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HITTING PROBABILITIES
AND POTENTIAL THEORY FOR THE BROWNIAN

PATH-VALUED PROCESS

by Jean-Frangois LE GALL

0. Introduction.

The object of interest in this paper is the path-valued process studied
in [LG1], [LG2], which we call here the Brownian path-valued process
because the underlying spatial motion is Brownian motion in R^. We
derive several potential-theoretic results related to this path-valued process,
starting from a simple expression for the energy of measures on the path
space. We obtain an explicit description of the capacitary measure of certain
special subsets of the path space, namely the set of paths that visit a fixed
closed set in R^ and the set of paths that exit a given domain in a certain
compact subset of its boundary. We also study the polarity of the previous
subsets of the path space. Because of the connections between the Brownian
path-valued process and super Brownian motion, these polarity questions
are closely related to Dynkin's recent work [Dy2], [Dy3].

Let us describe our main results, and start with a brief presentation of
the Brownian path-valued process. This process, denoted by (Ws)s>o takes
values in the set We of all stopped paths in M^ started at a fixed point x.
A stopped path can be viewed as a continuous mapping from an interval
[0,C] into M^, the number ^ > 0 being called the lifetime of the path. For
every s > 0, Ws can be thought of as a Brownian path in R^, started
at x and stopped at a (random) time (^s. The lifetime (^ of Ws evolves
according to the law of Brownian motion in ]R-(- killed when it reaches 0

Key words : Path-valued process - Super Brownian motion - Probabilistic potential
theory - Energy - Capacitary measure - Hitting probability - Polar sets - Stochastic
differential equations — Nonlinear partial differential equations.
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(or alternatively, Brownian motion reflected at 0, see Section 1). Roughly
speaking, when ^ decreases, the path Ws is erased (erasing a path means
restricting its interval of definition from [0,^] to [0,C'], with C , ' < C), and
when C,s increases, the path Ws is extended, using the law of Brownian
motion in M^ to perform the extension. An important role is played by
the "excursion measure" N3; of (Ws) from the trivial path with lifetime 0
(and initial point x). Under this excursion measure, the lifetime process
(<^) is distributed according to Ito measure of positive excursions of linear
Brownian motion. Finally, the process (Ws) is symmetric with respect to
the reference measure Mx obtained by integrating against dt the law of
Brownian motion started at x and stopped at time t. This allows one to
use the tools of the potential theory of symmetric Markov processes ([Dyl],
[FG]).

Let JLA be a finite measure on the path space We. For every t > 0,
denote by /^) the restriction of /^ to paths whose lifetime is greater than t,
viewed as a measure on the a-field Gt generated by the coordinates between
0 and t. In order that ^ be of finite energy (with respect to the process
(Ws)), it is necessary that, for every t > 0, /^) be absolutely continuous
with respect to the Wiener measure Px restricted to the cr-field Gt^ denoted
by Px\Qt • Furthermore, the energy of fi is then

^).^.(r(^L)2^
\Jo y^x^t/ )

(see Proposition 1.1 for a more precise statement).

Then, let F be a closed subset of M^ not containing x, and denote by
H C Wx the set of paths that hit -F. Assume that H is not Mx -polar (in
the sense of [FG]), which in the context of superprocesses means that F is
not 7^-polar in the sense of Dynkin [Dy2]. This is equivalent to saying that
the hitting "probability" of H under N3; is strictly positive. Denote by u(x)
this hitting probability, well-defined for x € R^F. As was first observed
by Dynkin [Dy2] in terms of super Brownian motion (see [LG2] for a proof
via the path-valued process), the function u is the maximal nonnegative
solution of the equation An = 4n2 in R^F.

We prove in Section 2 that the set H of paths that hit F is an
equilibrium set, in the sense of [FG], and that its capacitary measure is
u(x) times the law of the process (xt) solution of the stochastic differential
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equation
VIA

dxt = dBt+ ——(xt)dtu
X Q = X

and' stopped at its first hitting time of F. It is a consequence of our
argument that this process hits F in finite time. As a consequence of our
result, we get that the law of the process {xf) minimizes the energy S{p)
given previously, among all probability measures supported on H.

In Section 3, we turn to the problem of characterizing the sets F such
that H is not Ma;-polar. For a fixed closed set F, this property does not
depend on the choice of a; € R^F. This problem was completely solved by
Dynkin [Dy2] (in terms of superprocesses, see also Perkins [Pe]). Dynkin's
approach relies heavily on analytic results of Baras and Pierre [BP] on
removable singularities of the equation An = uq. We give, in our special
situation, a more probabilistic proof of Dynkin's result, in the hope that
these arguments will be applicable to other related unsolved problems,
such as the one discussed in Section 4. In one direction, which was already
treated in [LG2], this is easy : In order to prove that H is not Ma;-polar, it
suffices to construct a measure fi supported on H and with finite energy.
The natural choice is to take for ^ the law of an /i-process, and this
choice gives the right condition. In the reverse direction, things are harder,
because, as we already know, the minimizing measure is not the law of an
/i-process. We use the results of Section 2 to give a probabilistic argument,
which still requires an analytic lemma (Lemma 3.3) borrowed from [BP].

Section 4 contains results analogous to those of Sections 2 and 3 in
the following different situation. We let D be a Lipschitz domain in R^,
such that a: € -D, and consider a compact subset K of 9D. We are now
interested in the polarity of the set H of paths that exit D at a point of K.
We denote by u(x) the hitting "probability" of H under N3;. In terms of
superprocesses, u(x) is related to the probability for super Brownian motion
started at 6^ that one of the historical paths will exit D at a point of K.
According to Proposition 4.4, the function u is the maximal nonnegative
solution of An = 4n2 in D with zero boundary condition on 9D\K (no
boundary condition is imposed on K). We prove that, in order that H
be not M^-polar (equivalently that u > 0 on D), it is sufficient that K
supports a nontrivial measure v such that

j dz G{x, z) ^ v{dy) H{z, y) ) < oo,
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where G(x^ z) is the Green function of Brownian motion in D^ and H ( z ^ y )
is the Martin kernel defined on D x QD. When D is a C2 domain, and for
instance when d > 4, this condition reduces to

II^(dy^dy^^-y1^ < oo.

