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INFRARED CATASTROPHE IN A MASSLESS
FEYNMAN FUNCTION (*)

by T. KAWAI and H.P. STAPP

In our recent article [KS3] we examined the effect of using Q-couplings
(in the sense of [S2]) in some Feynman functions, and found that the
resulting functions have singularities of the physically required degree. This
basic property of Q-coupled functions is not enjoyed by ordinary Feynman
functions, some of which exhibit stronger singularities. We will verify this
latter fact by a detailed study of the Feynman function associated with the
following diagram D' :

D'=

/-A
.'R +

Figure 1

Here the wiggly line represents a massless propagator l/(fc2 + zO), and
each straight segment with + sign represents a massive propagator
l/(p2 — m2 4- ^O)- As we are concerned with the singularity structure of
the integrals in question, we ignore the numerator factor in the integrands;
i.e., several terms relevant to the -/-matrices are replaced by 1 here and in
what follows. In connection with this, the external lines of the diagram are
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simplified so that one external line represents a pair of external lines, and
the vertex to which it is connected represents a pair of vertices connected
by a line that represents a charged particle that is far from its mass-shell,
and hence a non-singular function.

One can easily verify that the Feynman function FD'{Q,R) is
singular along the triangle-diagram singularity surface; i.e., along the
strictly positive-a Landau-Nakanishi singularity surface L^(D) = {(p = 0}
(hereafter referred to as the Landau surface for short) determined by the
triangle diagram D :

D

Figure 2

Our principal conclusion is that FD' contains a singularity of the
form (log^)2, despite the well-known fact that FD behaves like logy?
near L^(D). Such an increase of the degree of singularities would be as
catastrophic as a divergence (i.e. non-well-definedness as a (hyper) function
of (Q^R)) of the function involved, because it would be contradictory to
the known large-distance fall-off properties for stable charged particles.

Note that in our analysis we do not associate a fictitious mass to
a photon, as is usual in the treatment of mass singularities of Feynman
functions. (See Kinoshita [Ki], for example.) The integral is nevertheless
well defined after ultraviolet cut-off. (In what follows we assume that all
integrals are defined with suitable ultraviolet cut-off factors.) We also note
that we really encounter a (non-trivial) function of this sort in QED as a
consequence of replacing each external line of D' by a pair of photon lines
connected to two vertices separated by a far-off-mass-shell charged particle
line. (This makes the number of photons incident upon the closed loop
even, so that the function does not vanish by virtue of Furry^s theorem.)

Our result pertains only to the single indicated Feynman diagram.
It prevents the vertex part of that diagram from being defined as essentially
a finite correction factor to the basic triangle diagram function, in the
way that is normally done in theories in which all particles are massive.
Renormalization does not help.
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We have not confirmed that a summation over all diagrams of the
same order in e2 could not lead to a cancellation of the (log y?)2 singularity,
but see no reason for such cancellation to occur. A rigorous proof of
noncancellation would require a generalization of the present proof that
would yield not only the (log (p)2 term, but its coefficient as well. Here it
is only shown that the coefficient is nonzero for the single diagram, apart
from a trace factor that arises from the numerator. For the case of an odd
number of photons this trace factor is odd under p i—^ —p, k \—> —k^ and
hence would (as noted by Furry) vanish under integration over p and k. For
our case, with an even number of photons, this trace factor is even, and will
not vanish in general.

In what follows we use the same symbols and notations as in [KS2];
for example :

• the function R(k) denotes the retarded propagator

l/((fco + 20)2 - k2) and it is diagramatically represented by --->-- ;
+

• the function A(k) denotes the advanced propagator

V((^o — ^O)2 — k2) and it is diagramatically represented by
• the symbol I > represents

(-2m)^{p2 - m2) = (-2m)6(po)6(p2 - m2).
We also freely use several (microlocal) properties of functions related to
the retarded and advanced propagators that are obtained in [KS2]; in
particular,

(l.a) ^^=(_2^)^(^)+AW

(l.b) =(^2m)6-(k2)^R{k).
(See [KS2] for the definition of 6±(k2).)

