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COMPLETE MINIMAL SURFACES IN R®
WITH TYPE ENNEPER END

by Nedir DO ESPIRITO-SANTO

Introduction.

Let £ = (71,%2,23) : M — R3 be a complete minimal immersion.
If the total curvature [,, K'dA of z(M) is finite, then M is conformally
equivalent to a punctured compact Riemann surface, (see [H]). Let us
denote by M ~ M, \ {p1,...,px}, pj € My, j=1,...,k, k < oo, where 7
is the genus of M,,. If D; C M, is a small topological disk, p; € D; and
p; ¢ Dj for i # j, then E; = 2(D; \ {p;}) is an end of the immersion. Take
local coordinates z in D; with z(p;) = 0, and for small € consider the curve
B(t) = ee®. After a rotation we may assume that the limiting normal of
the end Ej; is vertical. The multiplicity I; of E; is the winding number of
the curve z1(8(t)) + iz2(B(t)). We recall that E; is of Enneper type if its
multiplicity is 3. Jorge-Meeks [JM] proved that

(1) /M KdA= 2W(X(M) - ifj) < 2 (x(M) — k).

Furthermore the equality holds if and only if each end E; is embedded,
that is, I; = 1 for every j = 1,2,...,k.

Chen and Gackstatter [CG] have shown an example of a complete
minimal immersion z : M — R3 such that M is conformally equivalent
to a torus minus one point, the end is of Enneper type and the total
curvature is —8m. Furthermore, they proved that there exists a complete
minimal immersion z : M — R3 such that M is conformally equivalent to
a compact hyperelliptic Riemann surface (i.e., a double ramified covering
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of the Riemann sphere) of genus 2 minus one point. The end is again of
Enneper type and the total curvature is —127. In the same work they asked
about the existence of a complete minimal immersion into R3, where M is
conformally equivalent to a compact Riemann surface of genus three minus
one point and the end of Enneper type. The purpose of this paper is to
prove the following theorem :

THEOREM A. — There exists a complete minimal immersion
z : M — R® such that M is conformally equivalent to a compact
hyperelliptic Riemann surface of genus three minus one point, the end
is of Enneper type and the total curvature is —167.

For the proof we use some basic results of algebraic curves and the
normalization theorem which states that any irreducible plane algebraic
curve admits a holomorphic parametric representation as a compact
Riemann surface. These results can be found in [G].

Also, from [O] we have the following process of construction of
complete minimal immersions. Let M ~ M., \ {p1,...,px} be as above and
let g and 1 be a meromorphic function and a meromorphic differential in
M. ~, respectively. Consider the map z = (z1,z2,73) : M — R3,

CL‘]'(Z) =Re/ ¢j,
2o
where j = 1,2, 3, and
$1=201-¢m ¢2=73(1+¢"m ¢3=gn.
Assume that g and 7 satisfy :

(c1) 7 is holomorphic in M and p € M is a pole of order m of g if
and only if p is a zero of order 2m of n;

2) (c2) Re [, ¢; =0, j = 1,2,3, for any closed path £ C M.,y;

(c3) every divergent path in M has infinite length.

Then z is a complete minimal immersion in R3 with total curvature
/ KdA = —4mm,
M

where m is the degree of g.
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Furthermore, g o 7! is the Gauss map of z, where 7 is the
stereographic projection to CU{oo}. The pair (g, n) is called the Weierstrass
representation for the immersion .

We consider M3 the compact Riemann surface produced by
P(z,w) = w? — 2(2® — a®)(2? — b?)(2% — %) =0,

where z,w € C and a,b,c € R, 0 < a < b < ¢ < c0. On M3 we define a
meromorphic function
w

9(2) = )\m

and a meromorphic differential

—fdz f(m) =20,

w

where A € R, 0 < A < co. Then we show that there exists real numbers
a,b,c,\ such that (g,m) is the Weierstrass representation of a complete
minimal imersion as we want. The difficulty of the proof is to find a,b,c
and A such that the condition (cz) from (2) will be satisfied. Certainly, the
requirement that the differentials ¢;, j = 1,2,3, have no real periods on
curves 7;, ¢ = 1,...,6, which generate the fundamental group of M3 is a
difficult global problem. In our case, this problem is equivalent to show the
existence of real numbers a, b, ¢ such that

Fi(a,b,c)  F3(a,b,c) Fs(a,b,c)

A= B(ab0) - Faabe)  Fola,b,o)

where each F;, 1 =1,2,...,6 is a hyperelliptic integral. To solve this we fix
ag = 1.1632 and we consider a compact K = J; x Jo C R2. Then we define
the functions F, G : K — R, where

Fz(ao,b C) F4(a0,b, C)

F = )
(b,c) = Fi(ag,b,c)  Fs(ao,b,c)
F2(a03b C) FG(G/O’bac)

G(b, C) Fl(ao,b7 C) F5(a0:b7 C)

Thus, we reduce the problem to prove that there are (bg,cg) € K such that
F(bg,co) = G(bg,co) = 0. For that we prove in Lemma 1 that there are
sequences of functions {F,}, {Gr} in K which converge uniformly to F'
and G, respectively. Furthermore there is n; € N such that for all n > n4,
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F,, and G,, have respective curves of zeroes, a,, and (8, in K, such that
an N By # 0. From uniform convergence and from compactness of K we
obtain the existence of (bp, cp) € K such that the condition (cg) is satisfied.

The total curvature —16n follows from the fact that (Ms,g) is a
ramified cover of degree four of the Riemann sphere. Furthermore, from (1)
we conclude that the end is of Enneper type and the total curvature —167«
is sharp under our topological assumptions.

1. Proof of theorem A.

Consider
3) D={q=(a,b,c)e]R3;l <a<b- % <c—1<oo} and I =0, 1].
We define the functions

Fi(q) = a/Ifl(q,w) de, Fa(g) = “/, fl(;,w) dz,
4 { F@=0b-a /,f3(q’””)d””’ Falg) = (b’“)], fs(; z)
R@ =8 [ Hand B@=e-5 [ 1

where
[ £10.2) = m(a.2) mia.) = [72E0 1",
' u(q, 1/2
@) 1 h(@o) =hsla )\/ = halg.a) = [ )
| 55(0,0) = hafg.a) [ 20 hs(an2) = [
and
( plg,z) = b? — a®a?,
u(g,z) = [(b—a)z +a][(b—a)z +b+al,
v(g,z) = (b — a)z + 2a,
w(g,z) = 2 —a? — 2a(b — a)x — (b — a)?z?,
(4") i
(g, z) = ¢® — a’z?,
i(q,z) = [(c— b)z +b][(c — b)z + 2b],
(g, z) = (c—b)x+c+b,
| @(q,7) = (c — b)*z? + 2b(c — b)z + b* — a®.
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The following propositions give some results about the behavior of
the functions defined above.