The previous conditions have been conjectured by Dynkin (personal com-
munication) to be not only sufficient, but also necessary. We have been
unable to prove the necessity, but we give a weaker statement involving
Hausdorff measures, whose proof is based on the estimates of [AL] for the
hitting probabilities of small disks on the boundary. As a special case of
the previous results, we obtain that, when K is a singleton, H is Ma;-polar
if and only if d > 3. This fact can also be derived from the analytic results
in [GV], using the connections with partial differential equations. Finally,
assuming that H is not Atc-polar, we obtain an explicit description of its
capacitary measure, which is analogous to the results of Section 2. This sug-
gests that it might be possible to adapt the arguments of Section 3 in order
to get the necessity of the previous condition. This approach would require
an analytic result similar to Lemma 3.3, which however seems harder to
obtain.

After the first version of this paper had been completed, we learnt
of the recent work of Sheu [Sh], which contains results closely related to
Section 4 of the present paper.

Acknowledgment. I thank E.B. Dynkin for several fruitful discussions,
as well as for suggesting the study of boundary polar sets. I also thank J.
Azema for a useful conversation about predictable processes.

1. Energy of measures on the path space.

1.1. We first recall the basic facts about the path-valued process
considered in [LG2], and in [LG1] in a more general situation. We will
then establish an important preliminary proposition which allows us to
compute the energy, with respect to the path-valued process, of measures
on the path space.

The set W of stopped paths is the set of all pairs w = (/, C)? where
(^ > 0 and / is a continuous mapping from [0,oo) into R^, which is
constant on [^, oo). For our purposes, it will be important to make a careful
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distinction between the stopped path w and the continuous mapping /, so
that our notation differs slightly from that in [LG2]. The number ^ is called
the lifetime of the path w. We write (/(w)? C(w)) instead of (/, <) when there
is a risk of confusion. The point /(€)(= /(co)) is usually denoted by w.
The space W is equipped with the metric

d(w,w/) = sup |/(^)(t) - f^(t}\ + |C(^) - C(^/)|.

Let w € W and a, b > 0 such that a < &AC(w) • There is a unique probability
measure, denoted by Q^^dw'), on W such that :

(i) C(wQ = ̂  Q^{dw1) a.s.

(ii) f{w'}{t) = f{w)W for every t < a, Q^dw') a.s.

(iii) the distribution of (/(wQ(^+^)^ ^ 0) under Q^(dw') is the law of
Brownian motion in W1 started at f^ (a) and stopped at time b — a.

This definition means that, under Q^^{dw'\ w' is a stopped path with
lifetime 6, which coincides with w until time a, but is then independent of
w and distributed according to the law of Brownian motion in Rd.

If / = /(w)? we "^ay; ^d will often, write Q^(.) instead of Q^(.).
Without risk of confusion, we shall also denote by Q^ ^{df) the law induced
by 0{ b^^Q on the space C of all continuous functions from M+ into Rd.

Let us fix x C M^ and denote by Wr the set {w C W; /(O) = rr}.
There exists a continuous strong Markov process (Ws^w) with values in
We whose law is characterized by the following two properties. Under P-y;,

(i) the process ̂  := C(H^) ls a reflecting Brownian motion on R+, which
starts at Co = C(w);

(ii) conditionally given (Cs,5 ^ 0), the process fs := f(Ws} is a time-
inhomogeneous continuous Markov process with values in C, which starts
at /o = /(w) a^ whose transition kernel between times r and 5 is

PrM,df')=Q^^^(dn.

Property (ii) has the following important consequence, that will used on
several occasions in this paper. Outside a P^-negligible set, for every r < 5,
one has fr(t) = fs(t) for every t < mir<u<s (u-
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We will also need to consider the process (Wg) killed when its lifetime
vanishes. The resulting process is denoted by (IVg,?^). Its distribution can
be described as previously except that reflecting Brownian motion on M+
is replaced by Brownian motion killed at its first hitting time of 0. The
natural state space of (Ws,P^) is W^ = {w e Wr, C > 0} (augmented
with a cemetery point).

We refer to [LG1], [LG2] for the construction and more information
about these path-valued Markov processes. The process (Ws,P^) is clearly
transient. Its potential kernel U(w^dw') is easily computed (cf [LG1],
we take this opportunity to point out that a factor 2 is missing in the
corresponding formula of [LG1]) :

/ /•C(w) /•oo r
U(w, dw1) ̂ >(w') =2 da db <%((W) <^(w').

Let Px(df) denote the law on C of Brownian motion started at x (the
Wiener measure with initial point x). For every a > 0, let P^ be the law
under Pj;(df) of the pair (/(• A a), a) (P^ is the law of Brownian motion
stopped at time a, viewed as a probability measure on Wx)' Both processes
(Ws^w)j (Ws^^) are symmetric with respect to the reference measure

r ° °
M^(dw)= \ daP^(dw).

Jo
We can therefore apply the general results of the potential theory of
symmetric Markov processes (see [FG] and [Dyl]) to the transient process
(lY^P^). Let IJL be a finite measure on H^ such that iiU is cr-finite and
absolutely continuous with respect to Mx. According to [FG], we can choose
a version U(p) of the Radon-Nikodym derivative

d^U
dM^

such that U{jji) is excessive (with respect to the process (IVs,?^)). The
energy of IJL is then defined by

£(/.) =< ̂  U^) >= L(dw)£7(/.)(w).

If flU is not cr-finite, or if the condition flU <C M^ does not hold, one takes
£(f^) = oo.

1.2. Our first goal is to obtain a more tractable formula for the energy
£(/^). We denote by {Qt) the canonical filtration on C {Qt is the cr-field
generated by the coordinate mappings / —f f(r), 0 < r < t).
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PROPOSITION 1.1. — Let ^ be a finite measure on H^. For every t > 0,
let fi^t) be the finite measure on (C, Qt) defined by

^)(A)=/,(C>t, /eA).