The main result of this paper is the following

THEOREM 1. — Let D be the triangle diagram, and let L^(D) denote
the strictly positive-a Landau surface. Let (Q°,R°) be a point in L^(D),
and let D/ denote the diagram given in Fig.l. Then, on a neighborhood
of(Q°,R°), FD'(Q,R) has the form

a(Q, R) (log(^(Q, R) + z0))2 + 6(Q, R) log(^(Q, R) + zO) + c(Q, R)
with a, b and c being analytic on the neighborhood of(Q°, R°). Furthermore
a does not vanish identically.
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Proof. — Using (l.b), we first decompose F^' into the sum of two
terms, F^ and F^, where Do and Di are respectively given as follows :

Figure 3

Our purpose is to show the (log (^-character of the integral F^ and
the (log (^-character of F^. Let us begin our computation with Fr>o. Since
the integrand of Fpp contains 6~(k2), we find

f3) 1 1
v / p2 - m2 + iO (p - k)2 - m2 + zO

= ( 1 _ 1 ^ 1
\(p - k)2 - m2 + iO p2 - m2 +10/ 2DA; -(p - A;)2 - m2 + iO p2 - m2 +10/ 2pA; - zO

1 1
(4) g2 - m2 + zO (9 + k)2 - m2 + lO

= f 1 - 1 ^ 1
V(?2 - m2 + zO (g + A;)2 - m2 + z0/ 2^ + zO

in the integrand of FDQ .

Let us introduce the polar coordinate (r, fl.) in fc-space. With A; = r^
(^, a unit Euclidean vector) neither pfl, nor ^^ vanishes for massive p and g
when f22 = 0. Hence we find Foo is expressed as

(5) I'd4^ 6(^-1)6-(fl2)

X/^[{FA(0,A)-FA(0^+^)}

- {F^(Q - r^R) - F^(Q - r^,A+ rf2)}]

= fd^6(^-l)6~(fl2)
fit _i

x y -^-[{^A(Q,-R)-FA(0,^+rn)}

-{F^Q-rSl,R)-F^(Q,R)}

{F^(Q-rft,R+rS})-F^(Q,R)}],+
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where f2 = (f2o, -^2), and FA(O, R) is an integral of the form

(6) S^^l^n^

(£ + Q)2 - m2 + iO
X _______1_______-i4<

(fi - ̂ )2 - m2 + z0

with an analytic factor A(C,Q,R,k) (if (^ + Q)2 ^ 0 and (7i - ̂ )2 ^ 0).
Hence .FA is of the form

(7) B(Q, R, k) log(y>(Q, R) + i0) + C(Q, R, k)

with 5 and C analytic if (Q, R) is-close to (Q°, fi°). Hence our first task is
to calculate the r-integral

(8) y d^(log(y(Q,R+rfl)+iO)-\og(y(Q,R)+iO))

etc. Using the Landau-Nakanishi equations, we find

^R+r^^9'^^^^-^

on y(Q, K) = 0 with QI > 0. Since (R - if = m2 holds, to realize
the triangle singularity, and since fl2 = 0, we find (R - ̂ )n ^ 0, i.e.,
9y(Q,R+rSl}
———a———— _ / u- HsQce the implicit function theorem guarantees
the unique existence of a non-vanishing holomorphic function \ (Q, R, r, f2)
on a neighborhood of (Q°, R°) for sufficiently small r so that

W ,(0.^^)=^.^^)(^^^).

Similarly we can find non-vanishing holomorphic functions ^.(Q,I?,r,^)
(j = 2,3) so that the following hold :

(10) ^-^R)=^Q,H,^)(r+^S^),

(11) ,(Q-^^).̂ ,̂ ,n)(^^^).

Using these normalizations of y?(Q, R + r^) etc. we can reduce the
computation of the r-integration in (5) to the computation of the integral
discussed in the following
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LEMMA 2. — Let I = Ic(t, K) denote the following integral:

C^ dr
(12) / — (\og(t + cr + ^0) - \og(t + z0))

where c is a non-zero real constant. Then Ic(t, K,) is well-defined and it has
the form

(13) ^ (log(t + %0))2 + a\og(t + zO) + b(t) near t = 0

with a constant a and a holomorphic function b(t) denned near t = 0.
-Here a and & depend on c and K.

