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SEMISTABLE REDUCTION
AND TORSION SUBGROUPS

OF ABELIAN VARIETIES
by A. SILVERBERG and Yu. G. ZARHIN

1. Introduction.

The main theorem of this paper is that if an abelian variety over a
field F has a maximal isotropic subgroup of n-torsion points all of which
are defined over F, and n > 5, then the abelian variety has semistable
reduction away from n. We deduce bounds for the size of (certain) isotropic
subgroups of torsion points defined over a field, for non-semistable abelian
varieties. Our main theorem can be viewed as an extension of Raynaud^s
theorem that if an abelian variety and all its n-torsion points are defined
over a field -F, and n > 3, then the abelian variety has semistable reduction
away from n.

The proofs of our results rely on certain generalizations of a theorem
of Minkowski and a lemma of Serre (see §4). In §6 we give our main results
pertaining to semistable reduction of abelian varieties (see Proposition 6.1,
Theorem 6.2, and Corollaries 6.3 and 6.4). In §7 we give some information
about the Neron models in the cases where n = 2, 3, and 4.

Earlier work in the same direction was done by Lenstra and Oort (see
Theorem 1.13 of [8]) and by Lorenzini (see [9]); they found bounds on sizes
of (certain) torsion subgroups of abelian varieties having purely additive
reduction. Our results generalize to higher dimensional abelian varieties
earlier work on elliptic curves due to Frey (see Theorem 2 of [5]) and to
Flexor and Oesterle (see [4]). We state some of their results in §6.

The first author would like to thank the NSF for financial support.
Key words : Abelian varieties - Semistable reduction.
Math. classification : 14K15 - 11G10.
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2. Definitions and notation.

If F is a field, let F8 denote a separable closure, let F denote an
algebraic closure, and let char(F) denote the characteristic of F. If L is a
Galois extension of F, v is a discrete valuation on F, and w is an extension
of v to L, let T(w/v) denote the inertia subgroup at w of Gal(L/F).

If X is an abelian variety over F, write Xn for the kernel of multipli-
cation by n in X(F5). Polarizations on X will be viewed as isogenies from
X onto its Picard variety. If X is an abelian variety defined over a field F,
A is a polarization on X, n is a positive integer not divisible by char(F),
and ^n is the Ga^F^/F^module of n-th roots of unity in F8, then the
en-pairing induced by the polarization A,

CA,n : Xn X Xn —> ^n

(see §75 of [17]), is a skew-symmetric bilinear map which satisfies :

^,71(^1,^2)) = ^(A),n((T(^l),(T(a'2))

for every a e Ga^F^F) and a;i, x^ € Xn. If n is relatively prime to the
degree of the polarization A, then the pairing e\^n is nondegenerate.

If X is an abelian variety over F and t is a prime number, let

T^X)=\imXer

(the Tate module) and let Ve(X) = Te,{X) 0z, Q£ The Galois action on
the torsion points gives rise to the ^-adic representation

p t : Gal(FVF) ̂  Aut(r^(X)) ̂  GÎ Z^),

where d = dim(X).

Write Mg(0) for the ring o f g x g matrices over 0, and write J^ (or
I when it is unambiguous) for the g x ^identity matrix. Write F(Cn) for
the extension of F obtained by adjoining the n-th roots of unity.

3. Reduction of abelian varieties.

Suppose X is an abelian variety over a field F, and v is a discrete
valuation on F with residue field k and valuation ring R. The Neron model
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X of X at v is a smooth separated model of X over R such that for every
smooth scheme y over -R and morphism / : y 0^ F —> X over F there is
a unique morphism fn : V —^ X over R which extends /. The generic fiber
of X can be canonically identified with X, and X is a commutative group
scheme over -R whose group structure extends that of X.

Let Xy = X <S>R k and let X^ denote the identity component of the
special fiber Xy.

DEFINITION 3.1. — IfX is an abelian variety over a Geld F, and v is
a discrete valuation on F, then X has

(i) good reduction at v if X^ is an abelian variety (equivalently, Xv is
an abelian variety; equivalently, X is an abelian scheme),

(ii) semistable reduction at v ifX^ is an extension of an abelian variety
by an affine torus,

(in) potential good reduction at v ifX has good reduction at an extension
ofv to a finite algebraic extension of F.

THEOREM 3.2 (Criterion of Neron-Ogg-Shafarevich). — Suppose X is
an abelian variety over a field F, v is a discrete valuation on F, v is an
extension ofv to a separable closure of F, and £ is a prime different from
the residue characteristic ofv. Then X has good reduction at v if and only
ifl(v/v) acts as the identity on Te{X).

