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CIRCLE BUNDLES,
ADIABATIC LIMITS OF ^-INVARIANTS

AND ROKHLIN CONGRUENCES
by Weiping ZHANG

Introduction.

This work originates from a question of Siye Wu who asked whether
the Rokhlin congruence formula [R2] could be proved purely analytically.

Recall that the classical Rokhlin theorem [Rl] states that the signa-
ture of a compact spin four manifold is divisible by 16. In [AH], Atiyah and
Hirzebruch proves the following extension of this result : the A genus of an
8k + 4 dimensional compact spin manifold is an even integer.

Now let K be an oriented compact four manifold not necessarily spin.
Let B be an orient able characteristic submanifold of JC, that is, B is a
compact 2 dimensional submanifold of K such that [B\ € H^{K^ Za) is dual
to the second Stiefel-Whitney class of K. Note B ' B the self-intersection
of B in K.

Rokhlin [R2] established a congruence formula of the type

^ . x sign(^ ' B) - sign(^) _(0.1) ——————.—————— = 0(B) (mod 2Z),
0

where (f){B) is a spin cobordism invariant associated to (K,B).

The left hand side of (0.1) can also be expressed in terms of A{K)
and the Euler number of the normal bundle to B in K.

In this paper, we will prove an extension of both (0.1) and the result of
Atiyah and Hirzebruch mentioned above. Our results are proved for elliptic
genera and hold also in the case where B is non-orient able.

Key words : Characteristic classes and characteristic numbers — Index theory and fixed
point theory.
A.M.S. Classification : 57R - 58G.
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The proof of our main result (see Theorem 3.2) is based on a
calculation of the adiabatic limit of ^-invariants of Dirac operators on a
circle bundle.

More precisely, let TV be a tubular neighborhood of B, then QN is a
circle bundle over B. An application of the Atiyah-Patodi-Singer index
theorem for manifolds with boundary [APS] reduces the problem to a
calculation of the ^-invariants of Dirac operators on 9N.

Thanks to the work of Bismut and Cheeger [BC1] and its extension
by Dai [D], such a calculation can indeed be carried out explicitly in this
case.

The idea of using the adiabatic limit of rj invariants to study the
defects of signatures goes back to Atiyah-Donnelly-Singer and Miiller, see
Bismut-Cheeger [BC2] and the references there in.

This paper is organized as follows.

In Section 1, we calculate the rf- form of Bismut and Cheeger [BC1] for
circle bundles. In Section 2, we calculate the adiabatic limits of ^-invariants
of Dirac operators on circle bundles. In Section 3, we prove a congruence
formula of Rokhlin type for certain JCO-characteristic numbers. Section 4
includes some applications of the congruence formula in Section 3. There is
also an Appendix in which we try to relate our formula to another extension
of (0.1) obtained by Ochanine [01].

The results of this paper were announced in [Zl]. Finally, we refer to
[Z2] for a topological treatment of some results in this paper.

Acknowledgements. — The author is deeply grateful to his advisor
Professor Jean-Michel Bismut for his encouragements and very helpful
suggestions. Also, the beautiful question of Siye Wu is deeply appreciated.
Finally, the author is very grateful to Mme Justin Marline for typing the
manuscript.

1. The rf- form of circle bundles.

The purpose of this section is to make an explicit calculation for
Bismut-Cheeger's fj-form [BC1] of circle bundles over even dimensional
manifolds.
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This section is organized as follows. In a), we specify what we call
an integral power operation on vector bundles. In b), we present our
main geometric assumptions and notation. The 77-form is denned in c) and
calculated in d).

a) Power operations on vector bundles.

Let K be a compact manifold. Let Vect(J^) be the ring generated
by all real vector bundles over K. For any i > 0 and for any element
E in Vect(^), we use the standard notation ^{E) (resp. S^{E)) for the
i^ exterior (resp. symmetric) power of E. Then each element in the ring
Z[A^5^;z = 0,1,2, . . . ] can be viewed as an operation on Vect(JC). Also
it is clear that these operations are well-defined without reference to any
base space like K.

