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FERROMAGNETIC INTEGRALS,
CORRELATIONS AND MAXIMUM PRINCIPLES

by Johannes SJOSTRAND

0. Introduction.

In [S] the author developed an idea of Singer-Wong-Yau-Yau [SiWYY]
to use the maximum principle in the study of the logarithm of the first
eigenfunction of a Schrédinger operator on R™ with a strictly convex
potential, and for suitable sequences of potentials, he was able to establish
the exponential convergence of the first eigenvalue divided by m, when m
tends to infinity. More recently, Helffer and the author [HS] employed a
similar method to study expectation values of the form :

me e_¢(z)/hf(m)dw

(0'1) <f> = me e—9@/hdy

and in particular the correlations,

(0.2) ((zj — (z3)) (2 — (zk))),

for large m and |j —k|. Under suitable assumptions, implying uniform strict
convexity for ¢, we proved that (0.2) can be estimated by O(1)exp(—|j —
k|/C). Such bounds have previously been obtained for models in statistical
mechanics by many people, see Ellis [E], Sokal [So]. In the second part of
[HS] we further improved the estimates and were able to avoid a certain
“e-loss” in the exponential decay rate.

In this paper we shall further improve the use of the maximum
principle and as an application, we consider in section 2 correlations of the
form (0.2) where now j, k vary in some finite subset I of Z¢, so that m = {T".

Key words : Correlation — Statistical mechanics — Maximum principle.
A.M.S. Classification : 81C05 — 82A99 — 35C20 — 35P15 — 35P20.
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Assuming that ¢ = ¢r(z) satisfies 92,¢ > 1, —v(j — k) < 8,0,,¢ <0,
j # k, where v : Z% — [0, 00[ is even, independent of I', with v(0) = 0,
> v(j) = 1, we prove under some additional assumptions that for d > 3
the correlation (0.2) (which is positive in view of a general result of Cartier
[C]) is < Fo(j — k) + o({j — k)2~9), |7 — k| — oo uniformly with respect
to T, where Fy(z) is the fundamental solution positively homogeneous of
degree 2—d of a certain 2 :nd order elliptic operator. Estimates of this kind
have been obtained by Bricmont, Fontaine, Lebowitz, Spencer [BrFLeSp]
for certain polynomial ¢ :s by using the Brascamp-Lieb estimates [BL]. See
also [BrFLeLSp] for a different and more special model. For d = 2 we get a
corresponding logarithmic bound and for d = 1 we get a linear bound. (See
Theorem 2.4 for a more complete statement.) According to Glimm-Jaffe
[GlJ] and Ellis [E] it is expected by physicists that the correlation (0.2)
should behave like |j — k|=(4=2+7) where 5 > 0 is a so called anomalous
dimension, depending on the 4 :th order derivatives of ¢. Similar conjectures
and results exist in percolation theory, see Grimmett [Gr]. Since we only
make assumptions about the second order derivatives it is quite natural
that we only get estimates with 7 = 0. It cannot be excluded however,
that our methods could be further refined to give estimates with n > 0
under more specific assumptions about the behaviour of the 4 :th order
derivatives of ¢.

In section 3, we assume that 82 ¢ > 1+¢, —v(j — k) < 85,05,6 <0,
j # k, with v roughly as above and with € > 0 small, and we get bounds
which are uniform in j, &k, €,T". In particular, when d = 3, we get the bound

1

O(h)eli-kla(vze ____—
(e ENFY

where g also depends on J =" and we have

i — &l

9(V26)lj — k| = (1 + O(e))V/2(¢"(0)~1(j — k), (G — k),

and ¢"'(0) is a positive definite matrix appearing as the Hessian of 1 — 9(6)
at @ = 0. Here 5(0) = 3" v(j)e¥?. The elliptic operator mentioned earlier
jezd
1
is equal to i(q"(O)Dz,Dgﬂ). More detailed estimates, can be given when
|7 —k|+/€ tend to infinity or to zero. We may here think of € as the difference
of the temperature and the “critical” temperature in statistical mechanics.
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Section 4 can be read independently of the others. We formulate a
general maximum principle and show how this maximum principle permits
to generalize some results of [S], [HS].

It is a pleasure to acknowledge the hospitality and the peaceful
working conditions of the Mittag-Leffler Institute. We thank C. Tracy for
an interesting discussion, which stimulated us to add section 3, and we also
thank B. Helffer and T. Spencer for useful comments and references.

1. Some simple results on matrices.

In this section, we shall consider real matrices of the form

(1.1) A = Ar = (a; k) kers

where I' is some finite set. We shall first discuss a weak maximum principle.
ProrposiTioN 1.1. — The following two properties are equivalent :

(1.2) IfT 3 j — u(j) € R is maximal =m >0 at
Jj = jo, then Au(jp) > 0,

and
(1.3) aj; >0, a;r <0, forall jk €T withj # k,
and Zaj’k >0 foralljerl.
kel

Proof. — We first assume (1.2). Taking v = §; (the function that
is equal to 1 at j and zero elsewhere) we see that a;; > 0. If k£ # j, we

can take u = —0y to see that a;x < 0. If we then take u = 1, we obtain
> ajk >0 for all j € T'. Thus (1.3) holds.
kel

Conversely, assume (1.3). Let I 3 j — u(j) be maximal =m > 0 at
7 = jo. Then

Au(jo) = Z ajo ku(k) = D ajok(u(k) —m) +m Y ajo,
ko k

and since u(k) — m < 0, it follows from (1.3) that the last member is > 0.
Hence we have (1.2). O
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We observe that if A satisfies (1.2) (equivalent to (1.3)), then eI + A
is bijective for every € > 0. Indeed, if u # 0 and (¢ + A)u = 0, we may
assume that u has at least one component u(j) which is > 0. Assuming
then that u(jo) = max;u(j) > 0, we get from (1.2) : (e + A)u(jo) > eu(jo)
in contradiction with the assumption that (e + A)u = 0.

PROPOSITION 1.2. — Let A satisfy (1.2) and be bijective. If v € RT
is > 0 (component wise), and u is the solution of Au = v, then u > 0
(component wise).