Proof. — See Theorem 1 of [14] and Theorem 5 on p. 183 of [2]. D

THEOREM 3.3 (Galois criterion of semistable reduction-Grothen-
dieck). — Suppose X is an abelian variety over a field F, v is a discrete
valuation on F, L is a Galois extension ofF, w is an extension ofv to L, X
has semistable reduction at w, and £ is a prime different from the residue
characteristic ofv. Let W = V^X)^/^, the subspace ofV^X) on which
I ( w / v ) acts as the identity. Then X has semistable reduction at v if and
only ifl(w/v) acts as the identity on V^(X)/W.

Proof. — See Proposition 3.5 of [7] and Theorem 6 on p. 184 of [2].

D

THEOREM 3.4 (Semistable reduction theorem-Grothendieck). — Sup-
pose X is an abelian variety over a field F and v is a discrete valuation on
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F. Then there is a finite Galois extension LofF such that X has semistable
reduction at the extensions ofv to L.

Proof. — See Proposition 3.6 of [7]. D

Theorem 6.2 and Corollary 7.2 below extend the following result of
Raynaud.

THEOREM 3.5 (Raynaud criterion of semistable reduction). — Sup-
pose X is an abelian variety over a field F with a discrete valuation v,
n is a positive integer not divisible by the residue characteristic, and the
points of Xn are denned over an extension of F which is unramified over
v.Ifn> 3, then X has semistable reduction at v. Ifn= 2, the valuation
ring is henselian, and the residue field is separably closed, then X acquires
semistable reduction above v in a {7l/2Z)r-extension of F, for some r.

Proof. — See Proposition 4.7 of [7]. D

4. Minkowski-Serre type results.

We now give some generalizations and variations of results of
Minkowski and Serre. Minkowski [10] showed that an integral matrix of
finite multiplicative order, which is congruent to the identity matrix mod-
ulo n, is the identity if n > 3. Serre (see Lemma 4.7.1 of [7] and p. 17-19 of
[13]) proved analogous results for automorphisms of semi-abelian varieties.

THEOREM 4.1. — Suppose n is a positive integer, 0 is an integral
domain of characteristic zero such that no rational prime which divides n
is a unit in 0, a € 0, a has finite multiplicative order, and a — 1 € nO. If
n >, 3 then a = 1, and ifn = 2 then a2 = 1.

Proof. — See p. 17-19 of [13] and p. 207 of [11]. This result also
follows from Theorem 4.2 below, since if a — 1 € nO then (a — I)2 € n^O.

D

THEOREM 4.2. — Suppose n is a positive integer, 0 is an integral
domain of characteristic zero such that no rational prime which divides n
is a unit in 0, a € 0, a has finite multiplicative order, and (a — I)2 G nO.
I f n > 5 then a = = l , i f n = 4 then a2 = l , i f n = 3 then a3 = 1, and if
n = 2 then a4 = 1.
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Proof. — Let M be the exact multiplicative order of a. If M = 1,
then a = l . Suppose M ^ 1 and let V be a prime power which exactly
divides M, with r > 1. Let < = aM/ir'. Then (C-l)2 € nO. If z is a positive
integer less than (T and not divisible by t, then the elements C' - 1 each
generate the same ideal in Z[C] C 0, and therefore,

i2 = (^r(l))2 = ^[ (1 - C1)2 € n^O,
z€(Z/^Z)x

where </? is the Euler (^-function and <I>^r is the ̂ -th cyclotomic polynomial.
Thus, ̂ n-^) e 0.

We will now show that Z[l/n] D 0 = Z. Suppose /? e Z[l/n] n 0.
If /3 ^ Z, then we can write f3 = — where a, & e Z and p is apb
prime dividing n but not dividing a. Since p does not divide a, we have
- € Z+Z- = Z+Z&/3 C 0, contradicting the assumption that no rational
prime which divides n is a unit in 0. Therefore f3 e Z.

Therefore, Pn-^^ 6 Z. Thus, n^) divides <2, so n is a prime
power of the form ^m with

2 > m^(r) = m(^ - l)r-1 > m(£ - 1).

Therefore, n < 4. Further, n is a power of every prime which divides the
order of a, so the order of a is a prime power (T\ with m(t - l)^"1 < 2.
This gives the desired result. D

LEMMA 4.3 (Lemma 3.4 of [15]). — Suppose A e Mg(Z^) is a matrix
of finite multiplicative order, 0 < a < g, and b is an a x (g — a) matrix over
Zs such that

^^ t.)^0)-
Then A = J.

