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1. Introduction and overview.

The present paper investigates two notions — the classical notion
of nilpotent part and the novel concept of distinguished form — that arise
naturally in the parallel study of (local, analytic) resonant vector fields and
resonant diffeomorphisms. For simplicity, however, we forget about diffeos
in this introduction, and discuss only vector fields. Throughout, localness
and analyticity are tacitly assumed.

The nilpotent part is intrinsical, i.e. chart-invariant. Indeed, any
resonant vector field decomposes canonically into a diagonalizable part X^
and nilpotent part X1111, each having a simple geometric characterization.
The distinguished form X^^, on the other hand, is a special prenormal
form, i.e. a formal vector field conjugate to X and with nothing but resonant
terms in it. In its own way, X^^, too, is undisputably "canonical", and
this is even the whole point of introducing it, since the existence of merely
prenormal forms is a triviality. Like X1111, it is also generically divergent and
resurgent. But unlike X1111, the distinguished form X^^ is chart-dependent.
Above all, it results from an analytical construction (see (1.2) infra) and
doesn't appear to be capable of any simple geometric characterization.

We investigate X1111 and X^^ successively under three viewpoints:

(i) the analytical viewpoint, which is concerned with deriving the
Taylor expansions of X1111 and X^ from that of X.

(ii) the analytic viewpoint, which aims at understanding the diver-
gence/resurgence properties of X1111 and X^^.

(iii) the algebraic viewpoint, which focuses on the case of algebraic
data (e.g. polynomial vector fields X) and attempts to use the analytical
expressions for X1111 and X^^ to make some headway in certain long-
standing problems, like the center-focus problem (see below).

The analytical study (§§2,3,4,5,6) culminates in the following expres-
sions of X1111 and X^:
/i -i \ \rm\ \ ^ a* TID \ ^ \ ^ r»^i,...,o/r TO ITS
(1.1) A =^4 ) 1 D•=Z^^'P i f f n , ' - - ^ n i

Kr ni

( A 0\ ydist vl1111 i \ ^ ir • in? vlin i \ ^ \ ^ ma/i,...,^ ira •rn>(1.2) A = A +^fl> B » = A +^^ft ^•••^m
Kr ni

in terms of the homogeneous components Byi of the vector field X:
(1.3) X=X l i n+^B„ ( n e N ^ )
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(1.3*) X1111 = Ai^ + ... + \^Q^ B^ = /^m^771,

(n,meN;; /3^,neC)
and of some well-defined universal coefficients ̂  and -f^ indexed by
finite sequences a; = (c<;i, . . . ̂ r) with c<^ = (n^, A) G C. Functions of such
sequences ^ are known as moulds. Moulds constitute a non commutative
algebra, with a rich structure and numerous derivations. Above all, they
facilitate the construction and study of "useful universal coefficients".
In the present instance, the relevant moulds, namely i^9 and <!'*, are
related to the moulds 6'* and S* (useful in the linearization of non-
resonant vector fields and the study of diophantine small denominators)
and even more so to the "compensators" S^(t) and S^(t) (useful in the
study of quasiresonance, i.e. of liouvillian small denominators). In fact, the
moulds ^e and ^< come up rather naturally in the study of "degenerate
compensators". Or, to put it another way, they shed light on the passage
from quasiresonance to resonance. It should be noted, however, that ^e

is definitely more elementary that ^e: the construction of ^e is rather
painstaking, to say nothing of the study of certain generating functions
(the so-called amplification and coamplification) attached to l ^ 9 . But no
matter how technical these developments, they are indispensible to an in-
depth understanding of X^^.

After the analytical spadework, we are in a position to tackle the
analytic study (§§7,8,9). It turns out that both X1111 and X^ are generi-
cally divergent and resurgent, though each in its own way. The resurgence
equations which govern the divergence of X1111 and describe its resurgence
pattern, are merely a variant (but a rather interesting one) of the so-called
Bridge Equation. Like the usual Bridge Equation, they yield, as a byprod-
uct, a complete system of holomorphic invariants for X. The distinguished
form X^^, on the other hand, satisfies resurgence equations which do not
involve the holomorphic invariants, but the original field X itself, and are of
"rigid" or "universal" type. The resurgence "lattice" ^dlst also is different,
and the singularities much "worse".

These features are often met with in "man-made" divergent series,
i.e. divergent series which are not obtained as formal solutions of natu-
ral (meaning analytic) equations or systems, but are rather defined by
analytical means, to meet certain demands — such as finding canonical
representatives in analytic congugacy classes. Summing up, one would like
to say that the resurgence of X1111 and X^^ illustrates the prevalence of
resurgence not only among the divergent series that one encounters^ but
also among those that one constructs.
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The algebraic part (§10) is more than sketchy: it outlines a program of
investigations without really tackling it. It originated, as indeed the whole
paper, in a question by one of us (see [Sl], [S2]) about the center-focus
problem for polynomial vector fields of degree d in R2:
(1.4) X = xQy - y9^ +( . . . )
One natural question which comes to mind about such fields (and which
can be rephrased so as to make sense for all resonant vector fields, in
any dimension) is this: what is the minimal number nil(d) of polynomial
identities between the Taylor coefficients ofX, that guarantee the existence
of a center-focus at the origin? The whole thing, of course, boils down to the
study of certain finitely generated ideals^ but the moulds ^e and ^ e make
it possible to replace commutative ideals by more tightly structured Lie
ideals'^ to produce explicit generators for those ideals; and even to suggest
an approach, based on the splitting properties of the Lie elements 1B£ and
BJ| constructed by "contraction" with ^e and ff* .

We are keenly aware that the present paper, such as it stands, is
somewhat lopsided, with more than half its length being devoted to the
analytical prerequisites, i.e. ^e, f f* and the whole mould apparatus that
surrounds them. But the analytic study (§§7,8,9) already shows to what
use these tools can be put, and we cherish the hope that the algebraic
program outlined in §10, when implemented, will further reinforce their
claim to "usefulness".

2. The alternal moulds ^e and f f * in the context
of symmetral compensation.

Reminder about moulds.

As usual, a mould M9 denotes a family of elements M^ of a
given commutative ring or algebra, with upper indexation by sequences
uj = (ci;i,... ,o^). These sequences have arbitrary length r = r(o;) > 0 and
their components uji range over a set fl, that may be any abelian group or
semigroup. Moulds multiply (non-commutatively) according to:
(2.1) C9 = A9 x B9 =^ C^--^ = ̂  ^i,...,^5^+i,...,^

0<i<r

with a sum beginning with A0^1'-'^ and ending with A^'-'^B0. The
symbol 0 denotes of course the empty sequence^ to which we assign zero
length (r(0) = 0).
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Useful moulds tend to display certain symmetries. Thus, a mould A*
is said to be symmetral (resp. alternal) if it verifies A0 = 1 (resp. = 0) and:

(2.2) ^A^A^A^2 (resp. =0), (Va^Va;2)
a?

with a sum extending to all (ri + r2)!/(ri!r2!) sequences uj obtainable by
shuffling two given, non-empty sequences a?1 and a;2 of length r\ and 7-2,
i.e. by intermixing their components under preservation of the internal
order of each sequence. (N.B.: throughout, we shall use boldface with upper
indexation for sequences a? or a^, and plain print with lower indexation for
their components ̂  or o;^).

Similarly, a mould A* is said to be symmetrel (resp. alternel) if it
verifies (2.2), but relatively to the "contracting shuffling" of a;1 and a;2,
under which one or several pairs of consecutive elements (c^1,^2) from a;1

and a?2 may contract to uj\ + o;J. As a consequence, for a symmetrel (or
alternal) mould, the left-hand side of identity (2.2) involves exactly Q^^2

terms, with:

(2.3) Q^ =^Q^2 (sup(n,r2) ^ r < n + 7-2)
r

(2.3 bis) O^2 dM r!((r - n)!(r - r2)!(ri + 7-2 - r)!)-1

where Q^^2 denotes the number of sequences w of length r(o;) = r.

Thus, whereas any symmetral mould A* verifies identities like:
f2 4) A^l ̂ ^2,^3 ^ /I ̂ 1,^2 5^3 I /I ̂ 2 5^1 ,̂ 3 l AIJJ2^3^1

f2 5) ^^l?^/!^?^ ^ /1^1^2»<*'3^4 I ,4 ̂ 1,^3 5^2 ,^4 I /1^3»^l»^2i^4

I ^^1^3 ,^4 5^2 1 4^3 ,^1^4 ,^2 I vl ̂ 3,^4^1,^2

etc., any symmetrel mould A* verifies identities like:
(2.4*) A^A^2'^3 = as above + A^"^2'^3 + A^2^14^3

(2.5*) A^'^A^3'^4 = as above + A^^2"^3'^4 -(- A^3'^1"^4'^2

1 ^^1+^3,^2^4 I /I ̂ i+0/3 ,^4 ,^2 1 >4^1^3,^2+(*/4

I ,4 ̂ 3 ̂ 1^2+^4 I /1<^1+^3 ,^2+^4

etc.

Trivial moulds, i.e. moulds M* such that M^ depends solely on the
length r of the sequence c^, are of no direct interest, but they keep cropping
up in equations that serve to define important moulds. Foremost among
trivial moulds is of course the unit mould I® :
(2.6) I0 = 1 and 1 '̂-^ =0 (Vr > 1)
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and the four moulds:

(2.7) I9 = alternal ; I^(t) = symmetral
(2.8) J * = alternel ; J^(t) = symmetrel

which are defined as follows:

(2.9) J^O; 7^=1; j^i-^^o, (Vr>2)
(2.10) J0 = 0 ; J^-^ =E (-1)^-1/7., (W ^ 1)

(2.11) ^=1; ^•••^-(lA1!)^ (Vr> l )
(2.12) Je^)^!; J^-UJr(t)=(l/r\)t(t-l)(t-2)-^t-r+l^

(Vr > 1).

The mould exponential of any alternal (resp. alternel) mould is a
symmetral (resp. symmetrel) mould, and the above examples are a case in
point, since:

(2.13) J:xW = exp(^) and J:,̂ ) = exp(^)
with exp(- • •) denoting the mould exponential:

(2.13*) exp(M*) d^ l•+M•+(l/2!)(M•xM•)+(l/3!)(M•xM•xMe)4- • • •

Two useful operators on the mould algebras, which we shall constantly
require, are the derivation V and the automorphism t^ which operate as
follows:

(2.14) {B9 = VA^) =^ (B^ = |H|A^)
(2.14*) (C9 = t^A9) =^ (C^ = t^A^)
with t on C, (the Riemann surface of the logarithm) and:

(2.15) |[o?|| ^ 0:1 + • • •+cc ; r if ^ = (o;!,...,^).

We shall now construct three alternal moulds T9, <p *, <y * and eight
symmetral, pairwise inverse moulds:
(2.16) !• = S9 x S9 = S;^ x S:^ = S^{t) x S^(t) = S^(t) x S^(t).

Some of these will exhibit discontinuities or singularities for certain
"degenerate" sequences c^, which have to be singled out. If a sequence
o- = (o~i) contains exactly n elements, but these assume only n* distinct
values, the difference n—n* is said to be th repetitiveness of a. Similarly,
we define the degeneracy dgn(o?) of a sequence a; = (c^) as being equal to
the repetitiveness of the sequence:

(2.17) 0, c<)i, u^^..., ujr with ^ '= uj\ + 0:2 4- • • • + ̂
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or, equivalently, of the sequence:

(2.18) 0,L(;i,C<;2, . . • ,^r With UJi ^ UJi -1-Cc^+i + • • • -\-UJr'

Lastly, the vanishing order van (a;) of c^ = (c^) is taken to be 0 if
||o;|| 7^ 0 and, if ||o;|| = 0, van(a;) is equal to the number of zeros in either
of the sequences ((2^) or (o^).

The elementary moulds 5*, 5^, T*.

They are defined for almost all sequences a? = (0:1,... ,0:7.) by the
relations:
(2.19) S^ d^ (-\Y(uj^' • ' ^r)~1 with ̂  as in (2.17)

(2.20) S^ d^ (^icc;2 • • • ̂ r)~1 with Gji as in (2.18)

(2.21) T^ d^ 0 if I I^H ^ 0

(2.21*) T^ ̂  (o;2^3 • • • ̂ )-1 = (-l)7^-1 (^icZ;2 • • • ̂ r-i)"1 if |M| = 0
and of course:
(2.22) ^^ l ; ^^ l ; T^O.

The alternality of T* or symmetrality of 6'* and S* is easily
checked by induction on r, but can also be inferred from the equations:
(2.23) W = -S9 x !• r (!• as in (2.9))
(2.24) V 5" = I9 x S9 f (V as in (2.14)).

From the two scalar-valued moulds S9 and S* we shall now derive
two others, the so-called symmetral compensators S^(t) and 5^o(t), which
depend on a variable t in C», but have the advantage of being defined for
all sequences a?. Then, by investigating the behaviour of the compensators
close to degenerate sequences a?, we shall stumble upon the moulds 4?* and
^e, which are central to our purpose.

The compensators and compensation-related moulds.

DEFINITION 2.1 (Symmetral compensators). — For t in C, and t^
as in (2.14*), we put:

(2.25) S^t)^^S9)x(S9)

(2.26) S^(t) d^ (S-) x (t^).

Clearly, S^(t) and S^(t) are mutually inverse and, as products
of symmetral moulds, they are symmetral themselves. They also satisfy
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equations analogous to (2.23) and (2.24):

(2.27) (V - t9t)S^(t) = -%(() x I9

(2.28) (V - t9t) S^(t) = +1' x S^{t).

Furthermore:

PROPOSITION 2.2 (Continuity of the compensator moulds). — For
sequences a; of a given length r, both S^(t) and S-^t) are continuous
functions oft in C» and a? in C7'. Moreover, for a fixed a? of degeneracy s,
S^(t) and S-^t) are polynomials of degree s in logt (apart from involving
various powers of the form ^+"•+a;J^.

Proof. — There are three steps. First, we introduce the so-called
symmetric compensators t^, which for non-repetitive sequences a are given
by:

(2.29) t^——- ̂  ̂  ̂  Y[(ai - a,)-\ (t € C.,a, € C,(T^)
0<i<r j^i

with unambiguously defined powers tcri (since t is in C»).

Second, we observe that the compensator i^ extends to a continuous
function of (t,a) defined on the whole of C, x C1"1"7', with the following
expression in case of a repetitive a".

(2.30) ^r50^^31^-.^3^ = (^/^!)(^/^!)...(^/^!)^o,.i,...^

where of course al1"1"^ means that ai is repeated (1 + Si) times.

Third, we check (recursively on r) the following relations between
symmetric and symmetral compensators, under which the repetitiveness
of a translates into the degeneracy of a/:

(2.31) ^'""^W = t0^1^-^
(2.32) ^-^(t) = (-I)^O,^A,...,^

D

Non-degenerate compensators are quite useful in so-called "small
denominator problems", in particular for the study of quasiresonant local
objects (see [E4], [E8], [E10] and also §7 infra). Here, however, we are
concerned with resonance rather than quasiresonance, and so what we
require is above all a closer analysis of degenerate compensators. The
requested information will be provided, on the one hand, by the lateral
decomposition of degenerate compensators (Proposition 2.2), which is
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easily derivable and uniquely denned, but somehow "less than complete",
and on the other hand, by the central decomposition (Proposition 2.3),
which is much more thoroughgoing, but correspondingly more costly.

PROPOSITION 2.2 (The ^e mould and the lateral decomposition of
compensators). — There exists a uniquely denned, alternal, scalar-valued
mould ^9 such that:

(2.33) %(t) = ex^logt)^ r) x S^(t)
= S^(t) x exp((logt) r)

(2.34) S^(t) = exp(-(logt) ̂ ) x S^{t)
=S^(t)xexp(-(\ogt)t^^)

where the symmetral moulds S^{t) and S-^(t) denote the logarithm-free
part of S^(t) and S-^(t) (a. for alogarithmic; co for compensated^) and
where exp should be construed, as usual, as the mould exponential (see
(2.13*),). For any non-degenerate sequence a;, ̂  vanishes and, for any
fixed degeneracy type, ̂  is a homogeneous function of a; of degree l—r(w)
and, more precisely, a polynomial in some of the variables (a^ + • • • +Li;j)~1.

Proof. — See after Proposition 2.3.

PROPOSITION 2.3 (The ^e mould and the central decomposition of
compensators). — There exist scalar-valued moulds S^, S^ (symme-
tral) and ff e (alternal), which remain defined for all sequences w, no matter
how degenerate, and verify:

(2.35) %(t) = (^ %J x exp((log^) F) x (%ct)
(2.36) %(t) = (%J x exp(-(logt) f f ' ) x (t^).

For non-degenerate sequences w, the moulds S^ and S-^ (ext for ex-
tended^ coincide with S9 and S9 but, unlike the latter, they remain de-
fined for all a;. They also provide a factorization of the logarithm-free part
of compensators:

(2.37) ^(^(^^Jx^)
(2.38) S^{t) = (%J x (^%J

which, unlike (2.25) (2.26), is valid for all w.

As for the mould ^ e, it is conjugate to ^9 under S^:

(2.39) ^xr=rx^



1416 J. ECALLE & D. SCHLOMIUK

but it is much "slimmer" than ^ 9 , since ̂  vanishes unless uj be of zero
sum (i.e. ||o/|| = 0), whereas ̂  vanishes only for non-degenerate a;.

The triplet (^xt^^xt^ff*) ls n0^ uniquely determined by the above
equations, but it becomes so if we add the further requirement that, for
any sequence a; of a fixed vanishing pattern:

(2.40) S^ be a polynomial of degree r in the acceptable variables (l/^i)

(2.41) S^ be a polynomial of degree r in the acceptable variables (l/^)

(2.42) y^ be a polynomial of degree (r — 1) in the acceptable variables
(l/o^) or (l/^).

("Acceptable" means of course that we must discard those uji or
uji which vanish. For l ^ 9 , the two sets of variables clearly coincide, since
^ =0 unless \\w\\ =0.)

From now on, unless stated otherwise, the symbols S^, S^, f f*
shall refer to those three unique and perfectly canonical moulds.

Remark. — Were it not for the constraints (2.40), (2.41), (2.42), we
might replace the canonical triplet:

(2.43) (%„ S:^ r)
by the triplet:
(2.44) (A-x^, S:^xB\ A - x ^ x B 9 )
for any pair (A*, B*) of scalar-valued, symmetral, mutually inverse moulds
such that:

(2.45) A^ = B^ = 0 whenever ||a?|| = 0.

But, as we shall show in section 4, the imposition of conditions
(2.40), (2.41), (2.42), or even any one of the three, suffices to remove
the indeterminacy. For the time being, however, we must be content with
proving Proposition 2.2 and the ^existence part" of Proposition 2.3.

Proof of Proposition 2.2 and the first part of Proposition 2.3. — The
argument will rely on mould-comould contractions, i.e. on formal sums of
type:

(2.46) ^M-B. = ̂ M^Bo, = E E M^-^B ,̂.,̂
O? 0<ra/z€^

relative to a given mould M9, a given comould B» (see below) and a given
subset 0 of C.
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But first we observe that the symmetral moulds P9^) and Q9^)
characterized by:

(2.47) %(t) = S'^t) x ?•(() = (t^Q'W) x S^(t)

satisfy:

(2.48) Q^t) x P^t-1) = !•.