Proof. — Let u¢ be the solution of (e + A)u. = v, so that u. — u
when € — 0. If uc(j) < 0 for some € > 0 and some j € T, let jo be a point
where ue(jo) is minimal < 0. Then we get v(jo) < 0 from (1.2), which
contradicts the assumption on v. O

For a similar result, see Appendix A in Guerra, Rosen, Simon [GRSi].

DerFINITION 1.3. — Let A = (ajk)jker; B = (bjk)jker be real
matrices. We write A <" B if ajy < bj for all (j,k) €' xT.

We notice that if A <" B, A satisfies (1.3) and b, x < 0, for j # k, then
B also satisfies (1.3). Assume in addition that both A and B are bijective,
and let u4, up be the solutions of

(1.4) Aug =v, Bup=v,
where v > 0. Then we have

(1.5) 0<up <ua.

In fact, we have Bug = v+ (B — A)ua > v, so B(ug — ug) > 0. Hence
up < ug. By a limiting procedure we also see that we can suppress the
assumption that B is bijective, and we then get the bijectivity of B as a
consequence of (1.5) (with v = 0). Summing up, we have

ProposITION 1.4. — Assume that A, B satisfy (1.2), that A <’ B,
and that A is bijective. Then B is bijective and if us, ug are the solutions
in (1.4), with v > 0, then we have (1.5).

When A is symmetric, we have some positivity for the lowest eigen-
functions. First notice that in this case, if A satisfies (1.2), then the lowest
eigenvalue is > 0.
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PROPOSITION 1.5. — Assume that A is symmetric and satisfies (1.2).
If Ao > 0 is the lowest eigenvalue, then the dimension of the corresponding
eigenspace is at most equal to the number of connected components of
T', where the connectedness is defined by means of paths j1, ja, .., jx, With
aj, j,4+, 7 0. A corresponding orthonormal basis is given by eigenfunctions
which are strictly positive on precisely one of the components and zero
elsewhere.

Proof. — We may assume that I' is connected. Let u be an eigen-
function associated to Ao and write u = uy — u_, with uy = max(zu,0).
Then

Nollull* = (Aulu) = (Auyfuy) + (Au_fu-) +2((-A)u |u-) >
Mol I + flu— 11%) + 2((=A)u fu-) =Xollull® + 2((= A)ws[u-) > Xo[ul?,

so we have equality and even (Auy|ut) = Aollu||?. If for instance uy # 0,
then uy is an eigenvector : Auy = Aouy. It is easy to see that the set of
j € T with u4(j) = 0 is connected, and hence reduces to @. O

Let A = Ar = (a;,x) satisfy (1.2). If I cT,let Aj denote the matrix
(aj,k); ker- Then A also satisfies (1.2). Assume that A and Ay are both
bijective. Let 0 < v € £2(T') and identify v with its O-extension to I'. Let
ur € £2(T), up € £2(T") be the solutions of Arur = v, Ajpuz = v. We
observe that Ag(upz) 2 Arur = v on T and consequently uz < up - By a
limiting procedure, we also see that the bijectivity of Aj does not have to
be assumed but follows from that of A. Summing up, we have the following
result, which can be viewed as a special case of Proposition 1.4.

ProprosITION 1.6. — Let A = Ar satisfy (1.2) and be bijective. If
' C T, define Aj as above, as the restriction of the matrix of Ar to T x r.
Then A; is bijective and satisfies (1.2). Moreover, if v € ¢2(T) is non-
negative and we identify v with its 0-extension to I', then for the solutions
of Arur = v, Apup = v, we have 0 < up < urlg.

We are particularly interested in examples produced by convolution
matrices. Let v € ¢1(Z%) with

(1.6) v(j) > 0, v(j) # 0 for some j # 0, [[v]lx <1

and let A = §; — v(j — k), be the corresponding Z¢ x Z?-matrix.

ProposITION 1.7. — Under the above assumptions, Ar satisfies (1.2)
and is bijective for any finite ' C Z%.
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Proof. — It is immediate to check (1.3) (equivalent to (1.2)) for Ar.
The bijectivity is also obvious in the case when ||v||px < 1. In the case
|lvlls = 1, assume that Ar is not bijective, so that Aru = 0 for some u
which is not identically zero. We may assume that |luljs~ = u(jo) = m > 0.

Writing u(jo) = Y, v(jo — k)u(k), we see that u(k) = m for every k
k
with v(jo — k) # 0. In other words, if K = {j € I'; u(j) = m}, then

K — suppv C K where supp v denotes the set of j for which v # 0. This
contradicts the boundedness of I, since supp v contains at least one point
different from 0. g

Keeping the assumption (1.6), we assume now that d > 3, that v is
even, and that

(L.7) [vlle =1.

For € €]0, 1], the convolution equation

(1.8) (6o — (L —€)v) * E. = &g

has a unique solution in ¢!(Z¢) given by
E.=b6+(1-€v+(1—e?vrv+..

which is > 0. Taking Fourier transforms gives :

(1.9) (1-(1-ed0)E(0) =1, 0eT? T=27Z/2rZ,
where 9(0) = 3. v(j)e*? and similarly for E.(6).
jezd

The assumptions on v imply that ©(6) < 1 with equality for = 0 (in
T9). We add the assumption,

(1.10) > () @4 (5) < oo,

where we use the standard notation (j) = /1 + j2. Then 9(6) belongs to
Cmax(2,:4-2) gnd we add the assumption that
(1.11) a)1—%(8) > 0 for 6 # 0 in T*
b) 1-(0) = _ a;0;6k + O(I6[*), where Y a; 46,0 > 0, |6] # 0.
Jk gk
Of course the only assumption in (1.11) is that the inequalities are strict.

Then if we recall that d > 3, we get
(1.12)

' 1 o—iif 1 it B .
5.0 = e | gy~ o | Ty 0
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when € — 0. We conclude that Eo(j) > 0 belongs to £>°(Z¢) and satisfies

(80 —v) * Eg = 8o, Eo(j) — 0, [j| — oo.

