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AN EFFECTIVE MATSUSAKA BIG THEOREM

by Yum-Tong SIU (*)

Dedicated to Professor Bernard Malgrange

0. Introduction.

In this paper we will prove an effective form of the following Mat-
susaka Big Theorem ([Ml, M2, LM]). Let P(k) be a polynomial whose co-
efficients are rational numbers and whose values are integers at integral val-
ues of k. Then there is a positive integer ko depending on P(k) such that, for
every compact projective algebraic manifold X of complex dimension n and
every ample line bundle L over X with f^ (-l^dim^X.^L) == P(k)

v=Q
for every fc, the line bundle kL is very ample for k > ko. Here ample-
ness means that the holomorphic line bundle admits a smooth Hermitian
metric whose curvature form is positive definite everywhere. Very ample-
ness means that global holomorphic sections separate points and give local
homogeneous coordinates at every point. By a result of Kollar and Mat-
susaka on Riemann-Roch type inequalities [KM], the positive integer ko
can be made to depend only on the coefficients of ̂  and A:71"1 in the poly-
nomial P(k) of degree n. The known proofs of Matsusaka's Big Theorem
depend on the boundedness of numbers calculated for some varieties and
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divisors in a bounded family and thus the positive integer ko from such
proofs cannot be effectively computed from P(fc). To state our effective
Matsusaka Big Theorem, we use the following standard notation. For holo-
morphic line bundles L i , - - - , Z ^ over a compact complex manifold X of
complex dimension n with Chern classes c(I/i), • • • ,c(I/^) and for positive
integers k\, • • • , kj^ with k\ -{- • • • -h k(, = n, we denote the Chern number
0(2.1)^. •'c(L^ by L ^ ' - L ^ .

Our effective version of Matsusaka's Big Theorem is the following :

THEOREM (0.1). — Let L be an ample holomorphic line bundle over
a compact complex manifold X of complex dimension n with canonical line
bundle Kx- Then mL is very ample for

(23n"15yl)4T^"l(3(3n - 2)nLn + Kx ' L71-1)471"13^
m~ (6(3n - 2)71 - 2n - 2)4T^-ln-j(L7l)4Tl-13(n-l)

Theorem (0.1) is a consequence of the following Theorem (0.2) when
the numerically effective holomorphic line bundle B in Theorem (0.2) is
specialized to the trivial line bundle. Here the numerical effectiveness of B
means that the value of the first Chern class of the line bundle B evaluated
at any complex curve is nonnegative.

THEOREM (0.2). — Let X be a compact complex manifold of
complex dimension n and L be an ample line bundle over X and B
be a numerically effective holomorphic line bundle over X. Let H =
2(Kx + 3(3n - 2)nL). Then mL - B is very ample for

(^(Jr1)2^71-1 . B + JfT1))471"1

m >
(6(3n - 2)71 - 2yi - 2)4n~ln-j

The result of Demailly [D2] that 12 n^L + 2 Kx is very ample for any
ample line bundle L over X can also be regarded as an effective version
of Matsusaka's Big Theorem. The difference between Demailly^s result and
Theorem (0.2) is that in Theorem (0.2) 2Kx is no longer needed and in
its place —B can be used for any ample line bundle B. On the other hand
the coefficient 12 n^ of L in Demailly's result depends only on n and is
far sharper, whereas in Theorem (0.2) the coefficient for L depends on L71,
L71-1 • Kx, L71-1' B, and I"-2 • B ' Kx as is expected. (The condition
in Theorem (0.2) is expressible in terms of L71, L71-1 . Kx, ^n-l • B,
and L71"2 • B ' Kx by using inequalities of Chern numbers of numerically
effective line bundles (see [D2, Prop. 5.2(b)] and the end of §4.) Kollar
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[K] gave an algebraic geometric proof of a result similar to but weaker
than Demailly's criterion for very ampleness. For example, Kollar's result
gives the very ampleness of (n + 3)! 2(n + 1) ((n + 2)L + Kx) + Kx for an
ample line bundle L over X (by replacing L by (n + 2)L + Kx and setting
a = 1 in Theorem (1.1) and setting N = Kx in Lemma (1.2) in [K]). We
would like to mention also the following result in this area due to Ein and
Lazarsfeld [EL]: For a big and numerically effective divisor L on a smooth
complex projective threefold X, if L-C > 3 and L2 ' S > 7 for any curve C in
X and any surface S in X, then L+Kx is generated by global holomorphic
sections on X.