Indeed, we have on the one hand:

(2-49) ^W^S^WxS^t)
and on the other hand:

(2.50) Q^t) = t-v(%^) x S^(t)) = rv%(t)) x (^-v S^(t))

which in view of (2.25), (2.26) reads:

(2.51) Q^t) = S^(t-1) x S:^t-1).

Pairing (2.49) and (2.50), we find precisely (2.48).

We now fix some (enumerable) additive semigroup fl, in C, and we
introduce the free associative algebra A and the free Lie algebra C generated
by the same set of symbols B^ (^ e fl.). Both A and C possess a natural
coproduct induced by:

(2.54) cop(Bo;) = ̂  Bo;i 0 B^2 (^ c shuffle (a?1, cc?2)).

By setting :

(2.55) grad(Ba;) ̂  |M[ = ̂  + ... + ̂

we turn ^4 and C into graded algebras, and we then enlarge them into ~A
and C by allowing enumerable (rather than finite) sums of base elements
Bo;, and also by introducing one additional Lie element X1111, of gradation
0, along with the bracket rules:

(2.56) [X^M d^ ||a;||Bo, (a; = (^... ,^)).

We first assume that 0 is not in 0, and consider the following mould-
comould contractions relative to fl,:

(2.57) X ̂  X1111 + ̂  JX = X^ + ̂  B,, e £
0/16^

(2.58) O^^^B.eA

(2.59) e-^^^S'B.e^
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(The sums in (2.58) and (2.59) extend to all sequences a;, including a; = 0).
The moulds S9 and 5'* being symmetral and mutually inverse, it is plain
that 9 and 9~1 are two mutually inverse, formal automorphisms:

(2.60) cop(e±l)=e±l^e±l

and that we have the conjugacy equation in C:

(2.61) x = ex^e-1

which readily follows from (2.56) combined with (2.17) and (2.18).

However, the operators 6 and ©-1, involving as they do the moulds
S* and S9, are defined only if, as we assumed, 0 ^ ^. To get rid of this
restriction, we introduce the compensators S^(t) and S^{t) relative to an
auxiliary variable t in C», and we construct two new formal automorphisms:

(2.62) Gee = ]>>;oW e A

(2.63) ©co'-E^oWeA

Still assuming (provisionally) that 0 ^ ^, we deduce from (2.61) or (2.27),
(2.28) the new conjugacy:

(2.64) X - id = Oco^1111 - tOt}Q^ (Ot == 9/Ot)

which (unlike (2.61) and due to the continuity of compensators: see
Proposition 2.1), retains both its meaning and validity even when 0 € ^.

Now, in view of the lateral decomposition (2.33) and of the obvious
inversion rule, valid for any two scalar moulds (M*,^*):

(2.65) ^(AT x 7V)B. = (^ 7VB.) x (^ M^B.)

the conjugacy relation (2.64) becomes:

(2.66) x - id = (eacoX^iogXx1111 - ̂ ceiogr^eaco)-1

with a neat separation into two logarithm-free and two logarithm-ridden
factors:

(2.67) 6aco=^%,(t)B.

(2-68) ©ac^E^oW®-

(2.69) ©iog=E<5W.

(2.70) '9^ = E(^Q*(*))B.

with Q*(t) as in (2.47).



THE NILPOTENT PART AND DISTINGUISHED FORM 1419

If we now introduce the Lie element tXmi defined by:

(2.71) ^^[^X^-tQt}

(beware of mixing up nil and Jin), the conjugacy relation (2.66) becomes:

(2.72) x - t9t = ©acc^x1111 - t9f)Q^ + eaco^x^e^.
But (2.72) involves three summands, two of which, namely X - t9t and
©aco(X1111 - ̂ 9t)©ac^ are patently logarithm-free, meaning that they have
no \ogt in them. So the third summand eaco^X^e^ must 9^so De

logarithm-free, and since 9aco is logarithm free, the commutator ^X1111

introduced in (2.71)must itself be logarithm-free. This clearly compels ̂ og
to be of the form:

(2.73) ^Qiog^expOlog^X1111))

with a Lie element ^X^ of the form:

(2.74) tXnil=^(^v ̂ )B.

relative to some alternal, t-independent mould ^e. If we now recall (2.47)
and (2.48), this implies:

(2.75) ?• = Q9 = ̂

which establishes Proposition 2.2 along with the relation:

(2.76) (^r)><%oM=%oM><r.
The above identity in turn shows that:

(2.77) ©aco^1111 = ̂ ©aco

with tXml QS in (2.71) and:

(2.78) X^^^^E..

Thus, equation (2.72) becomes:

(2.79) X - t9t = ©aco^1111 - ̂ )©aclo + ̂ nil

with two t-independent Lie elements X and X1111. Therefore the difference
X — X1111 itself has to be ^-independent, which is patently impossible unless
©aco be of the form:

(2.80) ©ao^Qext^ext)-1

with

(2.81) eext=E%ct».; e^=^>^B.
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(2.82) Uxt = E^xt)®. ; 'eex't - D^ ̂ xt)®.

relative to two symmetral, mutually inverse and t-independent moulds S^
and <S^xt that verify (2.37) and (2.38). If we now define a (necessarily
alternal) mould ^ e by the relation:

(2.83) S^{t) = (^v %J x exp((log^) F) x (%J

we see, in view of (2.33), that ^ and ^< are mutually conjugate under
*%ct? as m (2-39), which implies that <f e, like ^* and S^t?ls ^independent.
Moreover, again by comparing (2.83) with (2.25) and (2.33), we infer that
t^ ^ • = ^ e, which means that V ff e = ff '. Thus, ff ̂  necessarily vanishes
when ||o;|| ^ 0. This establishes (2.35), (2.36) and completes the proof of
the "existence part" of Proposition 2.3. D

3. Construction and properties of the f * mould.

The compensation-related moulds introduced thus far fall into two
quite distinct classes.

On the one hand, we have the ^e mould and all the "soft" moulds
involved in the lateral decomposition of Proposition 2.2. They are rather el-
ementary and fairly easy to calculate, because they are entirely determined
by the equations (2.33) or (2.34).

On the other hand, we have the !^9 mould and the other two
"tough" moulds S^ and S^ involved in the central decomposition of
Proposition 2.4. These more elusive moulds, as we observed, are not
unambiguously characterized by equation (2.35) or (2.36), unless we add
the rationality requirements (2.40), (2.41), (2.42). These latter conditions,
however, aren't too easy to translate analytically, and this considerably
complicates the study of the three "tough" moulds.

The corresponding construction will be postponed to the next section.
In this section, we shall deal with the properties of the "soft" moulds, and
indicate several ways of calculating them.

Direct calculation of the "soft" moulds.

The logarithm-free parts S^(t) and S^(t) of S^(t) and S^{t)
may be obtained directly, by translating the symmetral compensators into
symmetric ones according to (2.31), (2.32) and then applying (2.30), but
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letting the differential operators 9^ act only on the variables o-i sitting in
the denominators Y[((Ti - Oj)~1 , not in the powers t^. Similarly, 4^ may
be calculated by letting the 9^ act once on the powers, and all the other
times on the denominators. In fact, from (2.33), (2.34) we derive:
(3.1) S^{t) = S^(t) + (\ogt) 4?:(t) + o(\ogt)
(3.2) S^(t) = S^(t) - (logt) 4^(t) + o(log^)
with:

(3.4) ^:(t) = S:^t) x r ; ^(t) = r x S^(t)

(3.5) %(1) = 5^(1) = 5^(1) = 5^(1) = !•
and therefore:

(3.6) ^•=^:(1)=^:,(1).

Inductive calculation of the "soft" moulds.

There is also a more convenient, induction-based alternative for
calculating our moulds — which moreover is intimately related to their
geometric meaning (see the proof towards the end of the section). But in
order to spell out that induction, we require moulds 1^ similar to J*, and
mould operators V^o similar to V. For any simple index c^o, the alternal
mould 1^ is defined by:

(3.7) 1^ = 1 if 0:1 = 0:0 ; 1^ = 0 if 0:1 + ̂

(3.7bis) J^ -^=0i f r^ l .

Again, for any simple index UJQ, the operator Vo;o acts on any mould
M* according to the rule:

(3.8) (V^M)^15-'^ d^ ̂  {^ î,.,̂ ^ î,.,̂ +c^+i,...,̂
u}i=wo _^-a/l,...,o;i_i+a/i,...,a/r1

the term M-^-1^^- (resp. M•••'a;^+a;^+l'•••) being systematically omitted
if i = 1 (resp. i = r).

Like V, the operator V^o ^s a derivation of the mould algebra:
(3.9) V^A* x B9) = (V^A*) x B9 + A- x (V^B*)

and the notation parallelism between (J*, A) and (7^, A^J is justified not
only by the obvious relation:

^•-E^o; v=^v^
^0 ^0
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but, more pointedly, by the fact that, for many important moulds, equations
involving V and I * tend to specialize to similar-looking equations with V^y
and 1^ . Such indeed is the case with our "soft" moulds (but, significantly,
not with the "tough" moulds).

Induction rules for S9 and S9.

We have

(3.10) Vfi^ = -S9 x I9

(3.10*) V,^ = -S9 x 1^
(3.11) \7S9 =!• x S 9

(3.11*) V,, S9 = 1^ x S9

with the induction-starting conditions 5'0 = 50 = 1.

Induction rules for %, and S^.

(3.12) v%(i) = (^r) x %(t) - %(t) x r
(3.12*) V^W = (^v^) x %(^) - %(t) x J^
(3.13) V S^(t) = I9 x %(t) - S^(t) x (t^r)
(3.13*) V,o %(t) = J^ x S^(t) - S^(t) x (t^)

with the induction-starting conditions:

(3.14) S^(t) = (log^)7r! if a; = (0 , . . . , 0) (r times)
(3.14*) 5^(t)=(-logt)7r! if a; = (0, . . . ,0) (r times).

Induction rules for S ô an(^ ^co-
The logarithm-free parts S^(t) and S^(t) satisfy exactly the same

induction as %(t) and S^o(t), but with different induction-starting condi-
tions:

(3.15) S^t) = S^(t) = 1
(3.15*) S^(t) = S^(t) =0 if ^ = (0, . . . , 0).

Induction rules for ip*.

(3.16) V^ '=J*x^* -^ *x r
(3.i6*) v^r^o^'-r^
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with the induction-starting conditions:

(3.17) ^ = 0 ; ^ ° = 1 ; ^^^^^^^^^ . .—O

(beware that 0 7^ (O)). In view of the importance of <p*, let us explicit the
compact formalism of (3.16*). For (JQ = ̂ i and c<;o = ^r we get:
(3.18) 0:1 ^l'•••^r + ̂ 1-^2,^3....,^ ^ ^a/2^3,...,^

(3.19) ^ ̂ ^"••^r - ̂ 1-^-2,^-1+0;. ̂  _ ^a;i,...,a/.-2,^_i

and for ujo = u^i with 1 < i < r we get:
(3.20) uji ̂ i.^i^^r _ ̂ i,...,̂ -i+ ,̂...,̂  ̂  ̂ o/i,...,^+^-n,...,^ ^ Q

Proof of the induction rules for the "soft" moulds. — Let us first
recall the main decomposition rules established in §2 for the graded Lie
algebra Z. In the special case when 0 ^ f^, we found the conjugacy relation:

(3.21) x = ex^e"1

with
(3.22) X = X1111 + ̂  B^, (^ € ^)

(3.23) 6=^5^.; 6-^^^B..

In the general case, i.e. when the semi-group f^ may contain 0, we
introduced an auxiliary variable t, which led to a more stable conjugacy
relation:

(3.24) X - t9f = eco^1111 - t9t)Q^
(3.25) X = X^ + X1111

with
(3.26) 6co = ̂  %(t)B. ; O^ = ̂  5;o (t)B.

(3.27) X^ = X1111 + ̂ (r - ̂ B.

(3.28) X^^^^B..

However, due to the uniqueness of the decomposition (3.21), valid in
the special case when 0 € ^2, if we subject X to an automorphism Ue of C,
of the form:

(3.29) X — X = UeXU^

(3.30) Ue = exp(£B^), (5 € C, cc;o € ^)
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the conjugacy equation (3.21) still holds, provided we effect the simultane-
ous change:

(3.31) 9 ̂  6 = £46.

By an easy continuity argument, we see that, in the general case also
(when ^ may contain 0), the decompositions (3.24), (3.25) retain their
validity after the simultaneous changes:

(3.32) 6co —— e,, = ̂ 6co
(3.33) X^ h—^ X_^ = UeX^U^
(3.34) X"11 ^-> X1111 = UeX^U^.

However, it is plain, from the construction at the end of §2, that the
conjugacies (3.21), (3.24) and the decomposition (3.25) hold not just for a
Lie element X of the form (3.22), but for any Lie element X_ of the form:

(3.35) X = X1111 + ̂ B^ with B^ € C and grad(B^) = ̂ .

Now, the particular Lie element X_ introduced in (3.29) admits an expansion
of type (3.35) with:

(3.36) B^ —— B^ d^ B^ + £[B^,B^-^] + o(e)
and this affords us with a second means of calculating 6, Q^o? ^dla, 2C1111,
namely by applying the formulae (3.26), (3.27), (3.28) with B^ instead of
B^, but with the same universal moulds 5'*, S^(t)^ ^*. Now, comparing
the result of these calculations with the direct formulae (3.31), (3.32),
(3.33), (3.34), and equating, in each instance, the coefficients in front of e
(viewed as an infinitesimal parameter) we obtain all the rules (from (3.16)
to (3.20)) that govern the Vo/o-derivation of the "soft" moulds — which
is what we had set out to prove. (As we shall see in the next section, the
"tough" moulds ^ e, 5^t? ^xt do not possess such simple V^o -derivatives.)

4. Construction and properties of the <y e mould.

General scheme.

Just after (2.18) we defined the vanishing order van(c^) of a sequence
a; = (cji,... ,ov). When ||c |̂| 7^ 0, van(c^) is automatically 0, but we still
have a forward (resp. backward) vanishing order, defined by:

(4.1) vim (a;) = #{uji = 0} (resp. van (a?) = #{c^ = 0}).
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We shall require all three notions for the construction of the three "tough"
moulds, and shall proceed as follows:

(4.2) (5*, 5*, T) ̂  (%„, S^t, T;est) ̂  (5:xt, ̂ , ff •).
The step rest ("restriction") will rid us of the vanishing denominators
uji or uji. It will also decrease the homogeneous degree by an integer s
equal, respectively, to vim (a;), vlin (a?), van(a?). But at the next step diff
("differentiation") we shall apply to the "restrictions" suitable differential
operators:

(4.3) Rad^, Rad^, Ral^

of order s in the variables o^, so that the right degree will be restored. This
will also take care of the rationality conditions (2.40), (2.41), (2.42). The
main point, however, is to ensure the symmetrality (resp. alternality) of
the resulting moulds S^ and S^ (resp. ^e) and of course to check that
they relate to one another in the same way as in Proposition 2.3. Those
requirements happen to totally determine the shape of the operators (4.3),
but in order to construct these, we shall need three auxiliary moulds:

(4.4) rad^ rad^ raF (w = (wi,..., w,), w, = (ui}, u, € C, v, e N)
\^z/

which, though rather elementary, are interesting in their own right.

The restrictions %^ %st. r̂'esf

DEFINITION 4.1. — For any sequence a? = (cc;i,... ,a;r), we put:

(4.5) S^, d^ n (-^)-1 (with ̂  = ̂  + ... + ̂ )
a^O

(4.6) 5 ,̂ d^ n (+^)-1 (with ̂  = ̂  + • . . + a;,).
(2^/0

For ||a?|| ^ 0, we put T^ d^ 0 and for ||a;|| = 0, we adopt either of the
alternative definitions:

(4.7) r̂ , d^ n (-^)-1 (̂ 2i ||a;|| = 0)
cî O

(4.8) T^ d^ n (+^)-1 (with ||a;|| = 0).
c^O

Remark. — Although ^ is removed from the product (4.5), (4.7)
if uji = 0, the variables a;!,̂  • • • ̂ i constitutive of o^ remain inside



1426 J. ECALLE & D. SCHLOMIUK

^-1-1,0^-1-2,.... Similarly, ^ is removed from the products (4.6), (4.8) if
Cji = 0, but the variables ^,0^+1,... must be kept inside ^-1,^-27 • • •
(see example (4.35)-(4.38)).

Construction of the auxiliary moulds rad^ rad^ ra^.

In this subsection, we will have to do with moulds indexed by
sequences w = (wi , . . . ,Wy. ) with Wz = (^), 14 6 C, Vi e R"^. On such
moulds, there act the operators D^y, which are defined as the Va;o in (3.8),
but with differentiation by vo9uo in place of multiplication by WQ. Thus we
have:

(4.9) (D^MF1'-^ = ViQ^M^—^ + M^'-'^-^1'-^7-
_71^Wl,... ,Wi_i4-Wi,... ,Wr

and the term with the contraction w^-i + w^ (resp. Wi + w^+i) should of
course be omitted if i = 1 (resp. i = r). Each operator D^p is a derivation,
relative to the non-commutative mould product.

We also require moulds 7^, which we define exactly as in (3.7),
(3.7 bis), but with WQ in place of UJQ. We may note (for future use) that
the straightforward application of (3.8) to I * yields:

(4.10) D^ = 1^ x I9 - I9 x J^, (Vwo).

PROPOSITION 4.1 (Characterization of the moulds rad*, rad*, ral*).
The mould equations:

(4.11) D^ rad* = - rad* xj^, (Vz)
(4.12) C^rad^+^xrad', (Vz)
(4.13) D^ rar = 0, (Vz)

along with the initial conditions:

(4.14) rad0 = rad0 = 1 ; ral0 = 0

(4.15) radw = radw = ra^ = 0 i f w = ( w i , . . . , Wr)
with 0 = u\ = 1^2 = • • • = Ur, (V^)

admit, as their unique solution, two symmetral moulds rad® and rad®, and
an alternal mould ral®, which are related as follows:

(4.16) I® =rad® x rad®
(4.17) ra^rad^xr x rad® .
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Short proof. — To clarify the convenient but all too concise formal-
ism of Proposition 4.1, let us first write out in full the equations (4.11) for
r(w) = 3 and i = 1,2,3. We find

^9n, rad '̂̂ 3 4-rad^^2^3 = 0

v^On, rad^2^3 +radwl'w2+w3 -rad^^2^3 = 0

vsQn, rad^^2^3 -rad^^24^3 = -rad^^2.

Clearly, the equations (4.11), (4.12), (4.13), along with the initial conditions
(4.14), (4.15), amount to an overdetermined differential system. So we must
first check its consistency, by establishing the relations:

(4.18) Q^Q^M^ = a^O^M^ for M^ = rad^ rad^ raF .

This is easily done, through applying the rules (4.11), (4.12), (4.13) twice
in succession, for Wi and then Wj (resp. for Wj and then w^), but we have
to distinguish the case when \i — j\ > 2 from the case \i — j\ = 1.

Then we must check the alternality ofral* (resp. symmetrality ofrad*,
rad*). As earlier with the "soft" moulds, this is a matter of straightforward
induction on r, but we may note that the conclusion (i.e. alternality and
symmetrality) follows from the very shape of the system (4.11), (4.12),
(4.13), not from its ingredients: it would remain in force even if we replaced
D^ by some other mould derivation, and 1^ by some other alternal mould
(provided, of course, the self-consistency of the system is preserved).

