NIKOLAI S. NADIRASHVILI The Martin compactification of a plane domain

Annales de l'institut Fourier, tome 44, nº 5 (1994), p. 1351-1354 http://www.numdam.org/item?id=AIF_1994_44_5_1351_0

© Annales de l'institut Fourier, 1994, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 44, 5 (1994), 1351-1354

THE MARTIN COMPACTIFICATION OF A PLANE DOMAIN

by Nikolai S. NADIRASHVILI

In this note we prove the following

THEOREM. — The Martin compactification of a plane domain is homeomorphic to a subset of the two-dimensional sphere.

ASSUMPTIONS. — If Ω be a plane domain and $\mathbb{R}^2 \setminus \Omega$ is polar then any positive harmonic function on Ω is a constant. In this case we define the Martin compactification of Ω as a one point set. So we assume from now on that $\mathbb{R}^2 \setminus \Omega$ is non-polar. We may also assume without loss of generality that $\overline{B}_1 \subset \Omega$ where B_1 is the unit disk in \mathbb{R}^2 with the center at 0.

Remark. — If a simply connected domain is a proper subset of the plane then by Riemann mapping theorem its Martin compactification is homeomorphic to a closed disk.

CONJECTURE 1. — The Martin compactification of a subdomain of a compact Riemannian surface is homeomorphic to a subset of this surface.

CONJECTURE 2. — Any compact metrizable space can be represented as the Martin boundary of a certain (generaly of infinite genus) Riemannian surface.

1. The Martin compactification.

Let G(x, y) be the Green function of the Dirichlet Laplacian on Ω , with the pole at x. Let us denote $g_x(y) = G(x, y)/G(x, 0)$ for $x \neq 0$ and

Key words : Martin boundary. A.M.S. Classification : 31A20. $g_0 \equiv 0$. Let $\tilde{g}_x(y)$ be the restriction of the function $g_x(y)$ on $y \in B_1$. So we have a map

$$\gamma: x \to \tilde{g}_x \in L^2(B_1).$$

The Martin metric on Ω can be defined as the metric inducted on Ω by the map $\gamma : \Omega \to L^2(B_1)$, (cf. [1]). Compactification of Ω in the Martin metric we denote as Ω^M .

Canonical map.

We set

$$f: x \to \nabla_y g_x(0)$$

and $f(0) = \infty$ by the definition. We claim that the introduced canonical map f has the uniformly continuous inverse map from $f(\Omega)$ to Ω^M .

Proof of the theorem.

1.1. Let $G \subset \mathbb{R}^2$ be a domain and Q a disk such that $\overline{Q} \subset G$. Also, let $a_i \in \partial Q, i = 1, ..., 2n$, be distinct points on ∂Q . We assume that the a_i are indexed in the order in which they are encountered when traversing ∂Q . Let f be a continuous function in $G \setminus Q$ such that $f(a_i)f(a_{i+1}) < 0$ for all i = 1, ..., 2n - 1. We denote by $G_i \subset G \setminus \overline{Q}$ the domain where f does not change sign, such that $a_i \in \overline{G}_i$.

Lemma ([2]). — At least n + 1 of the domains G_i , i = 1, ..., 2n, are distinct.

1.2. Let $x_1, x_2 \in \Omega$. We prove that if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

Let $u = g_{x_1} - g_{x_2}$. Then $\Delta u = 0$ in $\Omega \setminus (\{x_1\} \cup \{x_2\}), u(0) = \nabla u(0) = 0$. Let Γ be the nodal set of $u, \Gamma = \{x \in \Omega, u(x) = 0\}$. If $u \not\equiv 0$ then in a neighborhood of 0, Γ consists of n smooth curves intersected at the point 0, where n is an order of vanishing of the function u at 0 (cf. [2]). By Lemma Γ splits the domain Ω at least on three distinct subdomains. By maximum principle each of those subdomains should contain a pole of the function u. Since function u has only two poles x_1, x_2 , it follows that $u \equiv 0$.

2. Now we prove that the map

$$F: z = f(x) \in f(\Omega) \to \tilde{g}_x$$

is uniformly continuous.

1352

2.1. Let $\bar{B}_1 \subset B$, $\bar{B} \subset \Omega$. By Harnak inequality for any $x \in \Omega \setminus B$, $\tilde{g}_x < C$, where C > 0 is some constant.

