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ON DENSE IDEALS IN SPACES
OF ANALYTIC FUNCTIONS

by Mihai PUTINAR/*)

1. Introduction.

Let A be a locally convex space of analytic functions defined in a
bounded pseudoconvex domain of C71 and let I be an ideal of analytic
functions defined on the closure of the respective domain. The question
treated in the present note is to find conditions which imply the density of
the ideal I in A. The motivation for considering this problem comes from
some recent works related to topological modules over function algebras
(see [5] and the references there). Two factors are important in the previous
question : the linear topology of the space A and the relation between the
geometries of the domain and the zero set of the ideal I . However, as
formulated before the question is too general and much too difficult to
approach, even in a single complex variable case. (Think for instance to
the deep results of the rational approximation theory.)

Throughout this note we will consider only a very specific case of the
above general approximation problem. Namely, given a bounded, strictly
pseudoconvex domain Q of C71 with real analytic smooth boundary and a
positive measure p. supported by the closure of fl, we seek conditions under
which an ideal I C 0(^) (of analytic functions defined in neighbourhoods
of H) is dense in the closure A^/^) of 0(H) into L^) , for 1 ̂  p < oo.
For instance, assuming that the measure p, is singular with respect to the
volume measure of any real smooth (n-l)-dimensional submanifold of 90.
and that the zero set V(I) of the ideal I is contained in a smooth complex
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proper submanifold of C71 which is disjoint of f2 we prove the density of I
in A^).

The main result below will be stated in a slightly more general and
technically more involved form, for other possible applications. Although
the above mentioned approximation statement is not surprising, its proof
involves two distinct refined results of complex analysis, namely the flatness
and separation of ideals of analytic functions in the space of smooth
functions (cf. [11] and [18]) and the structure of the locally peak sets for
the algebra A^^) (cf. [3],[4]). For that reason the proof proposed below
cannot apparently be adapted to more general situations, as for instance a
polydomain and an ideal with a singular zero locus. It is quite natural to
expect that a more general statement with a conceptually simpler proof is
true. From that perspective we consider the present note an intermediate
step towards a better understanding of similar approximation problems.

A particular case of the main result below was proved with similar
methods in the paper [13]. To be more specific we proved there the density
of an ideal I into the Bergman space A^dvol]^) under the hypothesis
that the set V{I) intersects ^2 in finitely many points. As it turned out a
posteriori the non-finite intersection case is not a simple consequence of the
finite intersection case, as innocently asserted in [13] Corollary 3.3.

The next section contains a review of the necessary terminology and
the statement of the main results. The last section is devoted to the
technical details of the proofs.

The author gratefully acknowledges the competent and constructive
comments of the referee and the valuable bibliographical information
obtained from E. Amar by the courtesy of the referee.

2. Preliminaries and main results.

Let Q, C 0'"' be a bounded strictly pseudoconvex domain. That
means that there is a strictly plurisubharmonic function /?, defined in a
neighbourhood U of ^, such that :

^ = { z ^ U ' , p { z ) <0}

and

9fl={zeU',p(z)=0}.
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If grad(p) is non-vanishing on 90 then the boundary of 0 is smooth. If the
defining function p is real analytic, then we say that the domain 0 has real
analytic boundary.

Fix a smooth point x in the boundary of 0. The gradient of p
at x defines the exterior normal at a; to the real tangent hyperplane
Tx{90). The complex structure on C71 defines an antiinvolution J on
T^{90) C R(grad^p). The vector

Tx = J(grad^)

lies in the tangent space at 90, and its orthogonal complement is invariant
under J, hence it is a complex vector space :

T%(9^)=r^)eR(T,).
It is the maximal complex subspace of the real tangent hyperplane at 90^
of complex dimension n — 1.

A linear subspace S C T^(90) is called totally real if S H J.S = 0. A
submanifold of 90 is totally real when its tangent space is totally real at
every point.

Suppose that the boundary of the domain 0 is smooth. Then we de-
note by A°°(f2) the algebra of analytic functions in n which are indefinitely
differentiable on 0. A peak set for the algebra A°°(0) is a subset E of 90,
with the property that there is a function / € A°°(0) with the properties :

f\E=l and f\(0\ E) < 1.