Lastly, the relations (4.16), (4.17) follow from the uniqueness of the
solution of the system (4.11), (4.12), (4.13). Indeed, if we take rad* to be
the solution of (4.11), and then define rad^ as the mould-inverse of rad*
(as in (4.16)) and ral^ as the conjugate of I9 under rad* (as in (4.17)), it is
a easy matter to check that rad^ and ral^ automatically verify the systems
(4.12) and (4.13) along with the corresponding initial conditions. Therefore
rad31 = rad* and ral^ = ral*. n

Remark. — It is plain that for sequences w of fixed length r(w) = r,
the functions radw and radw (resp. raF) are homogeneous polynomials of
degree r (resp. r—1) not only in the variables Ui (1 < i <: r) but also in the
variables:

(4.19) (vi + ̂ +1 + • • • + Vj)~1 (1 < i < j < r).

Thus, if we introduce the short-hand notations:

(4.20) Uij = Ui + Uj ; Uijk = Ui 4- Uj + Uk ; etc. ; Vij = vi + Vj ; etc.
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we find as first values of rad* and rad*:

rad^ =-radwl == +^
Vl

racT^ = -^rad"2'^ = ̂ l^2 - l(u02

2 Z»2^12 2 Z?i^2
1 ..3 -i .3 1 .,31 ^123 _ i ^12 _ _L___Lfcl_rad^^2^3 = —rad^''^2''^1 = +-
6 ^3^23^123 6 ^2^3^12 3 ^1^2^23

1 ^i23^2 I U12UJ
T ———————

2 ^1^3^23 2 ^i?;2^3

etc.,

and as first values of ral*:

raF^l; ralw l 'w 2=-^4-u 2 ;
^1 V2

^FI^^ ^ , 1 ^2 ^_ 1 ^3 _ IJ^L _ 1 !̂ _ ̂ 3
2 1;i?;i2 2 1:3^23 2 Z;i2;2 2 ̂ ^3 ^1^3 '

Construction of the operators Rad^, Rad^, Ral^.

We shall have to factorize each sequence ^ = (0:1,... ,0:7.) into
unbreakable, zero-sum factors c^, i.e. into factor sequences:

(4.21) c«/ = (^•,^+i,...,a;fc-i,^fc), (o;g e C)

such that:

(4.22) ||a/|| d^ ̂  + • • • + ujk = 0, but ̂  + • • • + ujq -^ 0 if j < q < k.

To any such factor o^ we associate an ordinary differential operator Ui and
an integer z^:

(4.23) m ̂  D^ ^ 9^ + 9^, + . • . + Q^ (9^ ̂  9/9^)

(4.24) Vi dM r(^) = fc - j + 1 = length of a;1.

For a general sequence a;, we must distinguish the forward and backward
factorizations:

(4.25) a; = uj1^2 • • • o^a;* (forward)
(4.26) c*; = a?*a;1^2 • • • ̂ s (backward)

with unbreakable, zero-sum factors u^ and either a;* == 0 or ||a;*|| ̂  0. Both
factorizations coincide iff \\u\\ =0, since in that case c^* = 0 and:

(4.27) a^c^a;2---^.
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DEFINITION 4.2 (Operators Rad^, Rad^, Ral^). — To each se-
quence w = (0:1,... ,0:7.) we associate three differential operators by
putting:
(4.28) Rad^rad^-^8

with a? = a;1 • • • a^a;* as in (4.25) and w, == (^) as in (4.23), (4.24)

(4.29) Rad^rad^'-'^
with a; = o;*o;1 " ' w 8 asin (4.26) and w, = (^) as in f4.23^ f4.24^

(4.30) Ral^^rar11-^3

with a? == a;1 • • • a?5 as m (4.27) and Wi = (^) as in (4.23), (4.24).

Remark 1. — Since the moulds rad^ rad^ ra^ depend polynomi-
ally on the variables z^, and since the operators D^i commute pairwise,
the substitution HI ̂  D^i offers no difficulty.

Remark 2. — If the forward (resp. backward) decomposition of ^
reduces to the one factor a?*, the above definitions yield 5 = 0 and
Rad^ = 1 (resp. Rad^ = 1). Likewise, if ||o;|| ^ 0, we get s = 0 in
(4.27) and Ral^ = 0, but if ||o?|| = 0 and a? is itself unbreakable, we get
s = 1 and Ral^ = 1.

Remark 3. — It should be noted that even those components ujj
(inside an unbreakable, zero-sum factor o^) that vanish (i.e. ujj = 0)
nonetheless contribute a term 9 .̂ to the operator Ui = D^i of (4.23).

Construction of the "tough" moulds.

PROPOSITION 4.2 (Expression of the canonical moulds 6^ %ct?
-y*). — The unique, canonical mould triplet S^, S^ (symmetral) and
fl?e (alternal) of Proposition 2.3 is explicitely given, for any sequence
a; = (c<;i, . . . ,o;r) of any given vanishing pattern, by the relations:
(4.31) S:^=R^^
(4.32) ^^Rad^.S^
(4.33) ff^Ral^r^
with the same notations as in Definition 4.1 and 4.2.

Remark. — In (4.33), one may take for T^ either of the alterna-
tive definitions (4.7) and (4.8). The choice doesn't affect the end result.
Checking this makes for a nice exercise, which we leave to the reader.
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Important caveat. — In all three instances (4.31), (4.32), (4.33), one
should take the restricted moulds 6'^gti ^s^ ^r^t wltn a^ their variables
c<^, without simplifications'^ then apply the operators Rad^, Rad , Ral^;
and then only, at the last stage, effect the simplifications that stem from
the identities:
(4.34) Q=\^l\\=\\^t2\\=...=\\^s\\.
Thus, if we consider a sequence c^ with the factorization:

(4.35) a; = c^Wo;* if a;1 == (c^i,^)?^2 = (^3)^* = (^45^5)
the rules of Definition 4.1 yield:

(4.36) Rad^ = +l(nl2)2 - l(u2^, (^12 = u^u^v^ = v,^)
2 ^12 2 ̂ 2

(4.37) u\ = 9^i + o^ 'i ^2 = 0^3 ; ^ i = 2 ; V2 = 1.
We must apply the operator Rad^ to the "restriction"
(4.38) S^=-(^^)-1

= —(^l)~1 (0:1+^2+^3-^-^4)-l (^1+^2+^3+0:4+^5)-l

and only then may we simplify by taking into account the fact that
0 = L^I + 0:2 == ^3. This procedure alone yields the right result, which
reads:

(4.38*) 5^ = -(^i^^)-1^^!)-^!^!^)-1

+j(^la>5)-l+(^4)-2 + (^"^(^^i)"1}.

Let us now examine what shape 5^ assumes depending on the number s
of "unbreakable" factors in the forward factorization (4.25).

If s = 0, then of course 6^ = S^t = S^.
If s = 1, i.e. if o» = o?1^* (with Ha^H = 0, r(o?1) = ri) we find:

(4.39) 5^ = {[[\-^)-l}{^Q^~l}

with

(4.40) Qi = x- if uji C uj1 and Qz = 1 if ̂  e a;*.
^

Here, the star * atop ]~[ and ^ signals that we omit the "inacceptable"
terms ̂  ̂  0.

If s = 2, i.e. uj = u^uJ1^ (with ||a^|| = 0, r(a^) = r^) we find:

(4.41) s^ = {nv^-^E*^^)"1}
I %<J
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with the same omission rules as above, and with coefficients Qij given by:

(4.42) Qij = -3- if ( ,̂o;,)e(u;W) or (o;1,^2)

(4•42*) Qi3= ̂ -^r^ i{^^2^
(4.42") Qij=^- if (o^o^e^1,^*)

(4.42"*) Qij = I1 if (^,a;j)e(o?W) or (o>W).
In the general case, for u> = w^w2 • • -a?5 a?* (with Ha?1)! = 0, r(a?1) = r^) we
get:

(4.43) 5^ = {IT^)"^ E * î̂ ,...^(^^ •••^)-1}
i ^l<^2<•"<^s

with nearly s! different expressions for Q,, such as:

f44T^ 0- • • = _w2__ls_(4.43) ^——^-,^...,^

if(a;^,^,...,a;,J € (a;1,^1,...,^1)
(4.43**) 0^^,...^ = 1

if^,^,...,^) € (o?*,o;*,... ,0;*).

We observe (first in the case s = 1, s = 2, etc.) the following continuity
property: although the outward shape of the coefficients Qzj^k,... depends
on which factors ̂  ̂  ,0^ , . . . the components ^,^,^5 • • • are taken
from, these coefficients coincide in the boundary cases, i.e. when z,j, A ; , . . .
assume the "prohibited" values ri, 7-12,7*123, etc. For instance, in the case
s = 2, we get the same value for Qij:

- by putting % = r\ in (4.42) or (4.42*)

- by putting j = r^ in (4.42*) or (4.42***)

- by putting z = n in (4.42**) or (4.42***).

Proof of Proposition 4.3. — The conditions (2.40), (2.41), (2.42) of
Proposition 2.3 are obviously fulfilled by construction, and the main point
to prove is the symmetrality (resp. alternality) of S^ and S^ (resp. *!'*).
We first establish the symmetrality of S^ with the help of the following
lemma:

LEMMA 4.4 (Arborification). — The relation (4.32) still holds after
arborification

(4.44) 4t=Rad^t
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i.e. after replacing the fully ordered sequence a; by any partially ordered
sequence uj such that each uji in a? has at most one direct antecedent; and
after setting:

(4.45) ^t-E^i
UJ

with a sum extending to all sequences <jj whose full order is compatible

with the partial order of a;. The operator Rad^ is still defined by (4.29),
(4.23), (4.24), but relatively to the backward factorization which is the

exact analogue of (4.26) for the arborescent structure of w. Lastly, S-^ is
defined as in (4.29), but with sums o>z = ̂  cî  that are now relative to the
partial order of a; (i.e. they extend to all ujj posterior to uji in w, including
uji itself).

To prove this lemma, we fix some unbreakable, zero-sum sequences
Ct?1, a;2, c<^ 3 , . . . and denote the product-sequences (c^1^2), (c^Li;2^3), etc. by
the short-hand c^12,^;123, etc. Then, to each o^ or o;^, etc. we associate
pairs Wi = (ui) or Wij == {^^.j.)•> etc. with operators ui or u i j ' ' ' as in
(4.23) and integers Vi or V i j ' ' - as in (4.24). With such components w^, the
polynomials ^adw become ordinary differential operators, and the system
(4.12) translates into the following Leibniz type rules:
(4.46) rad^dia;1!!^)^

(4.47) rad^dl^2!!^) = rad"12^)
(4.48) rad^Olo;12)!^) = rad^O^)
(4.49) rad^^dia;3!!^) = rad^23^)
(4.50) rad^^dio;12!!^) = rad"12'"3^)
(4.51) rad^^dia;123!!^) = rad"2'"3^)
etc., and more generally, for i > 2 (resp. i = I):
(4.52) radwl'•••'wr(||a;V+l•..a;s||^)=radwl'•••'w^+w^+l'•-ws(^)

(resp. ^rad——3'-'^))
with sums H^H, ||ct |̂| = H^^ll = ||̂ || + 11̂  Ih e^c• defined as usual (see
(2.15)) and with test functions (ps that may be any (almost everywhere
smooth) function of the variables ujj appearing in the sequences e«;1, e<^ 2 , . . .

Now, since in the case when all sums Cjj are ^ 0, one has the
elementary arborification rule:

(4.53) ^ = E1^)"1 ̂  ̂  = E2^)"1
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with sums uji = ̂ ^ relative to the full order of uj in ^1 (resp. to the
partial order of a? in ̂  ), it is sufficient to show, by induction on s, that
the identity (4.44) holds for each uj that has s vanishing sums ̂  in it, but
such that each of the subordinated sequences a; in (4.45) (whose full order
is compatible with the partial order of u) has s or s + 1 vanishing sums <jJi
in it.

Let us start the induction with s = 0. It is enough to consider
an arborified sequence o?= (c<;i , . . . ,0^^ beginning with a fully ordered
sequence (ct; i , . . . , o;c0 whose last component ujo, has at least two immediate
successors ujj. If we now assume that the only set of components uj of c^
whose sum vanishes is the set of all ujj strictly posterior to c^, in other
words:

(4.54) uja — Uo, = 0 (uja relative to the partial order of u)

it is plain that a; has only non-vanishing sums ^, but that each of
the subordinated, fully ordered sequences a? in (4.45) has exactly one
vanishing sum, namely c<;a+i. However, applying the Leibniz rule (4.46)
with a;1 = (c^Q+i, • . • ,^r) and the following test function y?i:

(4.55) ^i = ̂ L d^ E s^ (^ compatible with ^)
u

and using the identity:
r

(4.56) (p\ = Ho;1!! TT(^) {uji relative to a?)
i=l

we find that the non-arborified identity (4.32) implies the arborified iden-
tity (4.44).

Similarly, whenever the de-arborification a; i—^ a; entails a jump from
1 to 2 (resp. 2 to 3, or 5—1 to s) of the backward vanishing number (i.e.
the number of vanishing sums obj) one resorts to the relevant Leibniz rule
(4.47) or (4.48) (resp. (4.49), (4.50), (4.51) or (4.52) in the general case)
and verifies, once more, that the non-arborified identity (4.32) implies its
arborified counterpart (4.44), without any change of outward form.

To deduce from this the symmetrality of S^, all we have to do is
consider the special case of an arborescent sequence a; consisting of the
juxtaposition (not succession!) of two fully ordered sequences a;1 = (a;a,...)
and W2 = (ci;/3,...). (In other words, each u^j in c*; has exactly one direct
antecedent c^, except for the two minimal elements o^ and ujp.)
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Lastly, to establish the uniqueness of the mould S^ under the
rationality requirement (2.41), one must also resort to the Leibniz rules
(4.52) and observe that, in order to ensure stabilility under arborification
(or even mere symmetrality) the operators Rad should be invariant
under any internal reordering of the components of any of the unbreakable
sequences c</ in the backward factorization (4.26).

One deals with the moulds S^ and ff * in exactly the same way, and
winds up by proving all identities from (2.35) to (2.39) by induction on the
number s of unbreakable factors ̂  in (4.25), (4.26), (4.27).

PROPOSITION 4.3 (Vo/o-derivatives of fl^). — Under the Vo/o-
derivation (see (3.8)) the "tough" moulds behave as follows:
(4.57) V^%, =-%ctX^+ff^x5^ (V^o)
(4.58) V^5:,, =+^x^-^x|^ (Vc.o)(4.59) v,,r ^^r-rx^o (^o)
where (for each UJQ e C) ^^ denotes a well-defined alternal mould such
that ff ^l'•••'u;r = 0 as soon as one of the following three conditions is fulfilled

(4.60) o;o = 0

(4.60*) o ; i + • • • + ^ ^ 0
(4.60**) ^7^0 (Vz).

Proof. — For each L^Q 6 C, we may regard equations (4.57) and
(4.58) as defining two (a priori) distinct moulds <y^ . But if we apply the
mould derivation to the mould identity:

(4.61) 5:̂  x ̂  = !•

we see that the two aforementioned moulds <y^ do in fact coincide.
Likewise, applying V^o to the mould identity:

(4.62) r^^xrx^
and bearing in mind that:

(4.63) v.o r = -Cox ̂  - -r x-Co (see §3)
we see at once that (4.57) and (4.58) imply (4.59). So we may regard
^^ as being defined by, say, equation (4.57) and prove, with the help
of the properties of I f f * and recursively on van (c^), that ^^l'•••'a;r does
indeed vanish when either (4.60) or (4.60*) or (4.60**) is fulfilled. As for
the alternality of ^^, it also follows from (4.57), but has nothing to do
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with the particular nature of the mould 6^ only with its symmetrality.
Indeed, it is an easy matter to show that for any three moulds A*, £?•, C*
the relation:

(4.64) V^A* = A9 x B9 + C9 x A9

determines C* (resp. B9) in terms of A* and J?* (resp. A* and C'*) and
automatically guarantees the alternality ofC* (resp. B9) if A* is symmetral
and B9 (resp. C9) is alternal. D

To conclude this section, let us review some of the differences between
<P* and ! ^ 9 . ^w vanishes more often than ^fa?, since ^u? = 0 as soon as
\\(jj\\ 7^ 0. -y has only singularities of the form:

^1 + • • • ̂ i = 0 = C^+i + • • • + ̂ r

whereas ̂  may have singularities of the form:

c^+^+i + . . .+c^ =0 (ij C {! , . . . , r})

^ has rational coefficients, whereas ^u? has only integral coefficients,
and those tend to be much larger (see Tables at the end of §11). Above all,
<y* is an incomparably more complex object than ^e, as borne out by the
respective definitions of these two moulds; their modes of calculation; and
the shape of their V^o-derivatives. That impression will further deepen in
the next section, when studying certain useful generating functions (known
as amplifications and coamplifications) attached to ^e and i^*.

5. Amplification of the moulds ^e and ^e.

Moulds and their amplification.

When investigating the convergence/divergence properties of mould-
comould expansions ^M^Bc^, one is often led to regroup all terms
that correspond to sequences a/ obtained from one given sequence w =
(c<; i , . . . , ujr) interspersed with any number of copies of a given element c<;o
which is usually 0, and in our case will always be 0. The natural way to
study such regroupings is to introduce generating functions:

(5.1) Y^^O^O)^^^!)^^^),..,^^^)^^! ...yir

with 60^15 " "> br denoting independent complex variables, and with the
symbols 0^^ standing for sequences (0 , . . . , 0) ofn^ consecutive zeros. Now,



1436 J. ECALLE & D. SCHLOMIUK

if the mould M9 happens to be alternal (or again if it is symmetral but
with M° = 0), the alternality (resp. symmetrality) relation (2.2), when
applied to the pair a;1, a;2 with:

(5.2) ^=(0) ; ^^(O^0)^!^^1),^^^2),...,^^^))
yields rightaway:

(5.3) ^ (1 + n^M^^^^^-^'o^^^^i.-^^-) ^ Q
0<^r

As a consequence, the generating function (5.1) is seen to depend only on
the differences:

(5.4) Oi = b-t - 60, 02 = ^2 - h, . . . , Or = br - br-l.

This motivates the introduction of sequences zz7 of the form:

(5.5) ^(^_^^i,...^\
\a i , . . . , ay /

and of an ^-indexed mould:

(5.6) M^p-^^ M^^-^^^r1'
ni>o •(^+a2)n2•••(al+...+a,)nr

^ Mo(nl)--o(nr)^(_l)n^.••^(,^ ... ̂ ,

nl>o •(a2+•••+a,)n2.•.(a,)nr.

The mould M^p thus denned is known as the amplification of M\ It is
automatically alternal ifM* is alternal (resp. symmetral ifM^ is symmetral
and M° = 0).

As it happens, most natural moulds M9 possess convergent amplifi-
cations M^p. More precisely, for a fixed sequence u = (0:1,... ,c^) and
a variable sequence a = (ai , . . . , a^), the generating function M^p does
not only converge for small values of a but, as a rule, the corresponding
analytic germ can also be continued endlessly (i.e. along almost any broken
line drawn in C7' and originating from 0), and thus gives rise to an analytic
function of a = (a,), uniform or multiform, but defined everywhere on C",
except on a singular set of complex dimension < r.

