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HARMONIC FUNCTIONS SATISFYING WEIGHTED
SIGN CONDITIONS ON THE BOUNDARY

by M.S. BAOUENDI and L.P. ROTHSCHILD

0. Introduction.

In this paper we prove a local unique continuation theorem for
harmonic functions defined in an open set of the half space, R^. These
results involve a local boundary sign condition on the product of the
function and a homogeneous polynomial. Classical results in this direction
go back to the global theorems of G. Giraud and E. Hopf, concerning
the nonvanishing of the normal derivative at a boundary point where an
extremum is reached. (See e.g. Miranda [8] and the references given there.)

For X e W1 , we write X = (x,y), with x e R71"1 and y C R and
denote by R!j. the half space {y > 0}. Let 0 be an open neighborhood
of 0 in R71 and put ^ = R^ H 0 and V = R71-1 H 0. We shall assume
that Q. is connected. If u is a continuous function in f^, we say that u is
flat at 0 if for every positive integer N there is a constant CN such that
KX)| < C^W.

We now state our main results.

THEOREM 1. — Let u € (7°(Q) be harmonic in fl, and satisfy the
following conditions:
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(1) There exists P(x), a homogeneous polynomial inn—1 variables such
that P{x)u{x, 0) >, 0 for x € V.

(2) For every positive integer N , the function \x\~Nu{x,0) is integrable
inV.

(3) For every multi-index a in n variables with |a| < d, where d is the
degree of P(x), the function y i-> (<9^-n)(0, y) is Sat at y = 0.

Then u(x^0) = 0 in a neighborhood ofO in V, and hence u extends as a
real analytic function in a neighborhood ofO in R"'.

For applications, a more precise version of Theorem 1 will be useful.

THEOREM 1'. — The conclusion of Theorem 1 still holds if condition
(3) is replaced by the weaker condition:

(35) y ^ Of^-^V^^^)! is Qat at y = 0, where Q is the
\dx dy/ \ y / la;==o

homogeneous polynomial of degree d in n variables satisfying P(x) =w^x^)-
Note that for an arbitrary polynomial P(x) the existence of the

polynomial Q(X) in condition (3') follows from Proposition 1.4 below. We
now state some consequences of this theorem.

COROLLARY 1. — Let u 6 (7°(n) be harmonic in fl, and satisfy the
following conditions:

(i) There exists P(x), a homogeneous polynomial inn—1 variables such
that P{x)u(x, 0) ^ 0 for x € V.

(ii) For every multi-index a in n variables with \a\ < d, where d is the
degree ofP(x), 9^u{X) is flat at 0.

Then u(X) = 0 in ̂ .

In particular, for n = 2, we have the following corollaries:

COROLLARY 2. — Assume n = 2. Let u € C°(fl.) be harmonic in fl,
and flat at 0. Then u = 0 in Q if one of the following conditions holds:

(a) u(x^ 0) does not change sign in V.
r\

(b) xu(x^ 0) does not change sign in V and y i—^ ^-(0, y) is flat at y = 0 .
(JX
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(c) xu(x,Q) does not change sign in V and y \—> v(0,y) is flat at y = 0,
where v(x, y) is a harmonic conjugate ofu near 0 in f^.

The following is an immediate consequence of Corollary 2.

COROLLARY 3. — Assume n = 2. Let h be a holomorphic function
in ^, flat at 0. Jf u = 5R/i is continuous in f2 and the function V 3 x ^
n(rc, 0) does not change sign, except perhaps at 0, then /i ̂  0.

Theorem 1 was first proved for the case P(x) = 1 by the authors in [5],
both for open sets in the half space and also for open sets in the ball. It is
likely that unique continuation results with weighted sign conditions similar
to condition (1) of Theorem 1 can be found for more general open sets with
analytic boundaries. Unique continuation for holomorphic functions with
nonnegative real part on the boundary was given by the authors in [4], and
was used to prove a generalized Schwarz reflection principle for holomorphic
functions mapping the real line into a C1 totally real manifold or into a real
analytic set. Earlier results in this direction were obtained by the authors
jointly with S. Alinhac [3], as well as by Bell-Lempert [6], Alexander [I],
and Huang-Krantz [7]. We should also mention here more recent work
of Alexander [2], in which the sign boundary condition for holomorphic
functions is weakened in a different direction.

1. Some properties of the Poisson integral in a half space.

Let f(x) be a continuous function with compact support in R71"1. We
denote by w(X) == Pf(X) the solution of the Dirichlet problem Aw = 0,
w{x,0) = f(x}^x € R71"1, given by the Poisson integral,

(1.1) w(x, y) = -Pf(x, y) = c» f^ ̂  ^ ̂ p)^ dx'^ ̂  € R^

where Cn = ——^— (see e.g. [10]). We start with the following proposition:

PROPOSITION 1.2. — Let f C C^QR71"1) with compact support
and w(X) given by (1.1). Assume that for every positive integer N ,
Ircl-^/Cr) C L^R71-1). Then for every a e N71, the function y ̂  9^w{0,y)
isinC°°(R^) .