THEOREM 4.4. — Suppose £ is a prime, M is a free Z^-module of finite
rank, A is an automorphism ofM, MA is the submodule of A-invariants in
M, and c is the corank of MA in M. Suppose A^ = 1, and suppose either

(a) £ = 2 and A - 1 e 2End(M),

(b) £ = 2 and (A - I)2 e 4End(M), or

(c) i = 3 and (A - I)2 e 3End(M).
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Then the torsion subgroup of M/(A — 1)M is a vector space over
Z/CZ of dimension c/(£ - 1).

Proof. — Let V = M 0z< Q^- Define an endomorphism p of V to
be (1 + A)/2 in cases (a) and (b) and (1 + A + A2)^ in case (c). Since
A^ = 1, we have p2 = p. We have p e End(M), since p = 1 - (1 - A)/2
in case (a), p = 1 - (1 - A)2/4 in case (b), and p = A + (1 - A)2/3
in case (c). Let Mi = pM and Ms == (1 - p)M. Then Mi and Ms are A-
invariant free Z^-submodules of M, M = Mi ©Ms, and (A- l)Mi = 0. Let
0 = Zs[;r]/(a;+l) = Z2 in cases (a) and (b), and let 0 = Z3[x}/(x2+x+l)
in case (c). Clearly, 0 is a principal ideal domain, 0/(x-1)0 ̂  Z/<Z, and
0 is a free Z^-module of rank £ - 1. Then Ms carries a natural structure
of a free 0-module, where x acts as A; let r be the 0-rank of Ms. Then
c is equal to the Z^-rank of Ms, which is equal to r(£ - 1). The torsion
subgroup of M/(A — 1)M is isomorphic to

Ms/(A - 1)M = Ms/Or - l)Afs ̂  (0/(x - 1)OY ^ (Z/CZY.

But r=c/(£-l). D

THEOREM 4.5. — Suppose G is a commutative group scheme over
a field, G is an extension of an abelian variety by a torus, and a is an
automorphism of G. If r is a positive integer, let G[r} denote the scheme-
theoretic kernel of multiplication by r. Suppose either

(a) a2 = 1 and a - 1 is 0 on G[2],

(b) a2 = 1 and (a - I)2 is 0 on G[4], or

(c) a3 = 1 and (a - I)2 is 0 on G[3].

Then G is the direct sum of a-invariant connected subschemes G\
and Gs such that Gi is the identity component ofker(l - a), Gs is the
identity component ofker(l+a) in cases (a) and (b), and Gs is the identity
component ofker(l + a + a2) in case (c).

Proof. — Note that End(G) is torsion-free. We have a -1 e 2End(G)
in case (a), (a-1)2 € 4End(G) in case (b), and (a-1)2 C 3End(G) in case
(c). Define an element p € End(G) 0 Q, as in the proof of Theorem 4.4, by
letting p = (1 + a)/2 in cases (a) and (b) and letting p = (1 + a + a2)/3 in
case (c). Then p2 = p, and p e End(G). Let Gi = p(G) = ker(l - p) and
Gs = (1 -p)(G) = ker(p). Then Gi and Gs are a-invariant subschemes of
G, G = Gi © Gs, and Gi and Gs are connected. Let £ = 2 in cases (a) and
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(b) and let £ = 3 in case (c). Then

^ker(l - a) C Gi C ker(l - a), ^ker(^p) C G^ C ker(^p).

Therefore, ker(l - a)/G'i and ker(^p)/C?2 are killed by ^, and so are finite.
Therefore, G\ is the identity component of ker(l —a) and G^ is the identity
component of ker(^p). D

5. Preliminary lemmas.

LEMMA 5.1 (Corollaire 3.8 of [7]). — Suppose X is an abelian variety
over a field F, v is a discrete valuation on F with residue Geld fc, and v is
an extension ofv to a separable closure of F, Ifl(v/v) acts by unipotent
operators on the Tate module V^(X) for some prime £ ̂  char(fc), then X
has semistable reduction at v.

LEMMA 5.2. — Suppose that d and n are positive integers, and for
each prime t, which divides n we have a matrix At € M^d(Z^) such that the
characteristic polynomials of the At have integral coefficients independent
of£, and such that (A^ — I)2 e nM^d(Z^). Then for every eigenvalue a of
Af, (a— l)/Vn satisfies a monic polynomial with integer coefficients.