If we now revert to the topic of mould-comould contractions
^M^Bo;, the fact that the terms B^ (being usually concatenations of
r(cj) derivations) tend to grow (in norm) roughly like r(o;)!, means that
the sum ^M^B^; usually diverges (in norm). Nevertheless, most of the
time, one Borel transform z -^ C (relative to a suitable variable z) can-
cels off the noisome factorial r(a?)!, and the endless continuability of M^
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translates into the resurgence of ̂  M^Bo; relative to the z variable. We
shall soon enough (see §8 and §9) come across striking examples of this
very general phenomenon, but first we must investigate the amplifications
of our key moulds ^e and -y*.

Amplification of the ^e mould.

In (2.14) and (3.8) we introduced derivations V and Vo/o operating on
e^-indexed moulds. We obtain analogous derivations V and V^o operating
on z^-indexed moulds, by replacing the sum ||o;|| in (2.14) by ||z |̂| =
||c«;|| + ||a||, and each term ci^M"-^1'-" on the right-hand side of (3.8) by the
term (c^ + a^M-^^-.

PROPOSITION 5.1 (Rationality of -?^ip). — The amplification ̂ p
can be calculated inductively by means of the relations:

(5.7) V^ ̂ Lp = ̂ o X :̂mp - ̂ :mp X^o (V^o)

(5.8) V^=J-x^-^xr

which have the same outward form as the induction (3.16), (3.16*) for ^e,
but with an induction-starting condition:

(5.9) Cmp-^l+^l)"1 (^^1-(
^1

.a!.

which is vah'd for both 0:1 7^ O and u\ = 0, unlike the corresponding
condition for <p*, for which we had a dichotomy:

(5.9bis) ^ =0 if a ; i ^0 ; ^^==11^0:1=0.

As a consequence, each ̂ ^p ^ a rational function of the variables c^ and
di, with singular loci of the form:

(5.10) (^+c^+i+. . .+c^)+(a ,+az+i+. . .+a^) =0 (1 < % < j < r)

but the analytical expression of ̂ ^ , unlike that of^, doesn^t depend
on the actual degeneracy pattern ofuj. It is given explicitely by:

(5.11) ^p-^+O^x^:^)

with;

(5.11*) -S^p"'̂  d±f 5"i+»i,-,^+°r ^e ̂  ̂

(5.11**) ^p-^ ̂  5"i+»i>...,^+ar ^ee C2.19^

(5.11-*) V^p-^- d±f (0:1 + • . . + ̂ ^^^p--.
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Thus, putting rfi ^= cî  + 04; rjij ^= c^ + ̂  4- dz + Oj, etc., we get:

^r2 = -^l^l^)"1 -^2(7OTl2)~'1

^m^2^3 = -^l(^1^1277l23)~1 +^2(^2^12y7l23)~1

+ ^2(^23^123)~1 - ̂ (^^y^)"1

etc.

But due to cancellations within (5.11), for any fixed sequence c^, no
matter how degenerate, ^^mp ls always a regular function of the sequence
a at the origin a == 0 of C7', whereas the factors 5^p and 5^p on their
own, may clearly possess poles at a = 0. In other words, for any fixed a;,
4?^7 has only singular loci of the form (5.10) and with uji + • • • c^j ^ 0.

Proof of Proposition 5.1. — The induction (3.16*) for ^e yields:

(5.12) ^^-i^),...^^)^,^...^-!-1)^,...^^...^^-),...

if 1 < Uz-i, 1 < rii and 0 < i < r. These relations (along with their
analogues in the fringe cases when i = 1 or r or when some of the
components HI vanish) translate precisely into the rules (5.7) for the Vo/o-
derivatives of ^mp- Adding these identities for WQ = w\^... ,z^o = ^ri
we find the rule (5.8) for the V-derivatives. Written out in full, the latter
reads:
/r -I q\ /|| || i [\^\{\ r»tX7i,...,Wy. ^OT2,...,OTr H V3\ ,...,WT—I
(b.L6) (J|U?|| + ||a||)4>amp — '? amp ~ ̂  amp

and since we may always divide by the function ||c^|| + ||a||, even when
|[ci;[| = 0, (5.13) is an effective recursion for calculating 4^ Imp? anc^ ^ads
rightaway to (5.11).

Moreover, for any fixed a?, whatever its degeneracy pattern, we have:

(5.14) mn^p^

and this is even the simplest direct means for calculating a given ̂ .

Amplification of the <y e mould.

PROPOSITION 5.2 (Endless analyticity of ff^p). — For any fixed
sequence w = (0:1,..., o;y.), the amplification <p ̂ p is an analytic function of
a = (ai , . . . , Or), defined almost everywhere on C7', and with ramifications
ifr(w) > 3.

If van(o?) = 0, i.e. if ||c^|| ^ 0 (see after (2.18)) there is of course
nothing to prove, since in that case both *p and its amplification <y ^ are
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= 0. To establish Proposition 5.2 in the non-trivial case (when van(o?) > 1),
we need to know the power series expansions of ^ ̂  at a = 0, as well
as integral representations valid in the large. We shall first calculate the
power series expansions in the case when van(o;) = 1, i.e. when ||o?|| = 0
but all partial sums ̂  and c^ (other than u;r and c<;i, which by definition
coincide with ||a;||) are 7^ 0.

PROPOSITION 5.3 (Power series expansions of ff^p). — Ifvan(^) =
1, the power series expansion of f f^ (as a function of a.) admits no
compact expression in terms of the original variables ai, 02 , . . . , dr but it
can be easily calculated from either of the following expansions:
(^ff^llall^-1) ^ ^ Ori)711-1^2-1-

l^z<r-l ( Q < p ,
\Kni

... (xr-ir^-'w-p^p^... p^
^^^^^(-ir^iaii-^-1) ̂  ^ (v^w2-1-

2<z<r J 0 < p,
\Kni

"'W3~l'"{yrTr~lQ^Q^'"Q^
which involve the (non-independent) variables:
Xi ^d.Hall-1 =(al+. . .+a,)(al4-••>+a^)- l (1 < i <, r-1)
Xi d^ exp(||a||/c<;,) = exp((ai+ • . • +a^)(cc;i+ • • • +a;J-1) (1 <, i < r-1)
yi ^a.Hall-1 = (a,+.. .+a^)(ai+---+ay.)-1 (2 ^ i < r)
Yi ^expdiall/^) =exp((ai+..-+a^)(^+"-+^)-1) (2 < i < r)
and the following coefficients:

• 1^<^-1
l<J<r
^^

(Kz<r-l)

{ 2<^r
l<J<r
¥J

(2^^r)

r(i4-^-i-p,(^/^))(5.17)

(5.17*) P^

Pzj r(i+n,_i-^(^-i/^))
(—\\Pi-ni-i

^r(i+n,_i-p,(^-i/ci),))r(p,-n,_i)
r(l+nj+i-p,(^/c2;,))

r(i+^+i-p,(^-n/^))
C—n^+i-pi

(5.18) Q,,,

( t ) 18*^ 0 _ ________v • / ̂  - p,r(l+n.+i-^(^+i/c2;,))r(p,-n,+i)
with the usuaJ notations:

(5.19)

(5.20)
^i = ̂ 1 + • • • + ̂ i ; ^z = ̂ i + • - • + m

<^i = UJi + • • • + UJr ; Tli = Ui + • • • -h Ur
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supplemented by the natural convention:

(5.21) ^ o = 0 ; no = 0 ; c^+i = 0 ; r^+i = 0.

Remark 1. — There exist similar expansions for the case van(o;) > 2,
but they involve a larger number of "exponential" variables, namely:

(5.22) Xij ^= exp(a^/^) with i e I but j ^ I

(5.23) Yij ^ exp(di/ijj) with i e I but j ^ I

where J (resp. !) denotes the set of all indices i such that ^ = 0 (resp
^ = 0).

Remark 2. — Instead of extending the sums (5.15) and (5.16) to all
pi > 0, we may restrict them to the intervals:

(5.24) 1 + n,_i <pi<m (if 1 < z) and 0 < pi < m (if i = 1)
(5.25) 1 + n,+i ^ pi < m (if i < r) and 0 ̂  p^ < 7^ (if z = r)

because, for other values of ?„ the coefficients P^P^+i and Qi^Qn
vanish. But beware that, in spite of the convention (5.21), we must include
in (5.15) (resp. (5.16)) the term corresponding to pi == 0 (resp. pr = 0).

Remark 3. — Applying the convention (5.21) to (5.17) and (5.18),
we find for P^i and Qz,r the simplified expression:

(5.26) p,,i = r(i - p^i/^)); Q^ = r(i - p^,/^)).
On the other hand, the values for P^ and Q^ as given in (5.17*), (5.18*)
depart from the rule (5.17), (5.18) but remain close to it. Indeed, if we take
^i/^i and Cji/uji equal to 1 + e instead of 1, and let e go to 0, we find:

(5.27) (P^ as given by (5.17*)) = lim^P,,, as given by (5.17))

(5.28) (Q^i as given by (5.18*)) = \\m{eQ^ as given by (5.18)).

Remark 4. — As soon as we translate the expansions (5.15) or (5.16)
into power series of the original variables a i , . . . , a^, the negative powers
Ha]!"7' disappear, and so do the apparent poles of the form:

(5.29) ((m,/^-) - (m,/^))-1 or ((m,/̂ .) - (m,/^))-1

which are contributed by the gamma functions sitting in the numerators
of the coefficients P,j or Qij. What we are left with is an entire power
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series in the variables a, and (^)-1 (resp. a, and (c^)-1), with the obvious
homogeneousness:
(^ ^rh kp'0;73^•••»^7* j.—(r—i) t^ t^i,...,-cc^ •r * , *
^'6()) ft amp =^ v ffamp lfo;;=^, 0,*=^.

Thus, if we take r = 3 and calculate the first terms in (5.16), we find:

(5.31) K^- E E (al)-2~m2-m3(^)m2(a3)m3A„^
O^mz 0^7713

with ^i + 0:2 + o;3 = 0; Ui ^ 0; oi = oi + 02 + as, 02 = 02 + 03, 03 = 03,
and:

Ao,o = (^2 - 2a»3)-l[-a'2e2al/"2 + ̂ e0-1^3 + ̂  - 2^3]

Ai o = <f ̂ 2 - 2t<)3)-l(^2 - 3a>3)-l[+2t,)2((2'2 - 2t,)3)e3al/':'2 • • •
t -3^2(^2 - 3^3)e2al/';'2 - GC^e01/"3 + (a»2 - 2a>3)((2>2 - 3a>3)]
(' (2a>2 - 3a'3)-l(^2 - 3^3)-l[-2(t2>2)2e3al/t:'2 • • •

Ao,i = < -3^3(^2 - 3t2'3)e2al/':'3 + 6a>3(2(2>2 - 3a>3)eal/h'3 • • •
[+(2a;2-3c,)3)((2»2-3a'3)]

etc. But after expanding the exponentials and doing away with illusory
poles, we find the following expressions, whose alternality is easy to check:
(5 32) ff^——3 = EE^)-1^)-1-^,,

0<i0<j

with:

-So,o = 1
5i,o=(l/3)(2ai-a2-a3)
A),i=(l/3)(ai+a2-2a3)
B^Q = (1/12) (4a^ + ai + aj - 7ai02 - 7a^ + 20203)
Bi,i == (l/12)(2o^ - o| + 2oj + 0102 - 80103 + 0203)
Bo,2 = (l/12)(o? + o| + 4oj + 20102 - 70103 - 70203)

etc.

Remark 5. — Only for r < 2 does the amplification ^ ̂  assume the
form of a simple function. For r = 1, it is utterly trivial, sin^e ff^ =1
(resp. = 0) if 0:1 = 0 (resp. ^ 0). For r = 2, the expansions (5.15) and
(5.16) lead respectively to the following, clearly equivalent expressions:

(5-33) ff^2 = (1 - ̂ /^(OIC012/^ + 02)-1

== (e012^2 - l)(oi + 02eal2/a;2)-l

with 012 = oi + 02, uj\ -^ 0, a;2 T^ 0 but 0:1 + 0:2 = 0.
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Remark 6. — For r ^ 3, the amplification ^^ is of a far more
complex nature, with features reminiscent not only of the hypergeometric
functions (as obvious from the shape of coefficients P^ and Qij) but also
of the hyperlogarithms. This latter, more recondite kinship shows in the
following fact. If we regard the variables Xz and Xi (resp. y^ and Yi) as
being independent, and denote by (pi{Xi) (resp. ^z(Yi)) the power series
inside the sum (5.15) (resp. (5.16)) that involves the variable Xi (resp.
Yi) as well as the corresponding function, the alternality relations for the
mould ff^ translate into functional equations of "logarithmic type",
which relate ^,{X'X") to the various <^(X') and ^(x//); or ^iVY")
to the ^(V) and ^(y'Q; or again <^(X) to the ^•(X-1).

Short proof of Proposition 5.2 and 5.3.

Due to alternality we have:
/C S)A\ m tX7l,tZ725--.»'^r / - l \r—l ffi!'CUr,---,'C02^1
f^04) ft amp = (-1) ft amp

so that (5.15) is clearly equivalent to (5.16). We shall establish the latter
formula. To that end, it is convenient to start from this definition of the
amplification:

(5.35) ff^p = ̂ ^"(-ai)711-1^)712-1 • • . (-a,)71-1

n

with w = (zz7i , . . . ,n7y) , n = (ni , . . . ,Uy.); ̂  > 1; and:

(5.36) ^"^(O^-^.^.O^2-1),^,...^^-1),^).

Then we calculate ^ u} by the standard rule:

(5.37) ff ̂  = Ral^" .T^ (see (4.33)).

To obtain the "restriction" T^, we must replace each zero in the sequence
c^" by an auxiliary variable rji. In other words, we must write a;" in the
form:

(5-^) ^n = (m^2,...^m,...^n2^--^nj

with Hi = n\ + • • • + ni and rjj = 0 except if j = r^, in which case rjj = c^.
Applying (4.8) we get the factorization:

(5.39) T^=T^--Tr

with Ti = ]"[ {rjj)~1 and ^ = ^ + ^-+1 + • • • + 77n,. As for the
l+ni-i<J<rii

differential operator Ral^", the rule (4.30) shows it to be of the form:

(5.40) Ral^" ^ar1^25-^71!
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(u \with Wi == ( ) and:
W

(5.41) u,=9^ if 1 < i < m and u^ = 9^ +9^^ + — c^^,.^
(5.42) ^=1 if 1 < i < ni and ^i = l+n2-hn3+ • • • Ur = l+n2.
However, there being no factor Ti in (5.39) nor, by the same token, any
variable rji of index i < ni, each one of the operators u^ (for 1 < i < n^)
annihilates T^, leaving only u^ to act non trivially. So in ral^1'"-^71! we
may ignore all terms but Un^ But from the induction (4.13) we easily infer
that:

(.. \ni-l -1
(5.43) raF1^2'-^71! ={unl) __________1__________

(Ul-1)! (^2+^3+ • • • ̂ m)(^3+ " ' V n ^ ' " {Vn,)

modulo the terms HI, u^,..., u^-\. In view of (5.42) this reads:

(5.44) ral-——— = ^n2!^, ̂ ^; (modulo u,.., . ,^.,).

Using (5.44) and applying Rad^" to the various factors T, of T^, we find:

'5•45'^=S^ E n{^-.}.
v / f 5 z > 0 (2<^r)l ^•/ J

\ S2 + • • • Sr = HI - 1
S2 + • • • Sr = HI — 1

After differentiating and annihilating (in this order) all auxiliary variables
rij of index j not of the form j = r^, (5.45) becomes:

(5A6) rn = {W^(n2l) E ^+"-l•"< • ̂ )-(at+"<)
( s i >0
\ S2 + • • • Sr = HI - 1

with integers ̂ , defined by

(5.47) ^^ d^ ̂ (ri)"^! + Tl)<71(2 + Tir(3 + n)-3... ̂ 2)^-1

for 0 < a, 0 <: TI ^ T2, and a sum extending to all integers ai > 0 such that
^o + ̂ i + • • • ̂ -ri = cr- However, we easily find (5.47) to be equivalent to:

-) ^-^(^CT'-)-
Plugging (5.48) into (5.46) and (5.46) into (5.35), we may now proceed to
sum inside (5.35), first over all values of 52 ,53, . . . , Sr whose sum is HI - 1,
by using the identity:

(5.49) ^ ^^-c^E ̂ r^n (^-^r1
( s i > 0 2^i<r ( 2 ^ j < r
\ 52 +53 + • • •Sr = HI-I U / %
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and then over all multiintegers n = {n^, 713,..., 74.) of components y^ > 1;
with functions R^ and ^(n) of the form:

(5.51) fi^Hall-^!) I] (^A2^'"1

2<j<r

(5.52) ^n) = ell^l/^ • (c^)2-^ F[ ((l/^) - (l/^.))-1

r 2 < j < r
\3^i

and lastly with operators K" of the form:

(5.53) ^= ^ . i-^"1^1 ^dilT
l+n.^n,^-1-^)'^-^)' '

where d i ^ ^ denotes a dilatation operator acting on the sole variable ujj.

(5.54) dil^ ̂ i,... ,^,... ,^) d^ ̂ (^,... ,^/m,... ,^).

We further transform the sum (5.50) by applying, to each given summand
R^ , all operators K" of index j ^ z, and by using the easily proven
identity:

r K^ • {(^^-^-((i/^) - (i/^-))-1}
(5.55) { =-(^)1-7^ n ((l/^) - (rn/^))-1

(l+n^i<m<n0

[ = -(^•)(^)l-^^(l + n,+i - (^/^))/r(i + h, - (^/^)).
Then, as a last step, we apply the one still unused operator, namely

K^. Eventually, after switching to the variables yi and Yi of Proposition
5.3, we find that in (5.50) the coefficient in front of:

(-l)r-l||a||-(r-l)(y,)^(^)n2-l(2/3)n3-l • • • Q/.)71--1

is none other than:
(_l)n^i-p. r(l+n^i-p,(^/^))

p,r(i+n,+i-p,)r(p,-n,) 11^^ r(i+n,-p,(c2;,/^))
{ ^ ^ - r

which tallies exactly with the coefficient Qi\Q^ • ' ' Qir of (5.16).

This completes the proof of Proposition 5.3.

Now, for any fixed sequence c^, the expansion (5.15) is clearly a power
series with positive (but finite) radius of convergence in the variables xj
and Xi, and so too in the variables aj. Its sum is therefore an analytic germ
at the origin 0 of C^ and, in order to prove Proposition 5.2, we have to show
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that this germ admits an endless analytic continuation, with a singular set
of zero measure.

To do this, it is more convenient to reason on auxiliary power series
^ of the form:
(5.56)

/ai,...,a^-i,^\ def V^ ^i-l. n.-i-l p D . . . D D^1 i - ^ a/i a^_i a^i itr-in^
\^1, . . . , ̂ r—l ) a/*/ .