Proof. — For y > 0, we may differentiate (1.1) under the integral
sign and then set x = 0. Then 9^w(0, y) is a finite sum of terms of the
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form
R(x^y)f{x1)^(1.3) /

JR"-17^-i (2/2+IW5

where .R(a/, y) is a polynomial in n variables, and k > 1. Since [^"^/(a-) e
L^R71"1) for every TV, we may use the dominated convergence theorem
to conclude that the function given by (1.3) is infinitely differentiable for
yeR. D

We shall also need the following:

PROPOSITION 1.4. — Let Pd^) be the space of all real valued
polynomials in n variables homogeneous of degree d. Then the linear
mapping ^ : ̂ (R71) -^ ̂ (IT) given by

(1.5) P(X) = ^(Q)(X) = ixr^o^) (—),
is a vector space isomorphism.

Proof. — It is easily checked that if Q{X) e ^(lET), then the right
hand side of (1.5) is again a homogeneous polynomial of degree d. To prove
the proposition, it suffices to show that the mapping <I> is injective. For
this, assume that Q e Pd(M71) satisfies
(L6) ^Xp^)'0' ^"\w.
Let T be the tempered distribution on y1 given by the finite part of ——.

Then its Fourier transform T is of the form t = ci log |$| +02, where ci and
C2 are constants. (See e.g. [9].) On the other hand, from (1.6) we obtain

(1.7) < )̂̂ ,

where S is a distribution in R71 supported at the origin. Taking the Fourier
transform of (1.7) and using the form of t we obtain
(1-8) 0(0(^1 log |$|+C2)=A(0,

with R{^) a polynomial in n variables. Since ci ^ 0, (1.8) can hold only if
Q = 0. This completes the proof of Proposition 1.4. D

PROPOSITION 1.9. — Let f and w be as in Proposition 1.2 and P
and Q be homogeneous polynomials of degree d related by Proposition 1.4.
Suppose that P(x, y) is independent ofy. Then for every integer j > 0 the
following holds:

f1-1" m^) ("?) I...= '-1''̂  /..-.
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with M, = ( ^(n/2+d)(n/2+d+l)...(n/2+d+j-l)

Proof. — We shall apply the operator Q ( — — ) to both sides of (1.1)
\uX /

for X C R!jl. By Proposition 1.4 and the fact that P(x^y) is independent
of t/, we obtain
(1.11)

Q 9 /w(x,y)\ _ [ P{x' - x)f{x') ^ ,
v{9x'9y){~T~)~ ^An^+k-^l2)71/2^ 5 ^)€K+•

Define v(y) by

(L12) ^(^C^L.^-
By Proposition 1.2, v(i/) is smooth for y > 0, up to y == 0, hence admits a
Taylor expansion at 0. We claim that for every positive integer N we have

(1.13) ^)=Ea^2J+o(1^12N+2)-
j=o

where the Oj are given by

(1.14) a,=(-l)^M,^^^<to.

Indeed, we have, for every integer N > 0 and for k > 0,
(1.15)

(2/2 + M2^

_ V^. , ( f c ) ( f c + l ) . . . ( f c + J - l ) ^
2-/ ^ .» |a;|2j+2fc
j=o J 1 '

^ (fc)(fc + 1) . . . (fc + N) / I-1 (1 - T)^ ^V2^2+ v l ) ——AT»——vyo w^m^ ^ '
By substituting (1.15) into (1.11) with x replaced by x — x ' and with
k = n/2 + d, we obtain the desired expansion (1.13) for v(y), by putting
x = 0, provided we show that the integral(U6) L. r ̂ ^^'p(xmx)dTdx
is bounded independently of y > 0. The latter follows from the fact
that the integrand in (1.16) is dominated by the function \P(x)f(x)\
j^j-(n+2d+2N+2)^ |̂ch ig integrable by the assumption on /. The proof
of Proposition 1.9 is complete. D
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Let n and V be as in the introduction, and u € C°(Q,) and harmonic
in Q. Let \ € C§°(V) with ^(.r) = 1 near 0 and \{x) > 0, and put
f(x) = \(x)u(x^0). We denote by w(X) the solution of the Dirichlet
problem Aw = 0, w(rc,0) = f(x),x € R17"1, given by the Poisson integral
(1.1). We write

(2.1) u{X)=(u-w){X)+w(X), Xe^ .