Proof. — If a is an eigenvalue of Af, then (a-1)2/^ is an eigenvalue of
n-^^At - I)2 € M^d(Ze). Thus (a - l)2/n, and therefore also (a - l)A/n
and (1 — Q;)/^/n, satisfy monic polynomials with coefficients in Z^. Let
f(x) = det(A^ — Ix) € Z[a;], the characteristic polynomial of Af. Let

g^{x) = ̂ /(l + Vnx) = det^v^)-^ - I ) - Ix) e Z[l/^[x},

let

g^x) = 71-̂ (1 - Vnx) = deta-y^)-^ - I ) - Ix) € Z[l/Vn\[x],

and let h(x) = g^{x)g^(x). Then h € Q[rr]; in fact, h C Z[l/n][a;]. The
roots of h are exactly the numbers ±(a — l ) / y / n for eigenvalues a of Af.
Therefore the coefficients of h satisfy monic polynomials with coefficients in
Z^, but are rational numbers, and therefore must lie in QnZ^, and in fact in
Z[l/n]nZ^, for every prime t which divides n. Since n^(Z[l/n]nZ^) = Z,
we have h € Z[x}. Therefore, for every eigenvalue a of A^, (a — l)/\/n
satisfies the monic polynomial h € Z[x]. D



410 A. SILVERBERG, Yu. G. ZARHIN

In Lemma 5.5 we will give a condition under which an abelian variety
acquires semistable reduction over a totally and tamely ramified extension
of the ground field.

Remark 5.3. — Suppose v is a discrete valuation on a field F, and m
is a positive integer not divisible by the residue characteristic. Then every
degree m Galois extension of F totally ramified at v is cyclic (by reducing
to the case where F is complete with respect to v^ and applying Theorem 1
on p. 29 in §8 of [6]). If F(^rn) = F^ then F has a cyclic extension of degree
m which is totally ramified at v. In particular, if the residue characteristic
is not 2 then F has a quadratic extension which is (totally and tamely)
ramified at v. If F is a local field or a global field, then by class field theory
a degree m cyclic extension of F which is totally ramified at v exists if and
only if m divides the order of the multiplicative group of the residue field.
If the valuation ring is henselian and the residue field is separably closed,
then F = -F(Cm) and therefore F has a cyclic totally ramified extension
of degree m. Note also that F has no non-trivial unramified extensions if
and only if the valuation ring is henselian and the residue field is separably
closed.

LEMMA 5.4. — Suppose F is a field with a discrete valuation v, v is
an extension ofv to a separable closure F8 ofF, and r is a positive integer
not divisible by the residue characteristic ofv. Suppose F coincides with its
maximal extension E in F8 such that the restriction of v to E is unramified
over v. Then F has a unique degree r Galois extension K in F8, and the
restriction ofv to K is totally and tamely ramified over v.

Proof. — Adjoining the r-th root of a uniformizing parameter gives
a degree r Galois extension of F in F8. Suppose K and L are two degree
r Galois extensions of F m F8. Then the restrictions of v to K and to
L are totally and tamely ramified over v. Therefore the restriction of v
to the compositum KL is totally and tamely ramified over v (by §8 of
[6] the compositum of two totally and tamely ramified extensions is totally
and tamely ramified), and GQL\(KL/F) is a cyclic group which injects into a
direct product of cyclic groups of order r, GoX{K/F) xGol(L/F). Therefore,
Gal(XL/F) = Gal(^/F), so K = L. D

LEMMA 5.5. — Suppose v is a discrete valuation on a field F with
residue characteristic p > 0, m is a positive integer, t is a prime, p does
not divide m£, K is a degree m Galois extension of F which is totally
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ramified above v, and v is an extension ofv to a separable closure K8 of
K. Suppose that X is an abelian variety over F, and for every a € I ( v / v ) ,
all the eigenvalues of pe(a) are m-th roots of unity. Then X has semistable
reduction at the extension ofv to K.

Proof. — If M is a field with F C M C K8, let VM denote the
restriction of v to M. Let E be the maximal extension of F in F8 = K8

such that VE is unramified over v. Since VKE is unramified over VK-> X
has semistable reduction at VK if and only if X has semistable reduction
at VKE-, by Theorem 3.3. Replacing F by E and K by KE^ we may
assume that F coincides with its maximal extension in F8 such that the
restriction ofi;is unramified over v; in particular, I ( v / v ) = Gal(F8/F). Let
L = F{X(2) C K8 (i.e., L is the smallest extension of F in K8 over which all
the ^-torsion points of X are defined). Then L is a totally ramified Galois
extension of F. Let V = Ve{X) and T = 7>(X). By Raynaud's Criterion
(Theorem 3.5) X has semistable reduction at z^, since X(2 C X(L) and
e2>3.

Next, we will show that L is tamely ramified over F. Suppose
a € I ( v / v ) . By our hypothesis, p^cr)771 is a unipotent operator on V.
Let rf = /^(cr)771 — 1. Then T]T C T, and for some integer t > 2, we have
rf = 0. It follows that (p^a)^ - 1)T C PT. In other words, o^ = 1
on X^2 ^ r/^T, so the image of a in I(VL/V) has order dividing m^.
Consequently, [L : F} is relatively prime to the residue characteristic, so L
is totally and tamely ramified over F, and therefore L is cyclic over F.