We can be more precise about the asymptotics of Ey near infinity.
Let g(0) = 3" a; 00k and let x € C(T?) be equal to 1 near § = 0 and
have its support in a small neighborhood of 0. Then we can write,

1 x X060 -1-q¢6)  1-x0)
) TSe T a-we® T 1-60)
Here,
(1.15) 1 /‘“"MdO—F(')+(’)((')'°°)

' emi) © g @ TV i

where Fj is the fundamental solution of ¢(D) which is homogeneous of
degree 2 — d.

o 1=x(0) _ 42
Since T=0(0) € C%™“, we have
—ijo 1 —x(6) \2—dy |
50 = 2—d b d .
(1.16) /e 1—17(0)d0 o({(7)*™%), il = o0

We have

L X(O)(6(6) - (1 — q(0))
WD) % 0 —50)a0)

) =067 lely e &) for |a| < d -2,

SO

X066 — (1= q(6)
g [ =

From (1.14), (1.15), (1.18), we conclude that,

()79, 13l = oo

(1.19) Eo(j) = Fo(j) + o((7)*™), il = o0,

where we recall that Fp is the fundamental solution of ¢(D) which is
positively homogeneous of degree 2 — d.

Let I' ¢ Z%, d > 3, be a finite set containing 0. Let A denote the
Z?xZ%-matrix 6; x—v(j—k) and let Ar denote the restriction of this matrix
to I' x I as above. Similarly, we put Eor = Eor. Then ArEor = 6 + 7T,
where rr > 0, so if Er(j,0) denotes the solution of ApEr = 6y, we have
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0 < Er(4,0) < Ey(j). More generally, if Er(j,k), j,k € T, denotes the
solution of

ArEr(,k) = 6
for k € T, so that Er(j,k) is the matrix of Ay 1 we get

(1.20) 0< Br(j, k) < Eo(j — k).

It may be of some interest, to estimate the boundary influence on
Er(j,k), when dist (j,k) << dist (§,Z¢ \ I'). For that, we shall consider
I' =g = B(0,R) N Z¢, where B(0, R) denotes the open unit ball in R%,
and we sharpen the assumption (1.10) to

(1.10") Z(j)Nv(j) < 00, for every N € N.

We also assume that R > 2max (|5], |k|), and we shall estimate Er(j, k) —
Eo(j — k). We have

Ar(Eo(- = k)ir)(0) = 6ok + Y v(l—v)Eo(v — k) = b +7(4),
vEZI\T
where (as already noted) r(¢) > 0. We have
r)<Cc > ve-v)pPe

v€Z4, [v|>R

=C > (e-vyNo-v)t—v)y NP

veZ4, |v|>R
<Cny sup (—v)" NP ?<CyR*Y1+R-E)N.
veZd, [v|>R
Then,
Eo(j—k)—Er(j,k) = Y _ Er(j,)r(f) < O()R* Y (j—£)*~¢(1+R—|¢)™
¢er |¢|[<R

<SOMR*™N M (j-0*“+O0)R*™¢ > R*(1+R-|e)~N
|¢|<3R/4 3R/4<|¢|<R

=O1)R* N L+ O(1)R*¢ = O(1)R37¢,

if we choose N large enough. So under the more special assumptions above,
we have obtained

(1.21)

Er(j,k) = Eo(j — k) + O(1)R®*~%or T = B(0,R) N Z¢, R > 2max (|j], |k|).
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The result is empty for d = 3, but of interest for d > 4.

We next assume that d = 2. Under the assumptions (1.6), (1.7), (1.10)
and (1.11), we still have a real-valued function E(j) on Z2, such that

(122) (60 - ’U) * E() = 60,
but it is no longer true that Ey is non-negative, since
(1.23) Eo(j) = —Co(1 + o(1)) log|j], |j] — oo,

where Cy > 0 is determined by the fact that Fy is asymptotic to a
temperate fundamental solution of ) a; D, ; Dz, which is of sublinear
growth at infinity.

Let I' C B(0,R;) N Z2 for some R; > 2 and let Ar denote the
same matrix as before. Let Ry > 3R;. After adding a positive constant
(depending on Ry) to Ey, we may assume that Ey > 0 pointwise on
B(0, R2). The price we have to pay for this is that we only have the estimate
Ep < (14 0(1))log Rz on B(0, Ry), assuming of course that we added the
smallest possible constant.

The aim, as in the case d > 3, is to estimate the matrix elements
of the positive matrix Ap ! under some additional assumption on v. Let
j,k € I'; and consider

(Aro Eoréi)(j) =Y ajuBo(v —k) =86+ > (—a;.)Eo(v —k)
vel vEZ2\T

=8+ > (—a;)Eo(v—k)+ > (-ajn)Eo(v—k)

ve€Z2\T, |v—k|<R2 |v—k|>R2

ik T Z —aj, U)EO V - k)
|v—k|>R2

Assume that
(1.24) v(j) < Const.(j) 7

for some kg > 2. Then by a simple estimate, comparing with an integral,
we get for j,k e :

> (-a)Eo(v — k)| = O(1)R3 ™™ log R,.
IV—k|>R2
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It then follows from the earlier computation, that
(Ap o E(),F) ZI I - R,
where R = (r;x), 0 < rjx < O(R3 % log Ry) (and we write A > B, if

B<"A). With F=Epr — AI?IB, where Bd=proE0,p —(I—-R)>'0,we
€

have F <" Eor and Ar o F = I — R. Assume that R; is sufficiently large

depending on R;, so that

(1.25) R2 % (log Ry)R? << 1.

Then (I -R)"!=14+ R+ R?+ - =1+5, where
€!

(1.26) S = (sjk), 0 < sj5 < O(RE ¥ log Ry)

and for A;' = Eor(I—R)™!, we then conclude the following 2-dimensional
analogue of (1.19), (1.20) :

ProposITION 1.8. — Let d = 2 and assume (1.6), (1.7), (1.10), (1.11),
(1.24) (1.25) for some fixed ko > 2. Then uniformly for T' C B(0, R;) N Z2,
Ry > 3Ry, we have Ax' = (bj ), with

(1.27) 0<bjx <O(1)logR,.

One could certainly replace the last member by some more precise
expression in order to make the “O(1)” more explicit, say in terms of
the asymptotics of Ey. If we choose to ignore such fine questions, we also
observe that for given large R;, we can achieve (1.25) with Ry equal to
some power of R;, and then we may forget about Ry all together and get
from (1.27) :

(1.28) 0 S bj,k S O(l) log Rl.