The measure f^U is a-finite and such that flU <€ Me, if and only if, for
every t >_ 0, the measure JL^) is absolutely continuous with respect to the
measure P^ restricted to Gt • If this condition holds, we can choose for every
t > 0 a version Yf of the Radon-Nikodym derivative of /^) with respect to
Px\Qt^ so tnat tne process (Yf) is both (Qt)-predictable and P^-a.s. cadlag.
Finally,

U(^)(w) = 2 [ dtYt(f) , M,{dw) a.e,
Jo

and

£ W = 2 E ^ ^ d t Y A = 2 ^ d t E ^ ( d ^ \
\Jo / Jo ^^x^t/

/»oo \ /»oo / / , ] , , \ 2^
r ^V2} 9 [ ^F i ( ^ \•-x \ i dtYt 1 = 2 / dtE^ I ,_—— 1

A) / JO VY^I^/ y

Proof. — Suppose first that flU is a-finite and such that uU <$: M^.
Let t > 0 and B € Qi such that Px(B) = 0. Notice that, for u ̂  t, the law
°f /(w) under P^ coincides with Pa; on the cr-field Gt- Hence,

M , ( C > t , / G 5 ) = F)duP^f^B)=0.
J t

It follows that

o = ̂ (C > t, / e B)

= 2 L(dw) / (w) da F db f Q^dw') IB^))
J JO Ja\/t J

>2y > / , ( dw) l ( ^> , ) / > ( w ) da / > dblB(fw)

because, when t <^ a < C(w)5 /(wQ coincides with f^\ on the time interval
[0,t], O^^(dw') a.s., and we use the fact that B is ^-measurable. We
conclude that

/^)(B) = /^(dw) 1(^>,) IB(/) = 0

so that /^(t) < Px\Gt-
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Next suppose that /^) <^ Px\Gt ^or every t > 0. Let Xf be any version
of the Radon-Nikodym derivative of /^) with respect to Px\Qt- ̂  ls easy to
verify that (Xt) is a (^, Pc) supermartingale : If u < t and A G Gu,

WAXt) = ̂ (/(w) ^ A,C(w) > ^) < ̂ (/(w) € A,C(w) > U) = E^lAXn).

Moreover, E^{Xt) = /^(C > ^) is a right-continuous function of t.

Denote by Qt the smallest cr-field that contains Qt and the Pc-
negligible sets of Qoo. It is well-known that the filtration (Gt) is right-
continuous. By a standard regularization theorem, there exists a version
{Xt) of the process (Xf) (meaning that for every t, Xt = Xf, Pa;-a.s.) which
is a cadlag (0i, Px) supermartingale. Since the (Gt) optional and predictable
cr-fields coincide, the process (Xt) is in particular (^-predictable. We
then use the following easy fact : For every ((^-predictable process (Hf),
there exists a (^-predictable process (H^) such that (Hf) and {H[) are
indistinguishable (this fact is trivial for elementary processes of the form
Hf = IA l(n,v](^)5 ^ e Qu-> and can then be extended using the monotone
class theorem found in [DM], p. 20-22). We let (Vf) be a (^-predictable
process such that Yt(f) = Xt{f) for every ^, outside a Pa;-negligible set.
Obviously (Yf) is cadlag outside a Pa;-negligible set.

Let us now compute the potential of ji. For any nonnegative measur-
able function (/?,

J / 1 ̂ U(dw)^(w)= f^dw)f daFdbjQ^dw')^)
/*00 /*00 /* P

=f daj dbj ^(df)j Q^(dw')v(w')
/*00 /*00 /' f

= da db P^(df) Y,(f) / Q^{dw') y(w')

POO /*00

= da dbE^w)Y^f^))
JO J a

/•OO / /•C(w) \

= dbE^[^w) daYa(f^)]
Jo \ J o )

( fC \
=M, [^ daYa(f) .

V Jo /

For the second equality, notice that f Q^^dw') ̂ p{w') is a ^a-measurable
function of /. In the fourth equality, we also use the property that Ya is
^-measurable to get ^(/(w')) = Ya{f), 0^(dw')-a.s.



POTENTIAL THEORY FOR A PATH-VALUED PROCESS 285

Observe that

^ ( ( (w) daYa(f^)) = fbdaE^Ya)<b<^l>.
\Jo ) Jo

Therefore, fo daYa(f) < oo, Mc(dw) a.e. and the previous calcula-
tions imply that ^U is a-finite, jiU <^ Mx and

^(w)=2/1 daW), M.a.e.
dM^ JQ

It remains to compute the energy £{^i). Note that the right side of the
previous equality may not be an excessive function of w, so that we cannot
identify it with £7(/^)(w) for every w C V\4. To overcome this difficulty, we
choose a countable dense subset D of R+ such that, for every b € D,

UW (w)= 2 / daVa(/), P^a.s.
./o

We then let hn be an increasing sequence of measurable functions from
(0, oo) into D such that, for every t > 0, hn{t) < t and

t = lim hn(t).
n—»-oo

Let w € W^. For a < ^, set W(a) = (/(w)(' A a), a) € Wr. We claim that

UW(w) = lim T ^(^)(^(a)).
aTC(w)

In fact, if T(a) = inf{s, ^ = a} we have T^ [ 0 as a f C(^), P^ a.s.,
and WT^ = W(a) from the properties of the process (Ws). Therefore, the
claimed result follows from the right-continuity of U(fJ,)(Ws).

Then,

< ^ , L r ( ^ ) > = lim T / /2(dw)£/(^)(w(^)))
n—»'oo J

/• ^n(C)^n(C)

/O

/•MC)
:w) /

0

j ^(dw)j daYa(f(^h^)))= lim T 2

/• /•MC)
= lim T 2 / /^(dw) / daYa(f)

n^oo J JQ
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=2J'^(dw)[ daYa(f)

=2^ daj^(df)Y^f)

/*00

= 2 / daE^).
JoJO

For the second equality, note that, for any b > 0, the law of w^) under
^{' H {C > b}) is absolutely continuous with respect to P^ and use the
choice of D. The previous calculation completes the proof. D

Remark. — In explicit examples (see below and [LG1]) one can usually
verify that the function

/<
h(w)=2 \ dtYt(f)

J o
is excessive, so that the final part of the proof can be simplified.

1.3. Let us now consider the Markov process (W^P^). The trivial
path (/, C) such that C == 0, /(O) = x is clearly a regular point for this
Markov process. We denote by N3; the excursion measure from this regular
point. The measure ̂  is defined on the canonical space C(R+,H^) of
continuous functions from R+ into M4. Without risk of confusion, we also
denote by Ws = (fs, (s) the canonical process on this space. Under N3;, the
lifetime process ^ = C(iv,) is distributed according to the Ito measure
of positive excursions of linear Brownian motion, and the conditional
distribution of (fs)s>o knowing (Qs>o is the same as previously. We
normalize N3; so that, for every e > 0,

^x supCs > e
\s>0 ^

_L_
2i5

and we denote by o- the duration of the excursion (Q under N3; (Cs = 0 if
and only if s = 0 or s > a).

