7'^/CJ) are of dimension one (cf. Lemma 3.9) and
(^(V)71 is isomorphic to a tensor product of these algebras, (V, Q JCjj,

KJ^JT^
1 < z ^ m, are cofree and hence (V, T) is cofree. D

Consequently, by Corollary 3.6 and the last assertion of Proposition
3.5 , we have just established the equivalence of Theorem 1.1.
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5. Additional remarks.

Theorem 1.2 follows from Theorem 1.1, (2) of Lemma 3.1 and the
next result:

THEOREM 5.1. — Under the same circumstances as in Theorem 1.2,
if the action (X, G) is equidimensional, then

SpmGG/^GWG])(X/(nn(G). [G,G]))

is an affine factorial variety and the induced action ofG/(Ku(G) ' [G,G])
on this variety is stable and cofree.

Proof. — Putting X := X/H^G) and G := G/7^(G) for simplicity,
by [M], X is an affine factorial G-variety. Moreover, using [M] again,
X/[G, G] is an affine factorial variety with the torus G/[G, G]-action. Since

Spm©^^(X/[G,G]) = (X/[G,G])/^/[^(G/[G,G])
(cf. (1) of Proposition 3.4), the assertions follow from (5) of Proposition
3.4, Remark 2.9, Corollary 3.7 and Theorem 1.1. D

Remark 5.2. — Let T —> GL(V) be a finite-dimensional rational
representation of T. Then, in an appropriate affine space, V/T is defined
by polynomial functions in the following form;

monomial — monomial.
Thus we immediately infer that V/T is factorial if and only if it is an affine
space over K (e.g. [TE]).

Recall that a locality over K (cf. [LR]) is said to be a quotient
singularity, if its completion with respect to its maximal ideal is isomorphic
to a ring of invariants of a formal power series ring over K under a linear
action of a finite group.

THEOREM 5.3. — Let G be a (not necessarily connected) reductive
algebraic group and (X, x) an affine pointed G-variety with a smooth base
point x. Suppose that

dim^(X/[G°, G°], G) + dimX/G = dimX/[G°, G0].
Then:

(1) Cl(0(X/G)^^(,))^X((G/G°)Mx/G°(G/G0)). Here^/Go(G/G°)
denotes the normal subgroup of G/G° generated by elements a € G/G°
such that ht(0(X/G°) • (a - 1)(0(X/G°))) < 1.
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(2) If(X/[G°, G°], G) is stable, then Af(X/[G°, G°], G°) is a complete
intersection and <W[G°,G°])^^o,oo^) is <WG°)^ ^yfree.

(3) JfG° is a torus, then .A/'(X, G0) is a complete intersection and the
local ring 0(X/G)^^^^ is a quotient singularity by the action ofG/G°.

Proof. — As in [L], we similarly have a G-equi variant morphism
'0 : X —> T^X from X to the Zariski tangent space T^X ofX at :r,
etale at x, with ^{x) = 0 such that the tangent map d^x agrees with
the natural identification of T^X with TQ^X). Then ^ induces a G-
equivariant isomorphism 0(TxX)o ^ 0(X)x between completions of local
rings. For any reductive subgroup H of G', we have the following canonical
isomorphisms (cf. [N2], Lemma 3.5);

O^X/H)^,^ ^ (O^X)o)11

^^(X^^WH)^^.
Since M(X, G°) ^Af(T^X,G0) (cf, [H], Theorem 3.4),

W/[G°, G°], G0) ̂  M(T^X/[G°, G0], G0)
and by our assumption, the action (T^X/^.G0],^0) is equidimensional.
Moreover, applying Theorem 1.2 to this action, we see that T^X/G0 is
factorial, and so we infer that 7xX/G° is an affine space in the case where
G° is a torus, which shows (3) (cf. (4) of Proposition 2.10 and [N2], ibid.).
On the other hand, by [N2], we see that
C\(O(WH)^^) - CI(O(T;X/^^(O))

- C\(6(X/H)^^) - C\(0(X/H)^^)
for the above H. Since ̂ x/Go(G/G0) = W^x/G^G/G0), the assertion (1)
follows from this observation, [Nl] and [N2], Lemma 3.5.