We finally treat the case d = 1, as the case d = 2. We still assume
(1.6), (1.7), (1.10) and (1.11). Then we have the fundamental solution Ey(5)
satisfying (1.22) and

(1.30) Eo(j) = =Co(1+o(1))lg], i — o0

Take again I C B(0,R;)NZ, R, > 2, 3R; < R,, and make Ej positive on
B(0, R2) by adding a constant = O(R2). We make the same computation
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as prior to (1.24). Assuming (1.24) for some ko > 2, we get this time

> (-aju)Eo(v—k)| = O(1)R3 ™.

lv—k|>R2

Then we get AroEor >' I —(rjk), 0 < rji < O(Rg_k"). Instead of (1.25),
We now assume

(1.31) R kR, <<1

and we get

ProposITION 1.9. — Let d = 1 and assume (1.6), (1.7), (1.10), (1.11),
(1.24), (1.31) for some fixed ko > 2. Then uniformly forT' C B(0,R;) C Z,
Ry > 3Ry, we have A:' = (bjx), with

(1.32) 0 < bjx < O(1)Ry.

If we choose Ry = max (3R, 6‘1Ri/ (k°_2)) for some sufficiently small
6 >0, (1.32) applies and gives :

(133) 0< bj,k < O(I)R;nax (1,1/(ko—2)).

2. Correlation estimates in “critical” cases.

Let I' be some finite set, and write = = (z;)jer € R'. We shall apply
a suitable version of the maximum principle, to estimate the gradient Vu,
of solutions of

(2.1) V¢ - 0;u — hAu = v + Const., € RF.
Assuming enough regularity, we get :

(2.2) ¢"(z)Vu — hAVu + V¢ - 8, Vu = Vo.
We assume that ¢ € C°(RT;R) and that

(2.3)  ¢"(z) satisfies (1.2) and ¢"(z) >' A > 0, where A = Ar

is symmetric and satisfies (1.2). Moreover, |0%¢| < Cr for |a| = 2.
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Let u be a C?-solution of (2.1) with Vu — 0, when |z| — co. We also
assume that Vv(z) is bounded. Let Us € R be independent of z with

(2.4) Ut >0, AUi F Vou(z) > 0 component wise.
One possibility is to let V. € RT' be the vector > 0, given by
Vi (j) = sup, max(0, ds,0(z))
and put Uy = A~!V,. Similarly, we can take U_ = A~'V_, where
V_(j) = sup, max(0, —0;,v(x)).

With these choices of Uy we also notice that Uy = lir% Ut e, where
U+, > 0 and AUt F Vv > 0 component wise. For instance, we could
take Uy . = A™1(V4 + €l), where 1 is the vector given by 1(j) = 1.

From (2.2), (2.3), (2.4), we get ¢''(z)Us+ FVv(z) > 0 component wise,
and replacing Uy by Ux ., we even get ¢”(z)Ux,e F Vu(z) > 0.

PROPOSITION 2.1. — Let u be a C2%-solution of (2.1) and assume that
Vu(z) — 0, |z| — oo and that Vv(z) is bounded. Choose Uy = A=V, as
above, so that (2.4) holds. Then

(2.5) —U_ < Vu(z) < Ujcomponent wise.

Proof. — Since Uy are independent of z, we get from (2.2) :

(2.6) ¢"(z)(xVu—Us) — hA(EVu —Uy) + V- 8, (£Vu —Uy)
= —(¢"(z)U+ F Vov(x)).

Let (2.6€) denote the correponding identity with U, replaced by Ui .
Assume that there exists an € > 0 such we do not have Vu < U,
everywhere in all components. Let zo € R, jo € T' have the property
that
0 < 0z;,u(Z0) — Uy e(Jo) = sup, max; dz;u(z) — Us (J)-

Considering then (2.6¢) in the (+)-case, for z = zg, j = jo, we see that the
left hand side is > 0, using (1.2) and a corresponding maximum principle
for the Laplacian, while the right hand side is

—(¢"(@0)U+.e = Vo(20))jo < —(AU4e — Vo(2o))jo <0
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Here we get a contradiction, so Vu(z) < Uy . for every € > 0. Letting ¢
tend to zero, we obtain Vu(z) < U;. The proof of the first inequality in
(2.5) is identical. O

In order to get estimates on the correlations, we also need to discuss
the existence of suitable solutions of (2.1), and this will be obtained by
applying the arguments of [HS] (using also some arguments of [S]). For the
arguments to follow, we do not need any uniformity with respect to fI.
Let us first recall the Propositions 2.1, 2.3, 3.3 of [HS], which imply that if
#(z) € C°(RPT) is strictly convex and if ¢(z) — —5 has compact support,
then for every v € C§°(RT), we have a C*-solution of (2.1), which satisfies
|82u(z)| < Cafa)z~lol.

We now keep the assumption that v € C°(RT), but take ¢ €
C>®(RYT) satisfying ¢"(z) > €0l > 0, for some fixed €o > 0 and |9%¢| <
Const., for |a| = 2. (These assumptions are weaker than (2.3).) As in [S],
[HS], we let x = xc € C°(RT) be equal to 1 on B(0,el/€) (the open
Euclidean ball of center 0 and radius e'/€) and satisfy ]8°x| < elz|~lo,

la| > 1. Put ¢¢(z) = xe(z)p(z)+ (1 — xe(x))—z— Then ¢€— — has compact

support and ¢”(z) > (eo — O(€))I > 0, when € > 0 is small enough. From
the results of [HS] already cited, we conclude that there exist u. € C*®°(RT),
solving

Ve - Ozue — hAu, = v + Const.
with
102ue(®)] < Cae(@)2 1o,
Writing the differential equation
¢ (x)Vue — hAVue + V() - 9;Vue = Vv,
we get from the maximum principle, that
|Vue(z)| < Cosup,|Vu(z)],

where Cj is independent of €. If we introduce suitable weights of the form
e®(®) with ® constant near infinity and with (z)V®(z) and |9*®(z)|,
|| = 2 sufficiently small independently of € > 0, we even get,

[Vue(z)| < C(v){z) ™"
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for some p > 0 and C(v) which are independent of €. Taking a weak limit
in the sense of distributions, we get a C°°-solution u(z) of (2.1) with the
property that Vu(z) — 0, |z| — oco. If ¢ satisfies (2.3), we can therefore
apply the conclusion of Proposition 2.1.

