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THE MARTIN COMPACTIFICATION
OF A PLANE DOMAIN

by Nikolai S. NADIRASHVILI

In this note we prove the following

THEOREM. — The Martin compact! fication of a plane domain is
homeomorphic to a subset of the two-dimensional sphere.

ASSUMPTIONS. — IfQ. be a plane domain and R2^ is polar then any
positive harmonic function on Q is a constant. In this case we define the
Martin compactification of f2 as a one point set. So we assume from now
on that R2^ is non-polar. We may also assume without loss of generality
that BI C ^2 where Bi is the unit disk in R2 with the center at 0.

Remark. — If a simply connected domain is a proper subset of the
plane then by Riemann mapping theorem its Martin compactification is
homeomorphic to a closed disk.

CONJECTURE 1. — The Martin compactification of a subdomain of a
compact Riemannian surface is homeomorphic to a subset of this surface.

CONJECTURE 2. — Any compact metrizable space can be represented
as the Martin boundary of a certain (generaly of infinite genus) Riemannian
surface.

1. The Martin compactification.

Let G(rc, y) be the Green function of the Dirichlet Laplacian on ^2,
. with the pole at x. Let us denote gx(y) = G(x,y)/G(x,0) for x ^ 0 and
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^o=0. Let gx(y) be the restriction of the function Qx{y) on y 6 B\. So we
have a map

7 : a;-^ e L^Bi).

The Martin metric on 0 can be defined as the metric inducted on Q, by the
map 7 : n —>• L^Bi), (cf. [1]). Compactification of f^ in the Martin metric
we denote as ^M.

Canonical map.

We set

/ : ̂  V^(0)

and /(O) = ex) by the definition. We claim that the introduced canonical
map / has the uniformly continuous inverse map from /(^) to ^M.

Proof of the theorem.

1.1. Let G C K2 be a domain and Q a disk such that Q C G. Also,
let di G QQ^i == l,...,2n, be distinct points on 9Q. We assume that the
di are indexed in the order in which they are encountered when traversing
9Q. Let / be a continuous function in G\Q such that /(a^)/(a^i) < 0 for
all i = 1,..., 2n — 1. We denote by Gi C C^Q the domain where / does not
change sign, such that di G Gi.

Lemma ([2]). — At least n + 1 of the domains Gi, i = 1,..., 2n, are
distinct.

1.2. Let rci,a;2 G ^- We prove that if f{x\) = /(a^) then x\ = a-2.

Let ^ = gx^-9x^ Then A^A = 0 in ^\({a;i}U{a-2}), ^(0) = Vtt(O) = 0.
Let r be the nodal set of ZA, r = {x 6 ^,^(.r) = 0}. If u ^ 0 then in a
neighborhood ofO, F consists ofn smooth curves intersected at the point 0,
where n is an order of vanishing of the function u at 0 (cf. [2]). By Lemma
r splits the domain fl, at least on three distinct subdomains. By maximum
principle each of those subdomains should contain a pole of the function u.
Since function u has only two poles x 1,^25 it follows that u = 0.

2. Now we prove that the map

F : z = f ( x ) e f W ^ g x
is uniformly continuous.
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2.1. Let Bi C B, B C Q,. By Harnak inequality for any x € ^\B,
(jx < C, where C > 0 is some constant.

2.2. Let Xn, Zn € 0, n = 1,2,..., and ̂  —^ ^i, 9zr, —^ ^2 on any
compact in Q, as n —>• oo, fai ^ faa. Its required to prove that V/ii(0) 7^
V/i2(0). Let us assume the contrary, namely that V/ii(0) = V!/i2(0). We
denote h = /ii — ^2 and let fc be an order of vanishing of the function h at
0, k > 2.

2.3. Let r be the nodal set of the function h. There exists such a
small p > 0 that on Sp = 9Bp, |Vfa| > 0 and the cardinality of the set
Sp n r is equal to 2k.

2.4. We prove the existence of two bounded non-constant harmonic
functions -yi, v^ in ̂ , such that V^i(O) ^ 0, Vz»2(0) -^ 0, V2;i(0) 7^ aV-^O),
for any a e R.

Let us choose discs J9i, D^^D^ C R2 such that -D^\^ non-polar,
i = 1,2,3, and for any points Xi € -D% the quadrangle 0, rci, a;2, x^ is convex.
Let /^^ be a probability measure on Di\fl, such that the convolution In |^|*/^
is bounded from below. We set v\ = In \x\ * (/^i —^2)5 ^2 = ̂  1^1 * (/^3 ~ 1^2)-
Then ^i, v^ are bounded harmonic functions in fl, and the V^i (0), Vz'2 (0)
have the required property.

For any a 6 R2 there exists a unique linear combination

Wa = 0lVl + /?2^2 - /3l^l(0) - /32^2(0)

such that Vwa(O) = a, Wa(0) = 0. Further, if |a| —> 0 then |wa| -^ 0
uniformly in f2.

2.5. Let us denote

V^(0)-V^(0)=an,

9n =^, -9zr, -^ar,'

Then gn(0) = Vgn(O) = 0 for all n = 1,2,....

From (2.1), (2.2), (2.4) it follows that qn —>• h in B\ and hence also
qn —^ h in C^Bp) as n —^ oo. Therefore, if Fyi is a nodal set of qn then
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for a sufficiently large n >_ N, 5p\I\ is a union of 2k distinct intervals
^...,^and

sup inf sup qn > a > 0
n>N l<J<2fc p

with some constant a. Since Wa^ —> 0 uniformly in ^ as n —)• oo then for
sufficiently large n > N ' > N^ |waJ < a in Q. Hence \qn\ < a on 90, for
n>7V' .

2.6. Since ^n(O) = Vgn(O) = 0 then by Lemma the set 0\Tn contains
at least three components G\^G^^G^ such that 0 e G^, i = 1,2,3. From
(2.5) it follows that for n > N ' and i = 1,2,3

SUp \Qn\ > SUp|gn|.
GiDBp 9Gi

By the maximum principle from the last inequality it follows that any of
the domains €?%, i = 1,2,3 contains a pole of function Qn. Since the function
On has only two poles we get a contradiction which proves the theorem.
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