ProposiTiON 1.1. — Let hj : D x I — R, j =1,3,5, be the functions
defined in (4'). Then :

(a) h1 and hs are strictly decreasing functions on I, for all ¢ € D, and
strictly positive functions on D x I,

(b) hs is a strictly increasing function in I for all ¢ € D and a strictly
positive function on D x I.

The proof of this result is elementary and it is left to the reader.
ProposiTiON 1.2. — The functions F; : D — R, i =1,2,...,6 defined

in (4) are continuous on D and there is § > 0 such that F;(q) > 6,
1=1,2,...,6, forallq € D.

Proof. — Observe that the functions h; and 1/hj, j = 1,3,5, are
continuous in D x I, since they are roots of quotients of continuous and
strictly positive functions in D x I.

Let {gn = (an,bn,cn)}nen be a sequence in D which converges to
go = (ag,bo,co) € D and € > 0.

Since (¢ — b)hs is continuous function on D x I, then for each z € I,
there is n(z) € N such that, for all n > n(z)

2
|(cn — bn)hs(gn, ) — (co — bo)hs(qo, z)| < =&

Let ng = sup{n( )}. Note that ng < oo, since I is compact. Then for
z€l

alln>ngandforallz €1 :

|F5(gn) — F5(q0)|

= |tea ) / hs(q,x)\/z dz — (o) [ halan, )72 do

n)hs(qn, ) — (co — bo)hs(qo,x)ldx

<§;—-

Then Fj5 is continuous in D. Analogously we show the continuity of F;
fori=1,2,3,4,6.
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Since (see definitions of D in (3)),
b>a+%: c>b+%, c>a+1,
then
>’ —a’>a+ i, > - >b+ 21;" > —a?>2+1,

and from Proposition 1.1 we have for all (¢,z) € D x I

Fi(g) = a/I hl,/lfxdx > fmahi(gq,1) = 6 >0,
1-z

1 1
Fy(q) = — de > ima ——— =6
2(9) a/I " . T > 5ma 7i(g.0) 2 >0,
l1—-=2
Fi@) = (b-0) [ hay/ 77 do > Lao - alha(a,0) =& >0,
I
1 T 1
Fy(q) = (b— — de > i7(b - =6
(@) =0-0) [ 1o\ 7ig de> =) s = a0,
T
Fo(@) = (= 8) [ b/ 35 dz > Lale - Dha(a, 1) = 65 > 0
f _
1 /1-2 1 1
Fes(q)=(c—b) [ — dz > in(c—b =66 > 0.
slg) = (e )/Ihs 2 B>y =0 >

We take § = min{é;, i = 1,2,...,6}. Then the proposition is proved.

Let M3 be the compact Riemann surface of genus 3 which is the
normalization (see [G]), of the algebraic curve

w? — 2(2% — a®) (2% - b*)(2%* = ¢*) = 0, 0<a<b<c<oo.

We define in M3 a meromorphic function g and a meromorphic differential 5
as follows :
Aw 2(2% — b?)

5 =—— = ——~dz, 0<A<oo0.

6) o=y 1=
We want to prove that there are real constants a,b,c, A such that the
pair (g, n) is the Weierstrass representation of an immersion as in theorem A.
Indeed, we need to show that there are values a,b,c,\ such that the
properties (c1), (c2), (c3) (see (2)) are satisfied.
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The table (Fig. 1) shows that the first condition (c;) is satisfied for all
a,b,c, A with0<a<b<c<oo,0< A< oo, where 0,0 and 0o, co denote
double zero and double pole, respectively.

z2|l—c| =b|—-a| 0 |a|l b |c| o©

0 |oow ]| 0|0 |[0] o |0]

0,0 0,0 0,0 00,00

Figure 1

For the proof of condition (c) first we observe that the differentials ¢;,
7 =1,2,3, have no poles at infinity. This occurs because in the expression of
¢1 and ¢2 the function w has odd degree and ¢3 is exact. Let v, 7 =1,...,6
be curves which generate the fundamental group of M3 (Fig. 2).

/
Figure 2
We have :
3 o g 222 =) = A2(2% — a®) (22 - &)
¢1=5f(1-g°)dz= o dz,
2 _ 2 20,2 _ 02\(52 _ 2
br = Lif(1 4 ¢?)dz = 2C b)+’\§i N =) g,

¢3 =gfdz = Adz.

For each z € C\ {0, £a, b, +c}, we consider w4 (z) and w_(z) the
distinct values such that :

(6) w? = 2(22 — a?)(2% — b?) (2% - &2).
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The points (z,w;) and (z,w_) belong to the Riemann surface M3 and
they are in distinct branches. We denote these branches (+) and (-)
respectively. In Fig. 2, (+) denote the lower branch, where the curves
are dotted and (—) denote the uper branch where the curves are full. If
2(2% — a?)(2? — b?)(2% — ¢?) is a real positive number, then w, and w_
represent the positive and negative root of (6) respectively.

We parametrize the path v, in the following way :

(@, w(2), w(x)==z(2®—a?)(z? - b?)(2? — ),

if 0 <z <a,

7(z) =
(20 — z,w(2a — 7)), w(z)=—/z(z2 — a?)(z2 — b?)(22 — ¢2),
if a <z <2a.
Then,
1 z(x? — b?) — A% (2% — a?)(2? - ?)
o=t o(z) -

1 (2a — x)[(2a — )% — b%] — \?[(2a — z)? — @?][(2a — x)% — ?

dz.
2 [a,2a] (4)(2(1 - 1‘)

By a change of variable y = 2a — x, we have fw 1 = iFy + A\2F, where

B z(b% — 22)
R e b

_ @A)
R T

By similar calculations we get f,yi éj, (3,7) # (1,1), (see Fig. 3).

" 72 3 4 Vs Y6
f o1 |iF1+iN2Fy | F1—)\2Fy | —F34)\2F; |iF34+i\2Fy|—iF5—i)2Fs| —F5+)\2Fp

f G2 | —F14+ X2 |iF +iN2Fy | —iF3—i)2Fy | F3—X\2Fy | F5—M2Fs |—iF5—i)\%Fp

Figure 3

where

z(b? — z2)

o= /[a,b] Vi@ - ) B - 2)(@ - )

dz,
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(& - @)@~ 2?)

Fy= dz,
! /[ab] V(22 — a?)(b2 — 22)(c2 — z2) ’

_ z(av — b2)

Fs= /[b,c] N T CEr AR
B (a? - a®)(S — 2?)

s /[b,c] N e D

Observe that the functions that appear in the integrand are strictly positive
in (0,a), (a,b) and (b, c) respectively.

Note that Re f% ¢1 = Re f'Yk ¢2 =0ifi =2,3,6 and k = 1,4, 5. Then
to conclude the proof of condition (cg) (see Fig. 3) it is sufficient to show
there are real numbers a, b, ¢, A, such that

(7) Fy —)F, =0, —F3+)\F;=0, —Fs+M\Fs=0.