We finally eliminate the assumption that v has compact support.
Assume (2.3) and let v € C*°(R';R) with Vv(z) bounded. With x. as
above, we put ve = x.v € C§° and notice that Vve = x.Vv + O(e).
Applying Proposition 2.1 in the case of v and passing to the limit, we
obtain a solution u € C*°(R!; R) of (2.1), which satisfies (2.5) (although
we cannot state that Vu(z) — 0, z — 00).

Summing up, we have :
THEOREM 2.2. — Let ¢ € C®(R!;R) satisfy (2.3) and let v €

C>(R';R) with Vv(z) uniformly bounded. Choose Ux = A~'V. as prior
to Proposition 2.1. Then (2.2) has a C*-solution u which satisfies (2.5).

CoROLLARY 2.3. — Under the same assumptions on ¢ as in the
theorem, we have
(2.7) 0 < ((z5 — (z5))(zx — (zx)) < R(A™ ex)(4),

where we have put

[ f(z)e~#@/hgg
T e 9@ hdz

(2.8) (f) =
and ey, is the unit vector in R corresponding to the index k.

Proof. — The first inequality is a special case of a more general result
of Cartier [C]. Let v = z and let u(z) be given by Theorem 2.2. In this
case, we have U_ = 0, so (2.5) implies that

0< g SULG) = (47%e)()
(where the first inequality was proved in [HS] by means of the maximum
principle). As in [HS|, we get ((z; — (z;))(zx — (zx))) = h <§_xuj> and (2.7)
follows. a

It is now straight forward to give detailed estimates on the correlations
in the special situations with I' C Z¢.
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THEOREM 2.4. — Let A = (8 x — v(j — k));j keze satisfy (1.6), (1.7),
(1.10), (1.11). Let T C Z¢ be finite and assume that ¢ € C®(RT;R)
satisfies (2.3) with A = Ar (the restriction of the matrix A to (j,k) € T'xT").
Depending on d we have the following results, valid uniformly in (j,k,T)
with j,k €T :

1) Assume d > 3. Then we have
(2.9)

1 . . _ .

7 18(z5 = (@) (@ = (ze))] < Fo(j — k) + o((j — k) Y, i =kl = oo,
where Fy(x) is the fundamental solution of ) a;xDy;Ds, with ajr ap-
pearing in (1.11).

2) Assume d=2 and add the assumption (1.24) for some ko > 2. Then for
I' C B(0, Ry) N Z%, we have

(210) El(as — {e3)) @ — (@) = O(1)log Ry,

3) Assume d=1 and add the assumption (1.24) for some ko > 2. Then for
I' ¢ B(0,R;), R, > 2, we have

(2.11) %]((;I;J — <wj))(xk _ (wk)»l — O(l)RTaX(l’l/(ko_2))-

3. Uniform correlation estimates near a “critical” case.

Let v € £}(Z?) be even, real-valued, > 0, with v(0) =0, Y v(j) = 1.

zd
We strengthen the power decay assumptions of the preceding section to :

(3.1) Zeljl/cf’v(j) < oo

for some Cy > 0. In this section, we are interested in uniform estimates of
the inverse of

(3.2) (L +€)bjx —v(j —k))jreze = Ao,

where € > 0 is a small parameter, and (as an application) in the corre-
sponding estimates on correlations. Our estimates could easily be extended
to the case when v depends on € in a such a way that all the assumptions
on v are uniformly satisfied.
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Changing slightly the definition of E, in section 1, we have
(3.3) (14 €)bo —v) *x E. = &g

for € > 0, where E, > 0 is given by

3.4 E(j) = = 4
(34) 6(1)—(271')‘1 /rd e+1—-90)
We make the assumption (1.11) so that the analytic function g(8) = 1—9(6)
is > 0 with equality precisely at 0 (on T¢) and has a non-degenerate
maximum at that point. Writing x instead of 6 and replacing j by \w,
A >0, w € 8% ! we are then interested in the asymptotics when A — oo of

ei/\a:-w
(3.5) / e
1a €+ 9(2)
A slight contour deformation shows that we can concentrate on a neighbor-
hood of x = 0. After an orthogonal change of coordinates, we can assume

that w = (0,0, ..,1), z-w = 4. We can make an analytic change of coordi-
nates of the form

(36) r' = m/(y,’yd)’ Td=Yd, Y= (y,ayd), T = (xl,ﬁﬂd),
such that
3.7) a(z) = (¥')*/2 + f(ya),

where f(yq) > 0, f(0) =0, f”(0) > 0. In order to compute f”(0), we may
1
assume that ¢ is quadratic : ¢(z) = E(Qx, z). Then

2@z =10

(x,w)?, = €,
where + is the line characterized by (0, )(Qx,z) = 0 on ~ for all t € (w)*.
In other words,
€74 (Qx,t) =0,Vt € (w)*
so 7= Q7 !((w)), and we get
(3.8) £1(0) = (@ 'w,w) .

A further change of coordinates of the form

2=y, za= sgn(yd)\/m
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gives

(3.9) o) = 57

and we may assume that the map x — z is odd. Writing z instead of z, we
get the integral

3.10 e oy
( . ) /m (z)dz,

where J > 0 is even with

(3.11) J(0) = (det ¢"(0))~1/2
and g is odd with

(3.12) 3'(0) = /{¢"(0)1w,w) > 0.

Here we view (3.10) as an integral over a neighborhood of 0 after a
suitable contour deformation in z4. Eliminating the xz4-integration by
residue calculus, we get

ing(ivaera J (@, ivV2e + 27) |,
(3.13) or [ ¢ »
V2 + z2

Here, we assume that d > 2, and we postpone the easier case d = 1.