DEFINITION 1.1. — An element in Z[A1,5^; i = 0 ,1,2, . . . ] is called an
integral power operation.

Notation convention. — To simplify the notation setting of this paper,
we will use the same notation E for a real vector bundle E as well as its
complexification. This should not cause any confusion in the context.

b) Geometric assumptions and notation.

Let B be an even dimensional compact connected spin manifold with a
fixed spin structure. Let ^TB be a metric on TB^ let ̂ TB be the associated
Levi-Civita connection and RTB the curvature of V715.

Let N —^ B be a 2-dimensional oriented vector bundle over B. Let
g3^ be a metric on N. Let V^ be a connection on N preserving g ^ . Note
RN the curvature of V^.

Let T^N be the horizontal subbundle of TN determined by V^.
Then ^TB lifts to a metric on ̂ N.

Let gTN be the metric on TN,

(1.1) ^^©TT*^

such that N and THN = TT*TB are orthogonal to each other with respect
to g™.
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Set

(1.2) N^ = {v e N^ : x e B, \\v\\gN <, 1},
M = <9M = {v e N^ : x e B, \\v\\gN = 1},

T^M = T ÎM.

Let g™ be the metric on TM,

(1.3) TM = TS'1 © 7r*TB,
^^TN^^T^^TB

Then M is a circle bundle over B with structure group 50(2) acting by
isometries on the fibres. Furthermore, it carries a canonical induced spin
structure induced from the spin structure of TB (cf. [KT]). This in turn
determines a spin structure on TS1.

Let p7^3 be the orthogonal projection on T*?1 with respect to g™.
Note V1' the Levi-Civita connection of g™. Let V be the connection on
TM defined for U, V e F{TS1), X, Y € F{TB) as follows (cf. [B]),

(i.4) v^y^^v^n
Vx^^vi^),
v^/x = o,
^xY=v^y,

where we have identified TB with its lift. Such an identification will always
be understood in what follows.

Let 5 be the tensor defined by

(1.5) S = ̂ L - V.

Let e € TS'1 be the unit vector field determined by g™ and the spin
structure on TS1.

LEMMA 1.2. — The following identity holds,

(1.6) S(e)e = 0.

Proof. — Clearly e generates a one parameter isometry group of M.
Thus e is a Killing vector field and for any X G F(TM), we have

(1.7) (S(e)e,X) = (Vf-e,X -p^X}
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=-{e^X-pTS^xe}

=-^X-pTslX){e^)

=0.

This proves (1.6). Q

Let r(-, •) be the torsion of V denned by

(1.8) r((7,y)=-5(£/,y)+5(y,[/), U^VeTB.

Let e* € r*5'1 be the dual of e.

LEMMA 1.3. — The following identity holds,

(1.9) (r(£/,y),e)=de*(C/,V), U,V eTB.

Proof. — Since V1' is torsion free, one verifies easily

(1.10) {T(U, V), e) = - <[£/, V], e) = de*(E7, V).

D

JPemarJc 1.4. — From (1.9), we see that T(-,-) determines a 2-form
T(still note T) in A^T*^) such that — represents the Euler class of N .
27T

c) Dirac operators and rf-forms.

Let F7151 be the bundle of spinors associated to (T,?1,^51) on M.
The connection V|r^i lifts to F716'1, which we still note V.

Let K be an integral power operation defined in Definition 1.1. The
connection V lifts naturally to 7^(TM), which we still note V.

For any fibre 51, let Dsi.n be the Dirac operator acting on r(T5'1 0
n(TM\si)) defined as follows,

(1.11) Ds^n{U 0 V) = c{e)VeU 0 V + c(e)(7 ̂  VeV,

£/ e r^51), v e r(7Z(rM)).

Then ker(D5'i^) is of constant rank and forms a vector bundle over B.
Furthermore, we have

(1-12) ker(D^) = n(TB C R).