Let W = y^/^). Then p^ induces a homomorphism

p : I ( v / v ) -^ Aut(TY) x Aut(Y/W)

which factors through the finite cyclic group I(VL/V) = Gal(L/F). There-
fore the image of p is a finite cyclic group, of order, say r, dividing [L : F]
and m. (To see that r divides m, let r be a generator ofI(vL/v). Then r771

acts on W and on V/ W as a unipotent operator of finite order. Therefore,
r771 is in the kernel of p.)

Let K'\ respectively L', be the (unique, cyclic) degree r extension of F
in JC, respectively, in L. Then p factors through T(VL' / v ) = Gal(L'/F), and
the kernel of p is T ( v / ' U L 1 ) ' By Theorem 3.3, X has semistable reduction
at VL" By Lemma 5.4, JC' = L'. Therefore X has semistable reduction at
VK' i ^d thus also at VK- D
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6. Main results.

PROPOSITION 6.1. — Suppose X is an abelian variety over a Geld F,
v is a discrete valuation on F with residue field k, X is a polarization on X,
n is a positive integer not divisible by char(fc), Xn is a maximal isotropic
subgroup ofXn with respect to e^n, A and the points of Xn are defined
over an extension ofF which is unramified over v, and L is a finite extension
ofF over which X has semistable reduction at an extension wofv.

(i) Suppose v is an extension of w to a separable closure of F, i is a
prime which divides n, a € I ( v / v ) , a is an eigenvalue of p^a), and d is
the dimension ofX. Then (p^a) - I)2 e nM^^Li}, and

a=l ifn ̂  5,

a2 =1 ifn =4,

a3 =1 ifn =3, and

a^l ifn =2.

(ii) Ifn is relatively prime to [L : F] then X has semistable reduction
at v.

Proof. — Suppose a e I ( v / v ) . Then (a - l)Xn = 0. Since the
extension F(Cn) over F is unramified outside n, and n is not divisible
by char(fc), I ( v / v ) acts as the identity on the n-th roots of unity in F8.
Therefore, for x € Xn and y e Xn we have

^,n((a - 1)̂ ) = ̂ W^)) ̂  <^n(^)) ^ ^
^(x.y) e^n(x,y)

Since Xn is a maximal isotropic subgroup of Xn, we have (a - l)Xn C Xn,
and therefore

(a-l)2Xn=0.

By Theorem 4.3 of [7], for primes t ^ char(fc) the characteristic
polynomial of p^a) has integer coefficients which are independent of t.
Let m = [L : F}. Then a^ e I(v/w), so (a771 - I)2 = 0 on V^X) by
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Theorem 3.3. If a is an eigenvalue of p^(cr), then (a771 — I)2 == 0, so a771 = 1.
If {t exactly divides n, then

X,t ^ T,(X)/nT,(X) ̂  Zy/nZy,

so (p^(cr) — J)2 G nM2d(Z^). Let Z denote the ring of algebraic integers in
an algebraic closure of Q. Lemma 5.2 implies that if a is an eigenvalue of
^(a), then (a — I)2 € nZ. Part (i) now follows by applying Theorem 4.2
with 0 = Z. Further, if (m, n) == 1, then the eigenvalues of the pe(cr) are all
1, so I ( v / v ) acts by unipotent operators on V^(X). Part (ii) follows from
Lemma 5.1. D

THEOREM 6.2. — Suppose X is an abelian variety over a field F, v is
a discrete valuation on F with residue field k, X is a polarization on X, n
is an integer greater than 4 and not divisible by char (A:), Xn is a maximal
isotropic subgroup of Xn with respect to e;^n, and X and the points of Xn
are denned over an extension of F which is unramified over v. Then X has
semistable reduction at v.

Proof. — The semistable reduction theorem (Theorem 3.4) says that
X has semistable reduction over some finite extension of F. Theorem 6.2
now follows immediately from Proposition 6.1i and Lemma 5.1. D

COROLLARY 6.3. — Suppose F is a field, v is a discrete valuation on
F with residue field k, X is an abelian variety over F which does not have
semistable reduction at v, \ is a polarization on X, n is a positive integer
not divisible by char(fc), Xn is a maximal isotropic subgroup of Xn with
respect to e\n, and X and the points of Xn are defined over an extension
ofF which is unramified over v. Then n < 4.

If we drop the hypothesis that n is not divisible by char(A;) in Corollary
6.3 then we conclude that n is the product of a power of char(fc) and an
integer that is at most 4. We therefore obtain a stronger result if there are
two discrete valuations, with different residue characteristics, at which the
abelian variety does not have semistable reduction.