A set E C 90 is called locally peak for the algebra A°°(0) if for any point
x € E there is an open neighbourhood V of x with the property that V H E
is a peak set. In both definitions we can choose equivalently a function g
which is identically zero on E and with Re(^) > 0 elsewhere. (See [4] for
details.)

For a domain 0 as before we denote by 0(0) the algebra of germs
of analytic functions defined in neighbourhoods of 0. In other terms, this
algebra is an inductive limit :

0(0) = ind.limu0(?7)

where U runs over a ( countable) fundamental system of open neighbour-
hoods of 0. One knows that for strictly pseudoconvex domains 0 with
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smooth boundary one can take the neighbourhoods U with the same prop-
erty. (See for instance [9] Section 1.5.) From this representation the space
0(d) inherits an inductive limit topology of Frechet-Schwarz spaces.

Let f2 be a bounded domain in C77' with real analytic boundary and
let I be an ideal of the algebra 0(^1). A deep remark of Frisch [6] asserts
that the ideal I is in these conditions finitely generated. An extension of
Frisch5 Theorem is discussed by Siu in [17].

Let us consider a finitely generated ideal I = (/i,..., fp) for some
elements fi C 0(f2). Then each function fi is defined in a neighbourhood
of Q, so that there is an open pseudoconvex domain U which contains fl, and
where the functions /i,... fp are defined. In particular, the ideal (/i,..., fp)
is closed in the Frechet topology of the space 0(U) (by a classical result of
H. Cartan, cf. [9] Theorem 4.1.4 ). In conclusion any ideal of the algebra
0(0.) is finitely generated and closed in the inductive limit topology. For
an ideal I as above we denote by V(I) the set of common zeros of the
elements (or equivalently the generators) of J. Thus V(I) is a germ of an
analytic set, defined in a neighbourhood of the closure of fl,.

Following Henkin [8] we call a linear functional I € 0(p)' an A-
functional if, for every sequence fn G 0(Q) which is uniformly bounded on
fl, and satisfies lim fn(^) =0 for any point z € f^ we have lim Kfn) = 0.

n—>oo n—^oo
Originally, Henkin has isolated in [8] a class of measures on fl, which
interpreted as functionals have this property. (See also [14] Chapter 9 for
details.)

The main result of this note can be stated as follows :

THEOREM 1. — Let ^ C C71 be a bounded strictly pseudoconvex
domain with smooth real analytic boundary and let I be a continuous A-
functional on A°°(Q). Let I C 0{Q.) be an ideal whose zero set satisfies
V(I) H f2 C E, where E is a locally peak sets for the algebra A°°(n).

Ifl\I=0, then 1=0.

In order to state the announced application of Theorem 1 we need
more details about locally peak sets with respect to the algebra A°°(n).
The following remarkable characterization of locally peak sets was obtained
by Chaumat and Chollet in [4], as a completion of some prior results due
to Hakim and Sibony. (See also [3] for details.)
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Let 0 be a bounded strictly pseudoconvex domain ofC71 with smooth
boundary and let E be a subset of 90,. Then E is locally peak with respect
to the algebra A°°{0) if and only if for each point x € E there is an open
neighbourhood V of x in C97' and a smooth totally real submanifold N of
V D 90. containing E Fl V and with the property that

r,(7V)cT%(9Q),

for every point z € E H V.

A second part of the main result in [4] asserts that one can impose
the condition T^(N) C T°z(90) at any point of TV, and then the condition
on N to be totally real is automatically satisfied.

In fact one proves in [4] that one can choose the manifold N of
maximal real dimension n — 1 and with the above property.

Let 0 be as before a bounded strictly pseudoconvex domain with real
analytic smooth boundary in C7'1 and let ^ be a positive Borel measure
supported by the closure of 0. If ji is singular with respect to the (n — 1)-
dimensional integration measure along any (n— l)-submanifold of 90, then,
in view of the preceding result, f^(E) = 0 for any locally peak set E C 90.
We denote by A^/^) the closure of the space of analytic functions defined
in neighbourhoods of 0 into ^(/^), for any fixed p € [1, oo).