The range 7Z of (Ws) is defined under N^ by

^ = {Ws(t\,t > 0, 0 < s <a} = {W^0< s < a}

(the second equality follows from the special properties of the process
TO).
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Let F be a closed set in M^ not containing x and let

n(a-)=N^(7ZnF^0)

be the hitting "probability" of F under N3;. The function u is the maximal
nonnegative solution of the equation

An = 4n2

in R^F. This result was first proved by Dynkin [Dy2] in terms of superpro-
cesses (see [LG2], Prop. 5.3, for an approach via the path-valued process).
If F has a smooth boundary, or more generally, if every boundary point of
F is regular for F (with respect to Brownian motion in R^), then

lim u(x) = oo
x^y^x^R^F

for every y G 9F (see [Dy2] and [LG2], Section 5).

The function u is either strictly positive on R^F or identically zero.
In the second case, we say following Dynkin [Dy2] that F is 7^-polar.

2. Hitting probabilities and capacitary measures.

Let F be a closed subset of R^, such that x ^ F. We assume that F
is not 7^-polar. We introduce the set of all paths that hit F :

H={we^3te[^^f(t)eF}.

In this section, we will investigate the hitting probabilities of H for the
killed process (Ws,P^). We will prove that H is an equilibrium set, in the
sense of [FG], and we will compute its capacitary distribution.

We first recall a few basic results (see [FG]). Let B be a Borel subset
of V^ and let

TB = mf{s > 0, Ws e B}.

The function w —> P^(TB < oo) is excessive (with respect to the process
(Ws,P^)). We say that B is an equilibrium set if this function can be
written as the potential of a measure, that is if there exists a cr-finite
measure TI-B on W^ such that

TTBU(dw) = P^(TB < oo) M^(dw).
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The measure TTB is unique and is called the capacitary measure of B. The
capacity of B is

r(B)=<7TB^>

(the capacity of B can be defined more generally, see [FG], p. 503). Note
that F{B) = 0 if and only if P^(TB < oo) = 0, M^{dw) a.e., in which case
B is called Ma;-polar. Our assumption that F is not 7^-polar is easily seen
to be equivalent to saying that H is not Atc-polar (see [LG1]).

LEMMA 2.1. — For every w = (/, C) ^ W?? set

r(w) = r(/) = inf{t > 0, f(t) e F},

where inf 0 = oo. Then

( 1 , if r(w) < C ,
WH < oc) = ] 1 - exp f-2 /lc ̂ (/(r)) dr} , if r(w) > C ,

I \ Jo )

where for every y € R^F,

^)=N^7ZnF^0).

The set {w e W^; r(w) < C(^), ̂ w u(f{r)) dr < 00} is M^-polar.

Proof. — We start by proving the formula for P^(Tjcf < oo). The case
r(w) < (^ is trivial from the behavior of the process (TVs). Suppose now
that r(w) > ^. According to Proposition 2.5 of [LG2], there exists under
P^ a Poisson measure

E .̂
i

on (^(R^W), with intensity

/•C(w)

2 / ^N^(,)(.)
Jo

such that

{H^); 5 > 0, 0 < t < CJ = {/(r); 0 < r < C} U (lj7Z(^))
\ z /
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where 7^(/^) denotes the range of /^. Since r(w) > <\ we have {/(r); 0 <
r < <} H F = 0. Therefore,

WH < oo) = P^ [ [j 7Z(/^ H F 7 )̂
\ \ i / /

=i-p^[n{7Z(^)nF=0}')
V i I

=l-exp | -2 ^u(f(r))dr}
\ Jo )

using the Poisson exponential formula and the definition of u.

Then, let H" denote the set of regular points of H. By the first
part of the lemma, the set H ' = {w; r(w) = C, ̂ w u{f(r)) dr < 00} is
contained in I:f\fT. This set is therefore semipolar hence M^-polar ([FG],
(2.9)). However, because of the properties recalled in Section 1, the process
(Ws) cannot hit the set {w; r(w) < C, Jo^^ ^(/(r)) dr < °°} without also
hitting H ' . The desired result follows. D

THEOREM 2.2. — The set H is an equilibrium set. Its capacitary
measure u, is characterized by the following property. For every t >_ 0, the
measure fji^ is absolutely continuous with respect to PX\Q^ and

du(f\ / /lt \
-dp—— == ^KrW) ̂ fW eXP -2 / U{f(8)) ds .
^AGt \ Jo )

Proof. — We first consider the case when F is a closed half-space.
Without loss of generality, we may take F == {(y1, ...,^);^1 < 0}. The
function u is then easily computed : u{x1,..., X6') = (p(x1), where ( p " = 4y?2

and

lim (^(a'1) == oo.
rrUO v /

It follows that ip(x1) = 3/(2(a;1)2). Observe that

vn^! ^) - (.1 o 0^1
n {x ' ' " ' x J - ^ ^i'0—0^

Then consider the stochastic differential equation :

dxf=d/3t- f^,0,...,o) dt
\xt )

XQ = X
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where (/^) is a d-dimensional Brownian motion started at x, on a probabil-
ity space (^,^,P). The solution is a priori well-defined on the stochastic
interval [0,7-^], where t, = inf{^; x\ ^ ^}, e > 0. A simple comparison
argument shows that f = lim f^ < oo a.s. and that Xr = limr^ exists a s

£—^U ^-t-^

We may therefore define a probability measure /^o on H^ as the law of
((«^Ar)t>o^)- We will check that the capacitary measure of H is u(x)fio.

Set T^ = inf{^ ̂  < e}. By Ito's formula,

/ ^AT; \
(/?tAr^) exp-2/ u((3r)dr)

'^-(r^^'^-jr^^")
By Girsanov's theorem, for every t ̂  0, the law of (a-rArJo<r^t coincides
with the law of (/3rA^)(Kr<( under

^^^r^)*)-
Let r^(/) = inf{t, f^t) < e}. It follows that, if ^ : C -> M+ is

^-measurable,

^o(l(^(/))^(/)) = ̂  ̂ "^l^^^^ exp (-2y\(/(r))dr) ^(/))

and, by letting e go to 0,

^o(l(t<o <!>(/)) = ̂  (<z^)!^^^^ exp [-2 [ t u{f(r))dr\ <E>(/)) .
v v / \ Jo / J

In the notation of Proposition 1.1, we get

W) = ̂ ^-C/))^ exp (-2 fua^dr} ,
^W \ Jo )

Pa;-a.s. In particular, Mr-a.e.,

/lc 2 /^M/) / />t \
Vo Yt{i}di^^)^ dtu(f(t))exp^-2J u(f(r))dr\

/•c2 / ^
^0

rCAr(/)
= —— | 1 - exp -2 /^ l-exp-2^ .(/(.)),.^^) v yo
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which by Lemma 2.1 coincides with the excessive function

——^(TH < oo)u(x)

outside an Mc-polar set.