254 WEIPING ZHANG

Let & i , . . . , &2n be an orthonormal base of T-B, d y 1 ^ . . . , c^/271 be its
dual. Set

(1.13) c(T) - ^ dyadyf3c{T{b^)).
a,/3

Let V be the natural lifting of V to the infinite dimensional vector
bundle ̂ (FTS1 (^n{TM\si)) over B. By Lemma 1.2, V is unitary.

Set

~ c(T}
(1.14) A,=V+^LD^-^72 .4^/n

This is the Bismut superconnection ([B]) for the family {Dgi 7^}.

DEFINITION 1.5 ([BC1, 4.39]). — The 77-form is an even form on B
defined by

(L15' -^r11""^-^)8^]^
The fact that rf is well-defined follows from the results of Bismut-

Cheeger [BC1] and Berline-Getzler-Vergne [BeGeV, Chap. 9].

d) Calculation of the 77-form for circle bundles.

Recall that e is the unit vector field on TS1 C TM determined by
g™ and the spin structure on TB.

Let V be the unitary connection defined by (1.4).

LEMMA 1.6. — For any X € T(TM), the following identity holds,

(1.16) Vx(°=0.

Proof. — Clearly,

(1.17) (Vxe,e)=0.

(1.16) follows from (1.17). D

By Lemma 1.6, we can reduce the calculation of the rj-fovm to the
separated fibres. This is similar to the calculation of Bismut and Cheeger
[BC2] for the flat torus bundles.
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If ^ is a vector bundle with a connection V, we note L^ the curvature
ofV.

THEOREM 1.7. — The following identity holds,

'L18' w^= "S^S • ̂  < - LWTO>'•V)^•
Proof. — We split ^(FTS ) through the eigenspaces of -Dgi,

(1.19) r^51) =^FTS1 ® {e^}.
fe

Let 2 be an odd auxiliary Grassmann variable.

LEMMA 1.8. — The following identity holds,

(1.20) -u(Ve + ̂  + ̂ )2 + ̂ dyt3 ® L%(rB®K)-v(6„^)

=AS-.(^^^).

Proof. — Clearly, the scalar curvature k3 = 0. (1.20) follows from
[BC1, (4.68) - (4.70)], Lemma 1.1 and Lemma 1.6. D

Let Trz be the trace defined by

(1.21) Tr^a-^-zb] = Tr[&],

where a and 6 do not contain z.

From Lemma 1.8, one sees that

(1.22) TV— \(Ds^n + ̂ )) exp(-A^)

-^'exp(Jv.+T4-^)2)1yu \ \ 4u 2v/•u/ /

•'Ir[exp(-£TC(^B®^v)].

Also, since

(1.23) Tr[c(e)] = ——,
v^T'
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one verifies in view of (1.19),

(1.24)-^^4exp«Ve+T+.c(el)2)1
Vu [_ v v 4n 2yW I

1 f v^ f ( ( r—^ T zV^^==-^=^ ^ exp n V - l n+—-— v ——)
^In^ool v v 4n 2^7^

^T Y^ /'7T\3/2 27rnv^T.—2-= ^2^2
--^ E (J e -^•n.e-1—.<î

where the last equality follows from a Poisson type summation formula.
Thus,

(L25) ^r^'-H^^n^
/•+°°_^ . /27rn T \ ^2 rfu= T T / y n-smt——•——^e""'"-—Jo ^ ^ u ^v^ir u2

+00 r
-Ê^^(A)2

i tg(?)-?
2^T ^tg(^) •

(1.18) then follows from (1.25), (1.22) and (1.15). D

2. Adiabatic limits of ^-invariants
of Dirac operators on circle bundles.

In this section, we apply the results of Section 1 to calculate the
adiabatic limit of ^-invariants of Dirac operators on circle bundles.

The papers of Bismut-Cheeger [BC1] and its extension by Dai [D]
play an essential role.

This section is organized as follows.

In a), we present some notation supplement to those in Section 1, a),
b). In b), the adiabatic limit of ^-invariants is calculated. In c), we consider
the case where the base manifold B is non-orientable.
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a) Assumptions and notation.

We use the same assumptions and notation as in Section 1.

For any e > 0, let g™^ be the metric on TM defined by

(2.1) <7™'£=^ le l7^*(fB.