An earlier version of this paper gave the following bound for The-
orem (0.1) : mL is very ample for m > (24^(7(1 + C)71)^6713)71 with
C = ({n + 2)L + J^)!/1"1, which is by several order of magnitude not
as sharp as the bound stated in the present Theorem (0.1). The ear-
lier version of Theorem (0.2) gave the very ampleness of mL — B for
m > (24nnC(l + G)71)71^3)71 with C = ((n + 2)L + B + Kx)^-^ Af-
ter the earlier version was circulated, Demailly told me a way to simplify
the original proof and the simplication yielded the much sharper bound
for Theorem (0.1). The simplification is to verify directly the numerical
effectiveness of some line bundle by using its holomorphic sections on sub-
varieties of decreasing dimensions and to bypass the step, in the earlier
version, of extending first those sections to the ambient manifold. I would
like to thank Demailly for the simplication of the proof and the sharpen-
ing of the bound. One lemma in the proof of our effective Matsusaka Big
Theorem uses the strong Morse inequality of Demailly which Demailly ob-
tained by analytic methods. Lawrence Ein and Robert Lazarsfeld told me
a simple algebraic proof of that lemma which avoids the use of the strong
Morse inequality of Demailly. F. Catanese also has a simple algebraic proof
of that lemma similar to the proof of Ein and Lazarsfeld. Both simple alge-
braic proofs of that lemma are reproduced here. I would like to thank Ein,
Lazarsfeld, and Catanese for their simple algebraic proofs of that lemma.

The method of proof of Theorem (0.2) uses the strong Morse inequal-
ity and the numerical criterion of very ampleness of Demailly [Dl], [D2].
The earlier version used also NadePs vanishing theorem [N] in order to
extend some holomorphic sections of a line bundle from a subvariety to
the ambient manifold. Kollar's result (whose proof is algebraic geometric)
can be used instead of the very ampleness criterion of Demailly [D2] whose
proof uses analysis. With the use of Kollar's result and the simple algebraic
proofs of the lemma mentioned above due to Ein-Lazarsfeld and Catanese,
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the proof of our effective Matsusaka Big Theorem in this paper can be
done purely algebraically, though the bound of Kollar's result is weaker
than that of Demailly and therefore results in a bound that is less sharp.

The main idea of the proof of the effective Matsusaka Big Theorem
in this paper is the following. Because of the very ampleness criterion
of Demailly and Kollar, it suffices to show that for a given numerically
effective line bundle B and an ample line bundle L there is an effective
lower bound m such that m L - B is numerically effective. This is done
in three steps. The first step is a lemma on the existence of nontrivial
holomorphic sections of a multiple of the difference of two ample line
bundles whose Chern classes satisfy a certain inequality. This is the lemma
for which the strong Morse inequality of Demailly is used and for which
Ein-Lazarsfeld and Catanese gave simple algebraic proofs. Such a nontrivial
holomorphic section enables us to construct a closed positive current which
is a curvature current of the line bundle and the curvature current will
be used in an application of L2 estimates of 9 to construct holomorphic
sections. The second step is to produce, for any d-dimensional irreducible
subvariety Y of X and any very ample line bundle H of X, a nontrivial
holomorphic section over Y of the homomorphism sheaf from the sheaf of
holomorphic d-forms of Y to (3A(A - 1)/2 - d - 1)H\Y for A > H^ • V.
The sheaf of holomorphic d-forms of Y is defined from the presheaf of
holomorphic p-forms on the regular part of Y which are L2. This second
step is obtained by representing Y as a branched cover over a complex
projective space and the section is obtained by constructing explicitly a
global sheaf-homomorphism by solving linear equations by Cramer's rule.
The key point is that since the canonical line bundle of the complex
projective space of complex dimension d is equal to - (d + 1) times the
hyperplane section line bundle, by representing a compact complex space
as a branched cover of the complex projective space, one can relate its
canonical line bundle to a very ample line bundle on it. The third step is
to get the numerical effectiveness of mL — B. The earlier version of this
paper used NadePs vanishing theorem for multiplier ideal sheaves [N] to
produce global holomorphic sections of high multiples of m L—B so that the
dimension of the common zero-sets of these sections is inductively reduced
to zero. A new stratification of unreduced structure sheaves by multiplier
ideal sheaves was introduced in the earlier version to carry out the induction
process. Demailly's simplication verifies the numerically effectiveness of
mL - B by producing holomorphic sections of high multiples of m L - B
on subvarieties of decreasing dimensions. The bypassing of the extension
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of those holomorphic sections (called (7dj in §4) to the ambient manifold
makes it unnecessary to use NadePs vanishing theorem for multiplier
ideal sheaves and the new way of stratifying unreduced structure sheaves.
Though not used here, such a new stratification of unreduced structure
sheaves by multiplier ideal sheaves can be applied in other context, e.g. to
get a Demailly type very ampleness criterion for m L 4- 2 Kx without using
the analytic tools of the Monge-Ampere equation, but we will not discuss
it here.

1. Effectiveness of multiples of differences
of ample line bundles.

First we state the strong Morse inequality due to Demailly [Dl].
Let X be a compact complex manifold of complex dimension n, E be a
holomorphic line bundle over X with smooth Hermitian metric along its
fibers whose curvature form is 0{E)^ X{< q) be the open subset of X
consisting of all points of X where the curvature form 6(E) has no more
than q negative eigenvalues. Demailly proved the following strong Morse
inequality [Dl] :

y^-l^dim^X, k E ) < kn- f {-l)q(e{E))n + o(kn).
J^O n' ^(<9)

Here o(A;71) means the Landau symbol denoting a term whose quotient by
k71 goes to 0 as k —> oo. We now apply Demailly's strong Morse inequality
to the case where E == F — G with F and G being Hermitian holomorphic
line bundles over a compact Kahler manifold X with semipositive curvature
forms.