COROLLARY 6.4. — Suppose F is a field, v and w are discrete
valuations on F of different residue characteristics, X is an abelian variety
over F which has semistable reduction at neither v nor w, A is a polarization
on X, n is a positive integer, Xn is a maximal isotropic subgroup ofXn with
respect to e\^n, and A and the points of Xn are defined over an extension
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of F which is unramified over v and w. Then n divides 12. If further the
residue characteristic ofvorw is greater than 3, then n <, 4.

In the case of elliptic curves, Corollaries 6.3 and 6.4 imply the
following results.

COROLLARY 6.5. — Suppose X is an elliptic curve over a field F and
X has a point of order n denned over F. IfX has additive reduction at a
discrete valuation ofF whose residue characteristic does not divide n, then
n < 4 .

COROLLARY 6.6. — Suppose X is an elliptic curve over a field F and
X has a point of order n denned over F. IfX has additive reduction at at
least two discrete valuations ofF with different residue characteristics then
n divides 12, and if at least one of those residue characteristics is greater
than 3 then n < 4.

These results also follow from earlier work on elliptic curves due to
Flexor-Oesterle and Frey. Frey (see Theorem 2 of [5]) proved that if E is
an elliptic curve over a global field F of characteristic not 2 or 3, q is a
prime, q ^ 5, b is a positive integer, and E(F) has a point of order qb,
then E has semistable reduction at all places of F of residue characteristic
different from q. Among the results of Flexor and Oesterle [4] is that if E
is an elliptic curve defined over a field F which is complete with respect to
a discrete valuation v of residue characteristic p with perfect residue field,
and if E has additive reduction at v, then the torsion subgroup of E ( F )
has order of the form p^m with n ^ 0 and m <, 4. They also show that
if E is an elliptic curve over a number field F, with additive reduction at
at least two discrete valuations of F with different residue characteristics,
then the torsion subgroup of E(F) has order dividing 12. To show the
latter result is sharp, they produced an example of an elliptic curve over
(^(V^) with additive reduction at valuations of residue characteristics 2
and 3, whose Mordell-Weil group is isomorphic to Z/2Z x Z/6Z (but did
not give an example with a point of order 4). We now give an example to
show Corollary 6.5 is sharp.

Example 6.7. — Let X be the elliptic curve over Q defined by the
minimal equation y2 = x3 + 6x - 7. Then X has additive reduction at 3
(and at 2, and good reduction elsewhere; the conductor of X is 72; see [1]),
and X(Q) is the cyclic group of order 4 generated by the point (4,9).
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Remark 6.8. — Let

N(k) = { prime powers V : 0 < m(i - 1) < k}.

If X is an abelian variety over a field F, v is a discrete valuation on F, t; is
an extension of v to a separable closure of F, A; and n are positive integers,
n ^ -/V(fc), n is not divisible by the characteristic of the residue field, and for
every cr € T(v/v\ (a — 1)^ is zero on Xyi, then X has semistable reduction
at v. The proof follows the proofs of Proposition 6.1 and Theorem 6.2 and
a suitable generalization of Theorem 4.2.

7. The cases n = 2, 3, 4.

COROLLARY 7.1. — Suppose X is an abelian variety over a field F, v
is a discrete valuation on F with residue field k, X is a polarization on X,
n is a postive integer which is not divisible by char(fc), Xn is a maximal
isotropic subgroup ofXn with respect to e\^n, and A and the points ofXn
are defined over an extension of F which is unramified over v.Ifn= 2, 3,
or 4, then X has semistable reduction above v over every totally ramified
Galois (necessarily cyclic) extension ofF of degree 4, 3, or 2, respectively.

Proof. — The corollary follows from Proposition 6.1i and Lemma 5.5.
See Remark 5.3 for criteria for the existence of a totally ramified cyclic
extension of appropriate degree. D

The next result generalizes Raynaud's Criterion (Theorem 3.5) in the
case n = 2.

COROLLARY 7.2. — IfX is an abelian variety over a field F with a
discrete valuation v whose residue characteristic is not 2, and the points
of X^ are defined over an extension of F which is unramified over v, then
X acquires semistable reduction above v in every quadratic extension ofF
ramified over v.

Proof. — The result follows from Lemma 5.5 and Theorem 4.1, as in
the proof of Proposition 6.1. D

THEOREM 7.3. — Suppose X is an abelian variety with complex
multiplication by an order 0, F is a field of definition for X and the
endomorphisms induced by 0, v is a discrete valuation on F of finite
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residue characteristic? 7^ 3, the number p, of roots of unity in 0[l/p] is not
divisible by 3, A is a polarization on X, X^ is a maximal isotropic subgroup
ofX^ with respect to e\^, and \ and the points ofX^ are denned over an
extension ofF which is unramified over v. Then X has good reduction at
v.