Proof. — We may suppose c > 0 without loss of generality. By
decomposing the integral (12) into the sum of two terms

{ t l ( l c dr r^ dr
(14) / — (log(t + cr) - log t) + / — (log(t + cr) - log t),

^O */t/2c r

we can readily verify the well-definedness of the integral in the domain
1m t > 0; in fact, the Taylor expansion of log(l + cr/t) in the first term
of (14) shows the well-definedness of the term, while the well-definedness
of the second term of (14) is clear. As in Appendix I of [KS3], where more
general cases are discussed, we find

(15) t^I^Ft^ 1 --J-)
dt Jo r U+cr+iO t ^ r i Q )

r -c
70 t + cr + zO dr = w + zo) ~ log(^ + CK + i0^

Hence we conclude that t -^ (J- j (log^+^O))2) is holomorphic near t = 0.
This means that I - \ (log(t + i0))2 is of the form a \og(t + %0) + b(t) with
a constant a and a holomorphic function b near t = 0. This completes the
proof of Lemma 2.

Returning to the computation of the integral (5), we use Lemma 2
to find

FDQ = fd^W - ̂ -{^(-^BiQ^R^^og^Q^R) +z0))2

+ /d4^ ($(nn -!)($- (n2) {Ci (Q, Ji, n, /.) iog(^(Q, .R) + io)
+Co(Q,fi,^)},

with Go and C'i holomorphic. Here we have used the fact that the part of
B(Q, R, k) (and C) in (5) which contains a factor of k cancels the 1/r-factor



INFRARED CATASTROPHE IN A MASSLESS FEYNMAN FUNCTION 1307

in (5), hence leading to logy? singularities at worst. Since

/d4^^--!)^-^2)^,

we find that the singularity of Fi)o consists of (logy?)2 and logy? and that
(log y^-singularity does not vanish identically.

Next we show the (log y?)-character of F^ in Fig. 3. One important
fact in the analysis of F^ is the following : the cotangential component
of the singularity spectrum of the retarded propagator is confined to the
positive light cone even at k = 0. (Cf. [KS2], (1.3); see [K3] for the basic
notions in microlocal analysis such as singularity spectrum etc.) We shall
refer to this fact as the light-cone property for short. Using this fact, we
first show that the following diagram D^ does not have the so-called u = 0
points. (See [I] and [Sl] for the definition of a u = 0 points.)

D2=

In fact, the existence of a u = 0 point would entail the realization of
the diagram

A=B=C^D

but this would contradict the light-cone property. Furthermore the light-
cone property also entails that there is no contribution to the singularity
near (Q°, R°) coming from D^. In fact, the closed loop conditions for both

A ^
D

> D

' + and + /

E
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that is, the realization of the configuration

A

E B C

with the segment ED being a forward light-cone vector, would imply that
the segment BA should be outside the forward light-cone, leading to a
contradiction. Hence one of the above two closed loops should collapse.
However, the collapsing of the first loop forces D^ to become

A = B = D = E <^
+

and that of the second forces D^ to become

Neither of them contributes to the singularity near (Q0, R°) that lies
in L^(D). Hence we may consider the following D^ in place of Di, as we
are interested only in the region where \k\ is sufficiently small.

Ds=

Here l ) represents (-2m)6^(q2 - m2), as usual. To analyze the
integral associated with 1)3, let us consider the function I(p,q) associated
with the following diagram D^ with keeping q2 = m2, qo > 0 :

D.=

Then the propagator associated with the segment •—?—• reducesE ~ c
to -l/(2qk-k2-^i0). Hence the closed-loop condition for the triangle DCE
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is w + a(p + k) + /3{q - k) = 0 with a, /? ^ 0 and w a forward light-cone
vector. As | k \ < 1 by the assumption, this closed-loop condition forces
the triangle DCE to collapse. Otherwise stated, J(p, q) is analytic if q is
confined to the mass-shell manifold q2 = m2. Since g is confined to the
mass-shell manifold in the diagram Ds, we may replace D^ by

^5=

.••̂

On the other hand, the integral associated with

A>=

is known to be analytic. (See [KS2], (6.2); to be precise the integral
considered here is the integral (6.2) with the deletion of r2?^^^ in the
numerator.) Therefore the integral FD^ has the form

W /W ̂  pd^ (oTtT^rfTio ̂ -^ -m2)d4(

with Ai being analytic if £2 ~ m2, (Q + ̂ )2 ~ m2 and (R - £)2 = m2. As it
is well-known that the integral (16) is of the form

ai (Q, R) log(^(Q, R) + zO) + &i(Q, .R)

with ai and &i being analytic functions near L^(D), we have verified
the (log (^-character of F^. This completes the proof of Theorem 1.
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