In (3.13), we may replace J(z',iv/2€ + z'?) by the real valued function
(3.14)  Jo(z/,2e + 22) = %(J(x’, iV +27) + (@', —iv/2e + 72)),

since J(—2',iv/2¢ + 22) = J(z', —iv/2¢ + x/?). Notice that Jo(2', 2¢ + z'?)
is an even function of z’. Since g is odd, we can also write

1g(iV 2e + z'?) = —g(\/2¢ + z'2),

where g is real valued, odd and satisfies (3.12). Using these remarks, we
rewrite (3.13) using polar coordinates, as

o0 vz Jo(rw, 2 +12)
315 27[' dw e_’\g( 25+7'2) ) Td 2d’l‘,
( ) /Sd-2 /0 V2€ + 72

where in reality, we integrate in r over an interval of the form [0, o[ for

some §y > 0 and we shall in the following neglect contributions which are
O(e=*Co),
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Here we replace r by s = v2e+ 12, so that 1 = V/s2 —2¢, ds =

d
%, and (3.15) becomes
e+r

o0
(3.16) 27r/Sd ] dw/\/_ e=29() Jo (/52 — 2ew, s2)(s2 — 2¢)(4=3)/2s,
- 2e

where we recall that Jy is even in its first argument, so Jo(v/s2 — 2ew, s?)
is smooth in s2 — 2e.

Before continuing, we make some remarks about the function
o0
Fam(®) = [ et (t+ (e + 207ty >0,
0
where k,£,m € R, k > —1. When p tends to oo, we have

Fetm(p)=p™ / oo‘/’_ttk(l'Ft//t)e(%Lt/ p™dt = (14+0(1))2" T (k-+1)u"*™.
0

For the limit 4 — 0, we assume that k + £ + m > —1. When
kE+£+m= -1, we get

1
Freom(p) = (14 0(1)) log W u—0.

When k + £+ m > —1, Fip,m extends to a continuous function on [0, oo,
which satisfies

Frem(0) =T(k+£+m+1).

From this we see that for k > —1, k + £+ m > —1, the function

Frem(A p) = /0 e ME(t + )t + 2p)™dt = ATOFRHEM R ()

defined for A > 1, 0 < pu < 1, has the following bounds and asymptotic
behaviours :
(3.17) = (14 o(1))T(k + 1)2mA~A+R) ye+m Ny — o0,

— 0(1))\—(1+k+l+m)’ c-! < )‘/‘L <C,

= (14-0(1))T(k+L+m~41)A"AFE+EEm) 350, if k+04+m > —1,

1
=(1+o(1))log)\—u, Ap — 0 in the case k + £+ m = —1.
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We observe in all the cases that an increase in k gives an additional
decay by some power of 1/\. We now return to (3.16) which is equal to

(o o] .
(3.18) 2w vol(S972?) /\/_ e M) (52— 26)@=3/2(J(0) + O(e + 5?))ds.
2¢

Put t = g(s) — g(v2€), s = g7 (t + g(v/2€)). Write

8% — 2 = (s 4+ V2€)(s — V2€), s — V2 = f(t)t,

s = f(t)(t+ g(v2€)), s+ V2 = f(£)(t +29(v/2€)),

where

£(0), (0), F(0) = ﬁ +O(Ve).

The expression (3.18) then becomes
(3.19) 27 vol(S9472)J(0)g (0)2~%e~29(V2e)
X / e M @=3)/2(t 1 29(v2€))43/2(1 + O(Ve) + O(t))dt
0

= (1+ O(v/e))2m vol(5972) J (0)g' (0)>~de~*9(VZ)
X (faza g,a=3 (A, 9(V2€)) + O(1) fazs 5 a2 (X, 9(V2€)) + O(e*)).

Using that g is odd and satisfies (3.12), we obtain

(3.20) 9(v/2€) = \/2e[g"(0) 1w, w) + O(¥/2),
and in particular,
(3.21) e~ 29(V26) _ o/ 25(‘1”(0)_1j,j)+0(53/2)|j|,

where we recall that j = Aw.

Combining (3.17), (3.19), (3.20), (3.11), (3.12), we finally get the
following uniform asymptotics for E.(j) when € > 0 is small and |j| is
large (7 = \w) :

When |j]/€e — o0 :

(3.22)

vol(894-2)
(1+0(ve) +o(1) g3

1ﬂ(d— 1)2d;3 (2¢) T2 e lil9(v20)
2 .
2 det¢"(0)(g"(0)~13,5) ‘T
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1

When — < |jlve< C:

Ql

(3.23) 0(1)e—ljlg(\/2—e)<j>—(d—2).

When |j]/€ — 0, |j| — oo we get in the case d > 3 :
(1+ o(1))vol(S?—2)I'(d — 2)
(2m)4-1\/det ¢"(0)(¢" (05, 4) 7"

and in the case d = 2 :

(3.24)

1
(3.25) (1+0o(1)) 18 fiive

m\/det ¢"(0)

In the case d > 2 it remains to discuss the region where |j| = O(1).
For d > 3 we get (as in section 1) :

(3.26) o(1).
For d = 2 a direct estimate of (3.5) shows that E(j) is

(3.27) < 14o® .1

~ mwy/det ¢"(0) g Ve

In the case d = 1 we get instead of (3.13) :

(3.28) E.(j) = %e—mg(ﬁe) + O(e-191/0)
and E. =0 (%), for |j| = O(1).

We can then formulate an application to correlations, analogous to
Theorem 2.4 :

THEOREM 3.1. — Let 0 < v € £Y(Z%) be even with v(0) = 0,
>~ v(j) =1 and assume (1.11), (3.1). For 0 < ¢ < 1, we put

A=A =((1+ €8k —v(j — k))jkeze-

Let T' C Z? be finite and assume that ¢ € C®°(R!';R) satisfies (2.3) with
A = Acr, the restriction of A, toI" x I'. Then for j,k € ', we have

0 < —((z5 — () (zr — (zk))) < Ee(§ — k),

Sl
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where E.(j) > 0 is defined by (3.4) and has the properties (3.22-28) when
€ > 0 is sufficiently small. Here g(+/2¢) satisfies (3.20) (and (3.21)).

We may think of € as the difference between the temperature and the
critical temperature in statistical mechanics, but of course, we have not
proved (and this may very well be wrong) that € = 0 corresponds to some
kind of phase transition.