Let V^ be the Levi-Civita connection of g™^. We still use the notation
gTM^L for^^V^.

LEMMA 2.1. — The following identity holds,

(2.2) ^mV^ =V+pTslS.
£—»-0

Proof. — Lemma 2.1 is a consequence of [BC1, (4.16)]. D

Remark 2.2. — Since V preserves the splitting (1.3), by (2.2), we know
that p715 S does not contribute to the characteristic forms of K(TM).

b) Adiabatic limit of ^-invariants of Dirac operators
on circle bundles : the case where the base B is orientable.

For any e > 0, we will use the same notation g™^, \/L'e for the
canonical metric and connection on a bundle K(TM) induced from those
of TM. We will denote by ^(TM^he bundle K(TM) equipped with the
metric (connection) ̂ ^(V^).

Let F7'3 be the bundle of spinors of (TB,gTB). Let $ be a complex
vector bundle on B with a Hermitian metric g^ and a connection V^
preserving g^. Then I^F715^) is canonically a Clifford module over c(TB)
equipped with canonically induced metric and connection.

DEFINITION 2.3. — The Dirac Dp^ is the differential operator on
HF^ (g) $) defined as follows

dimB

(2.3) DB^(U^V)= ̂  (c(6,)V^02;+c(6,)^V^),
i

ueriF^^er^.

Clearly, DB^ is a self-adjoint first order elliptic operator on nF^ 0 ̂ ).
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For any e > 0, let F™ (resp. F^) be the bundle of spinors of

(TM^g™^) (resp. (rB, ̂ TB)). Then F,™ = F^^F^.

DEFINITION 2.4. — For any e > 0, the Dirac operator D^ ̂  is the
differential operator acting on r(F^™ (g) 7^(rM)),

(2.4) D^^u ̂ v)= c(e)^^u <8) ^ + c(e)u 0 Vf^
dimB

+ ̂  ̂  (^)V^'S 0 v + c(6,)n 0 V^),
i

n e r(^™), z; c ^(7^£(^M)).

Then -D^^ is a self-adjoint elliptic first order differential operator on
T(F™ ^n^TM)).

If D is a Dirac operator, denote by ^(D) the reduced ^-invariant of
D in the sense of Atiyah, Patodi and Singer [APS].

Let e be the Euler class of N over B.

THEOREM 2.5. — The following identity holds,

(2.5) Hin^D )̂ = ̂  dimker(DB.7Z(TB©R))

. /A(rB)ch(7Z(TBeR)).tanh(j)-j\
+ \———————etanh(j),[5]———————/ (mod ̂ '

Proof. — It is clear from [BC1, Proposotion 4.3] that \im7j(D^^)
exists in M/Z. Also, by (1.12), ker^i^) forms a vector bundle over B
which can be identified to H(TB C R). Proceeding almost identical as in
[BC1] and [D], we deduce that

(2.6) hm^(^^)=77(^,7Z(TB®R))
d^

+(2.7=T) 2 /,A(^1^B^ (modZ).

A slight difference is that in our case, the connections on the coupled
bundles ^(TM) are allowed to change as e varies. However, by using the
same arguments as in [BC1] and [D], we obtain (2.6). Compare also with
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[BC2, Section 3 f)]. We remark that Lemma 2.1 plays an essential role in
such an argument.

Now since dim B is even, one verifies

(2-7) ^(^B^TBeR)) = ^ dmiker(D^^(rj3^K)).

(2.5) follows from (2.7), (2.6) and Theorem 1.7. The proof of Theorem 2.5
is completed. Q

Remark 2.6. — In view of Bismut-Cheeger [BC1, Theorem 4.104],
the argument in Dai [D] can be simplified significantly in obtaining (2.6).
Alternatively, one can also proceed as in Bismut-Zhang [BZ], where a
finite dimensional model is studied. The relationship between the finite and
infinite dimensional situations was exploited in Bismut-Cheeger [BC1].

c) The case where B is non-orientable.