LEMMA (1.1). — Let F and G be holomorphic line bundles over a
compact Kahler manifold X with Hermitian metrics so that their curvature
forms are semipositive. Then for every 0 < q <^ dim X,

^ (-l^dim^(X,fc(F-G))<^ ^ (-I^MF^G^+O^)
0<,j<,q ' 0<j<q v /

as k —> oo.

Proof. — Let 0{F) and 0(G) be respectively the curvature forms of
F and G which are smooth and semipositive. Let uj be the Kahler form
of X. For e > 0, let (9e(F) = 0(F) + e uj and (9,(G) = 0(G) + e uj. Then



1392 YUM-TONG SIU

0(F - G) = 6^(F) - 0e(G). Let Ai > • . . > An > 0 be the eigenvalues of
0e(G) with respect to 0e(F). Then X(< q) is precisely the set of all x in X
such that Ag+i(a:) < 1. Demailly's strong Morse inequality [Dl] now reads
(I.I.I)
E (-l)^dimJP(X,fc(F-G))

0<J<q

^ I (-1)9 n (1 - ww + o(^).
• ^X^q) Kj<n

Let crj^ be the j^ elementary symmetric function in Ai, • • • , A^. We use the
convention that a^ = 1 when j = 0 and a{ = 0 when j < 0. Then

(1.1.2) Qwr^'w^ = ̂ w.
We claim that

E (-1)9-J< > (-i)9 n (1-^)
0<J'<9 l<J<n

for Ag+i < 1. We verify the claim by induction on n. Assume that it is true
when n is replaced by n - 1. From

<=<-^^n~-\\n

it follows that

^ (-1)^<= ^ (-l^-^+a^)
(Kj<g 0<j^g

=^(-ir^_i-A» ^ (-ir̂ .i
O^J'^g 0<j<g-l

= ( I - A « ) ^ (-ir^-i+A^_,
o$j<g> ( I - A « ) ^ (-ir^-i > (-i)9 n (1-^)-
0<j<g l<j<n

This proves the claim. The lemma now follows from the claim and (I.I.I)
and (1.1.2) when we let e —^ 0. Q

In the earlier version of this paper the argument for the lemma was
carried out only for q = 1 and was applied to get a nontrivial holomorphic
section of k{F - G) over X for k sufficiently large under the assumption

[nm . x
(F-Gr-Y, Qn)Fn-2^>o,

g=l v -I/
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where the square bracket [•] means the integral part. There the same
method of simultaneous diagonalization of curvature forms was used but
with less precise analysis of the inequality concerning the eigenvalues
A i , - - - , A ^ . This more precise form for a general q was suggested to me
by Demailly. In this paper the lemma will be applied only to the case q = 1
in the form of the following corollary.

COROLLARY (1.2). — Let X be a compact protective algebraic
manifold of complex dimension n and F and G be numerically effective
line bundles over X such that F71 > nFn~lG. Then for k sufficiently large
there exists a nontrivial holomorphic section ofk(F — G) over X.

Ein-Lazarsfeld and Catanese independently obtained similar algebraic
geometric proofs of this corollary. We present them here.

The proof of Ein-Lazarsfeld. — For a coherent sheaf T over X, let
/^(.F) denote dime I:P(X, F). By replacing F and G by £ F+L and £ G+L
for some ample line bundle L over X and some sufficiently large £ we
can assume without loss of generality that both F and G are ample. By
multiplying both F and G by the same large positive number, we can
assume without loss of generality that F and G are both very ample. Choose
a smooth irreducible divisor D in the linear system |G|. Consider the exact
sequence

0 -. Ox{k(F - G)) ̂  Ox{kF) -^ OkD^kF) -> 0.

It is enough to show that for k sufficiently large h°(Ox{kF))
> h°(OkD{k F)). There is a natural filtration of the sheaf 0^{k F) whose
quotients are sheaves of the form OkD^k F — j D) for 0 < j < k — 1. So

k-l

h°(OkD(kF))<^h°(OkD{kF-jG)).
3=0

On the other hand, since G is very ample, we can choose a second smooth
irreducible divisor D' in the linear system |G| which meets D in normal
crossing. Since OkD ( k F - j G) is isomorphic to OkD ( k F - j D ' ) which is a
subsheaioiOkD{kF), it follows that h°{OkD(kF -j G)) <: h°{OkD{kF)).
Thus h°(OkD(kF)) < k . /I°(OD(A:F)). By Kodaira's vanishing theorem
and the theorem of Riemann-Roch^w,, t-^y ̂ , ̂  ̂ ,
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1.71 •pn
whereas h°{Ox(kF)) = ——— + o(kn), from which we obtain the conclu-n!
sion.