Let D (see (3)) be the domain of the functions F; = Fj(a,b,c),
1 =1,2,...,6. By a change of variables we express these integrals in the
interval I = [0,1]. We obtain that F;, i =1,2,...,6 are the same functions
of (4), with (¢,z) € D x I.

Choose a = ap = 1.1632 and the compact set K = J; X Ja,

= [2.55,2.85] and J = [3.45,3.8], then {ag} x K C D. Since a is fixed we

denote the functions f;(q,z) and h;(q, ), (see (4)) i =1,...,6 by fi(b,c, x)
and h;(b, ¢, z), respectively. Define the functions F, G : K — R by

B _Fbo _ [hbe)d i zmes 9
Fi(b,c) Fi(b,c) [, filbec, :E) dz [} fa(b,c,z)dz
Fz(b, C) _ Fs(b, C) _ fI fl(bl,c,a:) dx _ fI f5(b1,c,a:) dz .
Fi(bc) Fs(be) [; filbye,z)dz [ f5(b,c,z)dx

Obviously the functions F' and G are continuous in K and we have the
following :

F(b,c) =

(8)
G(b,c) =

LEMMA 1. — Let F,G : K — R be functions as above. Then there are
sequences of functions F,,,G, : K — R such that :

(a) for every n > 3, F,, and G, are differentiable,

(b) the sequences {F,} and {G,} converge uniformly to F and G
respectively,

(c) there is n; € N such that for all n > ny, F,, has a unique curve of
zeroes a,, in K and G, has a unique curve of zeros 3, in K and o, N\ B3, # 0.
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Proof. — For each n > 3 we consider the interval I,, = [l ,1— l]
and we define the functions F; , : K - R,i=1,...,6 n n

fi(b,c,z) dz, ifi=1,3,5;

In
/ 1 de, ifi=2,4,6
I, fi_l(b,C,m) ’ T

Consider the sequences of functions in K

Fi,n (b, C) =

Fbe) = Pon®9) _ Fan(bo) _ J, 7792 Ji, 752
e Fipn(be)  Fonlbe) [, fide [, fada

9)
G (b c) — F2,n(b’c) _ Fﬁ,n(byc) _ fln % dz _ fln ﬁ d:L"
n\0, Flyn(b,C) F5,n(bac) f[n fidz f]n fsdz

The property (a) is consequence of the Lebesgue dominated convergence
theorem, since the functions Of;/9b, 0f;/0c and Of;/0x are bounded

in K x I, for all n > 3. The same happens with the functions 1/f;,
i=1,3,5.

From Proposition 1.2 we obtain that the integrals [, fidz and
/] ;1/fidx, i =1,3,5, are continuous functions in K. Then

‘/Ifi(b,c,a:)dz—/l fi(b,c,w)dz’

= ‘/ fi(b,c,z) dz +/ fi(b,c,x) dz‘
[071/"'] [l—l/n,l]

< ‘/ fi(b,c, ) dx’ + ‘/ fi(b,c,z) dx
[0,1/n] [1-1/n,1]

that is, {F;,} converges uniformly to F;, for i = 1,3,5. Analogously we
obtain {F; ,} converges uniformly to F;, for i = 2,4, 6, respectively.

— 0,
n—00

Then F,, and G,, converge uniformly to F' and G, respectively in K.
This concludes the proof of (b).

To prove (c) first we show that there is n; € N such that for alln > ny,
(1) Falnx{e} >0, Fajsix{e,} <0 and OF,/0c <0,
(i) Gnigpiyxs >0, Grlfpyyxs, <0 and 0G,/0b <0,
where ¢; = 3.45, co = 3.8, by = 2.55 and by = 2.85.
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In order to prove (i) we denote

1

( Jy dw) ( Sy fs dz)

ﬁ](b7In) = FnlJlx{c,-} =

m](by I‘n)’ .7 = 1’27

where

(10)  m;(b, I,) =( N blc]’x) / falb,cj dx)

/I,, m dm Aﬂ fl(bycj,x)dx),

Then, Fy(b,I,) > 0 and Fy(b,I,) < 0 for all b in J, if and only
if my(b,I,) > 0 and mgy(b,I,) < 0, respectively. Since {F,} converges
to F' uniformly, it is sufficient to show that m; (b, I) > 0 and ma(b, I) < 0.

From now on {tg,t1,...,tk}, 0 =to <t; < --- < tx = 1 is a partition
of I, E; = [t;—1,t:], 4 = 1,...,k and xg, is the characteristic function of F;.
Then, from Proposition 1.1 we have, for all (b,c,z) € K X I,

K
)
hi(b,c1,7) < D ha(b,er,tio1)xe, (@)

i=1

k
_ p(g;ti-1) 1/2
- ;[a(l + ti-1)p(q, ti—l)] x5 (@),

k
hs(b,c1, ) > Z hs(b, c1,ti-1)xE; ()

B Z[ Q» Ij((i,)z(qla) ti— 1) ] 1/2XEi (517),

where p,p,u,v,w are the functions in (4) and ¢ = (a,b,c1). Then, from
Proposition 1.1 and (11) we have

p(q,ti—1) 1/2/
/fl be,,z d$<z[a(1+tz 1)(P(g,ti-1)

1 a(l+t;_ 1)pq, i-1) 1/2/ -z,
dr > E
~/If1(bacl7x) i [ p(q, 1— 1

(12) =1

e Sl L
=1 y bi— l

___l___ & (Qa i— 1)w(q, i— 1 1/2
/I fs(b,e1,2) o ;[ u(q,ti—1) /

1

\

da:,

d:c
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For each t;, ¢ = 1,...,k, we define the functions in K
.. 1
pi =pi(b,t;) = b2p(q’ i) Pi = pi(er, ti) = c—gp(q,ti),
1
1
i = ui(bti) = —— u(q, t;), i = vi(b, 1) = —wv(g, ),
(13) { ui =ui(b,t;) a(b+a)u(q ) vi=vilbt) = 5-v(g,t)
1
w; = wi(b,c1,t;) = Py w(g, t:)-
Observe that
p(q7 O) = b2’ ﬁ(% O) = C?,
u(0) = a(b+ a), v(g,0) = 2a,
w(g,0) = c? — a*.
We write J; as the following union :
UAS, = [2.55 + (s — 1)0.03, 2.55 + 50.03].
Let b1 and bys be the minimal and maximum valuesof bin A;,s =1,...,10.