Let now B be non-orientable and carry a fixed pin"-structure (cf.
[KT]). We also assume the following equality of Stiefel-Whitney classes,

(2.8) wi(AO=wi(rJ3).

Then N is still an orientable manifold. We use the same assumptions
and notation as before for metrics and connections, etc.

The circle bundle M constructed in (1.2) carries a canonically induced
spin-structure not extending to TVi (cf. [KT]).

We still note D^ ^ the Dirac operator on M associated to (1^™ (g)
TZ^TM),^™^).

Let B be the oriented double covering of B. Let P be the covering
involution.

ThenJV (resp. M) lifts to a 2-dimensional vector (resp. circle) bundle
N (resp. M) over B.

The pin" and spin-structures on B and M lift to compatible spin
structures on B and M respectively.

We lift the metrics, connections, etc to the covering spaces with
notation modified with a "^". We use the same P to denote the liftings of
P on sections of bundles.
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Let rjfD^ , P) be the equivariant reduced 77-invariant of D^ ~/ v M,7Z' / " ' M,7Z(TM)
defined by

(2.9) ^^^)=J^ker(D^^)[P]

1 />+00 ^

"r^Z ^^^-Pf-'t^^l^-

The following identity is easily verified,

(2.10) | (,)(D^) + rj(D^, P)) = rj(D^).

Similarly, let rj{D^ ^(rr.'g^\ ^ P) be the equivariant reduced T] - invari-
ant defined by

(2.11) ^^^) = \^w^)[P}
1 /•+00 ^

^rmL nlp^ex•)(-t(D^,.)2)]^•
Let e be the Euler class of N over 5.

THEOREM 2.7. — The following identity holds,

(2.12) hm^(^) EE |dimker(^^^^) + ̂ (^^5^,?)

+ 1 /A(rB)ch (n{TB C R)) ̂ ^^r1, [B]\ (mod Z).
2 \ v / etanh(j) /

Proof. — Clearly, P is an isometry for any e > 0. The proof of (2.12)
is the same as the proof of Theorem 2.5, with a trivial modification with
respect to the action P. This argument proceeds smoothly because i), P
commutes with D^ , so that the large time asymptotics appearing in the

JVf,??.
works of Bismut-Cheeger [BC1] and Dai [D] hold without change; ii), since
P has no fixed points, the small time asymptotics of the trace involving P
contribute zero; iii), -(1+P) is an orthogonal projection operator, so that

Zi
all the jumps are in Z.

Details are easy to fill and are left to the reader. D
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The operator ^(1 + p)DBn(TBW determines a first order self-
adjoint elliptic operator, called twisted Dirac operator, on B (cf. [G], [S]).
We will denote this operator by DB^TBW)'

Then the following identity holds,
(2.13)

2 (2 ̂ ^^BWrW + ̂ B^TB^V p)) = ̂ B^TBWY

1 ~
Also, .(1-+- P)T determines an element T e ^(T^B) 0 o(TB) such
T

that — represents the Euler class of N.
2.7T

In these regards, we can restate Theorem 2.7 as

THEOREM 2.8. — The following identity holds,

(2.14) Hm^(D^) = TJ(DB^BW))

+ (^A(TB)eh WTB C R)) ̂ l^)^ [B}\ (mod Z).

3. Rokhlin congruences for JCO-characteristic numbers.

In this section we apply the results in Section 2 to prove certain
congruence formulas involving ^0-characteristic numbers of 8k + 4 dimen-
sional oriented manifolds. Formulas of this type were originated by Rokhlin
[R2].

This section is organized as follows. In a), we state the main theorem
of this section as Theorem 3.2. In b), we prove Theorem 3.2.

a) Assumptions and notation.

We will use the same assumptions and notation as in Sections 1 and 2.

Let K be a compact connected oriented manifold. By a KO-
characteristic number of K^ we will mean a number of the type (A(TK)
ch(7^(rJC)), [7^]) where 7^ as before denotes an integral power operation.

DEFINITION 3.1. — A compact connected submanifold B is said
to be a characteristic submanifold of K if dimB = dimK — 2 and
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[B] C H^K-2(K^2) is dual to the Stiefel-Whitney class w^(K). If B
is a characteristic submanifold of K, we call (JC, B) a characteristic pair.