J 1 < rii
l0<p

with coefficients:
, ^ o def r ( l+nj+pQj+i) ,. .
(5.57) ^ ^ p/i . - . - \p/i .————^ 0 = l ,2 , . . . , r - l )HI +r^ +pa^)r(l +pQ^-+i)

(558) ^ ̂  ̂  +P^i)r(l +^02) '> -ni +par)
r(r + pOi + p0!2 + • • • + pOr)

Here a = (ai,. . . ,0^) is any sequence of complex numbers independent
over Z(as usual, Oj = a\ + • • • -h Oj) and r c i , . . . , .Tr-i? ̂ * are regarded as
variables. The last one is denoted by x^ rather than x^ because it is not
at all on a par with the rest, as we shall see in a moment.

But right now, to motivate the introduction of <I>, let us observe that
if we put:
(5.59) a ^ = = X , ; aj =e-pUj/Cji {j = 1,2,.. . ,r)
and let e go to 0, then due to (5.27):
(5.60) ^r ( r )^——ff^ (a^-.0)

where ffamp ^ denotes of course the inside series in (5.15) that involves the
variable Xi.

So we may proceed with <I> and assume for a start that Re(o^) > 0 for
each j. Under that assumption, and by classical gamma function theory, we
find for the coefficients Rj and R^ the convergent integral representations:

1 r l/2+ioo
(5.61) Rj = —— / (^•)-l-^-p^(l - Uj^-^^duj

2m Ji^_ioQ

(5.62) R^ = ( w^w^2 • • • w^wA • • • dwr-i
Jo

With Wi + W2 + • • • + Wr = 1.

If we plug these integral representations into (5.56); then sum over
ni,7i25 • • • ^r-i^P'i and then change from uj to vj with:

(5.63) Vj d^ (1 - Uj-^UjUj^ • ' ' Ur-i (if 2 < j < r - 1)
/ — ^oiic\ def def ^
(5.63 ) V\ = U\U^' ' 'Ur-l ; Vr = 1 — ^ - 1
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we find for <I> the following integral representation:

(5.64) < ! > = = / Hdv-i' • • dvr-idw^'' • dwr-i

with a simple integrand H =. H^ • • • Hr-\H^:

(5.65) Hj = (27^^)-l^-l(^;l + v^ + • • • + Vj - Xj)~1

(5.66) H^ == (1 - ̂ (wi/^i)01 . • . (w,/^)07')-1

and with variables Up Wj bound by:

(5.67) - y i + - - + ^ = l ; w i + - - - + w ^ = l .

The Wj range over the same finite multipath of integration as in (5.62),
while the Vj range over an infinite multipath deducible from that of the Uj
under (5.63), (5.63*).

For Xj and x^ small enough, the integrand H doesn't vanish: the series
(5.56) and the integral (5.64) converge to one and the same germ <I>, which
clearly has the property of endless analytic continuation, with a singular
set of zero measure.

It is but an easy step to see that this property survives even without
the assumption Re(o^) > 0, and that the limit (5.60) also leaves it in force.
However, if we object to taking limits, we can also find for each single
ff^pi a curect integral representation akin to (5.64), though slightly less
tidy, and conclude in this way. The advantage of proceeding as we did lies
not only in the greater simplicity of <1>, but also in the fact that, via the
specialization (5.59) and the limiting process (5.60), ^ disposes at once
of all ffamp,z? ^or a^ %- ^u^ whatever the means chosen, the argument
establishes Proposition 5.2.

Coampliflcation of moulds.

Let us revert to the case of a general alternal mould M* with its
amplification Af^p and the corresponding power series:

(5.68) AQp-^ = ̂  M ;̂:W ... ̂  (with w, = (^) G C2).
7li>0

For reasons that shall become apparent in §8 and §9, it is often useful to
attach to M* yet another alternal mould, the coamplification M^mpM?
which is indexed by sequences 77 similar in form to zz7:

(5.69) 77 = (771,. . . , rjr) with rf, = M ; ^ e C, (T, e C.
\^/
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but which takes its values in the algebra of formal power series of z~1 (z
being regarded as large):

(5.70) M^-(z) e z-^-^Clz-1] if ̂  = M.
W/

The coamplification admits of a concise definition:
(^ 7-j\ 1\/rl1l,---,'n-r(y\ de{ f 1[>f^l,...^ry-<7l y-°'r-1
\ 0 ' 1 1 ) ^coamp W — V^amp ^1 • • • ̂  J^=^

(With,,,̂ ;),̂ ),

In plain words: we turn M^p into an operator by replacing each
variable a^ in Wi by the derivation 9i = 9^; then we let this operator
M^p act on the monomial z^ ' " z ^ ( J r \ and lastly we replace each Zi
by z.

With the help of the expansion (5.68) we get the more explicit formula
(where 9 '= 9z):

(5.72) M^^z} = ̂  M^-;;̂ ;(a"^-^)... (c)"^-'7--)
rti>0

= V^ ^^i,—,^r/]\ni+---+nr^-(o-i+---0r)-(ni+"-nr)
/ ^ 7ll,...,7ly \ /

" °̂ TT r(^+n,)

x1! r^) '
Unless the power series (5.68) has infinite multiradius of convergence, (5.72)
usually diverges as a series of z~1. But if we subject it to the Borel
transform:

(5.73) z- —— C7-1/!^) ; M^-(z) ̂  M^^(C)
(5.73*) z large ; < small,

and remember that Borel turns the derivation 9 = 9z into multiplication
by (—0)5 we find for C, close to 0:

— />c ^<71-1 ^-1^74^ A.pi^-.^r//^ _ / A^7i,...,Wr . ll___. . . 2T___/7/- ^7/-^O./^; ^coamp lS^ — / ^amp ^( \ ~r~/——^"Sl "Sr-1
JO i ̂ l) i (^r)

with rji = ( ) as usual but with wi = ( i , and with integration along
V^/ \-Cz/

the complex multipath symbolized by:

(5.75) { 0 < C z < C ( V z ) ; Ci+C2+-+Cr=C}

so that (5.74), despite the missing A^, is perfectly symmetrical in
Ci,C2, • • • ,Cr. Since M^p, as we saw in the case M9 = ^e or ^e, often
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tends to be more easily expressible in terms of the variables Ci or Cz? we

may also replace (d^i - • • dCr-i) by (d^i • • • d^r-i) or ( d ^ ' ' • c?Cr) and inte-
grate along the multipaths:

(5.75*) {0 < Ci < C2 < • • • < Cr-i < C}(with Cz d£f Ci + • • • + Cz)
(5.75**) {0 < Cr < Cr-l < • • • < C2 < C}(with Cz = Cz + • • • + Cr).

But whatever the mode of integration, it is plain that if we have
endless analyticity (in the sense of Proposition 5.2) of M^}-'^ as a

function of its several variables ^ (recall that here Wz = ( i ) , we

automatically have endless analyticity of Af^mp^ (0 as a function of its
one variable <^; and therefore resurgence of M^mp777^) as a formal power
series of z~1.

We should note that definition (5.74) works well for complex numbers
0'i such that Re(c^) > 0. But even for general complex numbers o^, the

.minors A^oamp(C) m8Ly ^U be defined unambiguously via the majors
M^^ p(C)' For the notions of minor and major of a resurgent function^
we refer to [E5] or [E7] or [E10](*)

In §8 and §9, we shall turn to good profit the resurgence properties
of the coamplifications ^mp and ff^oamp-

6. The alternel moulds <^ e and <^ e in the context
of symmetrel compensation.

At the beginning of §2, we recalled the twin notions of symme-
trel/alternel moulds, which are akin to symmetral/alternal moulds, but
intervene in different contexts: the latter (mainly) in the study of vector
fields, the former (mainly) in that of diffeomorphisms.

In the present instance, and parallel to the symmetral/alternal
moulds:

(6.1) S\ 5-; S:^ S:^ %(t), %(t); %Jt), ̂ ,(t), (symmetral)

(6.1*) T9^9^9 (alternal)

(*) Majors and minors are signalled respectively by V and A. Needless to say, this has
nothing to do with the use of these symboles in the notations ̂  and uji for the partial
sums, forward and backward, of a sequence UJ.
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we require a series of 8 symmetrel and 3 alternel moulds, which we denote
by the same symbols, but with cursive letters:

(6.2) <?•,<$•; S^S^S^t), 5^); <%,(t), S^{t) (symmetrel)

(6.2*) T\ <?•,<(?• (alternel).

We define them in much the same way as their models, but with automor-
phisms exp(V) and exp(V - t9t) in place of the derivations V and V - t9t.
More precisely, we begin with the counterparts of S9, S9, T*, which are
defined (almost everywhere) by the formulae:
(6.3) S^ =e-ll^ll(e-^-l)-l...(e-^-l)-l with ^=0:1+.. .+^
(6.4) S^ = (e^-1)-1 • • . (e^-1)-1 with ̂ =^ . . . +0;,
(6.5) T^ == 0 if ||o;|| ̂  0
(6.5*) T^ ^(e^-l)-^-!)-1..^-!)-1 if ||̂ || = 0.
The analogues of (2.23), (2.24) read:

(6.6) e^ 'S^S^x^+r)-1

(6.7) e^^^r+J^x^.

We then introduce an auxiliary variable t € C, (C, denotes the Riemann
surface of log t) and construct the symmetrel compensators:

(6.8) S^t)^(t^S9)x(S•)

(6.9) S^(t) d^ (<$•) x (t^S9)

which, unlike S* and 5*, are defined for all sequences a;. In the case
of degenerate sequences uj (see (2.17), (2.18)), we denote by S^{t) and
5^ (t) the logarithm-free parts of5^(t) and S^(t). This leads smoothly to
the lateral and central decompositions of symmetrel compensators, which
faithfully mirror the symmetral models on which they are patterned. Thus:
(6.10) <%(t) = S^(t) x exp((logt) <?•) (right-lateral)

= exp^logt)^ <?•)) x S^(t) (left-lateral)
= (^v 5:xt) x exp((log t) ff e) x <S^ (central).

The proofs also mimick the earlier arguments (see at the end of §2 and
§3) and rely on mould-comould contractions ^M'B,, but since M* is
now either symmetrel or alternel, it should (always) be contracted with a
cosymmetrel comould B», i.e. one that obeys a cosymmetrel coproduct:

(6.11) cop(Bo;) = V M^i 0 Bo;2
U}1 U^2

with a? obtainable by contracting shuffling (see (2.4*), (2.5*)) from a;1

and c^2.
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The only point in need of elaboration is the construction of the canoni-
cal "tough" moulds <S^t? ^xt? ff e tnat appear in the central decomposition.
As in §4, we follow a two-stepped procedure:

(<?^<$^/re) Ls^ West^est^st) ——^Jxt^xt^')-

We define, predictably enough, the "restrictions" <%st? ^est^ ^st ^Y tne

earlier formulae (6.3), (6.4), (6.5-5*), but under omission of the factors
for which ^ = 0 (resp. ^ = 0). Then we subject the "restrictions" to
suitable differential operators Red^, Red^, Rel^ that are defined as in
(4.28), (4.29), (4.30), but relative to new auxiliary moulds red^ red^
reF, which instead of verifying (4.16), (4.17), interrelate as follows:

(6.12) l^red^xred*
(6.13) Te\9 =red9 xj9 XTed9 (J9 as m (2.10))

and are defined by an induction markedly different from (4.11), (4.12),
(4.13). That new induction reads for 1 < r (resp. 2 < i < r):

f^viQu^v2Qu^'--vrQur _ Dred^1'"'^7' = red^^3''"'^7'

f^ViQu^Vi^lQui^-VrQur _ U ̂ wl '•••'wr = red^ '"' 'wl-l +wl ''"'wr

^l^^+V29^2+•"^'r^r — ^\-yQ[wl^•^wr ^ 0

(pVi9ui-^-Vi+l9ui^+"'Vr9ur _ 1 \ ,.p]Wl »---^r ^ ppl^'1'•••'wi-1-*~w^'•••'wr

(there are similar formulae for red*). Thus, whereas the old induction
(4.11), (4.12), (4.13) involved derivations z^c^, the new induction involves
automorphisms exp(z^<9^), i.e. shifts Uz i—>- Ui 4- Vi on the Ui variables. As
a result, red^ red^^, re^ (unlike rad^ rad^^, ra^) are non-homogeneous
polynomials of ^1,^2? • • • 5^5 although their constant terms vanish, and
their highest order parts coincide with those of the symmetral/alternal
case. Indeed, if we mark with a lower index s the homogeneous part of
degree 5, we find:

(6.14) red0 = red0 =1 ; rel0 = 0

and for sequences w = (wi , . . . , Wr) of any length r > 1:

(6.15) redw = E red^ with red^ = ^adw

Ks<r
(6.16) redw = ^ red^ with red^ = radw

Ks<r
(6.17) reP" = ^ rel^ with rel^ -= J^ and rel^.i =. raF .

0<s<r-l

For 1 < r < 3 and with the usual short-hand Uij = Ui 4- uj, etc., the
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lower-order terms read:

redwl'w2=-^edr'w2=+^nl2

2 Vl2

I.er1^2 ̂ _ul.^ul
1 Vl V2

_iWi,W2,W3 _ ,jWi,W2,W3 _ -*- ^123redi — - redi — - _ -—
^ ^123

^wi,W2,W3 ^ lu^ _ 1^3 1^12 _ 1^23
1 2z;i 2^3 2z»i2 2^23

^————3 , _1^3f l ̂  2-} + 1^- + 1^
4^123^1 ^12^ 4'y3^12 4^1^23

^'w^ = -l^^l + J-l +1-"!- +1^-
4 ^123 ^ ^3 ^23 J 4 ^lZ'23 4 1;3Vi2

1W1,W2,W3 _ . 1 ^3 1 n! , 1 ^2 1 n?
^ - +n———— - o"""" ' ^~^~ ~ O^"^:'2 ^3^12 2 ^2^3 2 vi'yi2 2 v\v^

7. The nilpotent part and distinguished form of
a resonant vector field or diffeomorphism.

From now on, we are going to apply the mould apparatus of the
previous sections to the study of the so-called analytical local objects. More
precisely, we shall be dealing with local analytical vector Gelds (or fields
for short) on V at 0:

(7.1) x = ̂  Xi(x)9^ ?(0) e o; Xi(x) e C{x})
\<i<v

and with local analytic self-mappings (or diffeos, short for diffeomorphisms)
of C^ with 0 as fixed point:

(7.2) / : x, ̂  fi(x) (i = 1,2, . . . , i.; /,(0) = 0; f,(x) € C{x})

or again, equivalently, with the related substitution operators (capital-
lettered):

(7.3) F : (p ̂  F^p d±f ^ o / (^(x) and y o f(x) G C{x}).

Throughout, we will assume the linear part to be diagonalizable^ and
work with "prepared forms", i.e. consider analytic charts where the linear
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part assumes diagonal shape. Thus, we will consider fields of the form:

(7.4) X^X^-^^Bn

(7.4*) X1111 = ̂  \XiQ^ (1 ^ i ̂  v, \i e C)

(7.4**) Byi = B^...^= homogeneous part of degree n (r^>—l)
and diffeos of the form:
(7.5) F={l-^Y^Mn}F}m

(7.5*) F^^i,... ,rc.) d^ ̂ i.ri,... ,^,) (V^;^ € C*)
(7.5**) Byi = Byi^_^= homogeneous part of degree n {rii>—l).

Of course, n-homogeneousness means that for each monomial x^ we have:

(7.6) B, .^m = ̂ mx^ with (3n^ e C; ̂  = H^1; ^n = II <1

Note that, for any given Byi, at most one component HI may assume the
value —1.

The eigenvalues \ or ^ will be referred to as multipliers. We say
that the local object (field or diffeo) is resonant, if there exist non-trivial
relations of the form:

(7.7) ^ mi\i = 0 (or \j) (m, C N)
Ki<v

(7.8) n (^ = 1 (or ^) (m, € N).
i^^^

If (7.7) or (7.8) are "very nearly" fullfilled for an infinity of multiintegers
m, that is to say, more precisely, if the multipliers do not meet A.D.
Bryuno^s diophantine condition (see [B], [M] or [E7], p. 78), we speak of
q uasiresonance.

Lastly, nihilence (which presupposes resonance) amounts to the exis-
tence of a "first integral", in the form of a (formal) power series H(x) C
C[[x}} with the invariance property:
(7.9) X ' H(x) EE 0 (for a field)
(7.10) H o f(x) d±f F ' H(x) = H(x) (for a diffeo).

If the Taylor expansion of the object under consideration involves only
resonant monomials or, what amounts to the same, if each homogeneous
part Bn in (7.4) or (7.5) commutes with the linear part X1111 or F1111,
we say that the object is given in a prenormal form (or chart). If the
number of these resonant monomials is minimal (with formal invariants as
coefficients), we speak of a normal form.
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For a resonant vector field X, there is a classical decomposition
(see [B]):

(7.11) X = X^ + X"11 with [X^, X1111] = 0

into a diagonalizable part X^ and nilpotent part X1111. The decomposition
is fully characterized by chart invariance meaning that for any substitution
operator 6 expressive of a change of variables we have:

(7.12) (exe-1)^ == ex^e-1

(7.13) (exe-1)1111 = ex^e-1

and by the condition that in one, and therefore every, prenormal chart, X^
should reduce to the linear diagonal part X1111 (and X1111 should contain only
higher-order resonant monomials).

We have a similar decomposition for all resonant diffeos, but for
simplicity we restrict ourselves to torsion-free diffeos, i.e. to diffeos whose
eigenvalues ̂  admit a system of logarithms \i = log^ e C, (z = 1,2, . . . , u)
such that any multiplicative resonance relation (7.8) translates into a
corresponding additive resonance relation (7.7). (Even if F is not torsion-
free, suitable iterates F^ are.) For any torsion-free diffeo F, we have the
decomposition (in operatorial notation):

(7.14) F = F^F^ = F^F^

characterized by chart-invariance:

(7.15) (QFe-1)^ = QF^Q-1

(7.16) (QFe-1)1111 = QF^Q-1

and by the condition that in one, and therefore any prenormal chart, .F^
should reduce to F1111.

The existence of prenormal charts is immediate to establish (by induc-
tive coefficient identification) and the consistency of the above definition
(for the diagonalizable and nilpotent part) follows from the fact that any
substitution operator Q that takes us from one prenormal chart to another,
automatically commutes with the object's linear part X111'1 or F1111.

PROPOSITION 7.1 (Analytical expression of the nilpotent part and
distinguished form of a vector field). — Any resonant vector Geld X =
X1111 + E^ decomposes intrinsically into X^ + X^ with:

(7.17) X1111 = ̂  ̂  B. (= nilpotent part)
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and it admits a canonical (though non-intrinsic) prenormal form:

(7.18) X^ = X"" + ̂  ff • B. (^distinguished form)

to which it is conjugate:

(7.19) X = eext^e;^

under the reciprocal changes of variables:

(7.20) eext=E-%ct®.

(7.20*) ©ex^E^xt®-

PROPOSITION 7.2 (Analytical expression of the nilpotent part and
distinguished form of a diffeo). — Any resonant, torsion-free diffeo F =
{1 + ̂ Bn}^1111 decomposes intrinsically into F^F^ = F^F^ with:

(7.21) F1111 = exp^1111) = exp(^ ̂  e B.) (=nilpotent part)

and it admits a canonical (though non-intrinsic) prenormal from:

(7.22) F^ = F1111 • exp^18')
= exp^18^ • F1111 (= distinguished form)

(7.22*) X^^^^'B.

to which it is conjugate:

(7.23) F = Q^iF^e^

under the reciprocal changes of variables:

(7.24) Qext^E^xtB.

