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GROWTH ORDERS OCCURRING
IN EXPANSIONS OF HARDY-FIELD SOLUTIONS

OF ALGEBRAIC DIFFERENTIAL EQUATIONS

by John SHACKELL

1. Introduction.

The reasons for seeking asymptotic-series solutions of differential
equations are well known, [2], and need not be repeated here. One point
that should be made however, is that there is often special interest in
the behaviour of solutions in the neighbourhood of singularities and here
powers of the variable may not be appropriate to describe the asymptotics.
One can consider asymptotic series over other base functions, such as log x
for example, but for non-linear equations that rather begs the question
as to what the possible asymptotic behaviour of a solution can be. On
the other hand it is not sensible to ask such a question without placing
some restriction on the class of solutions considered. This follows from the
main result of [II], where a fourth-order algebraic differential equation is
given which has solutions arbitrarily close to any pre-assigned continuous
function. One natural restriction is to look for solutions which lie in some
Hardy field^ that is to say in a differential field of germs, at +00, of real-
valued C°° functions. This is the approach we shall take in this paper.

Hardy fields each carry a natural order which reflects the asymptotic
growth of their elements, and they therefore provide a very natural setting
for studying many questions on asymptotics. Moreover one can get some
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184 JOHN SHACKELL

useful information regarding the asymptotic growth of Hardy-field solutions
of algebraic differential equations over R (and indeed over other Hardy
fields). In [14] it was shown firstly that the asymptotic behaviour of such a
function could be represented by a nested form^ which is a particular type of
expression constructed using exponentials and logarithms. Secondly, it was
shown that only a restricted number of these are possible for solutions of
an equation of given order. For small orders the set of possibilities is quite
manageable, and one can substitute its members into a given equation and
check whether they correspond to possible solutions of it.

In [16], it was proved that the number of possible nested forms which
can occur as Hardy-field solutions of an algebraic differential equation over
R of order n, has growth bounded by exp(/m), where p, is a constant. Since
one is usually interested in equations of small order, this exponential growth
would not matter very much if all one ever wanted to know about was
nested forms. However the nested form of a function corresponds only to the
first term of an asymptotic expansion. One can ask for further asymptotic
information, and this will be given by the successive parts of a nested
expansion. A method is known for computing these, but unfortunately it
requires consideration of a differential equation whose order might at worst
effectively double each time a new part of the expansion is calculated.
This gives an upper bound of the order of ex.p(^JLn2m) on the number of
possibilities to be considered for the m-th part of the nested expansion. If
it is really necessary to consider that many cases, it will not be practical
to compute many terms of the expansion!

The results proved here allow one to eliminate, a priori, a substantial
fraction of the possibilities for each value of m. Alas the bound on the rate
of growth of the number of cases is essentially untouched by this reduction,
but it is perhaps a start. In fact the possibilities that we eliminate relate to
terms which tend very rapidly to zero. The exact analogue of our theorem
for terms of slow growth (or to be more precise, slow diminution) is known
to be false, but a weaker result along these lines might be true. In fact such
a result is known for first-order equations, [17], [18].

In Section 2, we give details of material from elsewhere which we
shall require. This includes further discussion of Hardy fields, definitions of
"nested form" and "nested expansion" and a more detailed description of
the key results from [14] and [16]. In addition, we prove a lemma, which
will be needed later, concerning the level of an element of a Hardy field.
The section concludes with a statement of Theorem 5, our main theorem.
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Sections 3, 4 and 5 are devoted to various parts of the proof of this.

In Section 6 we take a more classical approach to the problem of
describing asymptotic growth, by looking at series expansions. The draw-
back of using series is that Hardy-field solutions of differential equations
may fail to have series expansions. The advantages are firstly that series
are more familiar objects, and secondly that when series expansions do
exist they generally give more precise asymptotic information than nested
expansions. For example f(x) = e~xx(l + o(l)) is more informative than
f(x) = exp{-x + log.r(l + o(l))}, since the latter would be equally true
for f(x) = e~xx\ogx. We initially consider series with a wide range of
possible base functions in order to obviate as far as possible the difficulties
over the choice of these. Thus we examine series expansions in base func-
tions given by nested expansions subject to a finiteness requirement. We
prove a version of Theorem 5 which is applicable to series, under an addi-
tional hypothesis. Then in two corollaries, we illustrate how the result may
be applied in particular cases. In the final section, we consider terms in an
expansion which tend more slowly to zero, and make a tentative conjecture.

The author would like to thank Chris Woodcock of the University of
Kent for some valuable discussions, and more particularly for his proof
of Lemma 10. Conversations with John Merriman of the University of
Kent, with Bruno Saivy of INRIA-Rocquencourt and with Michael Singer
of North Carolina State University were likewise helpful, and thanks are
due there also. Finally I would like to thank the referee for his incisive
and most constructive comments, which have been responsible for many
improvements in the paper.

2. Hardy fields and nested expansions.

Let X denote the ring of germs of real-valued C°° functions defined
on intervals of the form (a, +00) C R.

DEFINITION 1. — A Hardy field is defined to be a subfield of X
which is closed under differentiation, [1].

Using a frequent, and very convenient, abuse of terminology, we shall
often treat elements of Hardy fields as functions rather than germs of
functions. In practice no problems are likely to arise from this. If T is
a Hardy field and / e X, we write ^(f) for the field generated by F and
all the derivatives of /.
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A non-zero element of a Hardy field has to have an inverse in the field,
and so cannot have arbitrarily large zeros. It must therefore be ultimately
positive or ultimately negative, and hence an order can be defined on any
Hardy field by setting /i > /2 when this is true for sufficiently large values
of the argument. We shall use this order on any Hardy fields which we
introduce without further notification. Many key facts about Hardy fields
are to be found in the papers of Maxwell Rosenlicht, [7], [8], [9], [10]. In
particular the important concepts of comparability class and rank were
introduced in [8].

The following theorem first appeared in [6] and can also be found
in [7].

THEOREM 1. — Let F be a Hardy Geld. Then the real algebraic
closure ofF is (isomorphic to) a Hardy field.

The next result is due to Michael Singer in its present form, and seems
to have been first published in [7].

THEOREM 2. — Let F be a Hardy field, and let F and G be
polynomials in F[x}. Let y be a function with G(y) -^ 0 satisfying the
differential equation y/ == F{y)/G{y). Then ^{y) is a Hardy field.

An important consequence of this is that integrals, exponentials and
logarithms of elements can be added to Hardy fields. In particular, this
applies to the variable x (= f 1), exp;r, log.r, etc., and so if / is an element
of a Hardy field, comparisons like / < exp(rc2) + log re make sense in the
Hardy-field ordering.

Now let /i and /2 be two elements of a Hardy field F with /i, /2 ~^ oo-
Following [8], we say that f\ and /2 are comparable if there exist positive
integers m and n such that /i < f^ and /2 < /m- This definition may be
extended to the whole of.F\{0} by specifying firstly that ±f and =h/'~1 are
all comparable to each other, and secondly that any two elements which
tend to a non-zero finite limit are comparable. Comparability is then an
equivalence relation on F \ {0}. We refer to the equivalence classes as
comparability classes and use 7(/) to denote the comparability class of /.
The number of comparability classes, excluding 7(1), is called the rank
oiF.

Now with /i and /2 tending to infinity, we write 7(/i) > 7(^2) if
/i > /21 ^or a^ ^ ^ N. It is easily seen that this relation depends only on
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the comparability classes. If we also specify that 7(1) be the smallest class,
we obtain a total order on the set of comparability classes.

We use the following, more-or-less standard, notation for iterated
exponentials and logarithms. We define eo(x) = lo(x) = x and for n > 1,

en{x) = exp(en-i(x)) and ln{x) = \og(ln-i{x)).

Since iterated logarithms will almost invariable take the variable x itself
as argument, we shall generally abbreviate ln(x} to In. Thus, for example,
^3(2 + e"^) will stand for l^(x) • (2 + e~x). On the other hand, exponentials
will frequently be applied to a wide range of arguments, and so for example,
e\(x(l + e~x)) stands for exp(a;(l + e~x)). The following lemma, which
formed part of Lemma 3 of [14], will be required.

LEMMA 1. — 7(es(^0i)) > 7(61(^2)) if either (i) s - m > t - n,
or (ii) s — m =t — n, s > t and either d> 1, or d= 1 and 0i —>• oo.

Proof of Lemma, 1. — We begin by noting that for functions /i and
/2 which tend to infinity, 7(/i) > 7(/2) precisely when log(/2)/ log(/i) —> 0.
We consider first the case when s = t and s — m > t — n; i.e. n > m. Then

log(^2)~C^+i=o(log(^i)),

which gives 7(es(^0i)) > 7(61(^02)) m the case s = t = 0. Now suppose
that s = t > 0 and that the conclusion holds when s and t are replaced
by s — 1 and t — 1. It is then immediate that et_i(^02)/es-i(^0i) —^ 0,
which gives the desired conclusion.

Now suppose that s > t. We have

(1) et(W = es{ls-t o (^0i)) = es(ls-t^n ' (K + o(l))).

Then if s — m > t — n, we have s — t + n > m and the result is
obtained from the previous cases. If s—m = t—n^ then ls-t-^-n(K+o(l)) =
lm{K + o(l)) = o(^0i) if either d > 1 or if d == 1 and 0i —^ oo. Hence
7(es(^0i)) > ^{es(ls-t+n(K + o(l))), when s = 1. A simple induction,
as above, gives the same conclusion for general values of s, and the result
follows from (1). This completes the proof of Lemma 1.

In [14] and [16] a generalisation of the concept of an asymptotic
expansion was developed. Let T be a Hardy field and let 0 be a positive
element of T which tends either to zero or infinity.

DEFINITION 2. — A nested form for (f> will be a finite sequence
{(e^, s^, m^, ̂ , <^), i = 1,. . . , k} with the following properties :
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(a) For each i, €z G {+1, -1}, Si and mi are non-negative integers, di
is a positive real number and (f>i is an element of a Hardy field.

(b) (f> = e^(^i) and for i = 2, .. , k,

^-i-^:^).

(c) For i = 1, ..., k, 0, is positive and 7(0,) < 7(^J.

(d) (f)k tends to a positive constant.

(e) dk 7^ 1 unless Sk = 0 or m^ = 0.

Note that (c) implies that m,+i > m, for i = 1,..., A; - 1. Condition
(e) disallows expressions like exp(\ogx(K+o(l))), K e M\{0}, which would
instead be written in the form x1^^) with 7(0) < 7(3:). The corresponding
forms for elements which tend to non-zero limits and for negative elements
tending to 0 or -oo are respectively A±e;-/(^0i) and -e^(^0i). If<^
is actually equal to a constant, the nested form is called precise. Examples
of nested forms follow shortly.

The nested form may be regarded as merely another way of writing
the function. (So in particular, if n is the nested form of /, we may write
7(n) in place of 7(/).) However, in terms of asymptotic information, the
nested form corresponds to just the first term of an asymptotic series. Thus
in the case when the function has an asymptotic series in a base function
such as x or logrr, the nested form will be the first term of the series plus
an error term. Our next definition concerns the higher-order terms.