Then, for each A; we get from (13)

p(g, tic1) = Bpi(b,ti1) < U°pi_1(bas,tic1),  Bg,ti—1) = 3pi(er, ti1)
u(q,ti—1) = a(b+ a)ui—1(b,ti—1) > a(b+ a)u;—1(b1s, ti-1),

v(g,ti-1) = 2av;-1(b, ti—1) < 2av;_1(b2s, ti-1),

w(g, tiz1) = (3 — a®)wi_1(b,c1,ti—1) < (¢ — a®)wi_1(b1s, C1,ti—1)-

From the expressions above and (12) we get for all b € A, and for each s,
s=1,...,10

/fl(b cl,w)dz < —— b KI(S)

1 al/zcl
_— > Ks(s),
< /fl(b c1,T) b 2(s)

b+a 71/2
/f3 b C1,T d.’lf > [-2(—_—(12—)]
]

2(c? — a?)q1/2
x/,md“ S Kals),

(14)

3(3)7
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where

k
( Di— 1(b2sa i— 1 1/2
K
1(s) = Z[(l"}‘tz 1)Pi-1(c1,ti-1) /
(1 +ti—1)pi—1(c1, ti-1) 1/2 ll—m
K2(3) Z[ Pi— 1(b23, i— 1) / dx,

=1

k
ui—1(bis, ti-1) 1/2/
K. =
3(3) ;[’U,’—l bzs, i— 1)&); 1(blsacla i— 1)

k
Vi—1(b2s, ti—1)wi—1(b1s, c1,ti—1) 1/2/ z
Ky(s =E : v/ dz
4(9) i:l[ Ui—1(b1s,ti-1) ] gVl-z

Then, for each A, s =1,...,10, we obtain from (10) and (14),

d:c,

(15) <
dw

al/2¢ a
mi(e.1) > S K)o | | Kalo)
2
- [chﬁa)]l/zm(s) (zl/LchKl(s)
1
= beal2a(b + )& — @)1 [a(b+a)ch2(s)K3(s)

—9(c2 — a2)b2K1(s)K4(s)] .
So, m1(b,I) > 0if, for all b € A, foreach s, s=1,...,10:
(16) a(b+ a)chg( )K3( ) (Cl —a )b2K1( )K4(8) > 0.

Let £ = 50 (i.e. t; = ¢/50), 1 < i < 50, we take an upper bound or
a lower bound, as we want, of the values p;_1(bas,ti—1), Pi—1(c1,ti—1),
Ui—1(b1s, ti—1), Vi—1(b2s, ti—1), wi—1(b1s, c1,ti—1). Then we get from (15)

K3(s)K3(s) < 3.4 and Ki(s)Ka(s)>1,
for each s = 1,...,10. This implies, for all (b,¢c) € K, for each s :

(,fb [a(b+ @)} Ka(s) Ka(s) — 2(c} — a?)b?Ki () Ka(s)|
< 3.4ac? — 4b(c? — a?) < 0.

Therefore the left hand side of (16) is a decreasing function of b, for
all b € A;. Then, forall s =1,...,10,

(17) a(b+ a)c2Ka(s)K3(s) — 2(c? — a®)b* K1 (s) K4(s)
> aci(bys + a)K2(s)K3(s) — 2(c? — a®)b2,K3(s)K4(s) >

> w
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For the last inequality, we take an upper bound and a lower bound of
K1(s)K4(s) and Ks(s)Ky(s), respectively, in the left hand side of (17), for
each s = 1,...,10 (see table I in the end). This shows that m4(b,I) > 0.
Then, from the uniform convergence F;, — F as n — oo, there is ng € N
such that mq(b,I,) > 0 for all n > ng. This implies fl(b, I,) > 0 for

all n > no. o7

To prove that ma(b, I) < 0, we take J; = U B, with

r=1
{ [2.55 + (r — 1)0.004, 2.55 + r0.004], if r=1,2,...,15,
" 1 [2:61 + (r —16)0.02,2.61 + (r — 15)0.02], if r =16,12,...,27.

Then
/fl(”cz’g””‘z > e Ki0),
1 01/202 y
o amas e o
b 1/2
2(c —a?)v/2_,
/fs(b Cz,x) [ b2+ ] Kiy(r),

where we obtain K;(r) from Kj;(s), j = 1,2, 3,4, respectively (see (15)) by
the following substitutions :

cr e, tim1—t;, biso bar,  bas o biy,

where by, and by, are the minimal and maximum values of b € B,
respectively, r = 1,2,...,27.

Then, from (10) and (18), ma(b,I) < 0, if for each B,,r =1,...,27,
and for all b € B, :

a(b+ a)cE K5 (r)Ki(r) — 2(c2 — a®)b? K (r)K)(r) < 0.

Analogously for the proof of mq(I,b) > 0, we consider k£ = 60, ¢t; = /60
and we obtain K}(r)K4(r) < 3.4 and K{(r)K4(r) > 1, forallr =1,...,27.
Then,

(19)  a(b+ a)c3K;(r)Ky(r) — 2(c; — a®)b* Ki(r)Ky(r)

< acj(bir + a) K3(r) K3(r) — 2(c5 — a®)bl, K1 (r) Ky (r)
1
5
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For the last inequality we take an upper bound Kj(r)Kj5(r) and a lower
bound of K7 (r)K}(r), respectively, for each r = 1,2,...,23 in the left hand
side of (19) (see table II in the end). This shows that m2(I,b) < 0. So, there
is ng € N such that mgy(I,,b) < 0 for all n > ng. This implies E(In, b) <0,
for all n > ng.

To prove that 0F,,/dc < 0 observe that for all n > 3

% b,c) = 1
oc " U fan) (U, frda)]

2 Q(b7 ¢, In)a

where

(20) Q(b,c,I,) = /f3d:c /fldm /1 (fll)dz)
/fldw /fs /1 <f3)dw)
+(f s0e) (], 7 00)(- [, T o)
/Infldw2 /I"%dx)( 68]25 :c)

) / 0 - :
=l %) =~ laaas]

dc
) ) /2 9 (q,2) 12
“6’1_3 Z‘C[v<q,$(<1&,z))3] ’ a_c(i) =0[u(qf’m§’£q,m)] ’

where p, p, u,v,w are the functions in (4) and q = (a, b, c).

In
I,

and

)

The functions,

/Inaa];i(b,c,m)dx, /I 8(fl)(bcx)dx, i=1,3,

converge uniformly to

I%fl(bcw)dm / a(fz)(bcm)dz

in K x I respectively. This occurs because 0h;/0c and 8(1/h;)/0c, 1= 1,3,
are bounded in K x I and the integrals of the functions /(1 —z)/x
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and /z/(1 —z) are bounded in I. Hence, the sequence of functions
{Q(, -, In) }n>3 converge uniformly to Q(:,-, I) in K. It is easy to verify that
Oh1/dc and 8(1/h1)/0c are strictly increasing functions in z and dhs/dc
is a strictly decreasing function in z, for all z € I and for all (b,c) € K.