We now make the assumption that dim K = 8k + 4, k C N.

Let (X, B) be a characteristic pair. Then K\B is a spin manifold. We
fix once and for all a spin structure on K \ B . Then B carries a canonically
induced pin"-structure (cf. [KT, Lemma 6.2]).

Let N be the normal bundle to B in K. Since K is orientable,

(3.1) wi(7V)=wi(TB).

Thus we can and we will apply the analysis in Sections 1 and 2 to
this pair (N, B). This will always be assumed in what follows.

Recall that e denotes the Euler class of N.

The main theorem of this section can be stated as follows.

THEOREM 3.2. — The following identity holds,

(3.2) (A(r^)ch(TZ(r^)), [K}} = T](DB^TB^})

-, ̂ TBf^^ e N)) ~,^W(TB e R2)) . [B]} (mod2Z).

In particular, if B is orientable, then the reduced if-invariant in (3.2) can

be replaced by ^ dimkeT^Da^TBW2))'

b) Proof of Theorem 3.2.

Let JVi be the disk bundle defined in (1.7) with fibres D over B. Then
there are a metric p7^ on TD and a series of metrics (^^ (e > 0) on TK
such that 1), ^T^ is product near M = ON^; 2), gTKf£\M = 9™^ and
3), gTK^\N^ = 9TD C ̂ TT*^. Note J^ the curvature of the Levi-Civita
connection associated to g T K ' ' E .

LEMMA 3.3. — For any e > 0, the following identity holds,

(3.3) (A(r^)ch(TZ(T^)), [K]} = ̂ D^^MW))
/ I X^ r ^

+ ( — ) / A{RK^{n{RK-£)) (mod2Z).
\271/ J N z
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Proof. — By the index theorem for manifolds with boundary of
Atiyah, Patodi and Singer [APS], we have

(3.4) md(P^^^)
dim K

=(^) 2 ^A^^cWR^-rjiD^MeR))'

where D^^ -R,(TK} ls a ^lrac operator on K \ TVi verifying the Atiyah-
Patodi-Singer boundary conditions ([APS]).

Now since an Sk + 4 dimensional spinor space carries a quaternionic
structure commuting with the canonical involution operator (cf. [ABS]),
one verifies easily that

(3.5) m<W\N^(TK))=0 (mod 2Z).

(3.3) follows from (3.4) and (3.5). D

LEMMA 3.4. — The following identity holds,

(3.6) hjrn^^(^M,7Z(rMeR)) = ̂ (^B^TBW^)

+ /A(TB)ch (n(TB © R2)) tanh( |). j, [B}\ (mod 2Z).\ etanh(^) /

Proof. — Since an 8A; + 3 dimensional space carries a quaternionic
structure, ^(-DMTZ(TM©R)) ls moa 2Z continuous. Thus in our specific
situation, Theorem 2.8 and Theorem 2.5 hold mod 2Z. (3.6) follows from
these mod 2Z versions of Theorems 2.8 and 2.5. D

LEMMA 3.5. — The following identity holds,
dimJVi

(3.7) hm̂  (-) 2 ^ 1(^)011(7^^))

= /A{TB)1 {ch (n(TB C N)) —2—— - ch (n(TB C R2)) I, [B}\.
\ e I smh^2> / J /

Proof. — Since this calculation is local, we can and we will assume
that B is orientable.

By proceeding as in [BC1], we know that

(3.8) R == lim ̂ '£
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exists. Furthermore, if RD,RB are the restrictions of R to TD, TT^TB
respectively, then RB = ^R713.

We write R° as ( _ I . Then by (3.8), we have\—u 0 /

(3.9) lim / A^^chC^^))£-^0 J N ^

= [ A(^) ( A(^)chf7zf^ C f ° n

JB JD \ \ V-^ °.