DEFINITION 3. — A nested expansion for a function h e X is a
sequence of nested forms {nj} such that ni is a nested form for h and if
^3 = {(^ sj.^ mj,^ ^3^1 ̂ j.i)^ z = 1,.. . , kj}, j > 1, then Hy+i is a nested
form for hj^j — lim hj^j •

The sequence {nj} could be infinite. However, because the error term
is built into the nested form, it is not a restriction here to consider only
finite nested expansions, and this we shall do.

As an example of a nested expansion, suppose that

(2) ^=e2(^lel(^32(7+e2-l(^?e2(2v/^4))))).

Then a nested expansion for h is {111,112}, where

ni = {(+1,2,1,1, fti,i), (+1,1,3,2, /ii,2)},



GROWTH ORDERS IN EXPANSIONS 189

with lim/^2 = 7, and 112 is the precise nested form

{(-1,2, l,3,/i2,i), (+1,2,4,1/2,2)}.

It is not hard to see that a series may be written as a nested expansion.
For example

er{a) + b = er(a)(l + be,:l(a)) = exp{er-i(a) + log(l + be^\a))}

= exp{e^_i(a) + be^\a) - b^e^^/l + . . . }= . . . .
However the converse is false. An example is given by e2(ea7(l — x~~1)) =
62(6^+6^/3;+•••).

Suppose that h has a nested expansion {n i , . . . ,nj+i} and that
1 < r < J + 1. For any real number K ^ —\imhr-i,kr-i^ we write
h[itr ^ K\ for the function whose nested expansion agrees with that of h
as far as n^-i but with iiy. replaced by K. Thus if each n^, j = 1,..., J+1,
is as above, and l < r < J + l , w e define nir-i to be the precise nested
form {{€r-i,i,Sr-i,i,rrir-i,i,dr-i,i^i),i == l,...,A;y.-i}, where ^ = hr-i,z
for i = 1,... , kr-i — 1 and ̂ -i = nm ̂ r-i,kr-i + K ' Then /i[n^ ^v K] has
a nested expansion { n i , . . . , ny_2, nir-i}.

The finite partial expansions h[ia.r ^ 0] for r = 2 ,3 , . . . give suc-
cessively finer estimates of the asymptotic growth of h in the same way
as the partial sums of an asymptotic expansion do. Note however that
h and h[nr ^ 0] can have different comparability classes. For exam-
ple, it is easy to see that 7(62^)) > 7(62(^(1 — ^f1))) , and similarly
7(64(3;)) < 7(64(2; + e"^)).

In [16], building on the earlier work in [14], it was shown that if /
belongs to a Hardy field of finite rank which contains the real constants
and constant powers of positive elements then / has a nested expansion.
Hardy fields which have these properties (i.e. which are of finite rank and
contain the real constants and constant powers of positive elements) are
called Rosenlicht fields. It follows from the results in [9] that if / belongs
to a Hardy field and satisfies an algebraic differential equation of order 7*1
over a Rosenlicht field of rank r^, then / is itself contained in a Rosenlicht
field of rank r\ +7*2. In particular, a Hardy-field element which satisfies a
differential equation of order r\ over R must belong to a Rosenlicht field of
rank ri.

The following is the main result of [14].

THEOREM 3. — Let F be a Rosenlicht field of rank r. Let (f) be a
positive element off which tends either to zero or to infinity. Then (f) has
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a nested form {(e^, 5^, m^ ̂ , <^), 1 < % < A:} such that
k

(3) ^ ̂  + ̂  + mk < r,
j'=i

where 6k is 0 ifc^ = 1 and mk = 0 and otherwise 6k = 1. Moreover there
exist elements Fo, ..., Fs of^ such that the following properties hold :

k
(i) S = ^ Sj -{-6k +mk.

j'=i
(ii) Each I\ may be expressed as a rational function of a finite set of

real powers of 0, (^ /,..., <^^ with real coefficients. Conversely, (f)^ may
be similarly expressed as a rational function of a finite set of real powers
ofFo, Fi, ..., I\. Both of these rational functions are computable.

(iii) For i= 0, ..., S-1, wehave7(r,) > 7(^+1). Also-f^) =7(1).

(iv) The set of comparability classes of the I\ ̂  is equal to
mk-\-Sk—l k Sj

7(1) U IJ 7(^) U UU^^-^))-
z=0 j'=l 1=1

Of course if (f) is negative, we may apply Theorem 3 to —<^, while if (f) is
not a constant but tends to a non-zero constant, then Theorem 3 may be
applied to \(f) — lim^)|.

Suppose that we wish to apply Theorem 3 to a Rosenlicht field of
rank r. This might be of the form R(/) where / satisfies a differential
equation of order r over R. We have to consider all the nested forms
{(e^^,m^,d^,^) , i = 1, . . . ,A;} with the di's remaining as parameters,
for which the inequality (3) holds. These may then be substituted into the
differential equation defining / in order to obtain possible values for the
parameters. Having done this, one can go on to calculate the next "term"
of the nested expansion for / by writing (j) = (f)k — lim (f)k and substituting
into the differential equation in order to obtain a differential equation for
(f). Of course the process may be repeated. However the rank will increase
with each repetition. The following is from [16].

PROPOSITION 1. — Suppose f belongs to a Rosenlicht field, J7,
of rank r and has the nested form {(e^^mi,^,^), i = l , . . . , fc} .
Then (f) = (f>k — lim^^ belongs to a Rosenlicht field of rank at most

k
^Si + rank(^'(^)),
1=1
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and this is no greater than nik + 1 + ̂  Sz + r.

Inequality (3) gives a bound of 2r + 1 for the last quantity. This has
a serious computational effect in view of the next result, which is also from
[16].

THEOREM 4. — Let N(r) denote the the number of nested forms
(with the ' d ' s as parameters) which satisfy (3). As r —^ oo, N(r) ~ A • B7',
where A and B > 1 are non-zero constants.

Precise values are given for A and B in [16]. Here the main point is
that the number of cases to be considered grows exponentially with the
rank. Since the rank might double with each iteration to calculate the next
"term" in the nested expansion, the number of cases to be considered could
at worst grow in a doubly-exponential fashion.

A function's comparability class gives a measure of its growth. A
somewhat finer measure is given by the valuation. Let / and g be any two
non-zero elements of a Hardy field, T. We obtain an equivalence relation
on T \ {0} by setting / ~ g whenever f / g tends to a finite non-zero limit.
Under the inherited multiplication, the equivalence classes form a group
called the valuation group. We write v{f) for the equivalence class of / and
set v{f) > v(g) whenever f / g —> 0. The role of the valuation group was
extensively discussed in the book by Lightstone and Robinson [4] and its
importance re-emphasised in the work of Rosenlicht, [7].

The valuation and the comparability class may be regarded as the first
two members of a sequence of growth measures of increasing coarseness.
Let i be any positive integer, and let / and g be two elements of F both
of which tend to infinity. We define / ~^ g to mean that lz(f)/li(g) tends
to a non-zero finite limit. We write 7z(/) for the equivalence class of /.
As with comparability classes, we can extend this notion to the whole of
^\ {0} by decreeing that =L/ and d=/~1 be equivalent to each other and
that any two elements tending to a non-zero finite limit be equivalent. We
write 7,(/) > ^{g) if lz(g)/li(f) -^ 0 (where j,g -> oo). We may take 70
to be the valuation (with reversed ordering), and of course, 7i(/) is the
comparability class of /. Note that f r^^ g =^> f r^^ g ,

Now let f,g € T \ {0}. We define / ~oo 9 whenever there exists an
integer i > 0 such that f ̂ z g. Once again this is an equivalence relation on
J^\ {0}. We call the equivalence class of / the level of / and write 7oo(/) for
this; cf. [10]. We order the set of levels by writing 7oo(/) > 7oo(^) whenever
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7z(/) > 7i(g)for a11 i '
LEMMA 2. — Let f and g be two elements of a Rosenlicht field

F and suppose that the nested forms of f and g are respectively
{(e,,^,m,,d,,(^),z = 1, . . . ,A; } and {((^,^,n,,c,,^),% = 1 , . . . ,Z } . Then
f ~oo 9 if and only if s^ — m\ == i\ — n\.

Thus the level of / is given by s\ —m\.

Proof of Lemma 2. — Note first that the order relation between the
quantities «i —m\ and i\ —n\ is preserved under the taking of logarithms. So
if s\ —m\ > t-i —ni , a similar relation will hold between the nested forms of
li(f) and li{g) for each i = 1,.... Hence, from Lemma 1, 7(^(/)) > 7(^(^))
for i = 0,.. . . Thus 7z+i(/) > 7z+i(^) for % = 0,. . . , and so 7oo(/) > 7oo(^).
The condition 5i — m\ = i\ — n\ is therefore necessary.

Now let this condition hold and suppose without loss of generality
that 5i > i\. Then ^i+i(/) ~ di^mi+i and ls^i{g) ~ ^i-ti+i(%) which
is asymptotic to Ci/^i+i n> ^i = ^i and to ^mi+i ^f 5! > ti' I11 either case,
^s^4-i(/)/(s^-l-i(^) tends to a finite, non-zero limit, and so / ~si+i 9- It
follows that / ~oo 9 as required, and Lemma 2 is therefore proved.

Before commencing our main section, we give the ^-function notation
from [12]. Let t be an element of a Hardy field with t —> 0. We write

zexp(t) = exp(t) — 1, zlog(^) = log(l +1)

and for any r € M \ N, we write

zpow(r,^) =(1+^-1.

We have zexp(^) ~ t, zlog(^) ~ t and zpow(r,^) ~ rt. Also for n > 0, we
make the following definitions :

zexpj^) = t- Lexp(t) - (t + t- + . • . + ̂ ) I,
I \ z- n' / )

ziogjt) = t-71 {zlog(t) - (t - t2 + • • . + (-l)'-1^) } ,
I V 2 ^ / J
f / yfy. _ n

zpowjr, t) = t^ ^ zpow(r, t) - [ r^ + ———^2 + • • •

, ^+1) ^1
'r(r-n+l)r(n4- l ) /;'

r € M \ N. We take zexpo == zexp, ziogo = zlog and zpowg = zpow. The
functions zexp^, zlog^ and zpow^(r, ), n > 0 are referred to collectively as
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z-functions. Later, we shall want to apply ^-functions to complex arguments
as well as real ones, but in all cases the arguments will tend to zero. The
^-functions themselves then tend to zero, and moreover they are analytic
at the origin.

The main result of the paper is as follows.

THEOREM 5. — Let g be an element of a Hardy field with nested
expansion {n i , . . . ,11.7+1} and suppose that 7(11.7+1) > 7(^[nj+i r\ 0]).
Then R(g} contains an element of comparability class at least 7(11.7+1).

Thus, as and when larger comparability classes arise in the nested
expansion, they must give rise to larger comparability classes in M(^).
However, in the cases of interest, the rank ofR(^) will be bounded according
to Theorem 3, and then Theorem 5 puts a restriction on the possible
comparability classes of the n^-s. Note that we are not assuming that nj+i
is a precise nested form.