Then :
( 6f1 b x
~J; 8c <al/2c2/,5i\/1—at:dac

Zk:[ pi_1(2.85,ti_1) ]1/2
LT+ 1) (Bi1(345,t1))3 ]

8 al/? l—m
fa) <5 L,

Xk:[ 141 ]1/2
2| 5i(2.55, )5 (345, 1) )

(21) o b+a 1/2 i~z
— >c[ /
2(c

I de —0,2

Z[ Ui— 1(2 55 ti— 1) ]1/2
=1 Ui_1(2.85,tz_l)(wl_1(2.55,3.8,ti_1))3 ’

/,566(%) [(b+ —a2 1/2/

Z‘: Vi— 1(25 ti— 1) ]1/2
-1 Ui(2.85,tz)wz_1(2.55,3.8,ti_1) ’

The last inequality occurs because 1/u is a decreasing function of x and v/w
is an increasing function of z, for all € I and for all (b,c) € K (see (4)).
And from Proposition 1.1 we have

( b [z
/Ifl(b,c,il?)diﬂ > le 1———dl‘

k
pi(2.55,t;)  11/2
;[1+t pz(38t)] :

1 al/?¢c 1—z
d 1/—d
/Ifl(b,cww) v b v/Ez z !

k ~
(14 t;)p;(3.8,%;) 11/2
Z[ pi(2.55,t;) ]

d:n

\

(22)

)

\ =1
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( c —a?)7-1/2 11—z
/Ifg(b,c,w)dm <[ b+a /1\/ dz

Z[ u;(2.85, ;) ]1/2
(255, t;)w; (2.85,3.45, ;) |

(22")
j 1 d b+a 7-1/2 4
/1f3(b,c,:1:) m>[2(cz_az / Vl—x x
v;(2.55, t;)w;(2.85,3.45, t;) 11/2
\ E[ u;(2.85,1;) ]

Let k = 50 and t; = ¢/50. We obtain the following bounds of (21)
and (22), (22") :

/f1 de > 1.1482——b/—,
al/2
b
b+a 1/2
2(c? 2)]
2(c? —a2)]1/2
b+a ’

C

/—da:<17721

)

/f3dac< 19732[
/—dx>08501[

afi b
| e do <1227

/ o (fl)dm<180141T/2

3 b+a 1/2
_/1 o dw>1.9904c[2(2_a2)3]
2 ]1/2

/ 0 (fg)dx> 133190[m

Let us denote I, II, III, IV the terms of Q(b, c, I') respectively (see 20). Then
we get from above, for all (b,¢) € K,

I+078H_ /f3dz /fldm /fgd:c / (fl)d)
+0.78( /fldm /gc(;)dx)]

) o) SRR <o

)
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0.2211 + 024111 = (/If3dx) [0.22(/f1 dz)z(— aﬁc%;)

+024 /fgda: /——dx %’2 )]

/ f —0.7718b% 4 1.0685 a(b + a)
° acl2(b + a)(c? — a?)]1/2

<0,

6.6658 a(b + a) — 4.4614 b2

76111
0.76 111 + 1V < 2ae(@ —o7)

<0.

Therefore Q(b,c,I) < 0, for all (b,¢) € K. From uniform convergence,
Q(yIn) — Q-+, I) as n — oo, there is ngy € N such that Q(b,¢,I,,) <0,
for all n > mn4. This implies 9F,,/0c(b,c) < 0 for all n > ny4. We take
ns = max{ng, ng,n4}. Then, for all n > n; the condition (i) is satisfied.

To prove (ii) we denote

1

Gjle, In) =G b xda (J5,, frde) ([, fsdz)

mj(c, In),

where 7 = 1,2 and

(23) i (c, I,) / fl(b],c . / f5(bs,c, z)d:c)

/1,, f—sm dw /In fi(bj, ¢, ) dx)_

Therefore, C~¥1(c, I,) > 0 and éz(c, I,) < 0, for all ¢ € Js, if and only if,
mi(c, I,) > 0 and ma(c, I,) < 0, for all ¢ € Jo, respectively.

o0 A= ([ & (2)w)([ ne)

+ ([, %) /n%ﬁ
# (- [ () i) (] 02
() g ><— [ %)
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We have the following

(25) (- %fl) T Ca(;1)>%,
-f5+%f5 >0, c%—%(%)>0,

for all (b,c,z) € K x I,. The two first inequalities are easy to verify. To
show the two others we observe that

1 _T e 3/2
St 5 fs Vl—x (vw)~

x[2ﬁf)ﬁ+c(gi)vw—cu(g;)~ cﬁﬁ%],
where
2%&%(%)%-@(%)&-@5%
ey o0 [ /0U\. _0w  _._
= uw v—c%)+v[c(%)w—cua +uw]

= @w(b — bx) + 9[(c — b)*z* + b(4c — 5b)(c — b)2z3
+ (7b%c — 963 — 3a%c + a?b)(c — b)x?
+ (6b3¢c — 7b* — 6a®bc + 3ab)x + 2b%(b? — a?)).

Since (b — bz)aw > 0, for all (b, c) € K, we get :

dc — 5b > —0.45, 7b%c — 9b® — 3a%c + a?b > —22.34,
6b%c — 7b* — 6a%be + 3a2b > —29.50.

Then,
%fs t 5.5 5 %ﬁ_lﬂ(f@)_s/%&
where
¢35 ={3(b,c,x)

= (c—b)*z* — 0.45b(c—b)2x3 — 22.34(c—b)x? — 29.50 = + 2b%(b*—a?).

Observe that 0¢3/0z < 0, for all z € I,, and (b,c) € K; and 3(b,c, 1) is
an increasing function of b and a decreasing function of ¢ for all (b,¢) € K.
Then #3(b,c,1) > £3(2.55,3.8,1) > 5. So, £3(b,c,z) > 0 and therefore
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(1/e)fs + 0fs/dc > 0, for all (b,c,x) € K x I,,. By the same calculations
we obtain

1 _96(1 11/1 T =3/2(5N-1/2
cfs 8c(f5) 2¢ (@)~
x [2&5& + c(%)f)&? cﬁ(gZ)w - cam%—‘;’] > 0.
Therefore, from (24) and (25) we get, for all n > 3,

(e, 1) > /—da: %/fsdx+/%%dw]
/fldm /ac(f5 d + - /—dz

That is, m;(c, I,) is an increasing function for all ¢ € J;. Then

mi(e, In) > m1(3.45,1,), ma(c,In) < Mm2(3.8,1,),

for all n > 3. From (23) we have

m1(3.45,1) > (Zh1255345t, 1)/r

(Zh5 (2.55,3.45, ¢;) /

(Z h (255 345 ) / \/—dx

(Zh1(2 55,3.45, t;_ 1)/
2(38,1) (Zh128538t /Vl_xdw
(Zh5 (2.85,3.8, t,_l)/

(Z (285, 38 ti1) /
(Zh1(285 38t)/'

d:c

da:

and

dx

da:

_mdm).
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If we take k = 20 and t; = /20, we get

~ 1 9

m1(3.45,I)>E, m2(38 I)<—E6
Then, from the uniform convergence, m;(c, In) — mj(c,I) as n — oo,
j = 1,2, there is ng € N such that m,(3.45,1,) > 0 and m2(3.8,1,) < 0,
for all n > ne. It follows m1(c, I,) > 0 and ma(c, I,) < 0, for all n > ng
and for all ¢ € Js.