4. A general maximum principle and applications.

Starting in the second half of [HS] and continued in the present paper,
we have seen a more precise form of the maximum principle than what was
used in [S] and in the first half of [HS]. In this section, we formulate a
general version of the maximum principle and then show how it permits to
sharpen some of the results of [HS] and [S]. It is the author’s impression
that this generalized version permits an important gain in flexibility.

Let B = R™ be an m-dimensional (m < oo) real Banach space and
let B* be the dual space. Since we are in the finite dimensional case, we
know that B is reflexive. Let A : B — B be a linear map, and let § > 0.
We say that A satisfies (mp 8) (with respect to the space B), if we have

Ift € B, s€ B* and (t,s) = ||t|g|ls|| s~ then (At,s) > é||¢|| sl sllB--

Notice that if A satisfies (mp ) with respect to the space B then the
adjoint A* satisfies (mp 8) with respect to B*.

Examples.

1) Let B = B* = £? and let A be symmetric > § > 0. Then A satisfies
(mp 6).

2) Let B = b for some p € [l,00], p : {1,..,m} —]0,00[, where ¢5
is equipped with the norm |z|,z = |pzller, (pz); = p(j)z;. Assume
A = D+W , where D is diagonal > r¢ > r; > 0 and where ”WIIE(Z,’;,Zf,’) <.

1
Then A satisfies (mp(r9—r1)). In fact, we have B* = é‘{/p, where 1 = I_7+ -,

q
so if (t,s) = ||t||Bl|s||~, then t;s; > 0, for every j. Consequently,
(Dt,s) 2 rollt|lllsl| B, while |(Wt,s)| < ri]|t|Bls]| 5~

We may also notice in general, that if A satisfies (mp §) for some
Banach space B, then for € > 0, el + A satisfies (mp(é + €)). We indicate
briefly how to work with the principles (mp §) in the situations encountered
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in [HS] and in [S], and in particular, we shall see how to eliminate (in both
cases) the assumption, that certain Hessians should be close to the identity.
For simplicity, we shall not review the whole regularization processes, and
mainly concentrate on the use of the maximum principle.

We start with the situation of [HS|. Assume I' = {1,2,..,m} and
consider the equations (2.1),(2.2), where ¢,u,v are assumed to be suffi-
ciently regular. We identify R™ with some Banach space B and assume
that ¢"(z) satisfies (mpé) for all z € R™ for some fixed § > 0. We also
assume that Vu(z) — 0, |z] — oo. (To be more precise about the regu-
larity, we assume to start with that ¢ € C2, u € C1.) Let zo € R™ be a
point where ||Vu(z)| g is maximal = m;. Let s € B* be a unit vector such
that (Vu(zg),s) = my. Then (—hAVu(zy),s) > 0, (Vo - Vu(zo),s) = 0,
(9" (zo)Vu(zo), s) > émy (by (mp 6)), so if we put z = zo and take the
scalar product with s, we get from (2.2) :

émy < (Vo(zo), 8) < ||V (zo)||,
so we obtain for every z € R™ :

(4.1) IVu(z)llz <67 sup ||[Vo(z)||s.
zeR™

We keep the preceding assumptions and assume in addition, that
¢ € C3 ue C? ve C? and that VZu(z) — 0, |z| — oco. Differentiating
(2.2), we get (as in [HS]) :

(4.2)
(V¢ -8, — hA)V2u + V2¢ 0 VZu + Vw0 V2¢ = V2 — (V3¢, Vu),

where the last term is the contraction of V3¢ by Vu (defined in [S]). We
define norms of the higher order Hessians as in [S]. Let zg € R™ be a point
where

2 —
Sup, IVu(@)l(BoB+)- = m2

is attained and let s € B, t € B* be normalized vectors with
(V2u(z0), s ® t)(= (Vu(z0)s, t)) = ma.

(Notice that [|V?u(z)|l(gp+)* = [IV?u(z)||lz(8,5) Where V2u to the left is
viewed as a bilinear form and to the right as a linear map.) Applying (4.2)
to s ® t and putting z = z(, we get
(V26(20) V?u(20)s,t) + (s, V2$(z0) V?u(z0)t)

< (V20(20), £ @ 5) — (V2 (20), V(o) ® 5 B 1).
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Since

<V2u($0)3, t) = (3’ Vzu(wO)t) =m2
= IV2u(zo)sllslitl 5 = lsll & V*u(zo)t| 5~

we can use (mp 6) for ¢”(zg) to bound the left hand side from below by
26mo. We conclude that for every x € R™ :

26| V?u(z)||(BoB*) < sup,||V?v(2)|l(BgB*)*
+Supzlvu($)|supzHv3¢"(l°°®B®B')‘y

where | - | denotes the ¢£*°-norm. We now add the assumption that ¢”(x)

satisfies (mpé) for all z with respect to £°°. (B. Helffer has indicated to us

that other spaces than ¢°° can be useful in this part for the applications.)
Then (4.1) holds with B replaced by £*°, and we get

(4.3) IV*u(@)l(oB+)-
1 1
< 250D, | V20(2) (e)- + 55750P,|Vo(2) b, |Vl e nes)-
where | - | denotes the ¢*°-norm. Notice that (4.3) remains valid with B
replaced by £°°.

Keeping the earlier assumptions we strengthen the regularity assump-
tions to ¢ € C*, u,v € C? and assume that V3u — 0, z — oo. First we
rewrite (4.2) in a more systematic form :

(VI0,t ® s) = —hA(Vu,t ® 8) + (V3u, Vo Rt ® s) + (V3), Vu @t ® s)

+(V?u, (V?¢,1) @ ) + (V2u,t ® (V?9, 5))

and differentiate it in the constant direction r :

(4.4) (V30,t®s®71) = —hA(V*u,t®@s®7T) + Vo - 0, (V3u,t @ s®T)
+(V3u,¢"t@s®7) + (V3u,t @ ¢"s®@7) + (Vu,t @ s ® ¢''r)
+H(V3p,u"t@s@7) + (V3 t@u"s®@71) + (V3p,t @ s@u'r)
+H(V4, Vu@t®@s®r).