The thrust of the proof of Theorem 5 is as follows. If the conclusion is
false there will be a smallest value of J such that R(g) contains no elements
of comparability class as great as 7(11.74-1). Then, of course 7(11.7+1) > 7(n^)
for every j = 2 , . . . , J, and moreover 7(11.7+1) > ^f{x). We start Section 3
by showing that under this assumption, we can rewrite g in the form
g = f + rj where / = ^[nj+i r\ O], rj —^ 0 and 7(77) = 7(11.7+1). We
then construct two towers of differential algebras. The first, R = T^o C
T^i C • - • C T^M? contains formally defined polynomial algebras, while the
second, C = <?o C <Si C • • • C <SM) contains subalgebras of X 0% C whose
elements include certain subexpressions of the nested expansion of /. For
each a with 0 < a < M, there is a set of homomorphisms, G^, from 7^
to Sa such that the subexpressions of the nested expansion of / are in the
images of certain elements, TQ, of Ga for some a. The Ga are somewhat
analagous to differential Galois groups.

In Section 4, we show that if w/ is an element of T^M such that
^M^f) = f and p is any element of GM; then as x —>' oo, p(wf)(x) — f{x)
cannot tend to zero as rapidly as a power of rj(x) unless p(wf) is identically
equal to /. Then in Section 5, by working down the tower 7^^ 3 • • • 3 ̂ o;
we prove that there is a differential polynomial, P, over M such that P(f) =
0 but P(g) 7^ 0. However we can then establish that ^(P{g)) >_ 7(11.7+1),
and so R(^) contains an element of comparability class at least 7(11.7+1).
This will then prove the theorem.
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3. Building the towers.

We begin with more notation. Suppose that h has nested expansion
{mi, m2, ... m^}, where for j = 1, . . . , TV, m, = {(<^, t^p^ c^, ̂ ,),
% - 1,. . . , kj}. A subnest of h is either h itself, or equal to ̂ , for some
0,z) with 1 < j < N and 1 < i < k^ or of the form e,(^:V^) with
s < tj^ in this last case the subnest will be an iterated logarithm of a
subnest of one of the first two types, modulo a possible change of sign. For
example ifh= e^he,(lj(7+e^(qe^2VU)))))^ as in (2), then subnests of
h include h^ e^e^(7+e,\l^2VU)))))^ lie^(7^e^(l^(2VU)))Y
^aj(7+e2-l(^(2^)))), ^(^^(^y^))), 62(^2(2^4)) and
61(^62(2^)), etc. If HI and u^ are subnests of /, we define u^ ^ u^
to mean that u^ is a subnest of u^ and u^ ^ u^ to mean that u^is a
subnest of u-i different from u-i itself.

Our first concern now is to show that g can be written as a sum, in the
required fashion. The following lemma shows that this can be done under
strengthened hypotheses; later we shall show that these are not required.

LEMMA 3. — Let g have nested expansion { n i , . . . , nj+i} and let
f = ^[nj+i r\ 0]. Suppose that

7(nj+i) >7(n^[nj+i r\ 0])

for every j = 1,. . . , J . Then g may be written in the form g = f + rj where
T?-^0 and 7(77) =7(nj+i).

Proof of Lemma 3. — Suppose that the subnests of g greater than
or equal to nj+i are nj+i = go-< g^ ' • ' - ^ gi = g. Then for 1 ̂  i < I , g,
will be of one of the forms ̂ _i, A+^_i, exp(±^_i), A+exp(-^_i),
with A constant. We show by induction on i that ^ can be written in the
form g, = fi+rji with /, = ^[nj+i r\ O], rj, -. 0 and 7(77,) = 7(nj+i). For
the case i = 0 this is a triviality, so suppose it holds for ^_i.

We consider first the case when gi = l^gi-i. Then

9i = ̂ mfi-l +im1^i-l'

This is of the required form since, by the hypotheses of the lemma,
7(^-1) = 7(nj+i) > 7(^), and therefore ^,_i ^ 0 and 7(^_i) =
7(^-1). A similar conclusion holds if g, = A + ̂ -i. Next suppose that
Qi = exp(^_i). Then

(4) g, = exp(/,_i + 7^-1) = exp(/,_i) + exp(/,_i) zexp(^_i).
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Since zexp(^-i) ~ ^_i, we have 7(zexp(^_i)) = 7(^-1) > 7(exp(/,_i))
and moreover exp(/^_i)zexp(^-i) —^ 0. Thus (4) expresses gi as required.
The corresponding form for exp(-^-i) is obtained by multiplying through
by —1 before exponentiation, and trivially, if A is constant A+exp(—^_i)
can be similarly expressed. Thus gi may be written in the form g^ = fi + r]i
with fi = gi[nj^ r\ O], r]i —> 0 and 7(77^) = 7(nj+i), and Lemma 3 follows
by induction on z.

If the conclusion of Theorem 5 is false, then for a suitable J, M(^)
contains an element of comparability class at least max{7(ni),. . . . 7(11.7)},
but none as large as 7(11.7+1), and so 7(11.7+1) > 7(n^-) for j == 2 , . . . , J. In
fact we can assume that 7(11.7+1) > 7(11̂  [nj+i r\ 0]), as the next lemma
shows.

LEMMA 4. — Suppose that 1 < K ^ J . If 7(11.7+1) > 7(n^-), for
j = K , . . . , J , then likewise 7(nj+i) > 7(nj[nj+i ̂  0]), for j = K , . . . , J.

Proof of Lemma 4. — If not, let j be the largest value, K <^ j < J ^
such that 7(nJ+l) ^ 7(nJ[nJ+l ^ 0]). Then 7(n^-[nj+i ^ 0]) > 7(n^).
Now n^ cannot be of the form L(A + e) with A e M, L a product
of real powers of logarithms and 5 — ^ 0 , since then we would have
^y(n^) = 7(L) = 7(n^[nj+i r\ 0]). Thus n^ must be an exponential. Now
7(nj+i) > 7(n^) => 7oo(nj+i) > 7oo(nj) and so, using Lemma 2, we have

(5) 7oo(nj+i) >, 7oo(n^-) = 7oo(n^-[nj+i rv 0]) > 7oo(logn^-[nj+i ^0]).

By our choice ofj , 7(nj+i) > 7(nfc[nj+i rv 0]) for j < k < J. Since, from
(5), we also have 7(11.7+1) > 7(lognj[nj+i r\ 0]), we may apply Lemma 3
with g replaced by the subnest log nj, and we see that we may write log iij =
H -\-il) where H = logn^nj+i r\ O], '0 —> 0 and 7(^) = 7(11.7+1). But then
TO.J = expH ' (1 + zexp'0) and so 7(nj) = 7(expJ:f) == 7(n^-[nj+i r\ 0]).
This contradiction establishes the lemma.

COROLLARY 1. — Let g be as in Theorem 5, and assume, as we
may, that 7(11.7+1) > 7(n^-) for 2 <^ j <^ J . Then we may write g = / + 77,
where / = ^[nj+i r\ O], 77 -^ 0 and 7(77) = 7(nj+i) > 7(11.7 [nj+i ^ 0]),
for every j = 1, . . . , J .

Proof of Corollary 1. — The hypotheses of Theorem 5 give us that
7(11.7+1) > 7(ni[nj+i r\ 0]). By Lemma 4, 7(nj+i) > 7(nj[nj+i ^ 0]),
for j = 2 , . . . , J . The corollary now follows from Lemma 3.
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COROLLARY 2. — Under the assumption, that 7(11 j+i) > 7(nj),
for 2 <: j <, J , we have

7(n/+i) > 7(^[nj+i ̂  0]) ̂  7(n/+i) > 7^)-

Proof of Corollary 2. — That the left-hand inequality implies the
right, follows immediately from Corollary 1. The reverse implication is
obtained by taking K = 1 in Lemma 4.

Our next construction bears some resemblance to that used in [15].
We build two towers of differential algebras, T^o C T^i C - • • C T^M and
So C <?i C • • • C SM- The T^s will be defined formally as polynomial
M-algebras in indeterminates V \ ^ . . . ^ V M ' For 1 < a < M, each T^a will
be an extension of 7^_i either by Va or by Va and v^1. The S^s will be
C-algebras of function germs, each Sa being a subalgebra of X (g)R C. In
addition we will define, for each a = 0 , . . . ,M, a set Ga, of differential
R- algebra homomorphisms of T^a into Sa. In effect, the elements of Ga
will be the representations of Ka in Sa. Furthermore, for each a, we will
designate a special element, To;, of Ga, with the property that Ta(va) is
part of the nested expansion of /, e.g. a subnest. The r^s thus allow us
to recover / and its sub-expressions from the elements of the first tower.
For the lowest fields of this tower, the v^ will be equal to lm for values
of m which increase as we go further up the tower. For the higher fields,
they will either be of the form l^ for d a non-integral real number, or else
(increasing) subnests of /.

We are now ready to give the formal definitions of the various T^a, <So;,
Go: etc. The definitions are split into different cases for different ranges of
a, and different Ta(va). In each case, Ka-i will be a differential subalgebra
of 7^0:5 so we use the same symbol, D, for the derivation, and with D
already defined on 7^-15 we need only specify D{va) in order to define the
derivation on T^a. In each case, the derivation on Sa will be d / d x .

DEFINITION 4 (a = 0). — We define KQ = R and So = C. The
derivation, D, is defined to act trivially on Ko, i.e. D(r) == 0 for all r € R.
Let TO be the natural embedding ofR in C, and let Go = {7-0}.

DEFINITION 4 (a == 1). — Let TZi = R{v-t) and <Si == C(x). The
derivation on %i is defined by setting D(v\) = 1. Then we let Gi be the
set of^-algebra homomorphisms of]R(z»i) into <Si whose restrictions to 7 .̂o
belong to Go and which map v\ into x + K for some value of K e C. The
special homomorphism, TI, maps v\ to x.
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Before giving the next part of Definition 4, we introduce two pieces of
notation which we shall employ throughout the rest of the paper. Suppose
that for 1 < j < J, the nested form HJ is {(^,z,s^,m^,^,,^),% =
1,. . . , kj}. Let (3 == maxi<^j{m^.}. Then the expression for / as a nested
expansion will contain lp but not lm for any m > f3. The "lowest fields"
mentioned above will be the lowest (3 + 2. Secondly, if p is a mapping from
Ka to (SQ, pj denotes the restriction of p to the algebra below in the tower,
i.e. 7^-i.

DEFINITION 4 (2 < a < f3 + 1). — For 2 < a < f3 + 1, we set
Ka =^l,...^a-l,^a) ^7^_i(^).

Then the derivation is extended to T^o; by defining D(vo) = V ] ~ 1 V 2 1 ' ' ' v--1-! •
We then define So to be the C-algebra generated by <S^-i and all

elements of the forms log(cr(^_i)), (logcr(^-i)+^)~1 fora e G^-i and
K € C. Then we set
G^ = {p : 7^ -> S^ pj € G^-i & p{vo) = logpj(^-i) + ̂  , Kp e C}.
Jfere the special homomorphism, Ta, of Ga is defined by specifying that
r^j = Ta-i and that r^Va) == la-i'

We now continue building the towers so that the SaS will contain
in turn the nested forms <^-i, 0j,^-2,..., 0j,i, ^j-i,^_i-i, .. . ,
<^j-i,ir • • ? 0i,i- In fact these will be the images under the various r^s of
certain elements in the T^s. At each stage, we have to add either an element
of the form Z^, where d is a non-integral real number, or an exponential
of an existing element. Suppose then that the appropriate definitions have
been made for a— 1 that we wish to add l^. In this case we do not introduce
an inverse for v^, and this will be the pattern henceforth.