Now we want to prove that there is n; € N such that for all n > ny
0G(b,c)/0b < 0, for all (b,c) € K. From expression of G,, we get

len 1
221 (b,c) =
o [(J;, frdz) ([, fsdz)]

2 Q(b, ¢, In),

where

o Goena ([ ()] 5
+ ([ prae) ([ oan) (- [ 5(5) o)
/fsdm /_dx L %j;;l )
/fldx /fsdw I%d)

Then, 0Gn(b,c)/0b < 0 if and only if, Q(b, ¢, I,,) < 0. First we will show
that Q(b,c,I) < 0. From (3) we get

( ahl( z) = [ 1 ]1/2

ab 0 = Lo+ 2)p(a,2)5(4, 2)

91 _ . 1a(+z)p(g, x)11/2
@) o ()@ ==y |

0 hs(‘lam) 5 ~V2(5&) 732 H (b, c, z),

\ E?b( )(q’w) 3a732(@@)"* (- H (b, ¢, ),

where
(28) H(bcz)_ﬁ&gz (%)G—ﬁﬁ%
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Since 8311/0z2%0b = 835 /0x%0b = —4(c — b), 330/0x%0b = 0, we get :

62
(29) 55 H(b,c,7)
oz* on Ow
PR 2 — — —— — c—
=2c=03( 5 = ) 2= 0(55 55 ~ 5z

8%u dw  0u 0%*w o%u . 8%w
+2”[axab$ "o 8x3b] +2(e-b)[@ 9200 Bxab]

+2(c— b) [200blc — b + B+ a%)] — (- D) +3) 20|

()20 Zua v )

We want to show that, for all (b,¢,z) € K x I,

(611 Ow Ou 8&)

2

(30) 832 H(b,c,z) > 0.

It is easy to verify that the first five terms of (29) are positive for all
(b,c,x) € K x I.

Observe that the three last terms of (29) satisfy

[2u—(1—$)—]g—w + [2“’ (1-=) 693] ?):
> [2a(b,¢,0) - —(b,c,O)] %, [28(b,¢,0) - (b ¢,0)] Z’;

= b(7b — 3c)g— + 2(2b — be — a® )g— >0,

where the inequality is from the facts : for all z € I and (b,¢) € K,

2«1-(1-@%’5, 2w—(1—x)g:

are increasing functions of z. This show (30).

Furthermore, for all (b,¢) € K,

O (b:c,0) = (e = D) (e + D) ~ a?)

+ 4b(c — b) (b — a?) + 8b%(c + b)(c — b)
= (c+b)(2b — ¢)(b* + 3a?) + b[4.6b> — 2.6b%c — a®(c + b)]
+ 2b%(c — b)(c+b—0.2) > 0.
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This and (30) imply, for all (b,c,z) € K x I,

O0H
(31) %(b, C, .’L') > 0.
Observe that, for all (b,c) € K (see (28)) :

(32) H(b,c,0) = —2b(b* + 2a’c + ab) < 0,
(33) H(be, 3) = & {8a2(b — )+ (c+ b)?[2.9¢% — 2.7bc — 317
+ (3¢ + b) [0.7c(c + b)* — 4a%(3¢ + 5b)] }< 0,
(34) H(b,c,1) = 2c%*(c® —a?) > 0.
For each (b,c) € K we consider the segments of straight lines

(35) {Hl(b, ¢,z) = (1-20)H(b,c,0), z€[0,1];

Ha(b,c,z) = (22—~ DH(b,c,1), =€ [3,1].
Then, from (30), (31), (32), (33), (34) we obtain

Hi(b,c,x) if z€]0,1],

(36) HOem < {Hz(b,C,x) if z€31].

(See Fig. 4.)

Figure 4

547



548 NEDIR DO ESPIRITO-SANTO
Then, from (27) and (36),

9fs 1 ~—1/2(~~\—3/2 g
(37) | Gy do< 2[ [0)%]H1(b,c, )@~ Y2(5) T dz

+ [ Hy(bem)a 2 (5@) 2, | —— dx].
(3.1] 1-z

Furthermore, H; (b, c, z)i~1/2(9@)~3/? is a strictly increasing function of z,
for all z € [0, 3] and (b, c) € K. This occurs because :
L OH, B

+ Hy o [a7Y2(5w)73/?]

9 S 1/20~~\—3/2] _ ~—1/2(~~\—3/
* % [Hya™ 2 (0w) %] = a2 (ow) o .

0 ~

- — ['&"1/2(50.2)_3/2] <0, for all z € I and (b,c) € K (remember that @,
Oz

and @ are strictly increasing functions of z, for all (b,¢,z) € K x I);

. 6;;1 = —2H(b,c,0) > 0, Hy(b,c,z) <0, for all z € [0, %] and (b,c) € K.

Observe (see (4)) that :

i(g,0) = 2b%, ©(q,0) = (c+b), @(q,0)=0b*—a’

As in (15), we define the functions in K
s = (b, ¢, 1) = —= (b, ¢, ;)
1 — \U Yy ) — 2b2 ry=r )y

vy = fii(b, C, ti) = ﬁ’ﬁ(b, C, ti),

w; = E)i(b, C,t,;) = a2a(b, C, ti),

b2 —
which are strictly decreasing functions of b and strictly increasing functions
of ¢ for all (b,c) € K. Then

(b, c, t;) < 20%@;(2.55,3.8,t;)
> 2b%1;(2.85,3.45,t;),

’5(1), c, ti) < (C + b)f),(255, 3.8,ti)

(38) . _
> (C + b)‘l)z (285, 345, ti),
(b, ¢, t;) < (b% — a®)@;(2.55,3.8,t;)
{ > (b2 — a?)@;(2.85,3.45,t;).

Then, if {to,t1,...,tx}, is a partition of I, 0 =t < -+ < t, = 1,
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where k is even, /o =
from (35), (37) and (38)

(39) / s { (e 0)[2b2((c+ b)1(b2 - a2))3]1/2

k/2 1/
Z — 2t;) D, /
1 1/2
26%((c + b)(b* - a2))3]
k 1/
X Z (2ti D” /
with i=(k/2)+1

D} = ;(2.55,3.8, t;) [3:(2.55, 3.8, £,)(2.55,3.8, 1,)]°,

>, and E; = [ti_y,ti), ¢ = 1,2,...,k, we get

d:c

+H&QD[

L asf,

DY = i;_1(2.85,3.45, ¢, 1)[0;_1(2.85,3.45,t;_1)@;_1(2.85,3.45,t; 1)]".
Analogously, from (27) and (36)

(40) /§b<f )d < I{H(b © 0)[(2b2)3(c +1b)(b2 - a2)]1/2

k/2 1= x
X Z(l — 2t ) D/// /
=1

]1/2

+ H(b,c,1) [(2(,2)3(0 + b)(82 — a?)

k
1 \1/2
X Z (2ti - D(D'-”') /
with i=k/2+1 i E:

Dy = [@:(2.55,3.8,1,)] *5:(2.55, 3.8, £,)(2.55, 3.8, ),

_xdm},

DY = [i;-1(2.85,3.45,t;_1)]*5;_1(2.85,3.45, t;_1)&;_1(2.85, 3.45, t;_1).