(7.24*) e^=^5:^B..

Remark 1. — All the above formulae involve mould-comould contrac-
tions of type:

(7.25) ^ATB. = ̂ ^M^'-^B^...^
r>0 rn

with indices:

(7.26) HI = (n,i,...,n^); ̂  = (n^A) = naAi +'"n^A^

relative to the spectrum \i of the field (resp. \i = log^ for a diffeo) and
to the cosymmetral (resp. cosymmetrel) comould:
(1-7 o'7\ in? ael TQ Ttt Ttt f^ c- T^Jl/^
(7.27) ^ni,...,n^ = ̂  •"^^ni (^GPsI^)
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constructed from the homogeneous parts Byi of the vector field X (resp.
diffeo F). In the case of a diffeo, we may note that the various moulds
MU}11•"^T being used are rational functions of e^1,... ,6^ and therefore
independent of the determination \i = log ti, provided this determination
is coherent (i.e. respectful of all resonance relations; see above (7.14)), so
that the degeneracy type or vanishing pattern (see (2.17) and below) of
a sequence uj = (o;i,.. . , ujr) associated to n == (n\,..., rir) depends on n
alone (not on the determination).

Remark 2. — Like the homogeneous parts Byi, but unlike the nil-
potent part X1111 or F1111, the distinguished form X^ or F^ and the
corresponding changes of variables Oext and 0^ are not intrinsic, i.e. not
chart-independent, because the moulds -p e, S^, S^ don't behave like the
moulds 4^, S9, S9 under Va/o-derivation: compare (4.57), (4.58), (4.59)
with (3.10*), (3.11*), (3.16*). Nonetheless, for a given chart, the distingui-
shed form is well-defined, with a transparent analytical expression (7.18) or
(7.21), and there is no denying that it is "canonical": it is just as canonical
among the various prenormal forms, as the mould !^9 satisfying (2.42) is
among the various solutions of (2.35). The distinguished form is especially
valuable in two cases:

(i) For local objects with multiple resonance, because such objects
tend to possess several (finitely many) normal forms, each of them marred
by a degree of arbitrariness, and riddled with an infinite number of
coefficients (since multiple resonance induces an infinite number of formal
invariants).

(ii) For objects endowed with an additional structure, e.g. symplectic
or volume-preserving, especially with extrinsic resonance (i.e. with more
degrees of resonance than those induced by symplecticity or volume-
preservation) because in that case the conjugating change of variables
Oext that goes together with the distinguished form, is itself symplectic
or volume-preserving, as apparent from its expansion (7.20) or (7.24).

In view of the importance of the distinguished form, the lack of
a simple characterization for it is rather frustrating. Mere rationality
conditions like (2.42) would not do. The closest one might come to such
a characterization would be by investigating the effect of an infinitesimal
change of chart:

(7.28) X ̂  X + e[Y, X] + o(e) (Y fixed)

(7.29) X^ h-^ X^ + e[Y\ X^} + o(e)
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because, due to equation (4.59), V* has a simple expression in terms of X,
V and the moulds -f ̂ . But since successive derivations Vo/o ? Vo/ 5 Vo/7 ?
etc., when applied to ^ e, seem to generate ever new moulds, the prospects
for a useful characterization (such as a simple link between X, V, X^^,
V*, without tAe involvement of any mould) appear to be very remote.

The truth of the matter seems to be that the distinguished form
belongs to those notions that admit of no other workable definition than
analytical ones, and this peculiarity will find its reflection in the very
distinctive type of divergence and resurgence that distinguished forms
exhibit (see §9).

Proof of Proposition 7.1 and 7.2. — Let us deal with vector fields
first. We closely follow the proofs of Proposition 2.2 and 2.3, at the end
of §2, except for two things. First, we can, right at the outset, make use
of the mould factorizations (2.33)-(2.36), whereas the whole point of the
earlier proof was to establish those factorizations. Second, the mould-
comould contractions, instead of involving the comould (2.53) made up
from elements of the free Lie algebra C, now involve the comould (7.27) built
from the homogeneous parts Byi of the vector field X. But since we may
now take the lateral and central factorizations (2.33)-(2.36) for granted,
the freedom of C matters no longer, and the only material points are the
cosymmetralness of B», along with the gradedness property (which is now
relative to the scalar product uj = (A,n) with A G C17 and n C N^) so that
we can duplicate all the steps of the earlier proof.

More precisely, for any non-resonant vector field X, equation (2.61)
provides an explicit linearization ofX, with local coordinate changes (2.58),
(2.59) that are not merely formal, but also convergent (i.e. analytic) if
X is non-quasiresonant as well as being non-resonant. If, however, X is
quasiresonant, the only way to restore convergence is by means of the
compensation technique, i.e. by introducing one or several variables t and
allowing non-entire powers of those variables. Now, when one studies the
quasiresonant case for its own sake, as in [E8], it is advisable to work
exclusively with real positive powers of t (so as to handle only infinitesimal
quantities) and this may call for the introduction of several (upto three) new
"ramified" variables. Here, however, we are interested in quasiresonance
merely as a stepping-stone to resonance, and for our purpose one additional
variable t is enough, even if that may entail working with negative or
non-real powers t^ll of t. The "compensated" linearization equation is
none other than (2.64), and the corresponding coordinate changes are
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given by (2.62), (2.63). "Compensated" linearization, however, unlike plain
linearization, survives even in the limit-case of resonance, and there the
careful separation of the logarithmic and logarithm-free parts in (2.62),
(2.63) leads successively to the conjugacy relations (2.66), (2.71), (2.72),
(2.78), (2.79), which establish the analytical expression (7.17) for X1111.

There is also a more direct, if less natural, way of establishing the
formal expansion (7.17) of X1111. Using the fact that ̂  = 1 (resp. 0) if a;
is a sequence consisting of one (resp. several) zeros (see (3.17)), we see at
once that, in any prenormal chart:

(7.30) X^ = X1111; X^ = X - X1111.

Then, using the formula (3.16*) for the V^o-derivatives of ^e, and reaso-
ning as in §3 (see towards the end, after (3.36)), we observe that, under
any change of coordinates 6, the formal vector field X1111 as defined by
(7.17) transforms precisely as in (7.13). Both properties, taken together,
show that the sum (7.17), calculated in any chart, is indeed the nilpotent
part of X.

Paradoxically, the results pertaining to X61^ are quicker to prove than
those pertaining to X1111. Indeed, the conjugacy equation (2.39) between the
moulds *p* and <y e immediately translates, due to the inversion (2.65), into
the conjugacy equation:

(7.31) (^^•B.)9ext =6ext(^ff'B.).

8. Divergence and resurgence of the nilpotent part.

It has been known for a long time (see [B]) that the nilpotent part of
a resonant vector field (and a fortiori of a diffeo) is generically divergent.
For an exhaustive description of that divergence, we require the notion of
resurgent function and alien derivation (see for ex. [El], [E5], [E7], [E10])
and the Bridge Equation (see [E3], [E6], [E7]) which in its usual form reads:

(8.1) ^==x(z,u)=A^x(z,u) (V^€^)

and involves the following three ingredients.

First, we have a so-called formal integral:

(8.2) x(z, u) = {^i (z, ui,..., u^-i) , . . . , Xy{z, u^,..., z^-i)}



1458 J. ECALLE & D. SCHLOMIUK

which is a general (i.e. parameter-saturated) formal solution of the diffe-
rential system associated with the field X = ̂ Xi9^:

(8.3) 9,Xi{z,u)=Xi(x(z,u)) (z=l,...,^)

or of the system of difference equations associated with a diffeo / : xi \—>
fi{x):

(8.4) Xi(z-^-l,u)=fi(x(z,u)) (z=l,...,^).

It thus provides a formal (hence the twiddles, which from now on will signal
formalness) non-entire chart (z, u\,..., z^-i) in which the object assumes
the simplest conceivable form, namely:

r\

(8.5) x = ^~ or f :z[—^ + 1-c/z
•

Second, we have the symbols A^ on the left-hand side of (8.1), which
denote (pointed) alien derivations of index uj € C» (with projection uj
on C). For a straightforward definition , see [El] or [E7] or [E10]. The
raison d^etre of alien derivations is to analyse divergence and measure
singularities. Indeed, divergent-but-resurgent power series ^p(z) = ̂  CLnZ~n

have endlessly continuable Borel transforms <^(C) = ̂ cinC^^ /^(n), ̂ d
the singularities of ^(C)? which are responsible for the divergence of <^(^),
are described with complete accuracy by the successive alien derivatives• • •
A^, (p(z), A^A^ (p(z), etc.

Third, we have the symbols A^ on the right-hand side of (8.1), which
denote ordinary differential operators in z and u. These are (completely
and constructively) determined by the Bridge Equation, but are subject to
no other a priori constraints than:

(i) preserving the general form of x{z, u)

(ii) satisfying the commutativity relations:
(8.6) [A^,9] =0 for a field (9=^)
(8.7) [A, exp 9] =0 for a diffeo (exp 9 = unit shift z ̂  z 4-1).
For a vector field, the operators A^/ always assume the form:

(8.8) A, = ̂ {A0^ + ]^A>^}

with indices a; ranging over an enumerable set Sl generated by the multi-
pliers \i:

(8.9) c^= ]^A,; n71 = JJ<1 (a; e C.; ̂  C; ^ > -1)
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and for a diffeo it assumes the form:

(8.10) A, = u^-^^A0^ + ̂ A>^}

with indices uj ranging over a set fl, generated by the multipliers \i = log^:

(8.11) i= no\o + ̂ rii\i', \o d^ 2m', n71 == ][[<1 (^ ^ 0) (n, > -1)

relative to a coherent determination (see after (7.13)) of log^. Note that in
(8.9) and (8.11) at most one component HI may be = —1, all others being
^0.

Moreover, the operators A^, are analytic invariants of the object
(diffeo or field) under investigation. In the case of one (resp. several) degrees
of resonance, the formal integral x(z, u) is essentially unique (resp. there
exist essentially a finite number of them, each with its own invariants
A^,) and the coefficients A^ of the operators A(^ are scalar-valued (resp.
dependent on some of the parameters ui).

If we now resort to the formal change of variables xi = Xi(z^u) and
denote by:

(8.12) A. = ̂  A^ (x)Q^ (z = 1,.... v)

the operators A^ expressed in the original, analytic chart x = (a^), we are
in a position to analyse the divergence of the diagonalizable and nilpotent
parts of local objects with the help of resurgence equations. We use the
same notations as in Proposition 7.1 and 7.2.

PROPOSITION 8.1 (The Bridge Equation for the diagonalizable and
nilpotent part). — For a resonant vector field X, we have two systems of
resurgence equations'.

(8.13) [A^.X^] = -[A^^X^] = + ^ A,

(8.13*) [A^X1111] = -[A^X1111] = - ̂  A^

with uj of projection uj as in (8.9).

For a resonant diffeo F, we have four systems:

(8.14) [zL, F^} = -[A,, F^} = (e^ - 1)A^F^

(8.14*) [A^, F1111] = -[A, ̂ nil] = (e^ - 1)A^F^

(8.15) [A^.X^] = -[A^^X^] = + i A

(8.15*) [A^.X1111] = -{A^X^} = (noAo- ̂ )A
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with ( j j , uj and no\Q as in (8.11).

Before proceeding with the proof, a few words of elucidation are in
order.

Remark 1 ((Interpretation of the Bridge Equation). — In the above
•

equations, the alien derivations A^; are of course relative, not to the variable
z of the normalizing (^, u) chart (see (8.3), (8.4)), but to a variable z^ which,
in the case of one single degree of resonance ̂  Xirrii == 0 (with mutually
prime integers m^) always assumes the form:

(8.16) ^ = x-^ = ̂ pml • . • x^^

for some well-defined integer p > 1 (generically, p = 1).

In the case of multiple resonance, there are several such z^ (as many
as there are formal integrals x{z,u)). However, the variables z and 2^,
though distinct, are formally equivalent (in the sense that z ~ z^ formally
when z goes to infinity) when we relate them under the formal change of
coordinates:

(8.17) Xi =EXi(z,u)', Z^ =EZ^(Xi(z, U)).

Remark 2 (Consistency of the Bridge Equation). — Adding (8.13)
and (8.13*) we find for a field:

(8.18) [A,,X]=0.

Similarly, applying A(^ to F = F^F1111 we find for a diffeo:

[A^, F\ = [zL, F^}F^ + F^^, F1111]

= (e^ - 1)A,F + F^e-^ - l^F^

= (e^ - 1)^F + (e-^ - l^A^F
so that here also we have:

(8.19) [A,,F]=0.

This is no surprise: (8.18) and (8.19) merely reflect the analyticity of the
vector field X or diffeo F in the original (a^)-chart. On the contrary,
for a diffeo F of infinitesimal generator X (relative to some coherent
determination of the various log^; see above after (7.13)) we find after
adding (8.15) and (8.15*):

(8.20) [A^.X] = -[A,,X] = noAoA;
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with a third term that vanishes if uj has no component no-^o (see (8.11))
•

but otherwise is generically 7^ 0. This non-vanishing of [A^,X], in turn,
simply reflects the generic divergence of the infinitesimal generators X of
resonant diffeos F.

Remark 3 (Double completeness of the Bridge Equation). — Apart
from being consistent (we couldn't expect less!), the Bridge Equation is
also complete, and that too in a double sense. First, its form is such that
it can be indefinitely iterated. In other words, we are in one of those cases
when it is enough to know the first order alien derivatives to be capable of
recovering all alien derivatives, of all orders. Thus, for a field X with its
invariants A^ expressed in the (a^)-chart, we find:

(8.21) [A^.AJ = -[A^AJ (Vo;o^i)

(8.22) [[A^,A,J,AJ == +[[A^AJ,AJ (Vcjo^i,^)

etc., so that:

(8.23) [[A^A^JX^] = -((;i + ̂ 2)[A.,,AJ

(8.23*) [[A^.A^X1111] = +(^i + ̂ )[A^,AJ

etc. (compare with (8.13), (8.13*) and note the reversal of signs).

But more than that: we can also express all successive alien deriva-
tives, without brackets:

(8.24) A^.- .A^A^X^ (orX^)

in terms of the sole invariants Ao/i, A^,..., A*^ and X^ (or X1111), which
means that the Bridge Equation formalism encapsulates all the information
needed to understand the divergence-cum-resurgence of the diagonalizable
and nilpotent parts (at least in the absence of quasiresonance or nihilence)
and, in particular, to describe the highly intricate behaviour of their Borel
transforms {z^ —^ <^) on all the leaves of their severely ramified Riemann
surfaces.

The "second completeness", which of course is intimately connected
with the first, has to do with the collection {A^ c^c ^2} of invariants produ-
ced by the Bridge Equation: they happen to constitute a complete system
of holomorphic invariants, and also (barring quasiresonance or nihilence)
a complete system of analytic invariants. See for instance [E3] or [E7]. We
recall that analytic invariants are invariants relative to analytic changes
of coordinates; while the nearly homonymous holomorphic invariants are a



1462 J. ECALLE &: D. SCHLOMIUK

special subclass of analytic invariants — those namely which depend holo-
morphically on the object X or F, i.e. on its Taylor coefficients (except for
the first few coefficients that determine the resonance pattern, the level p,
etc.).

Remark 4 (Differences between fields and diffeos). — For a field X,
we have the two systems of resurgence equations (8.13) and (8.13*), each
yielding all the invariants A^. But for a diffeo F, we have four systems:
(8.15), (8.15*), which again yield all the invariants; and (8.14), (8.14*),
which yield only the invariants of index c^ 0 (mod27n).

Remark 5 (Comparison with the classical Bridge Equation). — Alt-
hough, from the point of view of analysis, the classical form (8.1) of the
Bridge Equation, which involves the formal integral x{z,u), and the other
classical form:

(8.25) [A^, 6nor] = -^Qnor = -Qnor^

(see [E7]), which involves the normalizing change of coordinates Onor'-

(8.26) X = enorX^e^resp. F = Q^F^Q^)

are both equivalent to the Bridge Equation of Proposition 8.1, which
involves the diagonalizable or nilpotent part, the new variant has its special
merits, because its ingredients X^8', X1111, ^dla, .F1111 are expressible in
terms of formal but entire power series (unlike the non-entire formal series
inside x{z^u)) and are also intrinsic (unlike ©nor? which depends on the
choice of the normal form X"01" or F1101', to which there attaches a degree
of arbitrariness, especially in the case of multiple resonance).

Admittedly, for the actual calculation of the alien derivatives, we
must, here also, introduce some variable z^ like (8.16), which has the effect
of ultimately destroying the "entireness" of our objects, but this doesn^t
show in the Bridge Equation itself.

In any case, the end result remains unaffected, and this brings home,
once again, the flexibility of alien calculus, which enables us to "read" all
the invariants A^, in a simple, constructive manner, on practically any
divergent object deduced in a natural way from X or F.

Things change, however, when the object in question is defined by
analytical rather than geometric means, as in the case of the distinguished
forms X^^ and F^^: we shall see in §9 that we still have resurgence, but
of a different nature altogether.
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First proof of Proposition 3.1. — Let us begin with vector fields. In
any of the normal charts referred to in (8.5) and Remark 5 (above), the
fields X, X^, X1111 reduce respectively to 9^ X1111, 9^ - X1111, so that, in
addition to (8.26), we have the conjugacies

(8.27) X^ = QnorX^e^

(8.28) x^ = enor(^ - x^e^.
But the normalizing transformation 6nor verifies the resurgence equations
(8.25). So its inverse ©^ verifies:

(8.29) [A,, e^] = A,e^ = e^A.
•

Applying the alien derivation A^ to (8.27), we find:

(8.31) [A,, x^] = + [A,, enorix^e^
+ ©nor[A^, X "^©nor

+ ©norX [A^, ©nor]'
•

In view of (8.26) and (8.29), and since A^ commutes with X1111, this
becomes:

(8.31) [A,, X^] = -A^QnorX^Q^ + QnorX^Q^A^
=-[A^Xdla}

which establishes (8.13). Equation (8.13*) follows in the same way from
•

alien-differentiating (8.28) and using the commutation of A^ with Qz- The
argument is exactly the same for diffeos.

Sketch of a second proof. — The shortness of the first proof is slightly
deceptive, because it presupposes equation (8.26) and all the work that
goes into establishing it (see [E3] or [E7]). But Proposition 8.1 may also
be proven from scratch, directly from the mould expansion (7.17) for X1111.
We shall explain the method in some detail in §9, to study the resurgence
of X^^ from its own mould expansion, because for X^^ there seems to
be no other approach. For X1111, however, this "direct" method is just one
among others, and so we shall be very brief.

Using the same notations as in §9, but with ^e instead of ^ e, we find
for X1111 the formal expansion:

(8.32) X1111 = 9. + E E ^ ̂ ^^(^^'^"^^[^ • • • PD^A]]
r>l r],
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deduced from (7.17) essentially by regrouping all terms that differ only by
the number of occurrences of the lowest homogeneous component B^ of X
(see (9.5), (9.16)). Here, rji = (^) as in (5.70) and (9.17*) but ̂  +.. • +^
may be ̂  0, which explains why (8.32), unlike its counterpart (9.20), has an
exponential term. As for the operators D^, they are deduced in a simple
way from the homogeneous components Bn of X (see (9.18)). But the
crucial ingredient of (8.32) is of course the ^amplification ̂ ^ (z) of
the mould ^e, which is defined as in (5.71), (5.72) and contai0^^ nuce
all the resurgence properties of X1111. Indeed, the mould equation (5.11)
valid for the amplification ̂ ^ translates into an entirely similar mould
equation for the coamplification ^9 :

(8-33) ^oamp(^) = I9 + (% )̂) X (V*%^)).