We have thus proved that P^(Tjy < oo) is the potential of the measure
u(x)iJiQ. In particular, H is an equilibrium set.

Let us now come to the general case. Since F is then contained
in a finite union of closed half-spaces not containing a;, we can bound
^(TH < oo) by the potential of a finite measure. According to [FG],
(2.7), we know that P^(TH < oo) is itself the potential of a measure so
that H is an equilibrium set. Let ^ be the capacitary measure of H. Notice
that /z is finite (the previous argument implies that the capacity of H is
finite). In the notation of Proposition 1.1, we have, Mx(dw) a.e.,

o I \^ f j-\ ̂  n( \( \ f 1 if C > r(w)2^y,(/)d^^)(w)=^_^_^^(^^ ̂

by Lemma 2.1. Therefore, Px(df) a.e.,

/< / K \
2 / Yt(f) dt = l(c>.(/)) + l(c<r(/)) 1 - exp -2 / u(f(r)) dr

Jo \ Jo )

for all C G R+ except possibly on a set of zero Lebesgue measure. Recall
that t —^ Yt(f) is Px a.s. cadlag. By differentiating the previous formula, it
follows that, Px a.s.,

Yt(f)=0 , if^r(/),
V,(/) = u(f{t)) exp -2 ̂  u{f(r)) dr , if t < r(/).

It follows that /^) has the form given in Theorem 2.2. It is then easy to
check (for instance by applying the monotone class lemma to sets of the
form {C > t}n{f C Af}, At e Qt) that the collection (/^(t))^o characterizes
^. D

COROLLARY 2.3. — Let (3 be a standard d-dimensional Brownian
motion started at 0. For every e > 0, let (x^t> 0) be the unique solution
to the stochastic integral equation

tA^/»tAT ^7

xEt=x+ /^Ar8 + / —(^) ds
Jo u
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where r5 = inf{t, d(x^F) < e or \x^\ >, 1/e}. Then, for every sequence
(en) decreasing to 0,

T = lim f r£n < oo a.s.
n—^oo

Furthermore, there exists a (unique) continuous process (xf^t > 0) such
that for every e > 0, x^ = x^ for every t C [0,^], a.s., and Xt is constant
over [r,oo).

Finally, the capacitary measure ^ of H is u(x) times the law in W^
of((xt)t>o,r).

VZAProof. — Since the function —— is smooth and bounded in
u

{y, d{y,F) > e, \y\ < I/-?}, the existence and uniqueness of (x^) follows
from well-known results on stochastic differential equations. It is also clear
that for £ < < ? ' , Xs coincides with Xs' on [0, r^]. We may therefore take any
sequence (e^) decreasing to 0, set f = lim T ren € (0, oo] and define on the
stochastic interval [0,r) a process (a^) such that Xf = x^ for t < r^, a.s.

For / e C set T^(/) = inf{t, d{f(t),F) ̂  e or |/(t)| > 1/e}, and

^, «(/a_(/») expf^r-'" «(/M)*).
"^^ Y */0 y

Ito's formula ensures that M^ is a bounded (<?t,Pa;)-martingale. In partic-
ular, M^ converges a.s. as t —^ oo. Then there exists a unique probability
measure Q6 on C, defined by

Q£(df)=M^f)P^df),

such that for every t > 0, the Radon-Nikodym derivative of Q6 with respect
to Px on Qt is M^(/).

Since M^ is the exponential martingale associated with
^Ar,(/) ̂
/ ^(/(r)).d/(r)

Jo "'

Girsanov's theorem implies that
rt^(f) ̂

W- \ ——mr))dr
Jo u

is a (Q8\Qt) Brownian motion. This shows that, under Q6, the process
{f(t A T^/)),^ > 0) satisfies the same integral equation as (x^t > 0).
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Therefore these two processes have the same distribution. In particular, for
any nonnegative measurable function <1> on C, and any t >, 0,

EM l(,<,e) ^(/(r At) , r > 0)] = E[l^^ ̂ {x^r ̂  0)].

Using the process {xt) introduced above, this equality can be rewritten as

^/<^ expf-2/1''u(f{r))dr\ l(̂ ) <^(/(r A t\r > 0))
\ u\x) \ Jo / /

=E[l(t<r^^(XrM,r>0)}.

By letting e go to 0, we obtain

^f"^ expf-2/'* u(/(r)) dr) !(«,) $(/(r A t), r ̂  0))
\ u\x) \ Jo / /

=E[l(t<r)^(XrM.r>0)}.

Let [i be the capacitary measure of H as in Theorem 2.2, and let
v = n^)"1/^. By Theorem 2.2, the previous equality can be stated as

f v{dw) 1(,<^ ^(/(r A t), t > 0) = ^[l(t<.) ̂ At, r > 0)].

If we take <]> = 1 and let t tend to infinity, we obtain P[f = oo] = 0. Put
x^ = Xt if t < f, ̂  = A if t > f, where A is a cemetery point added to R^.
The previous equality implies that the law of x* and the law under v of
y*(t) === f(t) l(t<<^) + A l(t>^) have the same finite-dimensional marginals.
It follows that lim x^ exists a.s. We denote this limit by Xr and set Xt = Xr

t^r
for t > f. Then the previous equality implies that v is the distribution of
((^Ar^>0),f). D

Remark. — The previous results show that the capacity of H is

cap(Jf) =< JLA, 1 >= u{x).

On the other hand, we also have cap(Jf) = £{ii) so that Proposition 1.1
yields the equality

u(x) =2E^( [ dtu(f(t)f exp-4 / u(f(r))dr) .
\Jo Jo )

Let
^

^=^^-
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The probability measure /^o, which is the law of the process {xf) of Corollary
2.3, solves the problem

^0)=^)^)

where P(H) denotes the set of all probability measures supported on H
(see the remarks at the end of [FG]). Therefore, we get

—=^E.(r(^f)}\t}2^) 7 '^o Wi^y )
where the infimum is taken over all probability measures 7 C P(H) such
that 7c^) <^ Px\Gt ^or everv t > 0. Moreover, the infimum is attained only
for 7 = ^o-

3. The characterization of polar sets.

In this section, F is a compact subset of R^ and x € R^F. For
reasons that will appear later, we also assume that d > 4. As we have
already observed, the set F is 7^-polar if and only if the set H = {w G
H^; 3t > 0, f(t} C F} is M^-polar.