Consider k = 50 (i.e. t; = 7/50) in (39) and (40). We obtain the
following bounds :

ofs
; 9b

2{0 0617 H (b, c, o)[ L ]1/2

26%((c + b)(b? — a?))3

1 /2
+0.3941 H(b, c, 1) [ 262((c + b) (b2 — a2))3 ] }
1

1 1/2
- 5[%2((0 O a2))3] (0.0617H (b, ¢c,0) + 0.3941H (b, ¢, 1))
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and

81 1 1 1/2
_/, ob (ﬁ) < 5[(2b2)3(c+ b) (b2 — az)]
x (0.7322H (b, c,0) + 0.0667H (b, c, 1)).

From (32) and (34) we have, for all (b,c) € K,
0.7322 H(b, ¢, 0) + 0.0667 H(b, c, 1)
= —1.4644b(b> + 2a%c + a?b) + 0.13343(c? — a?)
< —1.46b(b + 2a%c + a?b) + 0.14*(c* — a®) < —80.

For all (b,c) € K, this implies

o(1/fs)
/I 8b5 dz < 0.

Since — [;0f1/0bdz < 0 and [;9(1/f1)/8bdz < O (see (27)), the only
possibly positive term in Q(b, ¢, I) (see 26) is the last one. We will show
that the sum of the first and fourth terms of Q(b,c,I) has a negative
upper bound. From (4) and (27), we obtain that d(1/h;)/8b is a strictly
decreasing function of z, for all (b,c,z) € K x I. Then, we have :

/ (1+tl l)pz 1(345 tl 1 1/2 1_$
/Bb fi dw b2 ;[ (Pi—1(2.85,ti_1) /V dz.

Furthermore, from (4), (13), (38) and Proposition 1.1 we get :

pi—1(2.85,t;_1) 1/7
d
/fl z < 1/2 Z[(l—i—t, 1)Pi—1(3.45,t;,-1)

2 /
[0 [ermm—ay)

k

@;(2.85,3.45, t;) 1/2 z
% ;[ﬁi(2.55,3.8, £:)2:(2.55, 3.8, t,»)] /E Vi @

el

5:(2.55, 3.8, ;):(2.55, 3.8, 1;) 1/2
x Z[ @;(2.85,3.45,1;) / :

dz,

d:v

i=1
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We take k = 50 (i.e. t; = 1/50) and obtain the following bounds :

b

o 1/2
/ (fl)da:< 17482 T~
202 1/2
(c+b)(b% - a2)]

(c+ b)(b% — a?)11/2
)

C

b

/f5 dz > 1.1394[

/—dx< 17884[

for all (b,c) € K. Then
(/Ifldm)[(/lfsdz 2 /% % de)
(el 7). 5 )

1/2

/.fl dz { 1. 13)2( L. 74)( +b)(b2 —(1,2) ab2
b [(c+b)(b? —a?)q1/2

al/zc[ 2b2 ]

c

+ (1.19)(1.79)

1 1/2
2 [2b2((c +b)(b2 — a?))3 ]
x (0.061H (b, c,0) + 0.395H (b, c, 1))}

al’?c

(c+b)(b% — a?)
(0.061H (b, ¢c,0) + 0.395H (b, c, 1))
al/2¢b(c + b) (b2 — a?) ]

- (/1 i d) [2(1.13)2(—1.74)

(1.19)(1.79)

.J:-IH

1
- (/I h da:) 4ba'/2¢(c + b)(b% — a?)

x [—8(1.13)*(1.74)abc? + (1.19)(1.79)(0.061H (b, c, 0)
+0.395H (b, ¢, 1))].

We replace H (b, c,0) and H (b, c,1) by their respective expressions (see (32)
and (34)) and we get, for all (b,c) € K :

—8(1.13)%(1.74)abc® + (1.19)(1.79)(0.061H (b, ¢, 0) + 0.395H (b, c, 1))
< —20bc® — 0.25b(b + 2a%c + a?b) + 1.7¢3(c* — a?)
= c?(—20b + 1.7¢?) — 0.25b(b® + 2a%c + a?b) — 1.7a%c% < 0.
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This prove that the sum of the first and fourth term of Q(b, ¢, I') has negative
upper bound. Then Q(b,c,I) < 0, for all (b,c) € K. Since Q(:,-,I,)
converges uniformly to Q(-,-,I) in K, there exists n; € N such that,
Q(b,¢,I,) <0, for all n > ny, for all (b,c) € K. Then 8G,,/db(b,c) < 0, for
all n > n7 and for all (b,c) € K. We take n; = max{ns,ne,n7}. Then (i)
and (ii) are satisfied for all n > n;. Now we can prove the condition (c)
of Lemma 1.

Let n; as above. From (i) and the intermediate value theorem we
o
have that for each b € Jj, there exists an unique ¢ € {b} x J2 such

that F,(b,c) = 0, for all n > n;, where j o denote the interior of Js.
Also the gradient of F;, is not null in K, for all n > n,, then zero is a
regular value of F,,, indeed F, 1({0}) is a submanifold of K of dimension 1.
Then F,!({0}) = an, where a, is a regular curve in K which join the
segments {2.55} x Jo and {2.85} x Ja, of the boundary of K, for all n > n;.

By the same way, from (ii) we obtain G,,;}({0}) = 8,, where 3, is a
regular curve in K which join the segments J; x {3.45} and J; x {3.8} of
the boundary of K, for all n > n;. Then, a,, N B, # 0, for all n > n;. This
concludes the proof of Lemma 1.

COROLLARY 1. — Let n; € N be as Lemma 1. Then there exist real
numbers by, co, with (bg,co) € K, such that F(bg,co) = G(bo, co) = 0.

Proof. — For each n > n1, let (by,c,) be a point of @, N B,. Since K
is compact the sequence {(bn,cr)}n>n, has a convergent subsequence in K
which we denote {(bn,, cn, ) }ken-

Let (b, co) = klingo (bngs Cny )- Since {F,, } and {G,, } converge uniformly

to F' and G, respectively, then the same occurs for the subsequences {Fy,, }
and {Gy, }. Therefore, for each € > 0, there exists kg € N such that, for all
k> ko

|, (b,0) = F(b,c)| < 3¢, |Gn, (b,0) — G(b,c)| < 3¢,
|F(bn,, cn) — F(b,0)| < 3&, |G(bn,,cn,) — G(b,0)| < 36,

where the two last inequalities follow from the continuity of F' and G in K.
Then, for all £ > ko

|Fnk(b”k’cnk) - F(bO’CO)I < ank(b‘nk’c‘nk) - F(bnkacnk)l
+ IF(b"k’cnk) - F(bO,CO)| <e.
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Analogously, we obtain |G, (bn,, cn, ) — G(bo, co)| < €. Indeed

lim Fnk (bnk; an) = F(bOa CO)‘) kli»rgo Gnk (b'n.ky an) = G(bO’ CO)'

k—o0

Since Fp, (bnysCn,) = Gny(bni,cn,) = 0, for all £ > ko, then F(bg,co) =
G(bo, co) = 0. This complete the proof of Corollary 1.
Now we can finish the proof of Theorem A.