DEFINITION 4 (a > f3 4- 1, Ta(va) = 0. — We take U^ =
^a-iha]. We recall that since m < /3, v^\^ e TZa and r^Vm+i) = lm- We
may thus define D on T^a by setting

D{V^) = dVQD{Vrn^-l)/Vm^-l-

Now we take Sa to be the C-algebra generated by Sa--^ and the
complex roots (/^j^))^ To add a rational power oflm we may take d to be
of the form 1/q with q a positive integer; for example, l^rn1^ = (^i1^9)9"1^1-
In this case we let Ga be the set of homomorphisms, p , such that pj € G^-i
and p(va) is one of the complex q-th roots ofpj(^). In the irrational case,
we take
(6) Ga = {p; pj € G^-i & p(va) = Kp(p^Vm-i))^ Kp e C}.
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In both the rational and irrational cases, we define r^ by setting T^J == r^-i
and Ta(vot) equal to the positive root l^.

Note that here we allow Kp to be zero. For this reason, if l^ for
example, occurs later in the nested expansion of /, it will be represented in
the 7^-tower by a different z^. More generally we will ignore any Q-linear
relations between the numbers dj which occur as exponents of the same lm
in the nested expansion of /, and represent each I'm by a different vi.

Now consider the case of an expression of the form exp(fa) occurring
as a subnest in the expansion of /. Because of the way in which the T^S are
defined, h will be of the form h = Toi-\(w^) where w^ 6 7^-i- It there are
several such w/i, we select one arbitrarily.

DEFINITION 4 (a > (3 + 1, Ta(va) = exp(/i)). — As before, Ka =
^a-ihcj- We define the derivation, Do,, on 7^ by Da(va) = Va ' D(wh),
where h = TQ;-i(w^). We let Sa be the C-algebra generated by Sa-i and
all elements of the form exp(cr(w^)) for a G Gc,-i, and we take

(7) Go = {p; p-i C Ga-i & p(vo) = Kp exp(pj(w/,)), Kp e C}.

We define r^ by T^J = r^-i and Ta(va) = exp(Ta_i(w^)) = exp(h).

Here again, Kp is allowed to be zero. We note that if h is of the form
h == l^fz where fi is a subnest of /, then there are elements w^d and w^
of 7^o;-i such that w/i = w^ w^ and TQ-i(w^ ) = l6^ and r^-i^Wf^) = fz.
We can choose w/d to be one of the z^s, or the d-th power of one of them

771

if d is an integer.

The following proposition sums up the properties of the T^o:, So and
G,.

PROPOSITION 2. — There exists an integer M, and for each a =
0 , . . . , M there exists a differential R-algebra, l^a, a differential C'subal-
gebra, Sa, of^V^C and a set, Ga of differential R-algebra homomorphisms
of T^a into So with the following properties :

(i) TZo = ̂  So = C.

(ii) For a == 1,...,M, we have either T^a == ^a-i(^a) or 7^ =
^a-iha]- Furthermore there exists a Ta € Go such that Ta(va) is of one
of the forms la-i, ̂  where m C N and d is a non-integral real number,
or exp(h) where h G TQ_i(7^a_i). In the second case, d will either be of the
form 1/q, where q is an integer greater than 1, or else irrational.
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(iii) For any subnest, fi, of f, there exists an a < M and an element
Wf, oIKa such that r^Wf,) = fi. In particular, f = TM^Wf).

(iv) For each a = 1,. . . , M, the set Ga is parameterised over a space
of the form

b(a)

C"^ X TT{1 e27"/96 __e27ri(gb-l)/gfoi

6=1

where 0(0;) + b(a) = a, and each q^ is an integer greater than one.

(v) If rM = lU' and p C G,, then {pWm)11^ = P^m).
Moreover given any a € Gc,-i and any complex q-th root of a(lm), there
is a p E Go which agrees with a on T^a-i and takes v^ to the given q-th
root.

(vi) Similarly, if r^^Va) is of one of the forms la-i, l^ with d irra-
tional, or exp(/i) with h e r^-i^a-i), let D(y) = A^)/^^) denote
the differential equation satisfied by Va over 7^a_i. That is to say, the
differential equation D(y) = D(v^-i)/Va-i, D(y) = ydD(vrn-^-i)/Vm+i or
D{y) = yD(wh), where Ta-i(wh) = h. Let a € Ga-i and let C be any so-
lution of the differential equation y ' = a (Ac, (y)) / a (f^ (y)), where we have
written a(A^) and cr(Q^) for the polynomials obtained by applying a to
the coefficients ofAa and fl,a respectively. Then there exists a p G G^ such
that PA = a and p{po} = C-

Note that the last sentence of (vi) only holds for the case C, = 0
because we have allowed Kp = 0 in (6) and (7). A final point in this
section is that because we have ignored any algebraic relationships that
may exist between the various ̂  for different d, the TQ;S are not necessarily
monomorphisms and so the elements of Ga cannot be thought of as acting
on 7^(7^).

4. p{wf) — f cannot be too small.

Our goal in this section is to prove the following result.

PROPOSITION 3. — Let g be as in Theorem 5, let f = ̂ [nj+i r\ 0]
and let p € GM- Then g ^- p{wf).

We may regard / as an element of X (g)p C. We establish the
proposition by showing that p(wf){x) — f(x) cannot tend to zero as rapidly
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as a positive power of rf(x) unless p(wf) = f. Note that p{wf)(x) itself can
tend to zero more rapidly then any power of a subnest of /. For example,
we might have / = e^\x), p(wf) = e^^) or / = e^\x(l + e^))),
p{wf)=e^(x(l+e^{x))).

We require yet more notation. For any j > 0, let Cj denote the field
generated over C by all real powers of Zo^ii • • • ^j- We define the chain of
/, written Ch(/), to be the set consisting of / and its subnests down as far
as the greatest subnest (in the ordering -<) which is contained in /^. So if
the elements of Ch(/) are /o ~< fi ~< ' ' • ~< fp == j -> then the expressions
for /i,.. . , fp contain exponentials, but that for /o does not. For example
if / = 61(^2(2 + e^^l^ + 2))) then Ch(/) consists of the subnests

^2 + 2 ^ 61(^2 + 2) ^ <2(2 + e^(l% + 2)) ^ ;i^(2 + e^[l% + 2)) -< /.

Next we define a set U(fi) for each element fi € Ch(/) by inducting
down the chain. We shall eventually induct up the chain to show that if
u € U(fi}^ p € Gi and TM(^/) = /, then p{wf) — u cannot tend to zero
more rapidly than every non-zero element of TM^M)' We start by taking
U[f) = {/}. Now suppose that U{fi) has been defined. If fi == exp(=L/^-i)
with ji-\ 6 Ch(/), we set

U(fi^) = [K ±\ogu', K e C , ueU(fi)\{0}}.

Similarly if /, = l^fi-i where d € M \ {0}, and /^-i e Ch(/), we select
w/d € T^Q such that ^(w^d ) = l^. We then define

U(fi-i) = Wp(w^); u (E U{fi) , p C GM , P(w^) + 0}.

Likewise if fi = A + fi-i where A € C and /^-i e Ch(/), we set

^CA- i )={^-A; ueU{fi)}.

We note that any fi in Ch(/) apart from the least element must be of one
of these three forms, and so U(fi) is defined for every fi in the chain. We
note also that fi € U(fi) in all cases. We recall that by Proposition 2(iii),
for any fi G Ch(/), there is a w^ € Ka such that ra{w^) = fi. We define

r = max{7(a;), 7(/o), 7(/i),. • • , 7(/p)}.
Clearly F == max{7(a*), 7(111),... ,7(nj)}, and so by the choice of J, R{g)
contains an element of comparability class at least F.

We prove Proposition 3 by establishing the following Lemma.

LEMMA 5. — Let fi C Ch(/) and let Wf, G 7^ be such that
Toi(w^) = fi. Let p G GQ, u C U{fi) and suppose that p(w^) ^ u. Then
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there exist a sequence of real numbers Xn —>• oo, an h € Ch(/) U {a;} and
an N € Z such that h3^ —^ oo and for n = 1,2,... ,

|p(wjJ(^) - n(rcn)| > h~N(xn).

On taking the case fp = /, we obtain that \p(wf)(xn) — f(xn)\ >
/i""^(xn)' But if p(wf) — f —)• 0, this is inconsistent with ^(p(wf) — /) > F.
Hence p(wy) — f ^ rj^ and so Proposition 3 will follow from Lemma 5.

As a first stage in proving Lemma 5, we obtain the following.

LEMMA 6. — For /, € Ch(/), iet Y{fi) be the smallest field
containing Ch(fi) U C^z which is closed under the application of the z-
functions zexpy^, zlog^, and zpow^(r, ), r e M, n > 0. Then for any
£, C Y(fi) \ {0}, there exists a real number XQ, an h € Ch(/) U {x}, and an
N C Z such that h1^ —>• oo and for x > XQ,

h-N(x)<\^x)\<hN(x).

The proof of the lemma uses arguments similar to those in [12].
However matters are simpler here because we are dealing with elements
given as nested forms.

Proof of Lemma 6. — For each ^(/i), we define a finite set, ^J(/i), of
nested forms all of whose comparability classes are distinct and no greater
than r, with the elements of l3(fz) being either equal to In for some n >, 0,
or else of the form exp(v) with v € y(/^_i). The real powers of the elements
of l5(fz) will generate Y{fi) under field operations and the action of the z-
functions. An element of Y(fi) will then be a product of powers of elements
of ^(A) times a function which is analytic in powers of elements of l5{fi)
which tend to zero, and its asymptotic behaviour will be given by the first
non-zero term in the power series expansion of the analytic function. The
lemma will thus follow once the 15(fz)s are defined.