2.2. Let $x_n, z_n \in \Omega, n = 1, 2, ..., \text{ and } g_{x_n} \to h_1, g_{z_n} \to h_2 \text{ on any}$ compact in Ω as $n \to \infty, h_1 \neq h_2$. Its required to prove that $\nabla h_1(0) \neq \nabla h_2(0)$. Let us assume the contrary, namely that $\nabla h_1(0) = \nabla !h_2(0)$. We denote $h = h_1 - h_2$ and let k be an order of vanishing of the function h at $0, k \geq 2$.

2.3. Let Γ be the nodal set of the function h. There exists such a small $\rho > 0$ that on $S_{\rho} = \partial B_{\rho}$, $|\nabla h| > 0$ and the cardinality of the set $S_{\rho} \cap \Gamma$ is equal to 2k.

2.4. We prove the existence of two bounded non-constant harmonic functions v_1, v_2 in Ω , such that $\nabla v_1(0) \neq 0$, $\nabla v_2(0) \neq 0$, $\nabla v_1(0) \neq a \nabla v_2(0)$, for any $a \in \mathbb{R}$.

Let us choose discs $D_1, D_2, D_3 \subset \mathbb{R}^2$ such that $D_i \setminus \Omega$ non-polar, i = 1, 2, 3, and for any points $x_i \in D_i$ the quadrangle $0, x_1, x_2, x_3$ is convex. Let μ_i be a probability measure on $D_i \setminus \Omega$ such that the convolution $\ln |x| * \mu_i$ is bounded from below. We set $v_1 = \ln |x| * (\mu_1 - \mu_2), v_2 = \ln |x| * (\mu_3 - \mu_2)$. Then v_1, v_2 are bounded harmonic functions in Ω and the $\nabla v_1(0), \nabla v_2(0)$ have the required property.

For any $\alpha \in \mathbb{R}^2$ there exists a unique linear combination

$$w_{\alpha} = \beta_1 v_1 + \beta_2 v_2 - \beta_1 v_1(0) - \beta_2 v_2(0)$$

such that $\nabla w_{\alpha}(0) = \alpha$, $w_{\alpha}(0) = 0$. Further, if $|\alpha| \to 0$ then $|w_{\alpha}| \to 0$ uniformly in Ω .

2.5. Let us denote

$$\nabla g_{\boldsymbol{x}_n}(0) - \nabla g_{\boldsymbol{z}_n}(0) = \alpha_n,$$

$$q_n = g_{x_n} - g_{z_n} - w_{\alpha_n}.$$

Then $q_n(0) = \nabla q_n(0) = 0$ for all n = 1, 2, ...

From (2.1), (2.2), (2.4) it follows that $q_n \to h$ in B_1 and hence also $q_n \to h$ in $C^1(B_{\rho})$ as $n \to \infty$. Therefore, if Γ_n is a nodal set of q_n then

for a sufficiently large $n \geq N$, $S_{\rho} \setminus \Gamma_n$ is a union of 2k distinct intervals I_n^1, \ldots, I_n^{2k} and

$$\sup_{n \ge N} \inf_{1 \le j \le 2k} \sup_{I_n^j} q_n > a > 0$$

with some constant a. Since $w_{\alpha_n} \to 0$ uniformly in Ω as $n \to \infty$ then for sufficiently large $n \ge N' \ge N$, $|w_{\alpha_n}| < a$ in Ω . Hence $|q_n| < a$ on $\partial\Omega$ for $n \ge N'$.

2.6. Since $q_n(0) = \nabla q_n(0) = 0$ then by Lemma the set $\Omega \setminus \Gamma_n$ contains at least three components G_1, G_2, G_2 such that $0 \in \overline{G}_i$, i = 1, 2, 3. From (2.5) it follows that for $n \geq N'$ and i = 1, 2, 3

$$\sup_{G_i\cap B_\rho}|q_n|>\sup_{\partial G_i}|q_n|\,.$$

By the maximum principle from the last inequality it follows that any of the domains G_i , i = 1, 2, 3 contains a pole of function q_n . Since the function q_n has only two poles we get a contradiction which proves the theorem.

BIBLIOGRAPHY

- [1] J.L. DOOB, Classical potential theory and its probabilistic counterpart, Springer, 1984.
- [2] N.S. NADIRASHVILI, Multiple eigenvalues of the Laplace operator (Russian), Matem. Sb., 133 (175), 1987; English translation in Math. USSR Sbornik, 61 (1988), 225–238.

Manuscrit reçu le 13 avril 1994, révisé le 21 juillet 1994.

Nikolai S. NADIRASHVILI, Institute of Earth Physics Moscow (Russia).

1354