Let ap = 1.1632 be the value that we fixed at the beginning and
(bo, co) which satisfy the Corollary 1. Then

F(ag, bo, co) _ Fy(ag, bo, co) _ Fg(ao, bo, co)
Fi(ao,bo,c0)  F3(ao,bo,co)  Fs(ao,bo,co)

ThllS, for /\0 = Fl(ao,bo,C())/Fz(ao,bo,Co), a = agp, b= bo and ¢ = Co, the
equalities in (7) are satisfied. Observe that the differentials ¢;, j = 1,2, 3,
have no residue at co. This is because the product g?n in the expression
of ¢; and ¢2 w has an odd exponent. Furthermore ¢3 = gn is exact. Then
the pair (g,7n) defined in (5) satisfies the condition ¢, of (2).

It remains to show that (g,7n) satisfies the condition c3. Let £ be a
path in M. Then

2|, 12 2 _ 2
Jariam= [(1+ A ) = gy
=/(Iz(zz—b%)l Loz el izl
£

|l ®l2(22 - b)|

If £ is a divergent path in M then |z| — oo and |w|/|2(22 — b2)| — oo, so

/g (1+192)In] = +oo.

Then Theorem A is proved.

Remarks.

1) Let ag,bo,co the real values that satisfy (7). We consider the
conformal map T : C2 — C2, such that T(z,w) = ((1/ao)z, (1/at/*)w) =
(2,@). Then (z,w) € C? satisfies Py(z,w) = 0, where

Po(z,w) = 0* — 2(22 - &3)(2* - B)(2* - &),
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if and only if (%, &) satisfies P(z,w) = 0, where
P(z,w) = w? — 2(22 — 1)(2% — b2)(22 - ¢2)

and b; = bg/ao, c1 = cp/ap. This implies (in local coordinates) that the
map Z : C — C, Z(2) = (1/ao)?, is an conformal equivalence between M
and M which are the Riemann surfaces obtained from Fy(z,w) = 0 and

P(z,w) = 0, respectively. Then, Theorem A is true for M.

2) We began to solve this problem by search of a numerical solution
of the equation

(41) [Fu(a,,0))° + [Gula,b,0)]* =0,

where F,, and G, are the functions in (9) and n is large. We obtained
an approximate solution a’,b’,¢’ with a’ close to 1.1632. Then we fixed
ap = 1.1632 and we considered a compact neighborhood K of (V,c),
{ao} x K C D, D as (3) and we proved the result.

3) We had knowledge that Hermann Karcher [K] constructed an
example of a minimal immersion in R3 which satisfies Theorem A. The
conformal structure of his example is distinct from the conformal structure
of the Riemann surfaces which we considered.

4) For the genus four case, it would be natural to start with the
Riemann surface M4 produced by an algebraic curve

P(z,w) = 2(2% — a?)(2? — b?)(2? — ) (2% — d?),

with 0 < a < b < ¢ < d < o0, and the Weierstrass representation (g,7),
where

Aw A
g(z)_(zz—a2)(z2—c2)’ n—gdz, 0< A< o0.

We obtain four equations of type (7). It is possible to find a numerical
solution by using a equation similar to (41). We think that the method
used to solve (7) may possibly be extended to this case.
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Table I

K>(s) - K3(s) K (s) - K4(s)

s my(b,I) >
> < > <
1 3.2240 | 3.2241 1.1720 | 1.1721 2.46
2 3.2345 | 3.2346 | 1.1616 | 1.1617 2.00
3 3.2452 3.2453 1.1511 1.1512 1.59
4 3.2561 | 3.2562 | 1.1403 | 1.1404 1.27
5 3.2672 | 3.2673 | 1.1294 | 1.1295 1.01
6 3.2786 | 3.2787 | 1.1184 | 1.1185 0.83
7 3.2902 | 3.2903 | 1.1071 1.1072 0.75
8 3.3020 | 3.3021 1.0957 | 1.0958 0.75
9 3.3142 | 3.3143 | 10.084 | 1.0841 0.87
10 | 3.3266 | 3.3267 | 1.0722 | 1.0723 1.06
Table II (beginning)

Kj(r) - Kj(r) Ki(r) - Ky(r)

T ma(b, I) <
> < > <

1 3.2502 | 3.2504 | 1.1912 | 1.1913 —-0.01
2 3.2515 | 3.2516 | 1.1901 1.1902 —-0.16
3 3.2527 | 3.2528 | 1.1890 | 1.1891 —0.32
4 3.2539 | 3.2540 | 1.1879 | 1.1880 —-0.47
5 3.2551 | 3.2553 | 1.1868 | 1.1869 —0.62
6 3.2564 | 3.2565 | 1.1857 | 1.1858 —0.78
7 3.2576 | 3.2577 | 1.1846 | 1.1847 —0.93
8 3.2588 | 3.2589 | 1.1834 | 1.1835 —1.06
9 3.2601 3.2602 1.1823 1.1824 —-1.21
10 | 3.2613 | 3.2614 | 1.1812 | 1.1813 —1.36
11 | 3.2626 | 3.2627 | 1.1801 | 1.1802 -1.51
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Table II (end)
K (r) - K3(r) Ki(r) - Ky(r)
r ma(b,I) <
> < > <
12 | 3.2638 | 3.2639 | 1.1790 | 1.1791 —1.66
13 | 3.2650 | 3.2652 | 1.1779 | 1.1780 —1.81
14 | 3.2663 | 3.2664 | 1.1767 | 1.1768 -1.94
15 | 3.2675 | 3.2676 | 1.1756 | 1.1757 -2.09
16 | 3.2770 | 3.2771 | 1.1670 | 1.1671 —0.38
17 | 3.2834 | 3.2835 | 1.1614 | 1.1615 —1.06
18 | 3.2898 | 3.2899 | 1.1557 | 1.1558 -1.71
19 | 3.2962 | 3.2963 | 1.1499 [ 1.4500 -2.32
20 | 3.3028 | 3.3029 | 1.1441 | 1.1442 —2.92
21 | 3.3094 | 3.3095 | 1.1382 | 1.1383 —3.48
22 | 3.3160 | 3.3161 | 1.1323 | 1.1324 —4.03
23 | 3.3228 | 3.3229 | 1.1263 | 1.1264 —4.53
24 | 3.3296 | 3.3297 | 1.1203 | 1.1204 -5.01
25 | 3.3364 | 3.3365 | 1.1142 | 1.1143 —5.46
26 | 3.3434 | 3.3435 | 1.1080 | 1.1081 —5.85
27 | 3.3504 | 3.3505 | 1.1018 | 1.1019 —6.23
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