The factors S^^{z) and -S^amp(^) are symmetral moulds, and resurgent
in z. In fact, they coincide with the classical resurgence monomials V*(z)
and V(^), whose alien derivatives involve the scalar-valued moulds VJ of
"hyperlogarithmic" type:

(8-34) ^V9^=+V^xV9(z)

(8-35) A^v^)=-v^)xy^.
For details, see for instance [E7], §6, p. 104-108.

In this way, the Bridge Equation for X1111 (and so too for X^) can
be recovered directly from (8.32) with the help of (8.33), (8.34), (8.35) and
some analysis. We even get as a premium a nice expression ofA^ in terms of
VJ and ^e, which mirrors the classical expression (see [E7], p. 116, (7.62))
of A^ in terms of V^ alone.

9. Divergence and resurgence of the distinguished form.

The present section aims at suggestiveness rather than completeness.
It is meant as an appetizer — a means of whetting the reader's curiosity
for the stunning breadth and variety of resurgence phenomena that anyone
trafficking in divergent series is bound to encounter at every step.

We restrict ourselves to vector fields (although the picture isn't much
different for diffeos), and, to simplify still further, we assume that there is
only one degree of resonance:

(9-1) ^^i^i =0 (m, ^ 0 and the non-zero m^ are mutually prime).



THE NILPOTENT PART AND DISTINGUISHED FORM 1465

As usual (see §8 or [E7]) we denote by Q the set of all complex numbers uj
of the form (9.2) or (9.2*):
(9.2) LJ= ^m\i (nz€N)
(9.2*) a; = -A, + Y^mXi (i + j, m e N)
but (in order to avoid the complications that come from everywhere-
dense singularities in the Borel plane) we assume fl, to be discrete. For
definiteness, we may think of the case (9.3) or (9.4):

(9.3) miAi 4- m^ = 0, with mi > 1 and Re(A^) > 0 for j = 3 ,4 , . . . , v

(9.4)
m\\\ -1-77^2 + m^X^ = 0, with m^ > 1 and Re(Aj) > 0 for j = 4 ,5 , . . . , v.

In (9.4) we assume Ai,As, As to be non-aligned.

Lastly, we assume that X admits the simplest possible (non linear)
normal form compatible with its resonance type, namely:
tQ ^\ ynor _ ylin i TO . ylin _ \ ^ \ ^ . TO _ /y.m \ ^ Q[y.O) A — A + -Byyi, A — ^^AiXiOx^ iu>m — X ^ ^i^iOxi

with:

(9.5*) xm=xml'-x^^ 0=(m,A)=^m,A,; -l=(m,r)=^m^

and we agree to express X in a prepared chart', i.e. an analytic chart that
"isolates" the normal form:

(9.5**) X =X l m +B^+^B^ with 72i + " - + n ^ > 2(mi +" -+m^) .
n

These assumptions aren't essential, but they will make life easier.

PROPOSITION 9.1 (Divergence of the distinguished form). — The
distinguished form X^^ of the resonant vector field X is resurgent with
respect to the same variable z^ = x'^ as the nilpotent part X1111, but with
a resurgence "lattice" ^dlst much larger than f^:

(9.6) ^dist = 27rzZ* • ̂  (Z* = Z\'{0})

and with alien derivatives [A^X^^] which are strikingly different from
•

the earlier derivatives [A^, X1111] in so far as:

(i) they do not involve the holomorphic invariants of X , whether in
the form A^ or Auj;

(ii) they are expressible as "bilateral" power series of the form
^^n(z*)~n~r^\ with n running through the whole ofZ, not just N;
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(iii) they make it possible (save in one trivial case, mentioned below)
to reconstruct the actual field X , in its original analytic chart, from the
sole knowledge of X61^ and its alien derivatives.

Main steps of the proof. — We begin with three easy lemmas, which
involve the following ingredients:

(i) an alternal mould M9 with its amplification M^ :

(9.7) M- = {M--^;^ € C}; M:̂  = {M^p--;̂  = h} e C2};
\a^/

(ii) a free associative algebra A (resp. a free Lie algebra C) generated
by elements (So, /3i, ̂ ..., with the following notations:

(9.8) A)/? ^[Ah/?] (V/3in/:orB)
(9.9) {^} d^ (A))71 • A = [/3o • • • [A)[A), A]]] (/?o repeated n times).

LEMMA 9.1. — For any two sequences a;1,^;2 of length r\^r^ and
any UJQ € C, we have:
(9.10)

^O^oO;2 ^ (_^n ^ ^o0; ̂  (_^r2 y^ ^^a/o^

Ct;€sh(0;1,0?2 ) Ct;esh(0;1,0:2 )

Here the notations a^o^2, or c«^o, or a;oc^, stand for the usual
juxtaposition of sequences, and the tilda denotes order reversal:

(9.11) (o;i,o;2,...,^)~ ^= (ov,... ,^2,^i).

The first (resp. second) sum in (9.10) extends to all sequences a; obtained
by shuffling a;1 with c^2 (resp. a?1 with a;2). (See (2.2)). These identities
can be checked inductively on ri (or r^) under repeated use of the identity
(2.2) for alternal moulds (with 0 on the right-hand side).

LEMMA 9.2. — For any given sequence a; = (c^i, . . . ,cjr), each of
these three finite sums defines the same element of C:

(9.12*) ^M^)-^(-)^). ../3,(2)/3.(i)
(7

(9.12**) r-1 ̂  M-^)--^-) [A,(,) ... [/?,(2)/3.(i)]]
(7

(9.12*-) ^ ,̂̂ ....,̂  ̂  ... [^^]].
<r(l)=l
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All three sums are over all permutations a of the set {1 ,2 , . . . ,r},
except that in (9.12***) we allow only permutations that leave 1 fixed.
Though each summand in (9.13*) belongs to B rather than £, due to the
alternality of M®, the sum belongs to £, and so it admits the classical
projection (9.12**) in terms of Lie brackets, with a factor r~1 reflecting
the homogeneous degree. Then we resort to identity (9.10) with LJQ = o;i to
rewrite each summand of (9.12**) in terms of sequences beginning with 0:1,
and we check that (9.12**) transforms into (9.12***), without the factor
r-1.

LEMMA 9.3. — For any given sequence w == (0:1,... ,c^r)? each of
these four infinite sums defines the same element of C (the natural closure
ofC):
(9.13)
^ ̂  M^0^-^^^1^^^'-^^^^^)71^, .. .^W^iW0

o- m>o
(Qt^\ \^ \^ Ti^<T(i)^<T(2),...^<r(r)/o[n^] o[n^\ o[n^\(9.1,5 ) ^ ̂  Mm,n2,...,n, P^ • ' ' P^(2)Pa(l)

o- rii>,0

/o io** \ r-i v^ v^ A/f^7^'^2^''"^7'^/^7'^] r^^] / îhi^.1,5 ) r ^ ̂  ̂ ni,n2,...,n, lP(r(r)'" 1^(2)^(7(1)11

o- ni>0

/ Q 1 0 * * * \ V^ \^ 7l,Ta;l^<T(2),•••^a(r)^,o[n^] r^^ /^^^n
(9.1^ J / . ^ ̂ m,n2,...,nr. [P^(r) •"1^(7(2)^1 ii-

cr(l)=lTiz>0

The sums are over all integers n^ > 0 and all permutations (T of
{ 1 , 2 , . . . , r} or, in the last instance, of { 2 , . . . , r}. The ̂  are defined as
in (9.9) and the coefficients M^--^ as in (5.68). It is plain that (9.13*),
(9.13**), (9.13***) relate to each other exactly as (9.14*), (9.14**), (9.14***)
do. So the only thing left to prove is the equivalence of (9.13) and (9.13*).
This is done by rewriting (9.13) in terms of (A))^ rather than (A))^; and
by using the Leibniz identity:

(9.14) ^...W^= ^ ——n!——,/f•'.../f2'/3I"l'
TT'1.77'2. * * * 1^'i •n^-\-n-2-\-'---\-ni=n

successively for z = l , 2 , . . . , r .

We now revert to our vector field X and its decomposition (9.5**)
into homogeneous components. If we introduce the non-entire chart (^, u)
defined by (*):
(9.15) Xj = mz^ exp(A^) (i = 1 ,2 , . . . , ^; u^ = 1; x^ = z~1)

(*) Denoting the new chart (z^,u^) rather than {z,u) would be more consistent with
the notations of Proposition 9.1, but all too cumbersome.
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(with z large and u suitably small), and express the fields -X"11", X"01", Bnz
and X in the new chart, we find:

(9.16) X1"1^^^.; Xs01 =9,; B^=^-^A^A.

(9.17) X=«9 ,+B

(9.17*) B = ̂ B» = ̂ e^z-^ (n e N^; r, = M e C2)
n T) \(J /

(9.17") B,,=5^+^B^^ (^eC).
Z

Each operator B^ is elementarily calculable from (at most) two homo-
geneous parts B^, and obviously commutes with 9z- But we require yet
another set of operators D^, which have the same outward form (9.17***)
as the Byp and derive from them according to the simple rule:

(9.18) D^l+B.^B

which relates the generating function B of the B^ to the analogous genera-
ting function for the D^:

(9.19) D = ̂  e^z-^ (rf = (^} e C2).
T) ^ ^

LEMMA 9.4. — With the above notations, the distinguished form
ofX admits in the (z^u) chart the formal expansion:

(9.20) X^ = 9. + EE ^ ffc^p"^)^ • • • I^A]]
r>i -m

where ff^oamp(^) denotes the coamplification of the mould ̂ , defined as
in (5.71), (5.72).

To establish (9.20), we isolate in (9.5**) the linear part X1111 and
the lowest homogeneous component By^, which in the (z,u) chart assume
the form (9.16). Then we fall back on the expansion (7.18) that actually
defines X^^, and regroup therein all terms that differ only by the number
of occurences of By^. Then we fix a sequence (771 , . . . , rjr) and apply Lemma
9.3 with:

(9.21) /3o=B^; /?i=B^; / ?2=B^; . . . ; /3r=^.

More precisely, we use the identity of (9.13) and (9.13**), together with the
remark that:

(9.22) W^u^e^ • z-^ = u^e^^z-").
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In the end, everything turns out to be expressible in terms of the coampli-
fication of ^ e and of the operators Dy^. A little effort is required to justify
the change from Byy to Dyy, by means of suitable rearrangements. We may
proceed as in [E7], p. 114. But this point is inessential, and if we want to
concentrate purely on the analysis difficulties, we can think of the situation
when, except for the lowest homogeneous component Byn, all the other Byi
annihilate the resonant monomial ^m = z~1, in which case Byy = Dyy for
all 77.

At this stage, two more things are required to complete the proof of
Proposition 9.1:

(i) We must show that each single term ff^anii^^)' as a f01111^
power series in 2:-^1+"'+<T7^C[[^-1]], is resurgent in z, with a Borel trans-
form ffcoamp(C) tnat nas no singularities outside the set ^dist introduced in
(9.6); and then calculate the alien derivatives A^ ff^oam (^) ^or ^ m ^dist-

(ii) We must check that the term-by-term Borel transform z —> ^ of
expansion (9.20) converges uniformly on each compact set of the universal
covering of C 9- ^dist.

We shall leave the second point alone (it is routine work but stupe-
fyingly boring) and shall settle only part of the first point. The resurgent
quality of ff^mp^) follows ̂ m ̂  endless analyticity of ff^p^C)
as a function of ^, which itself follows (as observed after (5.74), (5.75))
from the endless analyticity of ^ ̂ p"'^ as a function of a i , . . . , a^, which
in turn follows from the integral representations (5.64). The precise shape
(9.6) of ^dlst is also deducible therefrom. So the only point left to elucidate
is the nature of the resurgence equations verified by the mould ff^oam (^)'
We shall describe these only in the simplest non-trivial case. This rules out
sequences rj = (r/i) of length 1, since for such sequences:

(9-23) ff^mp(^) = 1 (resp. 0) if r î = M with ̂  = 0(resp. ̂  ̂  0)

so that the linear part in (9.20) is in fact trivial, and merely reintroduces
the whole collection of resonant terms Byi (with (n, A) = 0) present in (7.4).
Thus the simplest non-trivial terms in (9.20) are bilinear, and correspond
to sequences rj = (771,772) of length r = 2, with of course uj\ + uj^ = 0. To
further simplify, let us assume that (71,02 are both in N*. The resurgence
properties of ff^a^p^) are completely described by the following lemma.

LEMMA 9.5. — Let cri,a2 be integers > 1 and let uj\ + 0:2 == 0 but
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uji ^ 0, so that ff^2 = -(o;i)-1 = (^)-1. Then:

(924) r"'2 (C)-^1^-^1"6"^1^1 (l-^2)1-2
^ ^ ^coamp^ <, p^ ————^————

{Cr^+^^C)}

where P^^(Q is a polynomial in the variables exp(-C/o;i) and
exp(-C/o;2), of degree (o-i - 1) and (02 - 1), and such that:
(9.25) Cff-1^ +P^(C) = o(^i+^2-i) a^ _ o.

Proof of Lemma 9.5. — By (5.74) we have:

f9 26) F1'772 rn - / ^ w 1 ^ t̂ -r^)!̂ ^)!2^^
(9^) ^coamp(C)-^ ffamp F^) 1^) dc2

with n7, = (_^) and for < close to 0. But due to (5.33):

(9-26*) ffa^2 - -(€2 - B)-1 with B = C(l - exp(-C/o;2))-1.
So we find at first for ((71,0-2) == (1,1):

(̂ ) ff^mp(C) = Cr1''2 = 0/^2 (01 = 02 = 1).

Next, by using the identity:

(9.28) (C^2-1 - B^XC - B)-1 = ̂  C^ (with p + ̂  = ̂  - 2)

we can reduce the case (1,0-2) to the case (1,1). Lastly, by expanding
(C - C2)<71-l inside (9.26) into a sum of powers of €2, we reduce the general
case (<7i,(72) to a superposition of cases (l,^). As for the behaviour of
(9.25) when < -^ 0, it follows from the fact that ff^1^2 == ^lla/2 for
Ci = €2 = 0, so that:

^ 771 ,772 /-<T! "^^a — 1(9-29) ffcoalp(c)= r15'2 r^^^{i + ̂ (0} ̂  c - o.
We may now use Lemma 9.5 to understand the resurgence properties. The
only singularities of the function (9.24) correspond to points C = ^* of the
form:

(9.30) a;* = 2mk^ = -2mk^ (with k e Z*).

Combining the periodicity of P^'^) ^h the estimate (9.25), we see
that for ^* small and ^ = a/* + <^*:

^•31) ff:a>* + D = (2^)(.* + C*)-^2-20^-^1 (^i)
fl -e-C'''/^2M-<T2-—w—(mod-REG)
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modulo the space REG = C{{<*}} of all regular analytic germs of C*.
Going back to the z variable, we find an alien derivative:

(9.32) A,. r^W = Qy{z) C C[z} (not z-1!)

with a polynomial Q(z) of degree exactly o-i -h 02 - 3 (except when
o\ = (72 = 1, in which case Q = 0) and of simple coefficients (involving no
transcendental constants).

Things would change slightly for non-integral values of 0-1,0-2, but the
leading term in Q would still be z(Tl~{~<T2~3 with <j\ + 0-2 G N, because each
sequence 771 , . . . , rjr in (9.20) corresponds to a sequence 0:1,..., ujr such that
^(j^i = 0, and therefore to a sequence o- i , . . . , Or such that ̂  Oi C N, even
though the individual o-i may not be in N or even Z.

Thus, even for a sequence length r = 2, we may glimpse at several stri-
king differences between the resurgence properties of the mould ^oam (^)
which is relevant for X1111, and those of the mould fl^oam (^)' ^^h ^
relevant for X^.

First, whereas the alien derivatives of ^oamp^) mvolved transcen-
dental constants V^ (see (8.34), (8.35)), those of -ff^oamp(^) do not-

Second, for a given resonant field X and any fixed c^ in ^2, there
is a lower limit r(o^), but in general no upper limit to the values which
the corresponding 01 may assume in the pairs rjz = (^l) that index the
expansions (9.17*) and (9.19): generically, these o-i will run through an
entire set of the form r(ci^) + N. So, looking back at (9.32) and the degree
of Q, we see that for a generic resonant vector field X, and any point
ci;* in Q^, the Borel transform z -^ C of -X^ will possess an essential
singularity at a;*. In the z variable, this means that the alien derivatives of
^dist ^n involve truly bilateral power series of the form ^a^z"71"^1^,
with n running through the whole of Z, not just N as in the case of X"11.

These peculiarities, and many more which we gloss over, seem to be a
standing feature with divergent power series that are "constructed^ (by
analytical means) rather than "found" (as formal solutions of analytic
equations, or as formal expansions into power series of small singular
parameters). For another instance of "artificial resurgence", coming from
a rather different context but displaying very similar features, see [E3],
p. 537-550 (especially Prop. 11.3.7).

To conclude this section, let us emphasize that the interest of the
distinguished form X^^ lies, not in its relative simplicity compared with
other prenormal forms (i.e. forms having only resonant terms in them),
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but in its handy analytical expansion (7.18) and very special resurgence
properties (see above). But the distinguished form X^ doesn't claim to
be, and is not, a particularly "simple" prenormal form — quite the opposite,
in fact. Indeed, according to [E7] (see p. 152, after (11.30)), in order for a
resonant analytic vector field X to admit an analytic prenormal form or,
more accurately, to be conjugate to an analytic X^^01 under an analytic
change of variables ©:
(9.33) X = eX^^Q-1

it is necessary (and, barring quasiresonance or nihilence, sufficient) that
the c^-component of all holomorphic invariants should vanish, that is to
say:
(9.34) A^ • z = 0 (V ^<E Q)
but even when that condition is fulfilled, the distinguished form X^ is
generically non-analytic.

10. Explicit criteria for linearizability or nihilence.
Remark on the size and splitting of Lie ideals.

Let the Byio be elements of a graded Lie algebra, with indices no m
some abstract set J\T and with a gradation grad(Bno) = ^o == ci;(no) ^ C.

For any (fully) ordered sequence n = (ni, . . . ,Uy.) with n, e AT and
its image a; == (0:1,... ,0:7.) under n, i-̂  = a;(r^), we denote by n and a;
the corresponding unordered sequences, and we put:
/1 0 1 \ TIB _ •rn> ^f Tn) TO) ID)
(1U.1) Bn —.^ni,...,n^ = Brir • " ̂ n^ni

(10.2) B|[ ̂  E*^^^ -E^^""^^1^),...^^
n*==n cr

(10.3) Bj d^ ^ff^Bn. ̂ Eff^'-'^®"^)...,"^)
n'̂ n cr

with sums ^* over all sequences n* equivalent to n upto order, or
with sums ̂  over all permutations a of the set {1 ,2 , . . . ,r}. Due to the
alternality of ̂  and ^e, both B^ and a£ are (contrary to the individual
summands En*) Lie elements, with gradation ||o;|| = 0:1 + • • • +o^. Clearly,
BJ = 0 if ||o;|| ^ 0.