Note first that the function u — w is harmonic in f!, continuous in fl, and
vanishes in a neighborhood of 0 in V, by the choice of the cut-off function
^. Hence by the classical local regularity of the Dirichlet problem in the
real analytic setting, u — w extends to be real analytic in a neighborhood
of 0 in V. Using also Proposition 1.2, we may conclude the following:

PROPOSITION 2.2. — Let u € C°{fl.) be harmonic in fl,, and assume
that for every positive integer N , the function [^["^^(rc.O) is integrable
in V. Then if 77 > 0 is sufficiently small, for every a € N71, the function
y^O^u^isinC00^}).

Similarly, from Proposition 1.9 and (2.1), using again the real analyt-
icity of u — w near the origin, we have:

PROPOSITION 2.3. — Let u be as in Proposition 2.2. IfP and Q
are two homogeneous polynomials in n variables related by Proposition 1.4
with P independent of y , there exists C > 0 such that for every integer
j > 0 the following holds:
(2.4)

(^N^)(^)L.«-(- /̂̂1 fft3n( 9 V^WM t 1V. M { PQcM^OL, ^^+iW)^^Qxj^-rnx^-^^jy ̂ ^dx ^c '
with Mj as in Proposition 1.9.

We may now complete the proof of Theorem 1. Let P(x) be the
polynomial (in n — 1 variables) given in assumption (1) of Theorem 1.
By regarding P as a polynomial in X = (x^y), but independent of
y^ and applying Proposition 1.4, one has a unique polynomial Q(x^y)^
homogeneous of degree d satisfying (1.5). Put

^ ^(^C^L
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By Proposition 2.2, g € ^^([O,^]) for 77 > 0 and sufficiently small. Since
by assumption (37) of Theorem 1', ^Q/) is flat at 0, all its derivatives must
vanish at 0. Hence we conclude from Proposition 2.3, noting that Mj >_ 1,

(26) c fp^u^dx<C^l

^•OJ n Jv {x^2^^ '
As in [5], we reason now by contradiction. If u(x^0) does not vanish in
any neighborhood of 0, then since P(x)u(x^ 0) > 0 by assumption (1) of
Theorem 1, for every positive e sufficiently small we would have

(2.7) / P(x)u(x,0)dx > 0.
J\x\<e

On the other hand it follows from (2.6) that we have for every e > 0
sufficiently small

(2-8) ——bj / P(x)u{x,0)dx < C^\ j > 0.
t J\x\<e

Taking the jth root of both sides of (2.8), making use of (2.7), and letting
j go to infinity we obtain 1 < Ce2. Since e can be taken arbitrarily
small, we reach a contradiction, which proves the vanishing of u(x^ 0) in
a neighborhood of 0 in R71""1. The real analyticity of u in a neighborhood
of W1 then follows from the classical real analyticity up to the boundary of
the Dirichlet problem. This completes the proof of Theorem 1'. D

Proof of Theorem 1. — We note that Proposition 1.4 guarantees the
existence of the polynomial Q(X) of condition (3') of Theorem 1'. It is then
clear that (3') implies (3); hence Theorem 1 follows from Theorem 1'. D

Proof of Corollary 1. — It is not hard to see that conditions (i)
and (ii) of the corollary imply conditions (1), (2), (3) of Theorem 1.
Therefore, by applying the theorem, we conclude that u(x, 0) vanishes in
a neighborhood of 0 in V, and hence ^extends to be real analytic in a
neighborhood of 0. This, together with the flatness of n, i.e. condition (ii),
implies that u must vanish identically in the connected set f^. D

Proof of Corollary 2.

(a) Take P(X) = Q(X) = ± 1 and apply Corollary 1 to u.

(b) Take P(X) =±x and hence Q(X) = qp x / 2 in Theorem 1' to conclude
that u{x^ 0) = 0 for a* in a neighborhood of 0. The desired conclusion then
follows from the flatness of u as in the proof of Corollary 1.

(c) Take P(X) = ±x and hence Q(X) = =p x /2 . In order to apply Theorem
QuV , we must show that T—(O, y) is flat at y = 0. If v is a harmonic conjugatedx
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of n, by the Cauchy-Riemann equations, we have —(0,2/) = —(0,z/) for
ox dy

y > 0 sufficiently small. Since by Proposition 2.2, j—(Q^y) is smooth up toox
y = 0, the same is true for —(O,^/). The assumption of flatness of v at 0

implies that —(O,^/) (and hence also —-(0,2/)) is also flat. The rest of the
dy ox

proof is as in (b).

Remark 2.9. — Corollary 3 follows from Corollary 2 parts (a) and
(c). However, we note that if the condition u = St/i G G°(Q) is replaced by
the stronger condition h € C°(fl.), then the result can be proved using only
Corollary 2 part (a). Indeed under this stronger condition if u(x, 0) changes
sign at 0, i.e. xu(x^ 0) does not change sign, then we can apply part (a) to
the harmonic function ?Sizh(z) (with z = x + iy).
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