Let 2o € R™ be a point, where sup,||V3ul|gogpgp)s = ms is
attained, and let ¢t € ¢*°, s € B, r € B* be normalized vectors such that
(V3u(zp),t ® s ® T) = mg3. We rewrite this as ((V3u(zg),s ® r),t) = ms,
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noting that |(V3u(z),s ® )|, = ms. It follows from (mp &) with respect
to £°°, that

(VPu(z0),9"t ® s @) = ((VPu(xo),s @ 7), 8" (z0)t) > Sma.

The terms (V3u(xzo),t ® ¢"s @ r), (V3u(zg),t ® s ® ¢'t) have the same
lower bound, so if we use this in (4.4), we get :

36sup, || V3ul| (ke BoB+)* <SUP|| V30| (¢~ 0 B0 B*)*
+sup|| V34| (e @ Bo B+)* (25uD|| V2ul| (B B+)+ + SUD||Vul| (¢ g11)+)
+sup||V4¢||(goo®loo®B®B*)*supIVul

and applying (4.3), (4.1), this gives :

(4.5) Supxl|v3ull(€°"®B®B‘)‘

1 1
< 36811P||V v||(e=@BeoB*)* + 3525uPuv3¢”(l°°®B®B*)'

1
v 78V e gy.)
x(supH v (BoB*)- + 2sup Vv (e

1 2
+ (W(SUPllvsfbll(lw@B@B*)*) 5 SuP||v dlle=eB0B*)
sup|| V3¢ || e geo ety )sup| Vo

+55550D]| V4l e otomesey-supl V5

It seems clear that the derivatives to all orders can be estimates in
the same way, for instance in the framework of 0-standard functions.

We end this section by showing how to generalize some estimates of [S]
of the Hessian of the logarithm of the first eigenfunction for a Schrédinger
operator with a convex potential. Let V € C®°(R™;R) be convex and
satisfy

(4.6) V"(z) = D+ W(z), where D is diagonal >1rq >r; >0
and ||W ()| cB,B) < T1-

Here B = {5 for some p € [1,00], p: {1,..,m} —]0, c0l.
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2
THEOREM 4.1. — Let e~%(®)/% be the first eigenfunction of —%A +
V(z). Then ¢"(z) = \/1_7—1-1[)”(15), where ||9"(z)||c(B,B) < v/To —+/To — T1.

Proof. — If p denotes the corresponding lowest eigenvalue, we have
the Riccati equation :

1 h
(4.7) V- p= 5067 - 509
Following Singer-Wong-Yau-Yau [SiWYY] as in [S], we get
(49) V(@) = V6 0. ~ DAY +6" 0",

which we rewrite as
(4.9)

W(z) = V- 89" — gmp" - <\/B + %zp) ¥+ (\/1_) - %w)
where we have written
(4.10) ¢"(z) = VD + 4" (z).
We assume that 9" (z) — 0, |z| — oo, and that

(411) 50, 9" (@)l c(n,5) = m < V.

1
Then VD + 51#"(3:) satisfies (mp 6) with § = /ro — m/2. Let zo be a
point, where the supremum in (4.11) is attained and let ¢t € B, s € B* be

normalized vectors with (" (zo)t,s) = m. We apply (4.9) to ¢, take the
scalar product with s and put x = z¢, and obtain

(4.12) 71 2 sup, |W ()l c(B,B)
> <\/5 + %1,//’(%)) W (zo)t, s> + <(\/5+ %10"(900)) t, 1/1"($o)8>

so m? — 2/rom + 71 > 0 and hence m > /g + /7o — 71, or m <
\/To — v/To — 1. The first possibility can be excluded because of the
assumption (4.11) and we get the conclusion of the theorem.
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In order to treat the general case, we shall first extend the argument
above to the case, when the diagonal matrix D may depend on z. Thus
instead of (4.6), we assume that

(4.13) V"(z) = D(z) + W(z), where D is diagonal > 719 >7r; >0

is of class C*° and ||W(z) — V¢ -0,D — EAD <r.
2 £(B,B)
Then write
(4.14) ¢"(z) = v D(z) + ¥(2),
and assume that ¥(z) — 0, |z| — co and that
(4.15) sup, | ¥(2)llz(s,8) =™ < V7o
Instead of (4.9) we have
h h
W(z)—V¢-0;D — §AD =V¢- -0,V — §A\11
1 1
(4.16) + (\/l—)+§\11) U+ (\/T)+§\1:)
and the earlier argument now gives
(4.17) ¥ (2)lleB,B) < vro — VTo — 71

Let V satisfy (4.6). Choose X, as in section 2 and put for e << 1:
72
V(@) = X @)V (@) + o1 - xc(2)) 5

and for0<t<1:

fl)2
Ver(@) = ro(1 = )5 + V..

Let e=%<(@)/h  ¢=¢c+(2)/h be the corresponding lowest eigenfunctions. It is
proved in [S], that ¢ — \/rol, ¢7 ,(x) ~ /7ol — 0, |z| — co. On the other
hand,

1/5”(1') = De(l‘) + WE(I)v

where

D (z) = xe(z)D + ro(1 — xe(x))I > oI, ||W(z)|lz(B,8) < 1+ O€).
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Notice that VD.(z) = O(e/|z|), AD(z) = O(e/|z|?), so if we make the a
priori assumption (4.15) for ¥, given by (4.14) with ¢ = ¢, D = D, it
follows that

h
”We(z;) - v¢e . a:cD - EAD“L(B,B) <rn+ 0(6)

The argument leading to (4.17) now gives

(4.18) 1¥e(@)llc(8,8) < Vro — vVro — 11+ Oe).

These arguments apply uniformly to V., 0 < t < 1, when € > 0 is small
enough, and for ¢ > 0 sufficiently small the a priori assumption (4.15) will
be satisfied by ¥.; when D = D.; = tD.(z) + (1 — t)rol. It is then clear
that we can deform from ¢ = 0 to t = 1 and get (4.18) in general. Letting
€ tend to 0, we get the theorem. O

Remark 4.2. — In the case B = ¢2, Theorem 4.1 still holds if we
replace the word “diagonal” by “symmetric” in the assumption (4.6).
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