Catanese's proof. — For a line bundle H over X, let hp(X, H) denote
dime HP(X, H). As in the proof of Ein-Lazarsfeld we can assume without
loss of generality that F and G are both very ample. Let k be any positive
integer. We select k smooth members Gj, 1 < j < k in the linear system
|G| and consider the exact sequence

(1.2.1) 0 ̂  Jf°(x, kF-^Gj) -^ H°{X^ k F ) -. Q)H°(G^ kF\Gj).
3 J=l

By (1.2.1) and Kodaira's vanishing theorem and the theorem of Riemann-
Roch

ft°(X, k{F - G)) > ̂  - o^) - ̂ (-^——F-i . G, - o(kn-l)}
n. ^ \^n — L)\ /

>kr-(Fn-nFn-l'G)-o(kn).
TL\

So for k sufficiently large there exists nontrivial holomorphic section of
k(F - G) over X.

What we need from Corollary (1.2) is a curvature current for the dif-
ference of the two numerically effective line bundles. Let L be a holomor-
phic line bundle on a compact complex manifold X of complex dimension
n. Let X be covered by a finite open cover {Uj} so that L\Uj is trivial
and let gjk on Uj D Uk be the transition function for L. A curvature cur-
rent 0(L) for L is a closed positive (l,l)-current on X which is given by

/̂ ~1
——99(pj on Uj where (pi is a plurisubharmoinc function on Uj such that
^^IPjfcl2 = e"-^ on Uj n Uk. The collection {e-^} defines a (possibly
nonsmooth) Hermitian metric along the fibers ofL. A closed positive (1,1)-
current 0 means a current of type (1,1) which is closed and is positive in

n-l
the sense that 6 A ]~[ (v^To^ A aj) is a nonnegative measure on X for any

j=i
smooth (l,0)-forms a^(l <, j ^ n- 1) with compact support. A closed pos-
itive (l,l)-current is characterized by the fact that locally it is of the form
V^IQQ^ for some plurisubharmonic function ^. The Leiong number, at a
point P, of a closed positive (l,l)-current 0 on some open subset of C71 is

defined as the limit of (^r2Y~ne^ (——^-^l^l2)71 1 over the ball of radius
r centered at P as r —^ 0, where z = (zi, • • • , Zn) is the coordinate of C".
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The normalization is such that the Leiong number of ——99\og \z\2 is 1
27T

at 0. The Leiong number is independent of the choice of local coordinates.
The function e~^ is locally integrable at P if the closed positive (1,1)-

current ——99^ has Leiong number less than 1 at P. The function e~^
27T

is not locally integrable at P if the closed positive (l,l)-current ——99i^
2?r

has Leiong number at least n at P. See e.g. [L] and [S] for more detailed
information on closed positive currents and Leiong numbers.

COROLLARY (1.3). — Let X be a compact projective algebraic
manifold of complex dimension n and F and G be numerically effective
line bundles over X such that P71 > nFn~lG. Then there exists a closed
positive current which is the curvature current for F — G.

Proof. — Let X be covered by a finite open cover {Uj} so that
{F — G)\Uj is trivial and let g^ on Uj D Uf. be the transition function
for F — G. Let s be a nontrivial holomorphic section for k(F — G) for
some sufficiently large k. The section s is given by a collection {sj}
where sj is a holomorphic function on Uj with sj = g^s^ on Uj D U^.

Define ̂  = - log \Sj\2. Then the closed positive current on X defined by
K

——99(pj on Uj is a curvature current for F — G. D
27T

2. The use of the very ampleness criterion of Demailly.

In §1 we obtain nontrivial sections for high multiples of the difference
of ample line bundles, but we cannot control yet the effective bound for the
multiple. In this section we are going to use closed positive currents and
the very ampleness criterion of Demailly [D2] to get an effective bound for
the multiple. The very ampleness criterion of Demailly [D2] states that for
any ample line bundle L over a compact complex manifold X of complex
dimension n, the line bundle lIn^L-^-IKx is a very ample line bundle over
X. We will use the more general result of Demailly on the global generation
of s-jets to further improve on the bound. The argument works with the
very ampleness of 12nnL-\-2Kx but with a slightly worse bound. The result
of Demailly on the global generation of 5-jets states that, if L is an ample
line bundle over a compact complex manifold X of complex dimension n,
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the global holomorphic sections of m L + 2Kx generate the s-jets at every
point of X if m ̂  6(n + sY.

Let X be a compact projective algebraic manifold and Y be an
irreducible subvariety of complex dimension d in X. Let {jjy be the sheaf
on Y defined by the presheaf which assigns to an open subset U of Y the
space of all holomorphic d-forms on U n Reg Y which are L2 on U D Reg V,
where Reg Y is the set of all regular points of V. The sheaf ujy is coherent
and is equal to the zeroth direct image of the sheaf of holomorphic d-forms
on a desingularization Y ' of Y under the desingularization map Y ' —>' Y.

PROPOSITION (2.1). — Let L be an ample line bundle over a
compact complex manifold X of complex dimension n and let B be a
numerically effective line bundle over X. Let Y be an irreducible subvariety
of complex dimension d in X. Let Cn = 3(3n — 2)n. Then for m > d
T d—i. R . y
— — — there exists a nontrivial holomorphic section of the sheaf
o/y 0 0{mL - B + Kx + CnL)\Y over Y.