These spaces of analytic functions contain as particular cases the
Bergman and one of the possible Hardy spaces of the domain 0, for the
following choices fji = dvol^ and [i = dvol^, respectively. For these two
choices it is evident that any point of 0 is a bounded point evaluation for
the space Ap{a). Thus any ideal of analytic functions I C 0{0) which has
at least a common zero inside 0 is not dense in A^/^). For that reason we
exclude this possibility from the very beginning.

The principal application of Theorem 1 can be stated as follows :

COROLLARY 1. — Let 0 be a bounded strictly pseudoconvex domain
ofC71 with real analytic smooth boundary, let I C 0{0) be an ideal and let
IJL be a positive measure supported by 0. Assume that /^(TV) == 0 for every
smooth (n-l)-dimensional submanifold N of 90 and that V(I) D 0 C E,
where E C 90 is a locally peak set for the algebra A°°(0).

Then the ideal I is dense in AP^) for every p € [1, oo).

As we will see in the proof below we can assume in the preceding
statement only that f^(F) = 0 for any locally peak set F (which is a slightly
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weaker condition). In the usual applications to the Bergman or Hardy
spaces the condition imposed to the measure p, is automatically satisfied.
The following consequence of Corollary 1 gives a geometric criterion for the
second condition in the statement involving the zero set V(I). We do not
know how much this latter condition can be relaxed in general.

COROLLARY 2. — Let ^ and p, be as in Theorem 1 and let I C 0{fl.)
be an ideal with the zero set included in a finite union of smooth complex
submani folds of a neighbourhood ofQ,, each disjoint offl,. Then I is dense
in all spaces A1^^)^ C [1, oo).

In particular this corollary shows that the ideal of a linear complex
variety which is tangent to Q is dense in the Bergman and Hardy spaces of
the domain Q.

3. Proofs.

Let K be a compact subset of C71. We denote by £(K) the space of
Whitney C°° jets on K. This is a Frechet space in the natural topology of
uniform convergence on K of all partial derivatives of a jet. If K is a smooth
manifold with boundary, then £{K) is the space of smooth functions on K.
We denote by m(K) the closed subspace of f(C71) consisting of all functions
-0 which are flat on K^ that is such that any partial derivative of '0, of any
order, vanishes on K. In that case we have an exact sequence of Frechet
spaces :

0 —. m{K) —> ^(C71) —. S(K) —> 0.

The monographs [11] Chapter 1 and [18] Chapter IV treat these topics in
detail.

The first result of this section is a technical lemma derived from
Malgrange flatness and separation theorem ([11] Theorem 1.1, p. 82)
and from J.J. Kohn regularity theorem for the 9-operator on weakly
pseudoconvex domains ([8]).

LEMMA 1. — Let Q, be a bounded, strictly pseudoconvex domain with
real analytic smooth boundary in C71, and let (/i,... fm) be a system of
analytic functions defined in a neighbourhood offl.
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_ Then the ideal (/i,..., fm)SW is closed in the Frechet topology of
£(Tl) and

(1) A°°W n (A,..., fmW) =(/!,..., /rrOA00^).

A proof of Lemma 1 can be deduced from NagePs note [12]. More
precisely, the closeness of the ideal (/i,. . . , fm)£W is a consequence of [12]-
Theorem 4.8, while the algebraic relation (1) is implied by [12]-Theorem
3.2.

Since A°°(n) is a closed subspace of f(0), Lemma 1 shows in
particular that the ideal (/i,. . . , /yn)A°°(n) is closed in A°°(^).

Proof of Theorem 1. — Let f2 be a bounded, strictly pseudoconvex
domain with smooth real analytic boundary in C71 and let I be a continuous
A-functional on A°°(^) which vanishes on the ideal I c 0(^1), and suppose
that V(I) n Q is contained in a locally peak set E C Q^l for the algebra
A°°(^).