We use induction on the ordering of the chain. In the initial case,
V(/o) is generated from C^ using ^-functions, and we take 13\fo) =
{ a : , ^ i , . . . ,^}. At a particular stage in the induction, the next subnest
in the ordering will be obtained by either adding a constant possibly
after having inverted, multiplying by a power of some la for a <, (3 or
exponentiating. Of these, the first two clearly leave the field Y unchanged
apart from the addition of the appropriate ^-^, which we include in l3(fz)',
thus we have only to prove that the conclusion of the lemma is preserved
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under exponentiation. Suppose then that V(/,) is generated by U(/,) and
that /,+i = e^, where v € V(/z). If /z+i is of different comparability class
from every element of V(/,), we take ^(/,+i) = ^(/,) U {/,+i,^+i}.
Otherwise there is a <^o e ^(/z) which has the same comparability class as
/z+i. Then there exists ro € R\ {0} and ̂  with 7(^1) < 7(/,+i) such that
A+i = y^i- Now ^7(^1) is not among the comparability classes of U(/z),
we set ^(.A+i) = l3(fi) U {^i, ̂ +z+i}. Note that by induction, (po must be
of the form (^o == exp(-^o) with ^o e V(/z-i). Hence $1 = exp(v - ro^o)
and v - ro^o e y(/^) as required. If on the other hand, ^ has the same
comparability class as an element, ̂  e ^(/z), there must exist n € R\{0}
and ^2 with 7(^2) < 7(^1) such that ^ = (p[1^. This process may be
continued. If at some stage we obtain a ̂  of comparability class distinct
from all those in ^(/,), we define ^(/z+i) = U(/,) U {^,^+,+1}. We will
then have /,+i = ^°^1 • • • ̂ -"i1 ,̂ where ̂  . . . , ̂ -i C ^(/,), and so
^(/z+i) will indeed generate V(/z+i) as required. Otherwise, since l5(fi) is
finite, we must eventually obtain /,+i ~ K^0^ ' ' ' ^fe, with J^ G C\{0},
r o , . . . , r f c € M and (^o,...,^ € ^(/,). Now each ^, ^ ^ fc, is either
of the form ^, n < /3 + i or of the form exp(^), t e Y(/,_i). We take
^(.A+i) = ^(/i) U {^3+^4-1}. Then for each '̂ < k, log^- belongs to the
field generated by ^(/z+i). Now recall that /,+i = ev and write (^ =
v-log K-ro log y?o-- - '-rk log ^fe. Then (^ belongs to the field generated by
^(/z+i), (f> tends to zero, and /,+i = e^ = J^^0. • . ̂  (1+zexp (p). Thus we
see that ^(/z+i) generates ^(/z+i) as required. Clearly the comparability
classes in the various l3(fi) do not exceed those in Ch(/), and so are no
greater than F, as was asserted. We have therefore proved Lemma 6.

The following is an immediate consequence, which will be of relevance
later in the proof.

COROLLARY.

max{7(/i); h € TM^M)} < F.

Proof. — TM^M) is generated by ^(/M) as above.

LEMMA 7. — For any f, e Ch(/), we have U{fi) c Y(f).

Proof of Lemma 7. — For each i = 0 , . . . ,p, we define X, to be the
smallest field containing Ch(/) U Cp^-p-i which is closed under application
of the ^-functions. Note that X, is required to contain Ch(/), and not
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merely Ch(/,). We prove by inducting down from U(fp) that U{fi) C Xi.
Since JQ C Y(f) for each z, this will suffice to prove the lemma.

For the initial case, U(fp) = {/} C Xp. Now suppose that i < p,
p G Gi and ̂  € <S^ and let w^d be as above. Then there exist constants
K, KQ^ . . . , Km, such that

p(w^) = ̂ o+log(^i+log(. • .+log(^-i+log(^+rr) • . .))))d

= J^o + log(^i + log(. • • log(log x + ̂ _i
(8) +zlog(^/:r)))...)))d

= ^(^o + log(^l + log(. • • log(/2 + Zlog(^^l(^m-l

+zlog(^/.r))))...)))d,
etc. It follows that p(w^ ) € X^ for any % and any p G G^. Now suppose
that ^(/,) C X, and /, ^ ̂ /z-i, then

^(/,_i)={n/p(w^); ueU(fi) , p e G M , p(w^)^0}cX,_i .
Similarly if /, = A + /,-i with A € C,

^(/z)cx,^^(/,_i)cx,_i.
It only remains to consider the case when fi = exp(/^_i), and here it is
enough to show that u C Xi \ {0} => logn € X^_i. Now any element u of
Xi \ {0} can be written in the form

^^•••^l-^{l+^
where < ^ i , . . . , ̂  are exponentials in Ch(/), Z is a product of ^-functions,
K belongs to C \ {0} and F belongs to Xi and tends to zero. Clearly
log^>i , . . . ,log<^ € Xi-t, and in addition, we may write log(l + F) =
zlog(F). Moreover ^i,...,^ e X, =^ ^1+1,. • . ,^4-1 ^ ^z-i- So to
establish the lemma, it suffices to consider logarithms of the ^-functions.
We take zlogg(/i) as a typical factor of Z. From the definition, we have

log(zlog^)) = log{(-l)^/(5 + 1) + h zlog^(h))}
= \og{{-lYh/{s + 1)} + zlog{(-l)^ + 1) zIog^W}.

By structural induction, we may assume that log/i € X^_i and hence
log(zlog^(/i)) C X^_i. Similarly log(zexp^)) and log(zpow^(c,/i)), c €
R \ {0}, belong to X^_i and Lemma 7 follows.

LEMMA 8. — For every fi € Ch(/), the set U{fi) does not contain
the zero function.

Proof of Lemma 8. — This is reasonably straightforward when one
looks at the way in which the various U(fi) are built. Suppose that
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/ = e^i), with n > 0. ThenM(^-i(^i)) = {^o+e^-i(^i); ^o e C}.
Assuming that ri — 1 > 0, we have

^-2(^1)) = {^i +log(^o +^-i(^i))); ^0,^1 e C}.
If KQ -^ 0, the element K\ +log(^o + e^-i('0i)) has transcendence degree
over C equal to r-i plus the transcendence degree of '0i, and it is clear that
no succession of operations u —>• K + log u, u —>• u/ p{w^d ) and u —>• u — A
can reduce this transcendence degree. So zero cannot be obtained from
one of these elements. When KQ == 0, the element under consideration is
K\ +eri-2('^i). A similar argument now applies to this, with r\ replaced by
ri — 1. We can continue until we reach the element ^i, which we now assume
has the form L{A\ + e^^))? with r^ ^ 1, L a product of real powers of
logarithms and Ai € C. The operations u —> u — A and u —^ u/ p(w^d ),
do not reduce the transcendence degree of e^1^)? and so we may apply
the same argument to this element as we applied to /. At the last stage,
we have /i = exp(L(A + /o)); where A G C \ {0}, L and /o belong to /^,
L —> oo and fo —^ 0. The elements of U{fo) under consideration are of
the form K + log/i, which has modulus tending to infinity and therefore
cannot be zero! Hence zero does not belong to any U{fi). Lemma 8 has
thus been proved.

The following is now an immediate consequence of Lemmas 6, 7 and 8.

COROLLARY. — For any fi G Ch(/) and any u € U(fz), there exists
a real number XQ, an element h ofCh(f) and an integer N , such that for
x > XQ,

/T^Cr) < \u(x)\ < hN(x).

Proof of Lemma 5. — We induct up the chain of /. Recall that /o?
the minimal element of Ch(/), belongs to Cp and hence p{fo) — u € Y(f)
for all u in ti^fo). So in this case, the Lemma follows from Lemma 6.

Now suppose the result holds for some ji-\ in the chain, and consider
first the case when fi = ^/^_i, with d e R\{0}. There exist w^ci , w^_^ and
Wf, in n^ such that Wf, = w^Wf,_^ r^(w^) = l^ and T^{wf,_^) = fi-i.
Let u € U{fi}. If p{wid ) == 0, then p(w^) = 0 and so p(wyj — u = —u. The
result then follows from the corollary to Lemma 8. Otherwise, we have

p{wf,) - u = p(w^)(p(w^_J - ulp(widj).
But u/p(wid ) G U{fi-\) and p(wf^) ^ u => /?(w^_J 7^ u/p(w^d ). So by
the induction hypothesis,

IP^A-iX^) -u{Xn)/p(w^)(Xn)\ > h~N(Xn),
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for n > 1, where {xn}, h and N are as in the statement of the Lemma.
Since p(w^d ) € Y(f) \ {0}, the conclusion in this case now follows from
Lemma 6. Similarly, if fi == A + /^_i with A e C, let u € ^/(/z) and
p € GM- Then p(w^) - u = p(w^_J - (n - A) and by the induction
hypothesis, |p(w^_J(.Tn) - (n(a;n) - A)| > /i-^^), for suitable {.z-n}, h
and A/\ Thus the desired conclusion is obtained here also.

Now consider the case when fi = exp(±/^_i), and let u € U{fi). There
exist Wf,_^ and Wf, in Ka such that Tc,(w^_J = /^_i, and Ta(w^) = ^.
If p(w^)/u -^ 1 as a; —^ oo, then there is a sequence {.z*^} —)• oo on
which \p(w^) — u\ > k\u\ for some real k > 0, and the result then
follows from the corollary to Lemma 8. Otherwise p(w^) ~ u and we have
p(w^) = exp{=b(p(w^_^) — K)} for some K G C. Therefore

\P{^fi)W - u(x)\ = \u(x)\\ exp{±(p(wf,_,){x) -K)- \ogu(x)} - 1|.

Moreover p{w^)/u —f 1 implies that p(w^_J — (K =b log |'u|) must tend to
zero, and hence for x sufficiently large,

\P{^fi)W-u(x)\ > ̂ \u(x)\\p(wf,_,){x)-(K±\ogu(x))\.

But K ± \ogu € U{fi-\) and so {a;n}, h and TV exist as in the statement
of the lemma, such that \p(wf^_^)(xn) — {K ± \ogu(xn))\ >. h~N (xn). The
conclusion for this case now follows from the corollary to Lemma 8, since
u e U{fz). The lemma is thus proved by induction, and Proposition 3
follows as previously established.

5. Obtaining the differential polynomial.

In this section, our objective is to obtain a differential polynomial over
R which vanishes at the function / but not at g. In fact the polynomial we
construct will have all its zeros in the set {p(wy); p € GM}? and the only
property of g which we use here is that g does not belong to this set. Our
construction is obtained by working down the tower KM D • • • D T^o- In
the algebraic case, that is to say when Ta(va) == l^ for some m, q € N, the
transition from T^a to 7^-i is relatively straightforward. We recall that if
F is a Hardy field and / C Af, ^(f) denotes the field generated by F and
all the derivatives of /. Now we note that an element, a of Ga induces a
differential homomorphism, a : Ka(y) —^ Sa(y). We define 7^ = To;(7^a),
for 1 < a < M.
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PROPOSITION 4. — Suppose that 1 < a <, M, and that Ta{va) is
algebraic over T^-i (i.e. Ta(va) = l^ for some m and q). Let Pa be a
differential polynomial over Ka with the property that fa{Pa{f}) = 0 but
for all o- € Ga, a(Pa)(g) 7^ 0. Then there exists a differential polynomial,
Pa-i over^a-i with similar properties to Pa. i.e. Ta-i(Pa-i(f)) = 0 but
for all a G Ga-i, a(Pa-i)(g} ̂  0.

Proof of Proposition 4. — Suppose that Ta(va) = Im - In the
polynomial Pa(y)^ we replace Va by a new indeterminate, z. This is not
strictly necessary, but will hopefully shed light on subsequent arguments.
Then we take

(9) Pc.-i(y) = res,{P,(^),^ - U-

The standard properties of the resultant now show that Pa-i satis-
fies the conditions required by the lemma. Firstly Ta-i(Pa-i(f)) = 0 be-
cause Pa{z)(f) becomes zero when l^ is substituted for z. Suppose that
a{Pa-i{g)) == 0, for some a € Gc,-i. By extending our notation slightly,
we may regard a as acting on ^a-i[^]{y) by applying a to the coefficients
in Ka-i' Now, since the resultant is given by the Sylvester determinant
and a is algebra homomorphism,

a(Pa-i(g))=Te^{a{Pa(z){g)),z^-a(lm)}.