Proof. — Let TT : V —>• Y be a desingularization of V. Let E be
an ample line bundle of Y ' . We apply Corollary (1.3) to the numerically
effective line bundles F = A;7r*(mL) and G = E + k^B over Y ' for some
sufficiently large k. The choice of m implies that Fd > dF^1 ' G for k
sufficiently large. Hence there exists a closed positive (l,l)-current 6 on V
which is a curvature current for k(F — G) — E. Choose a point P in Y ' such
that 7r(P) is in the regular part of Y and the Leiong number of 0 at P is
zero. Since the global holomorphic sections of p L + 2 Kx over X generate
the 2d-jets at every point ofX, for p > 6(n+2d)71, there exists a Hermitian
metric along the fibers of p L + 2 Kx which is smooth on X — 7r(P) and
whose Leiong number at 7r(P) is 2d. Thus for p > 3(n + 2d)n there exists a
Hermitian metric along the fibers oipL-\-Kx which is smooth on X —7r(P)
and whose Leiong number at 7r(P) is d. Since d < n— 1, we can use p = Cn'

We give E a smooth metric with positive definite curvature form on
V. By putting together the nonsmooth Hermitian metrics of k(CnL+Kx)
and k(F — G) — E and the smooth Hermitian metric of E, we get a
nonsmooth Hermitian metric h of 7r*(mL — B 4- Kx + CnL) such that
the curvature current 0 of h has Leiong number d at P and has Leiong
number zero at every point of U — {P} for some open neighborhood U of P
in V. Moreover, the curvature current 0 is no less than — times the positivek
definite curvature form of E on Y. We can assume without loss of generality
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that both line bundles 7r*(mL - B + Kx 4- CnL)|?7 and KY'\U are trivial.
Let a be a holomorphic section of 7r*(mL - B + ̂ x + CnL) + J^y/ over £/
such that a is nonzero at P. We give Ky any smooth metric so that from
h we have some nonsmooth metric h' of ^{mL — B + JQc + CnL) + JCy/.
We take a smooth function p with compact support on U so that p is
identically 1 on some open neighborhood TV of P in U. Since the (7r*(mL—
B + Kx + CnL) 4- JCy/)-valued (9-closed (0,l)-form (9p)a on X which is
supported on U is zero on iy and since the Leiong number of the curvature
current of the metric h' is 0 at every point of U — {P}, it follows that (9p)a
is L2 with respect to the metric h1 of 7r*(mL — B + Kx + CnL) + J<Ty/.
Since the curvature current 6 of the line bundle 7r*(?nL — B + -K^ + CnL)
is no less than some positive definite smooth (l,l)-form on V, by the L2

estimates of 9 (see e.g. [D2, p.332, Prop.4.1]) there exists some L2 section r
of7r*(mL-B+^x+Cn^)+^y/ over V such that 9r = (9p)a on Y 1 ' . Since
the Leiong number of 0 is d at P, it follows that r vanishes at P and p a—r is
a global holomorphic section of7r*(mL—i?+.K^+Cn-L)+-Ky/ over Y ' which
is nonzero at P. The direct image of p a — r with respect to TT : Y ' —> Y is
a global holomorphic section of o;y (g) 0(mL — B + Kx + CnL)|y over V
which is non identically zero. D

3. Sections of the sum of a very ample line bundle
and the anticanonical bundle.

Because of the very nature of the very ampleness criterion of De-
mailly, in §2 we could only construct holomorphic sections of line bundles
containing the canonical line bundle as a summand. In this section we are
going to construct holomorphic sections of the sum of a very ample line
bundle and the anticanonical line bundle which will later be used to obtain
holomorphic sections of line bundles without the canonical line bundle as a
summand. The idea is that since the canonical line bundle of the complex
projective space of complex dimension d is equal to — (d 4- 1) times the
hyperplane section line bundle, by representing a compact complex space
as a branched cover of the complex projective space, one can relate its
canonical line bundle to a very ample line bundle on it.

Let Y be a proper irreducible d-dimensional subvariety in P^y and HN
be the hyperplane section line bundle of P N - Let A be a positive number
no less than the degree H^ ' Y of Y. We use the notation introduced in
§2 for ujy which is the sheaf on Y from the presheaf of local holomorphic
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d-forms on the regular part of Y which are L2 locally at the singular points
ofV.

Let V be a linear subspace of P^y of complex dimension N — d — 1
which is disjoint from Y and let W be a linear subspace of P^y of complex
dimension d which is disjoint from V. Denote by TT' the projection map
from PN — V to W defined by the linear subspaces V and W of P^y, which
means that for x e PN — V the point ^(x) is the point of intersection
of W and the linear span of x and V. We identify W with Pd and let
TT : Y —)• Pd = W be the restriction of TT' to Y. We denote the restriction
of HN to Pd = W by Hd so that Hd is the hyperplane section line bundle
of Pd' We denote the restriction of HN to Y by H.