Polar sets have been investigated by Dynkin [Dy2], [Dy3], in fact in
a more general situation. Dynkin's work uses analytic results on removable
singularities for semilinear partial differential equations. Our goal here is
to give a more probabilistic approach to the characterization of polar sets.

Let us briefly recall the arguments used in [LG1]. Suppose we aim to
prove that F is not 7^-polar, or equivalently that H is not Ma;-polar. By
the general results of [FG] (see also [Dyl]), it is enough to check that
H supports a nontrivial measure fi with finite energy (in the sense of
Proposition 1.1). We choose a finite measure v in M^, supported on F^
and we take

ti{dw) = j v{dy)G{x,y)P^y{dw)

where G{x^y) = \y — a-]2^ is the Green function of Brownian motion in
R^, and P^y(dw) denotes the law of Brownian motion started at x and
conditioned to die at y (P^y can be viewed as a probability measure on
W^). The conditioning here is in the sense of Doob's fa-processes, with
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/i(') = G { ' ^ y ) . In the notation of Proposition 1.1,

d{Pxy\t^ G(f(t)^y)
dP^, { J ) G(x^y) '

It follows immediately that

Yt{f) = -t^Cn = f^dy)G{f{t)^y)
^Gt J

and by Proposition 1.1, the energy of ji is

U ^ ( [ \^\£W=2E^ dt( ^dy)G(f{t),y))
\J ) )

=2jdzG^z)(j'v(dy)G^y)} .

Therefore, we arrive at the following result (first established by Perkins
[Pe] in terms of super Brownian motion).

PROPOSITION 3.1. — Suppose that F supports a nontrivial measure
v such that

( dz G{x, z) ( ( J^(dy)G{z, y)\ < oo.

Then F is not T^-polar.

A few lines of calculations show that the condition of Proposition 3.1
is equivalent to

( (v(dy)v(dz) \y - z^ < oo, if d > 4,

/ / y(dy}v{dz} log ,———. < oo, if d = 4.
j J \y i

We get in particular that straight lines are not 7^-polar when d = 4.
By an obvious projection argument, it follows that singletons are not 7^-
polar when d < 3. Hence, there are no nonempty 7^-polar sets in dimension
d^3.

The problem in proving the converse to Proposition 3.1 is that a
measure JJL supported on -F and with finite energy may not be of the type
JLA = J v{dy)Pxy. In fact, we already know that the probability measure
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that minimizes the energy, namely the equilibrium measure of H^ is not of
this type. We keep assuming that d > 4.

PROPOSITION 3.2. — Suppose that F supports no nontrivial measure
v such that

( dz G(^ z) ( f v{dy) G(z, y)\ < oo.

Then F is K-polar.

Proof. — Let I7' be a compact set that satisfies the assumption of
Proposition 3.2. We assume that F is not 7^-polar and will arrive at a
contradiction. If F is not 7^-polar, the function

u(x)=^(n^F^0)
is a nontrivial nonnegative solution of An = 4u2 on R^F.

We first note that, in the assumption of Proposition 3.2, we may
replace the function G{x^y) by the classical Bessel potential g^(x — y)
defined as in Meyers [Me], Section 7. By combining the results of [Me],
Theorem 14 and [AP], Theorem A, we obtain that the assumption of
Proposition 3.2 is equivalent to the equality 03,2 {K} = 0, where the capacity
C2,2 is defined in terms of Sobolev norms, as in [BP] for instance. Then,
let 0 be a bounded open set containing F. By [BP], Lemme 2.1, we know
that there exists a sequence Vn € C^°(0) such that 0 < Vn < I? ^n = 1 on
a neighborhood of F and

lim ||^n||2,2 =0.
n—>oo

Here ||'yn||2,2 = Ihnib + IIV^nIb + I I V2^!^ is the usual Sobolev norm.
We will use the sequence (vn) for the proof of the next lemma which is

a special case of [BP], Theoreme 2.2. We give the proof for the convenience
of the reader.

LEMMA 3.3. — Under the assumption of Proposition 3.2, any mea-
surable function u on M^ which solves An = Au2 in R^F is locally square
integrable.

Proof. — Let (p G C^Q^) with 0 < ^ < 1. Set (pn = ̂ (1 - ̂ n), so
that (pn converges to (p in L^R^). Then,

4 / ̂  u2 dx = j ^ An dx = / A(^) u dx,
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by Green's identity, using the fact that (pn vanishes in a neighborhood of
K. Then,

^u<2dx=3 ^^nudx+ y ̂ ^^udx

f r V72/ r V72 / r V72/ r V72
$3( ^dx) ( (^^dx} + (^^ 2 ^ j (yiV^I4^)

/ /. \i/2
^C^ ^^dx\ ||^||2,2,

using the easy inequality,

/ r \ l /2

(JIV^4^ <G||^||^||VV,||2,

which follows (for instance) from an integration by parts. Since the sequence
lhn||2,2 is bounded, we get

(\p^u2dx<C

and Fatou's lemma completes the proof. D

We now complete the proof of Proposition 3.2. Let ^ be the equilib-
rium measure of H as in Theorem 2.2. We know that

/<
/^(dw) a.e., / u(f(t)) dt = oo,

Jo

since the set {w; w € F and f^ u{f(t))dt < 00} is Ma;-polar by Lemma
2.1. Choose R > 0 such that

^({w;sup | / ( t ) |<^})>0.
t>0

It follows that

y /^(dw) j ^{\fW\<^R}u{f(t)) dt = oo.
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However, using Theorem 2.2,

^(dw) l^f^\<R}u(f{t))dt

POO / ^t \

= dtE^l^^^u^fWexp-^ u(f(s))ds]
Jo \ Jo )

a oo \

<E, dtl^i^n2^))
/

= / dyl^<R}G{x,y)u2(y)

< oo,

by Lemma 3.3. We arrive at a contradiction, which completes the proof. D

4. Hitting probabilities for boundary sets.

In this section, we consider a bounded domain D in R^. We assume
that D is a Lipschitz domain, meaning that the boundary of D can be
locally represented as the graph of a Lipschitz function (see [HW] for a
precise definition). We also assume that x € D. For w € Wa;, we set
T-(w) = inf{^; f(t) i D} < oo. The range U0 is defined by

^D = {Ws(t)^ s > 0, 0 ̂  t^ C, A r(^)}.