Now since p^^ is product near the boundary, one has U\QD = 0. Thus, by
using the Thorn isomorphism theorem, we have the following identity of
cohomology classes in H*(B\

(3•10) tel-"-.^2---
(3.7) follows from (3.9) and (3.10). D

From (3.7), (3.6) and (3.3), (3.2) follows. The proof of Theorem 3.2
is completed. D

4. Some application of the congruence theorem.

In this section, we provide some consequences of Theorem 3.2. These
include an application to elliptic genera as well as a specialization to the
original situation dim K = 4.

This section is organized as follows.

In a), we recall the definition of elliptic genera and the Ochanine
genus. In b), we prove a congruence formula involving elliptic genera. In
c), we specialize our results to the case dimjFf = 4.

a) Elliptic genera and the Ochanine genus.

Let E be a vector bundle over a compact manifold K. Let Af(£')
(resp. St(E)) be the total exterior (resp. symmetric) power ofE defined by

(4.1) At{E)=^A^(E)t^
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(resp.

St(E)=ESi(E)t^).

Define after Witten [W],

(4.2) 9,(E) = (g) (A_,2n-l (E) ̂  Sq2n (E))

n>l

=^Rn(E)qn.
n^O

We will think of each Rn as an integral power operation.

If F is another vector bundle over K^ then

(4.3) Qq(E(BF)=Q,(E)eq(F).

We use the notation

(4.4) E=E-RdlmE.

Then Qq(E) is also well-defined. Recall that we use the same notation for
a real vector bundle and its complexification.

We will always equip R^ with the trivial metric and connection.

DEFINITION 4.1 (cf. [L], [02]). — The Landweber-Stong-Witten class
of E is given by

(4.5) ^{E) = A(E)ch(6,(^)).

If E carries a connection V with curvature R, we will use the notation (^q(R)
to note the corresponding Chern-Weil representative of ^fiq(E). Similar
notation will also be used for other characteristic forms.

Let now B be an 8A; + 2 dimensional spin manifold with a fixed
spin structure. Let ^TB be a metric on TB. Let ^TB be the Levi-Civita
connection associated to gTB. Then Qq(TB) carries canonically induced
metric and connection.

Let D^ _ be the Dirac operator on B twisted with Qq(TB).

PROPOSITION 4.2. — The quantity - dimker(D —— )mod 2Z[[g]]
is a spin cobordism invariant.



266 WEIPING ZHANG

Proof. — Proposition 4.2 is an easy consequence of the Atiyah-Patodi-
Singer index theorem for manifolds with boundary [APS] and the fact that
an 8k + 3 dimensional spinor space carries a quaternionic structure (cf.
[ABS]). D

DEFINITION 4.3. — The Ochanine genus (3q{B) of a spin manifold B
is Jdimker(I^^) mod 2Z[[g]].

Remark 4.4. — Since K0sk-{-2(pt) == ^2? the above definition is in
fact equivalent to the original definition of Ochanine [02].

b) A congruence formula for elliptic genera.

Let K be an 8k + 4 dimensional oriented manifold. Let B be a
characteristic submanifold of K. We assume B is orientable, just to simplify
the presentation. We fix a spin structure on K \ B. Then B carries a
canonically induced spin structure (cf. [KT, Lemma 6.2]).

Denote by e the Euler class of the normal bundle N to B in K.

THEOREM 4.5. — The following identity holds,

(4.6) (^{TK)^[K})

= W) + ̂ ^(TB)'811^^^ [B}) (mod 2Z[[,]]).

Proof. — From (4.3) we know that

(4.7) ch(^(TB C N)) = ch(^(TB))ch((^(AO).

(4.6) follows from Theorem 3.2, (4.7) and the definitions of the elliptic
genera (pq and (3q(B). D

Remark 4.6. — If B is non-orientable, then (4.6) still holds if we define

(4.8) /VB)=7?(^^) (mod 2Z[[<?]]).

In this case, /3g(B) is a pin'-cobordism invariant of B.
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Let's still assume B is orientable.

COROLLARY 4.7. — The following identity holds,
(4.9)

(A(TK), [K}\ = 1 dimker(DB)-/A(TB) • 1 tanh (e) , [B}\ (mod 2Z).