LEMMA (3.1). — There exists a nontrivial holomorphic section of
the sheaf

Hom(ujY, Oy((3A(A - 1)/2 - d - 1)H)

over K

Proof. — Since there are nontrivial holomorphic sections of any
positive multiple of H over V, without loss of generality we can assume
that A is equal to the degree H^ • Y of Y. Let Z C Pd be the branching
locus ofTT-.Y—^Pd. Let D be some hyperplane in Pd not contained entirely
in Z. Let D* be the hyperplane in P^y containing D and V so that D* is the
topological closure in P^y of 7^/~1(D). Let SD* be the holomorphic section
of HN over PN whose divisor is D*. Let / be a holomorphic section of HN
over PN such that h := —— assumes A distinct values at the A points of

SD*
^~l(Pl) for some Pi in P^.

Let SD be the holomorphic section of Hd over Pd whose divisor
is D. Let zi, • • • , Zd be the inhomogeneous coordinates of Pd — D. Then
t = (soY^dz-i A • • • A dzd can be regarded as a nowhere zero (d+ 1)[^] —
valued holomorphic d-form on Pd.

The nontrivial holomorphic section of 7^om(o;y, Oy(3(A(A — 1)/2 —
d — 1)H) over Y will be defined by using h and t. We will define it in
the following way. We take a holomorphic section 0 of ujy over an open
neighborhood U of some point P of Y and we will define a holomorphic
section of Oy((3A(A — 1)/2 — d — 1)H over an open neighborhood of P in
U. Without loss of generality we can assume that U is of the form TT'^I/')
for some open subset U ' of Pd.

We consider the Vandermonde determinant defined for the A values
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of h\Y on the same fiber of TT : Y —>• P^. In other words, we take P e Pd
such that 7T~1(P) has A distinct points P^,--- ,P^ and we form the
determinant

/lo=det((/l(P^))l/-l)l<^<A.

Let /i' = (^o)2- Then /i' is a meromorphic function on Pd with pole only
along D. By considering the pole order of h along Tr^D), we conclude

A-l
that the pole order of h1 along D is 2 ^ A A = A ( A — 1 ) . We write

^=1
A-l

(3.1.1) 0(P^) = ̂  a,(P)(fc(P^))ni < j < A)
1^=0

for some d-form dy on U ' ( Q < v < A — 1). We solve the system (3.1.1)
of equations by Cramer's rule. Let c^} = h{P^Y~1 for p -^ v and
c^ = O(P^). Let by be the determinant of the A x A matrix (c^)i<p,p,^\-
Then a^(P) = b^l h'Q = b^h'^l h'. We are going to use the removable
singularity for L2 holomorphic top degree forms so that an L2 holomorphic
d-form on fl. — Z for some open subset f^ of Pd extends to a holomorphic
d-form on Q. Thus, since 0 is an L2 holomorphic d-form on U D RegY,
we conclude from the pole orders of h and h' that the restriction of
s^{x~l)/<2hf a^ to U ' - {Z H D) is a holomorphic (3(A(A - 1)/2)^-valued
d-form on U ' — (Z D D) and therefore s ^ ' ~ / / ' 2 1 h ' a^ is a holomorphic
(3(A(A — l)/2)J:fd-valued d-form on U ' by removability of singularity of
codimension two.

We have 6 = ̂  (a^o7r){^\Y). The section ̂ (s^'^^h^O / 7r*(t)
i/=o

of (3A(A — 1)/2 — d — 1)H over U is holomorphic, because
A-l

^^A(A-1)/2^,^ y ̂ ^ ̂  ^^^A(A-1)/2^, ̂ ^ OTT^Y).

1^=0

The section of Uom(ujY, Oy((3A(A - 1)/2 - d - 1)H) over Y to be
constructed is now given by the map which sends the holomorphic section
6 of UJY over U to the holomorphic section Tr*^^"^72/^ / 7r*(^) of
(3A(A - 1)/2 - d - 1)H over U. D

PROPOSITION (3.2). — Let L be an ample line bundle over a
compact complex manifold X of complex dimension n and let B be a
numerically effective line bundle over X. Let Y be a proper irreducible
subvariety of complex dimension d in X. Let H be a very ample line

T d—i. R . y
bundle ofY. Let Cn = 3(3n - 2)71. Then for m > d — — ' '— there
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exists a nontrivial holomorphic section of the holomorphic line bundle
(3A(A - 1)/2 - d - 1)H + {mL - B + Kx + C^L)|y over V.

Proof. — The proposition follows from Lemma (3.1) and Proposi-
tion (2.1) after we embed Y into a complex projective space by using the
holomorphic sections of H over Y. D

COROLLARY (3.3). — Let L be an ample line bundle over a compact
complex manifold X of complex dimension n and let B be a numerically
effective line bundle over X. Let Y be a proper irreducible subvariety of
complex dimension d in X. Let Cn = 3(3n - 2)71 and H = 2 CnL + 2 K x '

j.d—i. n . Y
Then for m > d — — — there exists a nontrivial holomorphic section
of the holomorphic line bundle ((3A(A - 1)/2)H + mL - B)\Y over Y.