Thus a(Pa(z)(g)) must become zero when z is replaced by some root,
call it ZQ, of zq = a ' ( I ' m ) ' But by part (v) of Proposition 2, there is a
p € Ga which agrees with a on 7^-i and takes Va to ZQ. But then
p{Pa(va){g}) = °'(Pa(^o)(g)) = O? contrary to hypothesis. This completes
the proof of Proposition 4.

The case when Ta(,Va) is transcendental over Sa-i is substantially
more difficult. We recall that T^a = ^a-i[va] and that Va satisfies a
differential equation

(10) D(z)=Aa(z)/^a(z)^

where Aa and ^a are polynomials over 7^-i- Of course (10) will be either
D(y) = D(va-i)/Va-i, D(y) = ydD(vm)/Vm or D{y) = yD{wh}, where
T^-i(w/i) = h. We regard Pa as an element of 'R,a-i[^a}{y) 5 and as above,
we replace Va in Pa, by a new indeterminate z to form a polynomial which
we now denote by P; thus P G /Ra-l[z}(y}- On T^a-i[^}(y} we use the
differential operator, Z)^, defined by

ap op
Z3;(P) = D{P)^(z) + ̂ ^(z) + ̂ z)^yW

1=0 y
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where D(P) is obtained by applying D to the coefficients of P. Note that
D^{P)\z-^vac = D(P(va))^-a{^a)' The idea is to eliminate z between P and
D^(P) to obtain Pa-i- However we will need to first ensure that (r{P(z){g))
is square free (as a polynomial in z) for every a C Ga_i. We begin with
the following proposition.

PROPOSITION 5. — Suppose that m and a are non-negative integers
with a <, M, and let r i , . . . , r y n be complex-valued parameters. Write
r = (n, . . . , Tm) and let P(r) be a polynomial in r\,..., Tm with coefficients
belonging to 'Ra{y}' Now let \ '. C"^ xBa -^ Ga be the parameterisation
ofGotf QS in Proposition 2, where

b(a)

Ba = ̂ {l,e2^/(^...e2'^^(9b-l)/gb}.
6=1

Let qo be any element ofBa- Then the set

V = {(p,r) C C^)^; x(P,qo)(^)(<7)) = 0}

is an analytic subvariety ofC^^ (1).

Appropriate definitions and results concerning analytic varieties may
be found in [3] or [20] for example. We will require the following facts :

(i) Let U be a domain in C71. A subset V is a subvariety of U if for
every z in U there is a neighbourhood Uz and functions /i, . . . , ft analytic
in Uz such that

v n Uz = [x e ̂ ; h{x) = . • • = ft(x) = 0}.

(ii) A point p of V is said to be a regular point of V if there is a
neighbourhood, Up of p such that Up D V is a complex submanifold of Up.
Otherwise p is called a singular point of V.

(iii) Finite unions and intersections of subvarieties are subvarieties.

(iv) If V is a subvariety at 0 of dimension <,, then the regular points of
V form a submanifold of dimension <; which is dense in V, and the singular
points form a subvariety of dimension less than <;.

We also require the following lemma, which is adapted from Lemma
V.D.I in [3].

(1) Note that for (p, r) to belong to V we require ^(p,qo)(P(r)(p)) to be the zero
function (of x).
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LEMMA 9. — Let V be an analytic variety of dimension <». Let F
be a holomorphic mapping ofV into C771, where m > ^, and let uj be the
natural embedding ofW -^ C^. Then F(V) H ^(M771) is of first category
in ^(W1).

Proof of Lemma 9. — We use induction on <,. If <, = 0, then V is
countable, and so F(V) is countable. For the case <, > 0, let ^(V) denote
the set of regular point of V, and let VQ == [x € ^(V); rank^F = n}, where
n is the maximal rank of F. Then n < <, < m, and if a- € Vo, there is a
neighbourhood, £4, of x in V such that F(U^) is a complex submanifold
of C771 of dimension n. Then certainly F(Ux} Do^R777') is of first category in
^(1^). We can cover Vo by countably many such Uy, and so F(Vo) n^R771)
is of first category. But V\Vo is of dimension less than <^, and so by induction
F(V \ VQ) n ^(IT") is of first category. Thus

F(V) n ̂ (ar1) = {F(Vo) n o;^)} u {F(y \ Vo) n ̂ (sr1)}
is of first category also, and the lemma is proved.

Proof of Proposition 5. — We temporarily reinterprete elements of
^a(r)(y} as functions on the set C^0'̂ 771 x B^. The idea is to 'differentiate
out' the 'arbitrary constants', i.e pi , . . . ,pa(a)?r!^ • • • ? rm, to form a differ-
ential equation satisfied by every jc(p,qo)(P(r)(^)). For particular values
of p and r, ^(p,qo)(P(r)(^)) will then be functionally equivalent to zero
precisely when it and enough of its derivatives vanish at a suitably chosen
evaluation point XQ.

For any Q 6 Ka(r)(y), we denote by 5(Q) the function from
(Qa(a)+m ^ ̂  ̂  ̂ ^ g^^ ^y

(Pi, • • • ̂ a(a)^ . . . , r^, g i , . . . , q^a)) —^ X(P. q)(0(r)(^)).
Next we define a tower of differential algebras containing the various 5(Q).
We take To = C{g){r) and suppose that T^ has been defined for 0 < i < j.
We then set Tj = Y^-i(5(^-)), where 5(^-) is the function on C^-04-771 x Bj
given by

(Pi, • • • .Pa(j)^i,... , r^ ,gi , . . . , ̂ (j)) —^ x(P^<l)(^-)-
We extend the differentiation from Tj_i to Tj by declaring the derivative
of 5(^-) to be 5(A^(^)/n^(^)); i.e. as given by the differential equation
of Vj as an exponential, logarithm or real power, as the case may be.

The transcendence degree of Tj over Yj-i is at most one. By
induction the transcendence degree of each Y<^ over To is finite and hence
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so is the transcendence degree over C(g). Suppose first that g satisfies an
algebraic differential equation over M. Then every element of Ta satisfies an
algebraic differential equation over C, and in particular, this is true of 2(P),
where P is the element of Ka{r){y} in the statement of the proposition.
Let ^ be the order of the differential equation satisfied by 5(P). Then
for particular values of p i , . . . ,pa(a)^i? . . . , 7m, g i , . . . , ̂ (a), we have that
2(P)(p, q) will be the zero element of Sa{g} if and only if it satisfies initial
conditions of the form y(xo) = y ' ( x o } = ' " = y^'^^xo) = 0. Let (po, i-o)
be an element of C"^4^ and qo an element of Ba. Let UQ be any relatively
compact neighbourhood of (po, ro). There exists a sufficiently large XQ C R
such that all the logarithms occurring in S(P) with (p, r) € UQ are defined
at XQ. Then, for each i = 0 , . . . , /A - 1, ^(S(P))/d^(p,r,qo)|^o will be
an analytic function of pi , . . . ,pa(a)^i, • • • , ^m in UQ x C^. Therefore the
set of (p, r) € UQ for which ^(p, qo)(P(r))(^) = 0 is given by the vanishing
of a finite set of analytic functions. So V is an an analytic subvariety of
Ca(a)+m ^ asserted.

On the other hand, if g satisfies no algebraic differential equation over
R, then it cannot satisfy one over Sa. For the transcendence degree ofSa(g)
over Sa would then be finite, and hence so would its transcendence degree
over R. It follows that in this case an element of Sa {g) is zero if and only
if all the coefficients of the monomials in g and its derivatives are zero. So
the condition for ^(p,qo)(P(r))(^) to be zero is given by the vanishing of
a finite set of elements of Sa and thus is an analytic variety by the above
argument. Proposition 5 is therefore proved.

We need information about the dimension of varieties such as V
above. This is given by the following result.

LEMMA 10. — Let T bean infinite field and let P, Q C ^[x}, where
x is an indeterminate. Let r >2 be a fixed integer and suppose that P and
Q have no common root of multiplicity greater than or equal to r. Then
there are only a finite number of h e F such that P + hQ has a root of
multiplicity at least r.

Proof. — The following elegant little proof of this result is due to
Chris Woodcock.

Suppose on the contrary that there are infinitely-many h € F for
which a root, a(^), of multiplicity at least r exists in the algebraic closure
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of F. Then for such h
P(a(h)) + hQ(a(h)) = 0,

P\a{h)) + hQ\a(h)) = 0.
Therefore (PQ7 - P'Q){a(K)) = 0 for all such /i. Suppose first that there
are infinitely-many distinct a(h). Then PQf — P'Q is the zero polynomial.
So P is a constant multiple of Q, and by the hypotheses of the lemma, Q
can have no root of multiplicity greater than or equal to r. Therefore there
is just one value of h for which P + hQ has a root of multiplicity at least r,
namely that for which P-\-hQ = 0. This contradicts our earlier assumption
and therefore this case cannot occur.

On the other hand, if there are only finitely-many distinct a(h) then
there must exist h\ ̂  h^ such that a(h\) = a{h'z). But then {x — a(h\}Y
divides both P-\-h\Q and P+h^Q. Hence it divides both P and Q, contrary
to hypothesis. The proof of the lemma is thus complete.

Before stating our next proposition, we give the following lemma.

LEMMA 11. — Let Q C 7^-i M<2/) and a € Ga. Then

a(^(Q))=6^(a(0)),

where ©^ y. is defined analagously to D^. i.e. for S € Sa{y},
QO QO QC

e;,.(5) == —<^W) + —<^(A^)) + ̂ W) Y^v^—-
i=0 v

Proof of Lemma 11. — a{D^(Q)(z)) is equal to

a (D(Q)W + ̂ A,(.) + W ̂ y(^^\

= a(D(Q))<r^z))+a (9^ ̂ {z}}+cT^z))^y^a(J^

= ̂ ^W)). ̂ ^. ̂ )) y^
since a commutes with the derivations. But this last expression is just
6^ o-(<r(0)), which establishes the result.

Our method of obtaining a P such that a{P)(g)(z) is square free is as
follows. We reduce the maximal multiplicity of a root of a <r(P) by adding
a term to P of the form AD^(P) where A is a polynomial in x. We use a
dimension argument to show that suitable A exist.
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PROPOSITION 6. — Suppose that To,(va) is transcendental over
TQ_I. Let P be an element of7^a-i[^](^) such that fo,(P(z^)(/)) = 0 but
p(P{va)(9)) is not zero for any p e G^. Then we can find a polynomial,
Q C 7^o;_i[^](^) with the same properties as P, and such that p(Q(z){g))
is a square-free polynomial in z for every p e G^-i.

Proof of Proposition 6. — Let a e Gc,_i be such that the polynomial
a(P(z){g}) has a root, z = ^ in the algebraic closure of ^-1(^)5 of
maximal multiplicity r, where r > 2. If ^ were to satisfy the differential
equation for a(va)^ i.e.

(11) ^=a(A^))/a(^(z)),

then by Proposition 2(vi), there would be a p € Ga whose restriction to
T^Q-I is equal to a and such that p(va) = C- But then p(P(va)(g)) =
(T(P{Q(g)) = 0, contrary to our assumptions. So ^ does not satisfy (11).