Obviously, 'R? C -D, N^ a.e., where D denotes the closure of D. A subset
K of 9D is called <9-polar if

N^^n^^)^.
As was the case for N3; (7^ D J^T 7^ 0), it is easy to check that this condition
does not depend on the choice ofx^.D (use Proposition 2.5 of [LG2]). Our
goal is to investigate the class of 9-polar subsets of 9D. Notice that K is
(9-polar if and only if the set

H={w^^r(w)=^weK}

is Mc-polar.

We fix a reference point XQ G D and we denote by H { x ^ y ) ^ x G D,
y C 9D the corresponding Martin kernel :

TTf \ V GD^X.X')H(x,y)= hm ————-v ^ / x'-^y^CD GD{XQ,X')



POTENTIAL THEORY FOR A PATH-VALUED PROCESS 299

where GD is Green function of Brownian motion in D. This definition
is correct because the Martin boundary of D can be identified with its
Euclidean boundary (see [HW]). For any fixed y 6 9D, the function H ( - ^ y )
is positive harmonic in jD, and for any fixed x C D^ the function H ( x ^ ' ) is
continuous on 9D.

Our first result is analogous to Proposition 3.1.

PROPOSITION 4.1. — Suppose that K supports a nontrivial measure
y such that

j dzGo^x.z) ^ j f{dy) H{z,y) ) < oo.

Then K is not 9-polar.

Proof. — We check that H is not Mc-polar by constructing a measure
u. supported on H with finite energy. We take

^(dw)= [^dy)H(x^y)P^(dw)

where P^y denotes the law (in Wr) of Brownian motion started at ;r,
conditioned to exit D at y , and stopped at that exit time. More precisely,
we consider the /^-process of Brownian motion started at x associated with
the harmonic function h(') = H { - ^ y ) . By adapting the arguments of Doob
[Do], p. 692, it is easy to verify that this /^-process converges to y at its
lifetime. Therefore, we can interpret its law as a probability measure P0

on H^, which is supported on

{w; r(w) =C(w), ^ =y}'

By the definition of an h- process,

^^ H(f{t)^y)
dP^, (t<T) H ( x ^ y ) '

It follows that

-^ -!(,<,) f^dy)H{f(t^y)
^^Qt J
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and, by Proposition 1.2, the energy of fi is

^) = E^ ̂  (ft (^f^dy)H(f(t),y)\2}

= ID dz GD{X' z) (/ v{dy) H(z'y))
which is finite by assumption. r-\

COROLLARY 4.2. — Suppose that D is a C^domaln. If d = 2, any
nonempty compact subset of 9D is not 9-polar. If d ̂  3, if K supports a
nontrivial measure v such that

/ / v{dy)v(dz) log ,———. < oo if d = 3,J J \z-y\ '

f f v(dy)v(dz) \z - y}3-4 < oo if d ̂  4,

then K is not 9-polar.

Proof. — Note that

y dzGo{x,z) ( /v(dy)H(z ,y) }

= j j v(dy)v(dy') [ dz Go(x, z) H(z, y) H(z, y').

When D is a C2 domain, it is known that GD and H satisfy the following
estimates. For \z — x\ >_ e > 0,

GD(x,z)<C(x,e)p(z)

H^y^Cp^z-y^

where p{z) = d(z, 9D) (these estimates can be easily derived by comparing
GD to the Green function of suitable domains such as an interior tangent
sphere or the complement of an exterior tangent sphere). It follows that

[ ( C(x) if d = 2,
j dz Go(x, z) H(z, y) H(z, y') <, ! C(x) (1 + log+(^)) if d = 3,

\C{x)\y-y'\^ i f r f ^ 4 ,

which completes the proof, r-i

In view of Proposition 3.2, one may expect that the converse to
Corollary 4.2 (or to Proposition 4.1) holds. We now present a partial
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converse, which relies on the results in Abraham and Le Gall [AL]. If h
is a suitable function from R+ into R+, we denote by h — m the associated
Hausdorff measure.

PROPOSITION 4.3. — Suppose that d > 3 and that D is a C2

domain. Set h^{r) = [logr]"1 and hd{r) = r^"3 ifd > 4. The condition
hd — m(K) = 0 implies that K is 9-polar.

Proof. — It is proved in [AL] that, for x <E D, y e 9D and e e (0,1/2),

N^H0 ^BQD{y,e) ̂  0) ^ C{x)hd(e)^

where BQD^V^ s) = { y ' e QD\ \yt—y\ < e} and C{x} is a constant depending
on x. Let 6 > 0. By assumption, there exists a covering of K by balls
BQD^Vi^i), with yi € 9D, Ci e (0,1/2), such that

Y,hd{e,)<6.
i

It follows that

^(U0 ^K + 0) < ̂ N,(7^ nBQD(Vi^i) + 0) <. C{x)6,
i

which gives the desired result since 6 was arbitrary. D

In particular, points are 9-polar as soon as d > 3. The latter
fact can also be derived from the results of Gmira and Veron [GV] and
the connection with partial differential equations described in the next
proposition.

PROPOSITION 4.4. — Let K be a compact subset of9D. The function

u(x)=^(nDnK^0)
solves An = 4n2 in D, with boundary condition

lim u(x) = 0
x—>y,xED

for every y C QD\K. Moreover, u is the maximal nonnegative solution of
this problem.

Proof. — Let 0 be a subset of QD^ which is open for the relative
topology of 9D. Denote by X0 the exit measure of D (see [LG2]). As a
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consequence of [LG2], Proposition 5.5, which can be applied here because
D is a Lipschitz domain, we know that the topological support of X°
coincides N3; a.e. with the set {Ws(r(Ws))', s > 0,r(Ws) < oo}. Hence,

^(n0 n o ̂  0) = ̂ {x°(0) > o).
However,

N^X^O) > 0) = lim N^(1 - exp^AX^O))),
\—>00

and the function v\(x) = Na;(l — exp(— XXD(0))) solves ^\u\ = 4i^ in
D ([LG2], Section 4). Using the associated integral equations, it is easy to
obtain that v(x) == lim v\(x) solves the same equation (see [LG2], Section

A—^oo
5 for similar arguments).