Proof. — Let v be an extension of v to a separable closure of F. The
group p^(I(v/v)) is contained in the group of roots of unity in 0[l/p] (see
Theorem 6 of [14]). If a € I ( v / v ) and a is an eigenvalue of p3(cr), then
a is a /^-th root of unity. By Proposition 6.1i, a is a cube root of unity.
Since /A is not divisible by 3, we have a = 1. Therefore I ( v / v ) acts by
unipotent operators on Vs(X), so X has semistable reduction at v. Since
X has complex multiplication, X must have good reduction at v. D

THEOREM 7.4. — Suppose n is a positive integer, n > 4, F is a Geld,
v is a discrete valuation on F whose residue characteristic does not divide
n, X is an abelian variety over F which has potential good reduction at v,
X is a polarization on X, Xn is a maximal isotropic subgroup of Xn with
respect to e\^n, A and the points of Xn are denned over an extension of
F which is unramified over v, and if n = 4 then X^ ^ (Z^Z)^ for some
non-negative integer b. Then X has good reduction at v.

Proof. — Let v be an extension of v to a separable closure of F and
let £ be a prime divisor of n. Since X has potential good reduction at v,
p^(T(v/v)) is finite by Theorem 2i of [14]. If n = 4, under our assumptions
on Xi, the proof of Proposition 6.1 shows that for every a € I{v/v)^ p2{cr)
is conjugate to a matrix in

(? U^^2''d-b

with d = dim(X) and with f3 a b x (2d — b) matrix over Za. Theorem 4.2,
Lemma 4.3, and the proof of Proposition 6.1 imply that pe{a) = I for every
a € I(v/v}, so X has good reduction at v by Theorem 3.2. D

Suppose X is an abelian variety over a field F, v is a discrete valuation
on F, the valuation ring is henselian, and the residue field k is algebraically
closed. If X has potential good reduction at v, then X^ is an extension
of an abelian variety by a unipotent group whose dimension is called the
unipotent rank of X at v (see Remark 1 on p. 500 of [14]). Let $ == Xy/X^
a group scheme over k. The group <I>(fc) is the (finite) group of connected
components of Xy.
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In [16], Silverman gives information on the group of connected compo-
nents for abelian varieties with potential good reduction over a local field.
We provide additional information in special cases.

THEOREM 7.5. — Suppose v is a discrete valuation on a Geld F with
henselian valuation ring and algebraically closed residue field, X is an
abelian variety over F which has potential good reduction at v, and either

(a) n = 2 and the points ofX^ are defined over F, or

(b) n = 3 or 4, A is a polarization on X , Xn is a maximal isotropic
subgroup of Xn with respect to e\^n, and X and the points of Xn are
defined over F.

Suppose the residue characteristic? ( > 0) ofv does not divide n. Let
c denote the unipotent rank of X at v, and let $' denote the prime-to-p
part of the group of connected components of the special fiber of the Neron
model of X at v (with <&' the full group of components ifp = Q). Then
^/ ^ (Z/2Z)20 ifn=2 or 4, and ^/ ^ (Z/3Z)0 ifn = 3.

Proof. — Let v be an extension of v to a separable closure of F, let
Z = I{v/v)^ let k be the residue field of z;, and let J be the first ramification
group (i.e., J is trivial if p = 0 and J is the pro-p-Sylow subgroup of Z
if p > 0). Suppose q is a prime not equal to p, and let ^q denote the
g-part of ^/. Since X has potential good reduction at v, pq(cr) has finite
multiplicative order for every a G Z, and there is an exact sequence of
commutative algebraic groups over fc,

0-^C^X^B-^O

where B is an abelian variety and C is a unipotent group of dimension c
(see Remark 1 on p. 500 of [14]). Let r be a lift to Z of a generator of the
pro-cyclic group T f J . By §11 of [7] (see Lemma 2.1 of [9]),

^>q is isomorphic to the torsion subgroup of Tg(X)17/\pq(r) — J)7g(X)17.