Proof. Proof (4.9) follows from (4.6) by setting q = 0. D

Remark 4.8. — If K is spin, then 5=0 , (4.9) reduces to a result
of Atiyah and Hirzebruch [AH]. Also a special case of Corollary 4.7 for
complex manifolds has been proved by Esnault, Seade and Viehweg [ESV].

c) The case dim K = 4.

We now make the special assumption dim K = 4. By setting q = 0 in
(4.6) and (4.8), we get

THEOREM 4.9. — Let B ' B be the self-intersection ofB in K, then

^ sign(^-sign(^) ^ ̂  ^ ̂

Now let

(4.11) /^^in- -^Z/8Z

be the Brown invariant ([Br], [KT]) of the two dimensional pin~-cobordism
group Q^

Comparing (4.10) with the extended Rokhlin congruences of Guillou-
Marin [GM] and Kirby-Taylor [KT], we deduce that

(4.12) ^rj(DB) = (3(B) (mod 8Z).

Thus T](DB) gives a natural analytic interpretation of the Brown
invariant.

Remark 4.10. — In fact, (4.12) can be checked directly, as both
TJ(DB) and /3(B) are pin'-cobordism invariants. Since f^" is generated
by one of RP^ (cf. [KT]), we need only to check it for one of them.
That they are indeed equal follows from an argument of Gilkey [G] and
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^tolz [S]. As for orientable B, the identification of the Atiyah invariant
^ dimker(^) (mod 2Z) with the Arf invariant [R2] ofH^B, Z/2Z), which
corresponds to the Brown invariant in this case, was carried out by
Johnson [J].

Appendix. On the Ochanine-Rokhlin congruences.

In this appendix, we try to relate our higher dimensional Rokhlin
congruences to those of Ochanine [01].

The first observation is that while our theorem extends the Atiyah-
Hirzebruch's result on the divisibility of A-genus, the congruence of Ocha-
nine extends his following theorem on the divisibility of the signature.

THEOREM Al (Ochanine [01]). — The signature of an 8k + 4 dimen-
sional compact spin manifold is divisible by 16.

To see the relevance, we prove a congruence formula for the signature
in dimension 12, which is equivalent to that of Ochanine in this dimension.

Let (K,B) be a characteristic pair such that dimK = 12. For
simplicity we assume B is orientable.

THEOREM A.2. — The following identity holds,

(A. 1} sign(B . B) - sign(K) _ dimker(DB,TB)v ' / o = ————o——'—— (mod 2Z).

Proof. — Let L(x) be the Hirzebruch function

(A.2) L(x) = x / 2
v / tanh.z:/2

The corresponding characteristic forms will be understood in standard
way.

By the so called "miraculous cancellation" of Alvarez-Gaume and
Witten [AGW], we have

(A.3) ^LOR^))^) = (A(^)ch(^))^) - 4(A(^))^

where we use the notation in Section 3 b).
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From (A.3), the Atiyah-Patodi-Singer index theorem for manifolds
with boundary ([APS]) and the fact that the 12 dimensional spinor space
carries a quaternionic structure, we deduce that

(A.4) slgnw = rj(D^) - W^) + 23 ( HR^) (mod 2Z).
o JNi

(A.I) then follows from (A.4) by passing to the adiabatic limit e —^ 0.
Details are left to the reader. D

It is clear that the "miraculous cancellation" of Alvarez-Gaume and
Witten plays an essential role in above proof of Theorem A.2.

Now we make the observation that this cancellation can be written
as

(A.5) (26L)(l2) = (-^(A)^) + (-8)(-1)(72A+ A ch(TK))^y

This is obviously related to Landweber's proof of Theorem A.I ([L]).

Thus the "miraculous cancellation" (A.5) should be a special case of
a general identity in elliptic genera expressing the Hirzebruch L-forms by
XO-characteristics forms.

While the existence of such an identity is clear, the problem is to what
extent these involved J^O-characteristic forms can be expressed explicitly.
This would lead to a better understanding of the congruences of Ochanine,
as well as their extension by Finashin [F].
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