We may then find a decreasing sequence of relative open sets On such
that K = n On' Denote by v^ the corresponding functions. Obviously,
u{x) = lim [ ^(n)^) ^d th6 same arguments as previously show that
An = 4u2 in D.

Let us now fix y 6 9D\K, and choose a € ( 0, -^d(y, K) ) . Then, for
\ 2 7

6 > 0, e > 0, and \x — y\ < a,

^(nD^}K^0) <N^(35C [0,^]U[(a-^)+,a] , |lV,-.z-| > a)
+ N^(a > 2^, inf{C., s € [<5, a - ̂ ]} < ^)
+ N,(C^ > e^ [Wsd^ 0 < t < e} C D),

(recall that cr denotes the duration of the excursion (<^) under N3;). To get
this inequality, one argues as follows. The event

({a < 26}U{3s C [0,^]U[(a-^)+,a] and^ Os.t. W,(t) e K})^{nnK ^ 0}

is contained in

{3s e [0, 6} U [(a - ̂ +, a], |TV, - ;r| > a}.

Suppose then that a > 26 and that the paths Ws, s C [0, 6} U [(a — <5)+, cr]
do not intersect K. By the properties of the path-valued process, the paths
Ws, s C [6^cr — 6\ all coincide with WQ on the interval [0, h], where

/ i = i n f { C . , 5 e [<5, a-<?]}.

In particular, if {W^(^),0 < ^ < h} exits Z^ (automatically at a point of
9D\K by our assumption), then none of the paths Ws, s e [6, a — 6} can
exit D at a point of K.
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We then observe that

limN^(3s€ [(V]U[((7-^)+,a], \Ws - x\ > a) = 0
6^0

from the continuity of the mapping s —^ Ws. Also, for every fixed 6 > 0,

limN^(cr > 26, inf{Cs, s € [6,a - 6}} < e) = 0.
£[0

Finally, if e > 0 is fixed, the fact that Wg is a Brownian path started at x,
together with our assumption on D implies that

lim N^ > £, {T^),0 < t < e} C D) = 0.
x^y

It remains to verify that u is the maximal solution of the given prob-
lem. To this end, consider a decreasing sequence Kn of closed neighbor-
hoods of K such that

K n C { y e R d ^ d { y ^ K ) < 2 - n } .

We may assume that every point of 9Kn is regular for Kn. We then take n
large enough so that XQ ^ Kn, and we let Dn be the connected component
of D\Kn that contains XQ. We set Un = 9Dn\9D C 9Kn and

Un{x)=^(nDnnUn^0)

for x C Dn. It is easy to verify that Un > u and more precisely that
u(x) = lim J, Un(x}.

Note that Un is open in 9Dn and that Un{x) > ̂ {^^{Un) > 0) >
Na;(l - exp(-AXDT^((7n))), for every A > 0. Using Corollary 4.3 of [LG2],
we easily get

lim Un(x) = oo,
x—>-y,xeDn

for every y € Un. The maximum principle (see e.g. Dynkin [Dy2], Ap-
pendix) then implies that any other nonnegative solution v of the problem
of Proposition 4.4 satisfies v < Un on Dn' This completes the proof, since
Dn increases to D as n —>• oo. n

Remark. — The result of Proposition 4.4 holds more generally under
the assumption that every point of D is regular for R^D (the first part of
the proof has to be modified).
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In view of Proposition 4.4, we see that K is not 9-polar if and only
if the problem of Proposition 4.4 has a nontrivial nonnegative solution. In
particular, the condition of Proposition 4.1 ensures the existence of such a
solution.

The next theorem presents results analogous to Lemma 2.1 and
Theorem 2.2.

THEOREM 4.5. — Suppose that K is not 9-polar. Let

TH = inf{5 > 0, Ws G H}.

Then, for every w G H ,̂

y ̂  . ^ f l ^f ̂ ) < C ^d w e K,
^w^H < 00) = < /.CAr(w) / / . / ^ ,7 \ 'f ^\ 1 - exp(-2 JQ u{f(r)) dr) , if not.

In particular, the set {w € W^; r(w) < C(^), /(r(w)) € K, f^ n(/(r)) dr
< 00} is M^-polar.

The set H is an equilibrium set. Its capacitary measure ^ is such that,
for every t > 0, the measure /^) is absolutely continuous with respect to
Px\Gt, ^d

d^ = l^^u(f(t)) exp f-2 /l\(/(.))^) .
^x^t \ Jo )

Proof. — The proof of the first part of Theorem 4.5 is exactly similar
to the proof of Lemma 2.5, using again Proposition 2.5 of [LG2]. The fact
that H is an equilibrium set is immediate from a domination argument.
We can then argue as in the proof of Theorem 2.2. If (Xf(/)) is a {Qi)-
predictable, P^-a.s. cadlag version of the Radon-Nikodym derivative

^(t)

^{Gt

we know by Proposition 1.2 that

2 / X,(/) dt = U^)(w) = WH < oo),
Jo

Mx{dw) a.e. The desired result follows by differentiation. D
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A result analogous to Corollary 2.3 also holds in the present setting.
If (xt) denotes the solution of the stochastic differential equation

VIA
dxt = d(3t + —(x^ dt,u
XQ ==x,

stopped at its hitting time r of 9D, the process (a;i,0 < t < r) can be
continuously extended to the time interval [0, r], and Xr € K. Furthermore,
the law of (xt/\n t > 0) m Wx Is u(x)~1 times the equilibrium measure of
H. Finally, the law of {xt/\r^ t >_ 0) solves a variational problem analogous
to the one stated at the end of Section 2. Namely,

i -^ z. I r ( d ^-inf^ ——(/) dt
2u(x) 7 '^o \dP.\g,

where 7 runs over all probability measures supported on H^ and the
infimum is attained only when 7 is the law of (a^Ar? t ^ 0)-

Remark. — One might think of using the method of proof of Propo-
sition 3.2 to get the converse to Corollary 4.2 (which seems easier than the
converse to Proposition 4.1). The problem however is to get the analogue of
Lemma 3.3. More precisely, assuming that K supports no nontrivial mea-
sure y satisfying the assumption of Corollary 4.2, one has to show that any
nonnegative solution of the problem of Proposition 4.4 satisfies

/ p(x) u(x)2 dx < oo.
J D

The same argument as in Section 3 would then imply that K is 9-polar.

Note added in proof : We are now able to prove that the converse of
Corollary 4.2 holds provided that the boundary of D is sufficiently smooth.
The method of proof is that described in the final remark of the paper.
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