Then by the Theorem of Frisch [6] the ideal I is finitely generated.
Let / = (/i, . . . , fm) be a system of generators of I . Since the boundary of
^ is smooth and strictly pseudoconvex, the functions /i,. . . , fm are defined
in a neighbourhood of ^2, as in Lemma 1.

Lemma 1 implies that the two spaces in the following diagram are
Frechet and the map % induced by the natural inclusion is a strict morphism
of Frechet spaces (i.e. one to one with closed range in this case ) :

i : A°°(f2)/(/i,..., ̂ )A°°(n) — SW/(f^..., fm)£W.

By Hahn-Banach Theorem we can therefore extend the functional
/ to a continuous linear functional on the codomain of i. By lifting, this
functional is represented by a distribution u € f(Q)'. By Whitney extension
theorem ([16] Theoreme IV.2.2 ) u is a distribution in C71 with support in
^2. Since u annihilates the space (/i,..., /m)<?(^), the support of u is in
fact included in V{I) Df2 C E. Let d denote the order of the distribution u.

Let h\,..., hp be a finite system of peak functions of the algebra
A°°(Q), with the property that, for any point x € E there is at least one
function h^ 1 < j <: p, which is equal to one at x. Let us denote by gr the
following sequence of elements of A°°(0) :

<7.=((l-/^lr)...(l-V))d+l.
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The set V(I)n9Q. is real analytic hence regular in the sense ofWhitney
([18] Corollaire VI.1.7). Thus the distribution g^u vanishes for any positive
integer r. (See [15] Section III.9 Theoreme XXXIV.)

On the other hand :

sup \gr{z)\ <2^+l\
zW

whence the sequence gr is uniformly bounded on f^. Moreover,

lim gr(z) = 1,
r—»-oo

for any point z G f^.

Let 0 be an arbitrary element of A°°(f2). Then the sequence gr(j) is
uniformly bounded on fl, and it converges pointwisely in fl, to cf). Because I
is an A-functional we obtain :

l((f>) = lim Z(^).
r—»-oo

But for each positive r we have :

l{9r<t>) = U{gr(f)) = 0,

therefore the functional / is equal to zero on the whole space A°°(^). This
finishes the proof of Theorem 1.

Proof of Corollary 1. — Let Q be a domain and IJL a measure as in
the statement of Corollary 1. Fix the real number p in the interval [1, oo).
Let q denote the real number which satisfies - + - = 1.

P Q
By keeping the notations of Corollary 1, let k € Lq{^) be a function

which represents a continuous functional on A^/^) which vanishes on the
ideal I . We will adapt the proof of Theorem 1 to this particular situation.

First we remark that the multiplication with A; is a linear continuous
operator between A°°(n) and Lq{|l). Then with the notations of the
previous proof we have to compute the following limit

L = lim / gr^kdu.r^00 AT
The sequence of functions gr(f)k is pointwisely bounded by a multi-
ple of k and it converges pointwisely to \^k^ where A = {x C ^2;
g-^(x) = 0} is a locally peak set of A°°(^). By Chaumat-Chollet theorem



DENSE ANALYTIC IDEALS 1363

and the assumption of Corollary 1 we obtain /x(A) == 0. Thus by Lebesgue
dominated convergence theorem the limit L is zero and the proof of Corol-
lary 1 is finished.

Proof of Corollary 2. — First we assume that the ideal I is reduced
and it defines a smooth complex submanifold V{I) of an open neighbour-
hood U of Q.. By assumption the set V(I) is disjoint of fl,. We will prove
that in that case V(I) D 90, is a locally peak set for the algebra A°°(^), so
Theorem 1 applies.

Fix a point x e V(I) H 9f2. After a linear change of coordinates we
can assume locally that x == 0, V(I) is a linear variety and the defining
function p of the domain Q satisfies :

9p/9x^0) = 1, op/oy^O) = 9p/Qx,(Q) = op/Qy,(fi) = 0.

Above Zk = Xk + iyk^k G [l,n], are the new complex coordinates in a
neighbourhood of zero.