We now fix a sequence A = ( A i , . . . , \^) e C" and we specialize both
A/" and c<;(no) as follows:

(10.4) AT d^ ̂  u(no) ̂  (no, X) = ̂ no,zA, (Vno € A^).
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As in §§7,8,9, N^ denotes the set of all multiintegers n = (ni , . . . , ny) such
that n\ + • • • + Uv >. 1 and n^ >_ 0 (except for at most one component n^,
that may assume the value —1) and (n, A) denotes the usual scalar product.

For any resonant vector field of spectrum A:

(10.5) X = X1111 + ̂ B,, (no C A^; X1111 = ̂  A^ftJ

the nilpotent part and distinguished form decompose into series of no-
homogeneous components:
(10.6) X1111 =E^ (no€A^; cc ;o=(no ,A)eC)
(10.7) X^ =Xim-^-Ex^st (^o€A/'; 0:0 =(^o, A) =0)
which in turn, due to Proposition 7.1, are expressible as finite sums of
<p-contractions or ^-contractions:

(10.8) X^= ^ B| (noCAO
||n||=no

(10.9) X^= ^ B| (noeAO
||n||=no

with of course:

(10.10) n = (ni , . . . ,nr ) € A/^7' = A/'7' symmetrized
(10.10*) ||n|| = 7?.i + n2 + • • • + nr e A/'.

Let us further denote by ./Vo the set of all n € N such that (n, A) = 0.
Monomials ^n with n (E A/o will be referred to as resonant monomials.

The preceding notations enable us to write down explicit criteria for
various properties, such as linearizability, or nihilence, or total nihilence
(we say that a resonant vector field X is totally nihilent if the number of
independent formal integrals H(x} € C[[x}} is equal to the resonance degree
of, what amounts to the same, if in one, and therefore any, prenormal chart,
X annihilates all resonant monomials).

For any resonant vector field X, we have the obvious criteria:

(10.11) {X formally linearizable} ^=> {X^ = 0,Vn C A/"}
(10.12) {X formally linearizable} ^==> {X^ EE 0,Vn e A/"}
(10.13) {X totally nihilent} <=^ {X^ • a^ = 0,Vn € A/o,Vm e A/o}.

These criteria verge on the tautological, but in combination with the
decompositions (10.8), (10.9) they open up interesting vistas. Indeed, if
on top of resonance we now assume that our vector field is polynomial of
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degree d (i.e. with a finite number of homogeneous components Byi, for
||n|| < d) two important questions arise:

Qi) What is the smallest number lin(d, A) of relations X^ = 0 (or
X^ = 0) that guarantee formal linearizability?

02) What is the smallest number nil(d, A) of relations X^ ' x171 = 0
that guarantee total nihilence?

Obviously, both numbers are finite, since the formal linearizability
(resp. total nihilence) of a polynomial X is equivalent to the annihilation
of a suitable ideal I in the algebra A generated by the (finitely many) Taylor
coefficients of X, and since any such ideal is known to be finitely generated.

A special instance is the so-called center problem, namely the question
of determining the smallest number of polynomial identities that guarantee
the existence of a center-focus for a polynomial vector field on R2, of the
form:
(10.14) X == x^ - x^, +( . . . ) (degX = d).
After changing to "isotropic coordinates" we get:
(10.14*) X = iy,9y, - iy^Qy, +( . . . ) (A = (z, -z))
and the problem "reduces" to finding the number nil(d, A) of conditions
that ensure the nihilence (necessarily total in this case) of X. See on the
subject [Sl] and [S2].

However, in the center problem as in the general case, the numbers
lin(d, A) and nil(d, A) remain unknown (except for the lowest values of d,
such as d = 2 in the center problem) and seem to be very elusive, not
least because the ideals I mentioned above are unwieldy, unstructured, and
lacking in truly canonical bases.

But the considerations at the beginning of this section suggest ano-
ther, possibly more promising approach, namely:

(i) to replace the commutative ideals I mentioned a moment ago, by
the Lie ideals J generated by the homogeneous components X^ or X^
of (10.6) or (10.7);

(ii) to use the explicit decompositions (10.8), (10.9) of these homo-
geneous components into the elementary Lie elements B^ and ®S di-
rectly constructed from the homogeneous components By,o ofX (see (10.2),
(10.3));

(iii) to investigate the splitting properties of the Lie elements B^ and
B|| (see below).
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The reasons for reposing some hope in this approach are three:

First, the Lie ideal J is more tightly structured, and closer to the
nature of X, than the commutative ideal I.

Second, the components X^ and X^, while more intrinsic than
anything in the commutative ideal I, are still highly "composite". The(i ip
truly simple objects to focus on are the Lie elements B£ and B£ , and
any regularity that the components X^11 or -^hst may possess, is probably
inherited from, and more easily detectable on, the Lie elements BS and
B|.

Third, if we define the upper (resp. lower) degeneracy of an unordered
sequence w == (o;i,... ,uJr) as being equal to the highest (resp. lowest)
degeneracy attained by the ordered sequences a; corresponding to a;, and if
we fix the degree d and spectrum A, we observe that the blocks Bj| and B£
tend to split (i.e. to decompose into Lie brackets of simpler blocks) more
and more as the upper or lower degeneracy of the sequence uj (associated
with n) increases.

As a very elementary instance of this phenomenon, let us mention the
following fact:

LEMMA 10.1. — AnyBS, indexed by any sequence n = (ni , . . . ,rir)?fi
belongs to the Lie ideal generated by the blocks B£i indexed by sequences
m = (mi,..., rris} such that:

(10.15) 0 = <||m||, A) d^ (mi, A) + • • • + <m,, A).

Proof. — From the identity (3.16) we deduce:

(10.16) M|Bn= ^ [Bn^Bj^n — 7 ̂  PW 5 ̂ rn
l<i<r

with a; corresponding to n, and with n1 denoting the sequence n =
(ni, . . . ,77^) deprived of its component rii. Then we use (10.16) repeatedly,
so as to decompose the elements B^i into brackets of Bnij, then the Bnzj
into smaller elements, etc., until we get rid of all sequences n 1 3 ' " such that
II^ '-H^O. D

The above lemma is only a pointer towards a very general splitting
f! K!tendency, which inheres in the Lie elements BS and B£ , and which would

seem to warrant a systematic investigation. We intend to pursue this
question in a follow-up paper.
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11. Synopsis. Main formulae. Tables.

The basic notions about moulds (multiplication, symmetral/alternal,
symmetrel/alternel, etc.) are recalled at the beginning of §1, along with
the definitions of the trivial moulds !•, !•, J 9 , J^, J^ (see (2.1)-(2.12))
and mould derivations V and V^o (see (2.14) and (3.8)). Most moulds
here are indexed by sequences a? = (ci;i,... ̂ r) written in bold-face, with
components c^ in ordinary print. The degeneracy dgn(o;) and vanishing
order van(o;) of a sequence w are defined before (2.17) and after (2.18).

The main moulds used in this paper are:

S* and S9 (resp. r*): symmetral and mutually inverse (resp. alternal).

S^(t) and S^ (t): symmetral and mutually inverse.

S^xt ana 5'̂ xt (^sp. T*): symmetral and mutually inverse.

^< and y * : alternal and mutually conjugate.

r = s9 x s9 = s^(t) x s^t) = s;^ x s:^
5'̂ , 5^, T^ are defined for almost every sequence c*;.

All other moulds are defined for every sequence w.

Direct definition ofS9, S9, T9:

S^^r ̂  (-1)^ ... ̂ )-1 with ̂  dM 0:1 + .. • + ̂
S^-^ ̂  (^ .. .^)-1 with ̂  d^ ̂  + • • • + ̂
^i.-^ d^ o if 0 ̂  |M| ̂  0:1 + ... + ̂

T^-^ d^(^2^3•••^)- l = (-l)7-1^!^---^-!)-1 i fO=H| .

Direct definition of the compensators S^(t) and S-^(t):

S^W^{t^S9)x(S•)

^W^^x^s9)
with t on C, (Riemann surface of logt) and t^ as in (2.14*).

Link between symmetral and symmetric compensators: see (2.29)-(2.32).
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Lateral decomposition of compensators (see Proposition 2.2):

S^(t) = expOlogt)^ 4?*) x %oW
=S^(t) xexp((logt)r)

^(t)=exp(-(logf)r)x5:^(t)

^^Wxexp^logt^r)
with exp(- • •) denoting the mould exponential (see (2.13*)) and with
S^o(t), S^(t) denoting the logarithm-free parts of <%(<), S^(t). The
above relations characterize the alternal mould <p*.

Central decomposition of compensators (see Proposition 2.3):

%(*) = (^ 5:,J x exp((logt) F) x (%J

5c*o (*) = (-S:xt) x exp(-(log^)r) x (^^xt).
The above relations, together with the rationality conditions (2.40), (2.41),
(2.42), characterize simultaneously the alternal mould ^e and the symme-
tral, mutually inverse moulds S^, S^.

Conjugacy of ^ e and -^ *.

*P == ^Ixt x ff x ̂ Ixt

f f^^xtX^^^

^ = 0 as soon as dgn(o?) = 0

^'a; = 0 as soon as van(a?) = 0 (i.e. when \\uj\\ ̂  0).

V and Vo;o derivatives of^* and ^< (see §3 and §4^):

V^ e=J< x^^ -^^xJ '

V.o -?• = ^o x •?' - ̂  XI^ (with ^o as in (3-7))

V f f ^ O

V.o f f * = ff:o x f f ' - r x ff:, (with f f^ alternal).

Construction of the "tough" moulds S^, S^ f f ' (see §4):
QO? def pa/1^ CC^
^ext — lvaa ^rest

^^Rad"^^

ff^^R^l^-^t

^ext — lvau ^rest
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with "restrictions" 5^ ^st» ̂ st defined as in (4.5), (4.6), (4.7) or (4.8)
and with differential operators Rad^, Rad^, Ral^ (of degrees van (a;),
van (c^), van(o;)) defined with the help of the auxiliary moulds rad*, rad*.
ral*, which in turn are characterized by the systems (4.11), (4.12), (4.13)
and verify:

I* == rad* x rad* (rad^rad* symmetral)
ral* == rad* xl9 x rad* (ral* alternal).

The "restrictions" 5 ,̂ -S^est? ^est being elementary, all the complexity
of the "tough" moulds is concentrated in the auxiliary moulds rad*, rad*,
rar.

Amplification M^p and coampliGcation M^^^(z) of an alternal mould
M9 (see §5^:

The amplification is indexed by sequences w\^...^Wr with w^ ==
(^0 G (^2' an^ ls defined as follows:

^p"'̂  dM Y, M^nl)—^o{nr\a^nl{a^a^n2'''
n^0 •••(ai+.- .+a,)7 1-

= ̂  ̂ o(nl)^,...,o(n-)^(_^nl+•..+n.^ ̂  ... ̂  ̂  ...
ni>o ...(a2+••.+a,)n2...(a,)nr

-E^^.X^0!)711-''^)71'-
nz>0

The coamplification is indexed by sequences 771 , . . . , rjr with rji =
(^) G C2, and is defined as follows:

^amp )̂ ̂  E M^l:;;Xr(9nl^al) • • • (^^-(7r)
m>0

with Q = 9z. It assumes values in the space U^"^^!^"1] °^ fo1"1118'! power
<7

series of z~1.

For natural moulds M*, the amplification M^p tends to be "endlessly
analytic" in a = (a i , . . . , Or) and the coamplification tends to be divergent
and resurgent in z. Such is the case in particular when we take as M* the
mould if9 or if*: the respective coamplifications are resurgent, but of very
different type (much less elementary for y 9 than for ^*).

The symmetral/alternal moulds:

5-, ^, %w, %(i), 5: ,̂̂ , r, r



THE NILPOTENT PART AND DISTINGUISHED FORM 1479

are particularly helpful in the study of local vector fields.
They possess symmetrel/alternel analogues:

^, <$•, %(t), <S;,(t), S:^S:^ <?•, r
which are particularly helpful in the study of local diffeomorphisms. These
latter moulds are defined and investigated in §6.

Local, analytic, resonant vector fields X onC^:
J^X^+^Bn

n
j^iin ^ ̂  \iXi9xi = resonant linear part
B^ = homogeneous component of degree n = (ni , . . . , n^) e N^

and local, analytic, resonant diffeomorphisms / of C^, viewed as substitu-
tion operators F:

[^{l+EBn}^1111

F1111^!,.n., ̂ ) = ̂ (^ia;i,..., ̂ ,) (V^ e C{{^}})
p\m ̂  resonant linear part

, Byi = homogeneous component of degree n = (ni , . . . , n^) G N^
admit each an intrinsic decomposition into a diagonalizable and nilpotent
part:

' x = x^ + x1111f X = X^ + X1111 (with [X^, X1111] == 0)
^ p ̂  pm\pd'ia. ̂  pdia.pm\

as well as a non-intrinsic, but canonical prenormal form (made up solely of
resonant monomials), known as the distinguished form:

( X = eextX^e^ (fields)
1 F = Q^F^Q^, (diffeos).

The nilpotent part has an explicit expansion:

fX1111^^®. (see§7)
1 F1111 = exp(Xnil) = exp(E ̂ e B.) (see §7)

and so does the distinguished form:

( X^ = X1111 + Y, ff • B. (see §7)
\ F1111 == F1111 exp(Xnil) = F1111 exp(^; ff ' B.) (see §7).

The nilpotent parts are generically divergent, but resurgent, and satisfy a
variant of the Bridge Equation:

[A^X^EE-^A/ (fields)
[A^, F1111] = (e-^ - l)̂ ^11111 (diffeos)
• ,

[A^X1111] = (no\o— ^)A^ (diffeos again)
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•
with (pointed) alien derivations A^ (*); with indexes a; of the form (8.9)
for fields (resp (8.11) for diffeos); and with ordinary differential operators
A^ which, when expressed in the normal chart (^, u) (where X =. Qz and
F = exp(<9^)) reduce to the holomorphic invariants A^ that appear in the
classical Bridge Equation:

• ,
A^ x(z^u) = A^x(z^u) (cjC 0)

along with the so-called formal integral x{z, u) of X or F.

The distinguished forms X^^ and F^^ are resurgent, too, but with
a richer "resurgence lattice" ^dlst, and a markedly different regimen of
resurgence: "rigid" and "universal" (see §9).

Lastly, for non-ordered sequences n = (ni, . . . ,rir) with rii 6 N^,
the Lie elements B£ and B£ constructed in (10.2) and (10.3) from the
homogeneous components Byi of a resonant vector field X, provide neat
and explicit conditions (necessary and sufficient) for the linearizability
or nihilence of X. In the case of polynomial vector fields X, this may
hopefully lead to explicit bounds for the codimensions of the corresponding
"linearizability ideal" and "nihilence ideal".

We conclude this synopsis with tables listing the values of ^(a;, -f^,
S^, S^ for sequences a; of length r(a/) < 5 and of various degeneracy
types (we use the usual shorthand: o^- for ̂  + ̂ -, etc.).

(*) not to be confused with the mould derivations Vo/o-
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UJ

(a;)

(0)

(ci;i,Ci/2)

(a/,0)

(0,^)

((A;, —Ci;)

(0,0)

(ci;l,a;2,<^3)

(a/i, CJ2,^3) a/i 23=0

(a/i,L(;2,^3)«/i2=0

(a/I, 0/2, 0/3)^3=0

(a;, —LL>,C(;)

(a/, 0,0)

(0,^,0)

(0,0,a;)

(ci;,-a;,0)

(a/,0,-a/)

(0,Cc;,-Ci;)

(a;, 0,0,0)

(O.a;, 0,0)

(0,0,a;,0)

(0,0,0,a/)

(a;,-a;, 0,0)

(a;,0,-(x;,0)

(0,a;,-a;,0)

(a;, 0,0,-a;)

(0,a;,0,-a;)

(0,0,a;,-cc;)

^

0

1

0

+0;-1

-a;-1

-a;-1

0

0

+a;231a;31

+^r1^1

+^rS~1

+2a;-2

-a;-2

+2a;-2

-a;-2

-a;-2

+2a;-2

-a;-2

+0;-3

-3a;-3

+3a;-3

-a;-3

-a;-3

+3a;-3

-a;-3

-3a;-3

+3a;-3

-a;-3

^

0

1

0

+0;-1

-c^-1

-a;-1

0

0

-(-a;̂ a;3"1

0

0

0

0

0

0

4--2

+CC;-2

-^-2

0

0

0

0

4--3

+a»-3

-ja,-3

-a;-3

+^-3

-^-3

Se t̂

-a'-1

0

+^1^1

+(^-2

-c^-2

-j--2

0

-^r1^1'^
^j^^T'+^T^^T2

+iu;^2a;3-l+a'̂ la;3-2

-r2 -̂.1
+j--3

-^-3

+2a;-3

-a;-3

-^-3

+a»-3

-|a,-3

+0;-4

-3a»-4

+3u;-4

-a»-4

-^-4

+^-4

-j--4

-I--4

+^u--4

-i"-4

oa»
"ext

+a;-1

0

+^21 -̂1

-a--2

+^-2

-j--2

0

+"̂ 213a;231a'3'l

-J^^a"1-^^1^2

+^231tt;3-2

-j^r1^2-'1'!"2^1

-J.-3

+a,-3

-2a;-3

+a;-3

-I--3

+0.-3

-^-3

-a;-4

+3a>-4

-3a'-4

+U'-4

-It--4

+^1--4

-j--4

-ja,-4

+^--4

-^-4



J. ECALLE &; D. SCHLOMIUK

UJ

(^1)^2? ̂ 3? ̂ 4)^1234 = 0

/ \ r ci/9^ = o
(^,^2^3,^)iJ^^Q

, . r c<^i9 == o
(^1, 0,2,0,3,0-4) {^o

(^i,C(;2,^3»0)a>i23 = 0

(^1,0/2,0,0:4)^124 =0

(^l,0,a/3,0»4)^134 = 0

(0,0/2,0/3,0/4)0/234 = 0

(o/,-o/, 0,0,0)

(o;,0,-o;,0,0)

(0,o/,-o/,0,0)

(o/,0,0,-o/,0)

(0,o/,0,-o/,0)

(0,0,o/,-o/,0)

(a;, 0,0,0,-a;)

(0,a;, 0,0, -o;)

(0,0, o?,0, -a;)
(0,0,0, a/,-a/)

^

+a;2314(̂ ?341a;4'l

+^341CJ4-2+a;3-la;4-2

2 1 1 1
-0^ "^ + C^ ̂  1

-a;232a;3-l-(x;231CA;3-2

+a;2"la;4~2-a;^la;4-2

+^^ Ct;4 —^i ^3

-a/^^^^1^2

-a;-4

+4a;-4

-a/-4

-6a/-4

+4a;-4

-a;-4

+4a;-4

-6a/-4

+4a;-4

-a;-4

p-
+a'2314a;Mla'̂ l

+̂ -2 3̂-41

-^i2^^^1^2

-^zs2^1-!^1^2

-"r1^2

+"r2^-1

-j"2-2a;4-l+^2-la)4-2

-^--4

+^-4

-M"-4

-I--4

+^-4

-ii--4

+a^-4

-I--4

+^-4

-^-4
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