6^(a(P)), will be a sum of terms of which all but one contains
a factor (z — <y. The remaining term will instead contain the factor
r(z - O^WAa^)) - C'^a^))} but no higher power of z - C. Now
z = ^ is not a zero of a(Aa(z)) — C,'(j(P.a{z)) since C, does not satisfy (11).
So C is a zero of order r — 1 of 6^ ^(a(P)), which by Lemma 11, is equal
toa(^(P)).

It now follows from Lemma 10 that for each a € Ga-i there are only
a finite number of h C 7^-i for which a(P)(z)(g}-{-ha(D^(P)){z){g) has a
root in z of multiplicity greater than r— 1. Let m e N and to^i^ • • • ? ^m-i ^
C. We shall write t = (to^i, • • • ^m-i) andx= (l,.r,a;2,... .a^1"1), so that
t • x = to + ^i^ + • " + tyn-i^"1. Recall that G^ is parameterised by the
map \ : C^ x Ba ^ Ga and write Qi = (P + (t • x)D^(P)){g). Let
Yi c C0^-^ be the set

Vi = {(p,t) e Ca^+m; 3q G B, / x(P,q)(Ot(^)) = 0}.

Then, by Proposition 5, Vi is an analytic variety. Moreover for a given
set of values of p and q, there is at most one t = { t o ^ t i , • • • ^m-i} such
that x(P^q)(Ot(^a)) = 0, since ^(p,q)((P(i;^)(^)) ^ 0. Here we have used
the fact that the elements of Gi are injective, and so if ti -^ t^ then
^:(p,q)(ti • x) -^ x(p5(l)(t2 • x). Thus V\ is a subset of an analytic cover
over C"^ and so is of dimension at most a(a). Similarly, let

V2 = {(P, t) e C^^; 3q € B, / X(P, q)(0t(^))
has a root of multiplicity >_ r}.
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The condition for (p, t) to belong to V^ can be expressed in terms of the
vanishing of certain polynomials in the coefficients of x(p^){Qt). This
follows on taking F^, to be the %-th derivative of F, i = 1,... ,r, in the
following theorem of elimination theory, [19].

THEOREM. — Let FQ, . . . , Py-i ber polynomials in a single variable
of given degree with indeterminate coefficients. Then there exists a system,
D\,..., Dk of integral polynomials in these coefficients with the property
that if those coefficients are assigned values from a Geld, )C, the conditions
PI = 0 , . . . , Dk = 0 are necessary and sufficient in order that either the
equations FQ = 0 , . . . , Fr-i = 0 have a solution in a suitable extension field
or that the formal leading coefficients of all the polynomials FQ^ . . . , Fr-i
vanish.

Thus Va will be given by a finite set of equations of the form
;Y(p,q)(S'(p)) == 0, where S G 7?^-i(t)(^/), and so will also be an analytic
variety, by Proposition 5. However Lemma 10 shows that for each fixed p,
there is only a finite set of t for which (p, t) G V^. So Vs? like Vi, and so is
of dimension a(a) at most. Now if we take m > a{o) and apply Lemma 9
with V = V\ U V2 and F equal to the projection onto C^ we obtain that
the projection intersects the image of W^ in a subset of the first category.
Hence there exist real values of ^ i , . . . ,^n such that for any p G Go;-i,
p(Qt){va) 7^ 0 and moreover p(Qt) has no root of multiplicity greater than
r-1.

On the other hand Ta(Qt(va)(f}) = 0; for Ta(P{z)(f)) must contain
a factor z — T-a(z^), since Ta(P{va)(f)) = 0- Therefore we can write
r^P{z)(f)) =(z- rM)^z). Then

e^(f,(P(^</))) = (z - rM)e^^(z))

+{r.(A^)) - r^yW^z)Wz).

However, (r^a))' = TQ^A^Va^/rQ^a^a)) and so z - Ta(va) is a factor
of e^{P(z)(f)). i.e. 6^(P(^)(/)) = 0. But for any t,

Ta(0t(^)(/)) = T,(P(^)(/)) + T,(t . x)f,(D;(P)(z)(/)|^(^)

= T,(P(^)(/)) + T,(t . x)e;^(f,(P(^)(/)))|,^^),

by Lemma 11. Hence Ta{Qt{va){f}) = 0 and so Qi has similar properties
to P but none of its images under elements of Ga have roots of multiplicity
exceeding r — 1. By induction we can then find a square-free polynomial as
required, and this completes the proof of Proposition 6.
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We can now show how Pc,_i is obtained from Pa. This is given by
the following proposition, which uses similar arguments to those above.

PROPOSITION 7. — Suppose that Ta{va) is transcendental over
7^-i. Let Pa be an element ofUa-i(z)(y}, such that fa(Pa(^a)(/)) = 0
and p(Pa{va))(g} is non-zero for every p e G^. Then we can find a
polynomial Pa-i € 7^-i(2/) which satisfies conditions analagous to those
satisfied by Pa(^a); i.e. Ta-i(Pa-i{f)) = 0 but for all o- e G^-i,
a(P,_i))(^0.

Proof of Proposition 7. — After Proposition 6, we can assume that
every p{Pa{z){g)) is a square-free polynomial in z. Let P^-i be the
resultant, res^Pc,, D^(Pa)); we show that P^-i has the required properties.

Firstly, Ta(Pa{z)(f)) and Q^^r^Pa{z)(f)) contain a common fac-
tor, z—Ta(va)^ as in the proof of Proposition 6, and so fa-i(Pa-i(/)) = 0.

Now let a e Gc,-i and suppose that a(Pa--^){g) = 0. We shall show
that this contradicts the hypotheses of the proposition. As before, a acts
on coefficients and is a algebra homomorphism, and so we have

a(P^{g)) = a(res,{P^),D;(P^))})

=res,{a(P,(^)),a(D;(P,^)))}

=res,{a(P,^)(^)),e^(^(P,^)(^))},

by Lemma 11. So ifa(P,-i)(^) =0, then a(P^z)){g) and 0^(a{P^z)){g})
must have a factor z — (^ in common, where (^ belongs to the algebraic
closure of S^(g). Let a(Pa(z))(g) = (z - (;)Y{z). The domain of 9^
can obviously be extended to the algebraic closure of Sa--^{g}. Then
e^aWa(z)){g)) =(z- cX,(y(^)) + {a(A,)(^) - ̂ (^(^y^).

However z—C, is not a factor ofV, since a(Pa(z){g)) is square free. Therefore
a(AcJ(C) - C'cr^XO = 0. Then, by Proposition 2(vi), there is a p € Gc,
which agrees with a on Ka-i and takes v^ to <. So p(Po,(va)(g}) =
a(Pa(C)(^)) = 0, contrary to hypothesis. Thus a{Pa-i(g}) ^ 0 for all
a € GQ-I and Proposition 7 is proved.

We shall use Proposition 7 to obtain a differential polynomial, P, over
M which vanishes at / but not at g . Our next Lemma shows that P(g) will
have the growth properties we require.

LEMMA 12. — Let g , f and 77 be as above, with g = f + T] and
7(77) > r. Then if P is any differential polynomial over R such that
P(9} + P(f), we have ^{P{g) - P(f)) > 7(77).
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Proof of Lemma 12. — Clearly we can write P(/ + 77) — P{f} as a
differential polynomial in 77 over TM with every term involving r) or one
of its derivatives. Now any derivative of 77 must tend to zero. Moreover by
part (ii) of the following result, which appears as Lemma 2 of [13], it has
comparability class equal to 7(77).

LEMMA 13. — Let h be an element of a Hardy field.

(i) If'j(h) = 7(rr) and log \h\ / log a; then ^(h') = ̂ (x) = ̂ (K).

(ii) Jf7(/i) > ̂ (x) then ̂ {h') = 7^).

(iii) If 7(/i) < ^(x) and y(h) ^ 0, then log/i' ~ —log x (and in
particular ^(h') = ̂ (x)).

Thus every term of P(/ + 77) — P(f) contains a product of derivatives
of 77, each of which tends to zero and has comparability class at least 7(77).
But the coefficients of these products of derivatives belong to TM, and
therefore have comparability class no greater than F by the corollary to
Lemma 6. So P(g} = P(f -+- 77) — P(f} itself must have comparability class
at least 7(77), which is the conclusion of Lemma 12.

For completeness we give a short proof of Lemma 13.

Proof of Lemma 13. — We use two key facts. The first is that
for elements ^1,^2 of a Hardy field, 7(^1) > 7(^2) if and only if
log \h^\ /log \h\ | -—>- 0; this is a direct consequence of the definitions in-
volving 7. The other is that if h^/h\ —f 0 and v(h\) 7^ 0, then h^/h[ —> 0;
this follows from L'HopitaPs rule (see [7]).

To establish (i) we note that its hypotheses imply that log \h\ ~ k log x
for some real constant k -^ 1. Let e be any positive real number which is
sufficiently small to ensure that k — 1 — e and k — 1 + £ have the same
sign. Then x^ < \h\ < x^, and hence x^-6 < \h' < x^^. So
^((h) = ̂ (x) as required.

To prove (ii) we may suppose that \h\ —> oo; for otherwise we
may replace h by h~1. Then log|/i| > Klogx for every K E M. On
differentiating, we obtain that h' / h > K / x , and it follows that 7(/^) >:
7(/i). On the other hand, h~1 —^ 0 and hence h1 /h2 —> 0. Since the
hypotheses ensure that \h'\ —> oo, this implies that 7(/z') < 7(fa). Thus
7(/l /)=7W•

As regards (iii), we have x~6 < \h\ < x6, for every 6 6 M"^. Therefore
x~6~l < \h'\ < x6~l^ and so log \h'\ ~ —log a:. This completes the proof of
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Lemma 13.

Completion of the proof of Theorem 5. — If the conclusion is false,
let J be the smallest value such that R{g) contains no elements of compara-
bility class as great as 7(11.7+1). Then we may assume that 7(11.7+1) > 7(11^)
for j = 1,. . . , J . Corollary 1 to Lemma 4 then allows us to write g in the
form g = f+rj. Proposition 3 then shows that g is never equal to p{wf) with
p € GM. Now if we take PM^V) to be the polynomial y-Wf e T^M^/), then
TM(PM(/)) = 0 but for every p e GM, p(PM){g) ^ 0. By Propositions 4
and 7 we can find a polynomial Po € M{2/) with similar properties; i.e. such
that fo(Po(/)) = 0 but fo(Po^)) ^ 0. By Lemma 12, 7(fo(Po^))) > 7^)
and that suffices to establish Theorem 5 since ro(Po{g)) e M(^).

If we apply Corollary 2 of Lemma 4, we obtain a slightly different
version of Theorem 5, which has a somewhat simpler statement but is
more difficult to use in practice.

COROLLARY (to Theorem 5). — Let g be an element of a Hardy field
with nested expansion { n i , . . . , nj+i} and suppose that 7(11.7+1) > ^(g).
Then R(g} contains an element of comparability class at least 7(11.7+1).