We denote for simplicity w = z\^u = x\^v = 2/i,<^_i = Zj,j C [2,n]
and C = (Ci , . . . , Cn-i)- We put Sk = Re(Cfc) and tj, == Im«fc), A; € [1, n - 1].
We work in a domain D x A, where w € D C C and ^ € A C C77'"1

are balls centered at zero in the respective spaces. Since the linear variety
V(I) D (D x A) does not intersect f^, it is included in the real tangent
hyperplane T(O,O)(^)) hence it is included in the complex hyperplane
^={ (w ,C) e b x A ; w = 0 } .

From now on we closely follow a (standard) construction presented in
the proof of Proposition 9 in [4]. The Jacobian of the pair of functions (p, v)
is obviously non-degenerated at (0,0), therefore by the Implicit Function
Theorem, after possibly shrinking the balls D and A there is a smooth
function h : A —> D such that :

M = {(w, C) e D x A; p(w, C) == v = 0} = {(fa(C), C); C e A}

is a smooth real submanifold of 90, H (D x A) which contains V{I) D
90, H (D x A). We have to find a smooth totally real submanifold of M,
which still contains V(J) HQfl, and whose tangent plane is contained in the
complex tangent plane of Q^l at the points of intersection V(I) H <90.

The function 0(() = p(0,C) is strictly plurisubharmonic and non-
negative in the ball A, whence by the main result of [7], there is, after
possibly shrinking A to a smaller neighbourhood of zero, a totally real
smooth submanifold N ' of A which contains the zeros of 0(^). Moreover it
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is known from [7] that after a complex linear change of coordinates in the
^-space one has :

N ' = {C € A; {90/9sk){(:) = 0,1 < k < n - 1}.

It remains to remark that the smooth submanifold of Q^l defined by :

^={WCU);Ce7v'}

is totally real and at the points z of W^\Q^l one has Tz C T%((9Q) because
TV is a complex linear variety. This finishes the first part of the proof of
Corollary 2.

Assume now that I C O(^) is an ideal of the form I = Ji.. .1^,
where each factor is the reduced ideal of a smooth complex manifold which
is disjoint of f^. Then a simple recurrence based on the first part of the
proof shows that I is dense in A^). Finally if J C (9(H) is an ideal whose
zero locus is contained in the zero locus of the ideal I above, since we are
working on a Stein compact set, there is by the Nullstellensatz Theorem
an integer N such that J^ C J. In conclusion the ideal J is dense in the
space A^). This finishes the proof of Corollary 2.

Remarks. — a) We have reproduced from [4] the quite involved
local construction in the proof of Corollary 2 in order to guarantee the
smoothness of the totally real variety which contains locally V(I) H <9^2.
Equivalently, one can argue as follows : by [7], the zeroes of the function
p\V(I) are locally contained in a totally real submanifold 7V7 of V{I). Then
one projects TV' onto 90 in the direction given by grad(p) and we have to
check that this projection is a smooth, totally real submanifold N of <90.
However, the analysis of this latter assertion in local coordinates is similar
to the first part of the above proof of Corollary 2.

b) The real analyticity of the boundary of the domain Q was needed
twice in the proof of Theorem 1. First in Lemma 1 and second for the
fact that the set V(I) H 9^ is regular in the sense of Whitney. By means
of the more general results of Bierstone and Milman [2] (see also [1] and
the references in [2]) one can relax a part of the conditions in Theorem 1.
More precisely, let n be a bounded strictly pseudoconvex domain in Cn

with smooth boundary and let J be a finitely generated ideal of the algebra
O(^). It is known by the general theory developed in [2] that the ideal I
induces a stratification Sy, C S^-i C ... C So of a neighbourhood So ofH
with complex analytic spaces. (More exactly, the stratification is induced
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by the invariant diagram of initial exponents of the localizations of the
analytic module I ) .

If all strata Sfc,0 <: k <, n, are regularly situated with respect to ^,
then Theorems 1.2 and 1.5 of [2] show that Lemma 1 and Theorem 1 are
still valid. (In particular Theorem 1 preserves exactly the same proofs.)

c) We remark at the end that the characterization of (locally) peak
sets on more general classes of domains, such as the weakly pseudoconvex
domains, is more subtle. (See [16] for references.)
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