Let £ = 2 if n = 2 or 4 and let £ = 3 if n = 3. By Corollaries 7.1 and 7.2
and Remark 5.3, X has semistable reduction (and therefore good reduction)
above v over a totally ramified Galois extension of F of degree £. Therefore
Z acts on Tq(X) through a cyclic quotient of order ^, so pq(o~Y = I
for every a € Z. Since p -^ £, we have pq((r) == I for every a C J .
Therefore, Tq{X)J == Tq{X). If q ^ i, then Tq(X)/{pq(r) - I)Tq(X) is
torsion-free, so <&g is trivial. The reduction map induces an isomorphism
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from Tj^(X)1 onto T^(Xy) (see Lemma 2 on p. 495 of [14]), and we have
T^) ^ T^) ^ T^(B) (see §2 of [7]), especially (2.1.8)). Therefore,
Te(Xy = Te(X)1 ^ ^(B), so the Z^-corank of T^Xy in T^X) is 2c
(see also the Corollary and Remark 1 on p. 500 of [14]). Let d denote
the dimension of the abelian variety X. In case (a), we have p2(7') — I ^
2M2d(Z2), and in case (b) we have (p^(r) —I)2 € nM^^Li) by Proposition
6.1L Applying Theorem 4.4 with M == Zj^ and A = p^(r) shows that ̂  is
a vector space over Z/^Z whose dimension is 2c/(£ — 1). D

Example 7.6. — Suppose I7' is a field with a discrete valuation v
whose residue characteristic is not 2, the valuation ring is henselian, and
the residue field is algebraically closed. Suppose X is the Jacobian variety
of a hyperelliptic curve over F all of whose Weierstrass points are defined
over F (i.e., a curve of the form y2 = f(x) where f(x) is a product of linear
factors over F). Then all the points of X^ are defined over F (see §2 of
Chapter Ilia of [12], especially Lemma 2.4 on p. 3.32). If X has potential
good reduction at v, then X satisfies the hypotheses of Theorem 7.5a, so
<!>' ^ (Z/2Z)2C where c is the unipotent rank of X at v.

Remark 7.7. — Under the hypotheses in Theorem 7.5, if we assume in
addition that X has purely additive reduction at v (i.e., X^ is a unipotent
group), then the prime-to-p part of the torsion subgroup of X{F) is
isomorphic to <1>' (see Remark 1.3 of [9]). Therefore Theorem 7.5 gives
restrictions on the torsion subgroup of X(F).

In Theorem 7.8 we will apply Theorem 4.5 and a result of Edixhoven
to obtain additional information on the connected component of the special
fiber of the Neron model.

THEOREM 7.8. — Suppose X is an abelian variety over a Geld F, v is
a discrete valuation on F with henselian valuation ring and algebraically
closed residue Geld, and either

(a) n = 2 and the points of X^ are defined over F, or

(b) n = 3 or 4, A is a polarization on X, Xn is a maximal isotropic
subgroup of Xn with respect to 6^,71, and X and the points of Xn are
defined over F.

Let (, = 2 if n = 2 or 4 and let t = 3 if n == 3. Suppose K is a
degree £ Galois extension of F which is totally ramiGed above v, let w
be the extension ofv to K, and let H = Gal(JC/F). Suppose the residue
characteristic ofv is not i. Let C denote the maximal unipotent subgroup
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ofX^ and let D denote the identity component ({XQ^H)Q of(X^)11. Then
X has semistable reduction at w, D = (X^)°, D is a direct summand of
X^, and the base change map induces an isomorphism X^/C ^ D.

Proof. — By Corollaries 7.1 and 7.2, X has semistable reduction at
w. The Galois group H = Gol(K/F) = 1{w/v) is a cyclic group which acts
on XK = X ®p K through the second factor. This action induces the usual
action of H on X(K) = XK.{K). By the functoriality of Neron models, the
action of H on XK extends to an action on the Neron model of X at w, and
therefore induces an action on X^. Since X has semistable reduction at w,
X^ is an extension of an abelian variety by a torus. Let r be a generator
of H. Then r has order <, and r acts on X^ as an algebraic automorphism
(since the inertia group acts trivially on the residue field — see p. 497 of
[14] and the proof of Theorem 4.3 of [7]). We have (r - 1)X^ = 0 in case
(a) and (r — l)2^ = 0 in case (b). Letting (X^)n denote the kernel of
multiplication by n in the group scheme X^,, then (r — 1) is zero on (X^)^
in case (a) and (r — I)2 is zero on (X^)n m case (b). Applying Theorem
4.5, we have X^ = C?i 9 G^ where

Gl=((X^)T)o=((X^)o=D.

Therefore, D is a direct summand of X^. Clearly, D = (X^)°.
By Theorem 5.3 (see also Remark 5.4.1) of [3], the base change map

induces an isomorphism Xv/FlXv ^ (X^)^, where FlXv is a connected
unipotent closed subgroup scheme ofX,;. Since F^Xv is connected, we have
{Xv/FlXv)o ^ X^/F^X^. Since FlXv is unipotent and X has semistable
reduction at w, we have FlXv = C. Therefore, the base change map induces
an isomorphism X^/C ^ (X^)° = D, as desired. D
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