6. The series case.

The first thing to say is that this is not just a matter of applying
Theorem 5. Certainly a series of nested forms can always be rewritten as a
nested expansion, but there may be terms in the series which do not occur
in the nested expansion. An example is

e^ + e3^-1 + e^2 = exp{x + log(l + x~1 + e-^2)}
= exp{a* + X'1 - x-2^ + x-3/^ + • • • } ,

and of course, one never reaches a term involving e"^2 in the nested
expansion. In this sort of example, the series gives a more accurate picture
of the asymptotic behaviour than the nested expansion, which is one reason
for using a series expansion where possible. Another is that a series is easier
to understand.

We shall consider base elements Xi ,X2, . . . ,Xfc with 7(Xi) >
7(^2) > • • • > 7(Xfc). We restrict X^^..^Xk to functions which have
precise nested expansions'^ that is to say nested expansions {ni , . . . ,n^},
A >_ 1, with n\ a precise nested form. We do not need to restrict X\ to
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have a precise nested expansion, and this will be convenient since it will
allow X\ to act as the tail of the series.

We shall say that a function / € X has asymptotic series

E Y^n-V^n yTrf\,n V^.n y^fc,Ti
^n^l ^2 ' * * ^k"n^l -^2 ' " ^ k

if for each N > 0,
N

f \ ^ V7'!.^ V^.n v^,"- / v^l,-^ V^.Ar v-^A;,Ar\
J-Z^^^-l ^2 ' " ^ k =olAl ^2 "•^fc )•

n=0
It would be nice to frame our treatment of series in terms of formal
expansions only, and thus dispense with the need to restrict attention to
solutions in a Hardy field. The author is of the opinion that this could be
done. However there are a number of difficulties with formal series in several
base elements; see [5], pages 24-27. One that is particularly relevant here
concerns the meaning to be assigned to the statement "the formal series
Y^dnX^^X^ ' " X ^ ^ satisfies the differential equation P(y) = (T. If
one requires merely that for every N = 0,1,...,

/ N \
p / V^ y7'1'" Y^," \ _ ^( Y7'1'1^ Yrk1N\
^ V ^ ^ ^ l " ' - ^ k / — O V A 1 " ' ^ k ^

\n=0 /

then one has to face the fact that ^x(\ogx)~n satisfies y ' = 0. Here we
avoid such issues by considering only expansions of Hardy-field elements,
and probably little is lost in practice by this.

In addition to our previous assumptions concerning X^,..., Xk, we
shall also require that for each i = 2 , . . . , fc, ^{Xi) is strictly greater than
the comparability class of any of its proper subnests. This is a reasonable
restriction. For suppose that Xi is an exponential and that Xi contains a
subnest n with 7(11) > ^{Xi). We may apply Corollary 1 of Lemma 4 to
logXi, and thus rewrite Xi in the form Xi = e-^e11 = e^(l + zexp77) with
rj —^ 0. It would then be more logical to expand in terms of e-^, 77 and the
other XjS. Of course if Xi = l^cf) one would expand in terms of I mi 0 and
the other XjS. In fact the series analogue of Theorem 5 can fail in a rather
silly way without such a restriction on X^^... ,Xjc- For example, suppose
that we perversely decide to seek a series-expansion solution of the equation
y/ = y m terms of a set of base functions which includes exp(a; + <^), where
(f) tends to zero and 7(0) > 7(ea:;). We will obtain an expansion

y = exp(x + 0){1 - (t> + <^/2 -•••},
which contains terms of comparability class 7(0). Here of course is one of
the big disadvantages of series; one has to specify the right base-functions
in advance!
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Essentially, the techniques of Sections 3 and 5 can be applied to
the series case without great difficulty. However Section 4 is another
matter. The proofs there rely heavily on the ability to "unwind" the nested
expansion, and it does not seem to be entirely straightforward to adapt this
to series expansions. For this reason, we give our main result of this section,
Theorem 6, with the analogue of Proposition 3 assumed as a hypothesis.
We then look at some special cases in which it is easy to show that this is
satisfied.

Firstly we note that the methods of Section 3 can be used, almost
without change, to build towers of functions with the top tower containing
X2, . . . , Xk. Thus, we have the following.

PROPOSITION 8. — There exist towers 7^ and <?„, of differential
algebras, and Ga, of homomorphisms from Ka to Sa (1 < a < M),
satisfying conditions (i), (ii), (iv), (v) and (vi) of Proposition 2, and such
that for each j = 2 , . . . , k and each subnest, n, of Xj there exists a Wn in
some T^Q with T^(wn) = n.

Henceforth we shall identify 7^ with its image under To:. Our main
result of Section 6 is then the following.

THEOREM 6. — Let g be an element of a Hardy field such that
g = E anX^ .. • X^ + Xi, where

i

1. a i , . . . , dno and r2 , i , . . . , r^no,' • • , nc,i, • • • , Tk,no are r^1 numbers.
2. Xs,. . . , Xk are given by precise nested expansions.

3. For i = 2 , . . . , k, ̂ (Xi) is strictly greater than the comparability
class of any proper subnest of Xi.

4. 7(^i)>->7WO.

5. If T^co So. and G^, a = 1, . . . , M are as in Proposition 8, then
for every p € GM,

J^o no
nl\^ n Y^^ Yrk,n\ V^ Y7'2'71 y^n _/ vp^^an^ " ' ^ k ) ~ Z^^^ ' " ^ k T-^i-

1 1

Then ffi(^) contains an element of comparability class at least 7(Xi).

Proof of Theorem 6. — We merely have to observe that Propositions
4 and 7 are applicable here, and so we can find a differential polynomial,
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P, over R such that P( ̂  a^X^ . . . X^'71) = 0 but P(g) + 0. Lemma 12
now gives the conclusion.

We now show how Theorem 6 may be applied to yield results about
the non-appearance of certain types of term in series expansions of solutions
of algebraic differential equations of a given order. Our intention is to
illustrate the kind of result that can be obtained rather than to seek
maximum generality.

COROLLARY 1. — Let g be an element of a Hardy field which has
an asymptotic series expansion in x, e^ and X where 7(A) > 7(62(^)). If
X actually occurs (2^ in the expansion, then g cannot satisfy a first-order
algebraic differential equation over R{x).

Proof of Corollary 1. — The main part of the proof consists of
showing that R(x){g) contains an element of comparability class at least
7(e2(a0).

If A occurs in a product which tends to infinity, then 7^) > 7(62 (x)).
Otherwise we may write g in the form g = Sno 4- Xi where Sno is a real-
power polynomial in x and ex', and Xi —^ 0 with 7(Xi) > ^{e^{x)). Now
we take KQ = R, T^i = M(^i) where v[ = 1, and T^ = M^i,^) where
^2 = ^2; thus M(^i, v-2) ^ R(x, e^). We further extend, say by 7^3, . . . , UM
in order to incorporate any non-integral powers of x and ex occurring in
Sno. Let < S o , . . . , SM and Go, . . . , GM be as in Proposition 2. It is easy to
see that for any p G GM, p(5no) must be a complex polynomial in elements
of the form {x + KY, e^ with r, s € R. Hence p(6no) - S^o is asymptotic
to xresx for some r,s e R and so cannot be equal to Xi. Therefore by
Theorem 6, R(x){g) contains an element, h say, of comparability class at
least 7(02 (x)).

Now by Lemma 1 of [14], ^{K) ^ ^(e^(x)) implies that v(h' / h ) <
v(e^{x)'/e^(x)) = ̂ (e^), where v is the valuation. Hence ^ { h ' / h ) ^ 7(6^).
We show that ^ ( h ' / h ) -^ -f(h). We may suppose that h —^ co. Then for
every r € R+, h^ -^ 0, and hence h'h-^ -^ 0. Thus h ' / h < ̂  for every
r C R-^, and so ^ ( h ' / h ) < -y(h).

Thus R(x)(g) contains comparability classes ^(x) < ̂ ( h ' / h ) < ^y(h)
and therefore has rank at least three. In particular, it has transcendence

(2^ We take this to exclude appearances such as e^l(x)e'2(x + logo-).
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degree at least two over R(x). But this is not possible if g satisfies a first-
order algebraic differential equation over R{x), since then g ' and all higher
derivatives of g would depend algebraically on x and g. This completes the
proof of Corollary 1.

COROLLARY 2. — Let g be an element of a Hardy field with g ~
Kl^(x), where K, r C M\ {0} and n e N. Suppose that g has an asymptotic
series expansion in x,h(x),... ,ln{x), A, where 7(A) > 7(6^). Then if A
actually occurs in the expansion, g cannot satisfy an algebraic differential
equation of order n + 1 over R{x).

Proof of Corollary 2. — By hypothesis, g has nested form g =
l^{x)(K + ^), where ^ —^ 0. By Theorem 3, R{g) contains comparability
classes ^{x), 7(^1 (x)),... ,7(^(3;)). Suppose that g = Sno + Xi where Sno
is a real-power polynomial in x.l^x),... ,ln(x} and 7(Xi) ^ 7(ea;). It is
easy to see that condition 5 of Theorem 6 will be satisfied in this case, and
so R(g) will contain an element of comparability class at least 7(ea:;) also.
But this gives R(^) a rank of at least n + 2, and g cannot then satisfy an
algebraic differential equation of order n+ 1. So Corollary 2 is established.

Smaller comparability classes.

Our main theorem still allows the possibility of a combinatorial
explosion in the number of cases to be considered when computing a nested
expansion. But can this explosion really happen? Certainly the precise
analogue of Theorem 6 for smaller comparability classes does not hold.
This is shown by the following example, adapted from one in [17]. Consider
the differential equation

(12) dy- = y
v / dx (l+y)x'

It follows from Theorem 2 that any solution of this equation belongs to a
Rosenlicht field of rank two. However inspection shows that (12) possesses
a solution with asymptotic expansion

y(x) ~ log x — log log x + . . . .

But a Rosenlicht field of rank two cannot contain an element of compara-
bility class 7(^2)-
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An example of a slightly different sort is given by the equation
y ' = (2x + l)y^ which has e^ e^ as a solution, but R(a*, ex e^) contains
no term of comparability class 7(6^).

As regards a positive result, we may note that Propositions 4 and 7 are
still available for dealing with smaller comparability classes. However the
rest of the proof of Theorem 5 is not applicable, and one might expect that it
would be harder to get results for smaller classes, since the phenomenum of
slow diminution is destroyed by differentiation and may also be destroyed by
cancellation. Nonetheless one such result is known. The following theorem,
which was based on work in [18], appears in [17].

THEOREM 7 (Strodt). — Suppose that y(x) satisfies a first-order
algebraic differential equation over M(rc) of degree d. Then the asymptotic
expansion ofy(x) cannot contain lq for any q > 2d.

Examples would suggest that the appearance of new comparability
classes in later terms of expansions is a rare phenomenum. However, this
evidence is biased by the fact that research here has usually been conducted
by looking for series expansions in terms of particular base elements, and
almost invariably those for which the associated Hardy field is of small
rank. It seems somewhat rash to make a conjecture on the basis of such
knowledge, but the following might at least serve as a focus for attention.

CONJECTURE. — Let g be a Hardy-field solution of an algebraic
differential equation of order r — p over a Rosenlicht field, H, of rank p.
Suppose that g has a series expansion,

s^anx^.-.x^.
as above. Then the rank of the Hardy field ^'(Xi,..., X^) is at most 2r.

Less ambitiously, one might replace two by a larger constant.
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