Proof. — The case d = 0 is trivial. Hence we can assume that d > 1
and n > 2. In that case 2Cn == 3(3n - 2)'1 > 12 n^ and by Demailly's very
ampleness criterion the line bundle H is very ample over X. Since (d+ ^ ) H
is very ample over X, the corollary follows from Proposition (3.2). D

We will need a statement similar to Corollary (3.3) for the case
Y =X.

PROPOSITION (3.4). — Let L be an ample line bundle over a
compact complex manifold X of complex dimension n >, 2 and let B
be a numerically effective line bundle over X. Let Cn = 3(3n — 2)71 and

rn—l . D
H = 2 CnL + 2Kx- Then for m > n ———— there exists a nontrivial

L^
holomorphic section of the sheaf mL — B + H over X.

Proof. — By Corollary (1.3) there exists a nonsmooth Hermitian
metric h\ for mL—B whose curvature current 6\ is a closed positive (1,1)-
current. Take a point P in X at which the Leiong number of 6\ is 0. By
[D2] (see the proof of Theorem 11.6 on p. 364 and the proof of Corollary 2
on p. 369) there exists a nonsmooth Hermitian metric h^ for 2CnL + Kx
such that

(i) the Leiong number of the curvature current 0^ of h^ is at least n at
P,

(ii) the Leiong number of 0'z is < 1 at every point of U — {P} for some
open neighborhood U of P in X,

(iii) ^2 1s ̂  kss than some positive definite smooth (l,l)-form on X.
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Now we put together the metrics h\ and h^ to form a nonsmooth
metric ^3 for mL — B + 2CnL + Kx- Without loss of generality we can
assume that at every point of U the Leiong number of 6\ is zero and that
the holomorphic line bundles (mL — B + 2CnL)\U and Kx\U are trivial.
We give Kx any smooth metric so that from h we have some nonsmooth
metric h' of mL — B + H. We take a smooth function p with compact
support on U so that p is identically 1 on some open neighborhood W of
P in U. Since the Leiong number of 6\ + 0^ is < 1 on U — {P}, it follows
that the {mL - B + ^-valued 9-closed (0,l)-form (9p)a on X is L2. By
applying the L2 estimates of 9, we obtain an L2 section T of mL — B -{- H
over X such that Qr = {Qp)(J on X. Since the Leiong number of 0i + ^2
is at least n at P, it follows that r vanishes at P and p cr — r is a global
holomorphic section of mL — B + H over X which is nonzero at P. D

4. Final step in the proof of the
effective Matsusaka Big Theorem.

Since the effective Matsusaka Big Theorem is obviously true for the
case when X is of complex dimension of one, we can assume that the
complex dimension n of X is at least 2. To get Matsusaka5 s Big Theorem,
it is enough to get an effective bound on m for m L — (B + 2Kx +pL) to be
numerically effective for some p > 2(n+l), because then by Demailly's very
ampleness criterion [D2, p. 370, Remark 12.7] the holomorphic line bundle
{12nn-^m-p)L-B = 1271^+2 Kx +m L- {B+2Kx -^-pL) becomes
very ample. We use B + 2Kx + pL instead of just B + 2Kx, because we
need Fujita's result [F] on the numerical effectiveness of (n + 1)L + Kx-

The numerical effectiveness of m L — {B + 2Kx + pL) is verified
by evaluating it on an arbitrary compact curve. The main idea is to use
Corollary (3.3). We can obtain nontrivial holomorphic sections of the line
bundle of the form m L — B over subvarieties and inductively we apply
the argument to subvarieties which are the zero sets of such nontrivial
holomorphic sections. This way we will get a numerical criterion for the
numerical effectiveness of m L — B and then afterwards we will replace B
by B + 2Kx + pL.

Let Cn = 3(3n - 2)71 and H = 2CnL + 2 Kx. As in the outline
of the argument in the preceding paragraph, to obtain the numerical
effectiveness of m L — B, we are going to use Corollary (3.3) to construct
inductively a sequence of (not necessarily irreducible) algebraic subvarieties
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X = Yn D Vn-i D • • • D YI D Yo and positive integers m^ (1 < d < n)
with the following two properties :

(i) Yd is d-dimensional.

(ii) For every irreducible component Ydj of Yd, there exists a nontrivial
holomorphic section a^ of m^L - B over Ydj such that Yd-i is the union
of the zero-sets of adj when j runs through the set indexing the branches
YdjofYd.