In order to show (2), we furthermore suppose that (X/[G°,G°],G)
(and so (X/^.G^.G0)) is stable. Let x ^ ^(GW^G0]) satisfy
0(7;X/[G°,G0]^ ^ {0}. Then

{0} ̂  (0(r,X/[G°,G°])o)^ - (6(X/[G°,G0])^ „, ̂ (^,

which requires 0(X/[G°,G0])^ ^ {0}. By stability, we have
{0} ̂  0(X/[G°,G°])^ -. (6(X/[G°,G°])^^ ,^(.))-x.

which shows that the action (TcX/tG^G^G0) is stable (cf. Proposition
3.5). Applying Theorem 1.1 to this action, we obtain the assertions of (2),
since

((0(T,X/[GO,GO])o)^)'-((OW[GO,GO])^^^^(,))^)-
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(cf. the proof of [N2], Lemma 3.5 and Lemma 3.7). D

By this and the slice etale theorem [L], we have

COROLLARY 5.4. — Suppose that G is reductive and let X be a
smooth affine G-variety. If the action of G on X is equidimensional, then,
for any closed point ^ ofX/G, C1(0(X/G)^) is isomorphic to a subgroup
ofX(Gx/G°^), where x denotes a closed point in the unique closed orbit in
X over ^. D

Remark 5.5. — In general, cofree actions on affine conical varieties do
not imply coregularity. In fact, we give an example as follows: Let A be an
affine graded domain over K and let R be a polynomial ring A[X, Y] with
two indeterminates X, Y. Suppose K* 3 t acts on A-linearly on A[X, Y}
in such a way that t(X) = ia ' X and t(Y) =t~b ' Y with a, b € N. Then
(SpmR.K") is a cofree action and R^ is a polynomial ring over A. So
(Spmfl, K*) is coregular if and only if A is regular.

Remark 5.6. — The assumption in Theorem 1.1 that X is factorial
is needed in view of the following example: Let V be the three-dimensional
vector space over K with a basis {X,V,Z}. Suppose that K* 3 t acts
on V in such a way that t(X) = t • X, t(Y) = t~1 ' Y and t(Z) = Z.
Moreover suppose that Z/2Z =< r > acts on V in such a way that
r(X) = -X, r(Y) = Y and r(Z) = -Z. Put R := Syrn^)^ and
G := JC* x Z/2Z. Denote by [i the linear character K" 3 t \-^ t €
K\ Clearly R = K[X2,Y,Z2,XZ} is a normal graded algebra over K
with a grade preserving action of K* ^ G/(Z/2Z) and, by Samuel's
Galois descent, C\R ̂  Z/2Z. Since the dual action (V*,G) is stable and
equidimensional (cf. Theorem 1.1), so is the action (SpmR^K*). However
R^ = R^^Y.XZ), which is not J^-free.

Remark 5.7. — Let If be a connected semisimple group and put
G := H x K * . Then there are infinitely many H -isomorphism types
of restrictions of representations G —> GL(V) to H such that V11 =-
{0}, both (V,G) and ( V / H , G / H ) are cofree and V / H are not complete
intersections. In fact let p\ : H —^ GL{V\} be a cofree representation and
p2 '- H —> GL(V'z) a representation such that V^/H is not a complete
intersection. Suppose that K* (c G) acts trivially on V\ and it acts on
^2 as homotheties. Then since (Vi C V^/G ^ VI/G, by (2) of Proposition
2.10, Remark 2.9 and [HR], both (Vi C V^G) and ((Vi C ̂ /[G.G],^*)
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are cofree. However, since (Vi C V^/[G,G] is not a complete intersection,
.V((Vi C V2)/[G,G],J<"*) is not a complete intersection. Combining [P3],
Chap. 4 with [N3], we can show that there are infinitely many isomorphism
types of such representations V^ of H. Thus the assumption in Theorem
1.1 that (X,r) is stable is needed in view of these examples.
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