To start the induction, by Proposition (3.4) we can use m. >
L^^B+H) _

n———Jn——— and S^ a nontrivial holomorphic section On of m^L - B
over X. Let V^_i be the zero-set of cr^. Suppose we have constructed Yy
for d < v < n and my for d < ^/ < n. We are going to construct Yd-i and
md. Let C, = 2(C, - (n + 1)). Then H - C, L = 2((n + 1)L + ̂ ) is
numerically effective over X by Fujita's result [F]. To choose m^ we have
to compute Ydj ' Hd and YdjL^B for every irreducible component Ydj
of Yd. Now Ydj is a branch of the zero-set of some nontrivial holomorphic
section 0^4.1^ of rrid+iL - B over Vd+i^ for some branch Vd+i^ of Yd. For
any numerically effective line bundles £'1, • • •, Ed over X, we have

Ydj • £;i • . • Ed < Yd^k • (rrid^iL - B) . E^ .. • Ed
< Yd+i,k • rrid^iL • E^ • ' • Ed

<y^.77^.^...^
^n

(by the numerical effectiveness of H - C^ L) which by induction on d yields
m^V-7 • • E^ • • . F^ < mn md+l rjn-d r vJLd^ ^l ^ri S -̂ - • • • ———H Ai • • • £^.
^n ^n

V/7 ^d < mn ^ l̂ Tjn^d^tl S -̂ 7- • • • ————H ,

Hence
YdJHd < c' c'^n ^n

Yd^B^^^^H^L^B.
^n ^n

To apply Corollary (3.3) we impose on m^ (1 < d < n) the condition that

md > L^Yd~ (Ld-l'YdJ ' (B +1^^ ~ 1)H)) for some ̂  ̂  ̂ ^ • ̂ d

for all j. Since L^ • Ydj >. 1 o^d H - C^ L is numerically effective, to get
the condition we can let

mn md^ n
d - "C1' " ' T^'11

^n ^n

and set m, > -^^(Hn ̂ B + J^(^ _ ̂  ^ ^er to get a

simpler closed expression later we replace the last inequality by the stronger
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y,\3 / tin—l . D
inequality that m^ is no less than the integral part of d (————— +

. ). Once these inequalities are satisfied, by Corollary (3.3) we can find a
nontrivial holomorphic section adj of m^L — B over Ydj. Our y^-i is now
the union of the zero-sets of all adj when j runs through the set indexing
the branches Ydj of Yd. The above inequality for md (1 <, d < n) is satisfied
if inductively md is no less than the integral part of

n r H ^ ' B 3\ /m^ rnd^i \3

(C^\ H- ' 2 A G , '" C^11 ) '
To get a closed formula, we consider for 1 <_ d < n the equations

, n (H-^B 3wgn gd+i ̂ 3

(W^ ^n 2A^ " 'C^ Y *

Then ̂  = 77^2^+1 and ̂  = ^^4^-^-2^"' for 1 < d < n. Thus we
\^n) \^n) 3

can inductively define md to be the integral part of

((g^T(g")2(g"-l•B+jg"))4""d^(n(gn)2(gn-l.g+jgn))4TC-i

(cy-% ~ w-^
Clearly md < m\ for 1 < d < n.

We now verify that the line bundle m\L — B is numerically effective
over X. Let F be an irreducible complex curve in X. We have to verify that
{m-^L—B) -T is nonnegative. There exists an integer 1 < d <: n such that F
is contained entirely in some branch Ydj of Yd but is not contained entirely
in Yd-i. There exists a nontrivial holomorphic section adj of m^L — B
over Ydj whose zero-set is contained in Yd-i. Thus adj does not vanish
identically on F and we conclude that (m^L — B) ' F is nonnegative. Since
(mi — md)L is ample, it follows that {m\L — B) - F is nonnegative. This
completes the proof that m\L — B is numerically effective.

Since 2Cn > ^r^ for n > 2, by [D2, p. 370, Remark 12.7] from
the numerical effectiveness of m\L — B it follows that the line bundle
m\L — B + H is very ample. After replacing B by B + H^ we conclude
that m L — B is very ample for

{n(Hn)2(Hn-l'B+^Hn)^n~l
m ^> ______________________~__________

(C'n)471"171"1

and Theorem (0.2) is proved.

We now derive Theorem (0.1) from Theorem (0.2) by using the
following inequalities of Chern numbers of numerically effective line bundles
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[D2, Prop. 5.2(b)]. If L ^ ' • .,Z^ are numerically effective holomorphic
line bundles over a compact projective algebraic manifold X of complex
dimension n and k ^ ' ' . , ke are positive integers with k^ + • • • + ke = n, then

L^ . . . L^ > (L^^ . . . (Z^)^.

We now apply the inequality to the case of Li = F + G and L^ = F. Then
(F + G')F71-1 > ((F + G?)71)1/^71^71-1)/^

or

(F^Gr<(-(F^G)Fn^v / - (^n)n-l

Let F = {Cn - (n+ 1))L and G = (n+ l)L+^x. Then F+G = l^ and

A^n^ ((Gn^+^x)^71-1)"

2^ - (L71)71-1

Thus

(n5^)3)471"1 < (Q3n-l^)4^/((G^+^). 7.^)^3.4^
\ 2' / / - v / V (L71)71-1 7

In the case of B = 0 the line bundle m L is very ample if

^ ^ (23n-15n)4T^•l((G^+^)^n-l)4T^"13n

- (^4-- in-J^4-i3(n-l)•

Thus Theorem (0.1) is proved.
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