
ANNALES DE L’INSTITUT FOURIER

LEON EHRENPREIS
Exotic parametrization problems
Annales de l’institut Fourier, tome 43, no 5 (1993), p. 1253-1266
<http://www.numdam.org/item?id=AIF_1993__43_5_1253_0>

© Annales de l’institut Fourier, 1993, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1993__43_5_1253_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
43, 5 (1993), 1253-1266

EXOTIC PARAMETRIZATION PROBLEMS

by Leon EHRENPREIS

Dedicated to my good friend, Bernard Malgrange

Given a system of differential equations

(1) ~P^D)F=-g>

on -R71 meaning
Pj(x,D)F=gj, j = l , 2 , . - . , r

there is an associated dimension. If the Pj have constant coefficients then
this is the dimension of the algebraic variety

(2) V:P,(ix)=0 j=l,2,...,r.

If the Pj have analytic coefficients then the dimension is the maximum
dimension of any analytic manifold L C R71 (local) such that any analytic
function h on L is the restriction to L of a solution F of P F = 0 near
L. We can determine these L by the Cartan-Kahler theory. Such maximal
manifolds L are called P Lagrangians. We refer to dim L as dim P . For
n = 2m and P = 9 a P Lagrangian is a totally real subspace of Rn which
is given the complex structure associated to 9, that is, a 9 Lagrangian is
[essentially, that is, up to an element of GL(n, R)} a usual Lagrangian.

If P has C°° coefficients then I do not know a general definition of
P Lagrangian or of the dimension associated to P.
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For the usual boundary problems associated to P such as the
Cauchy and Dirichlet problems, (CP) and (DP), the data is given on a
P Lagrangian L. (Sometimes that does not suffice and we have to give
data on a finite number of lower dimensional varieties L o C l / i C ' - ' c L . )

The CP and DP are ways of parametrizing solutions of P F = 0.
We use the term exotic parametrization problem to indicate a way of
parametrizing solutions by data on manifolds M whose dimension is
different from the dimension of P. (We shall deal with situations in which
all data are given on a single manifold; the more general case when we need
additional submanifolds presents only some technical difficulties.)

There are two ways in which dim M ̂  dim P, namely

(a) dim M > dim P.

(b) dim M< dim"?.

In case (a) we shall consider two situations:

(al) M is smooth.

(a2) Mis "polygonal".

For the 9 system (al) was pioneered by Hartogs and Lewy (see [E4],
[L]). Early work on (a2) bears the names of Hartogs and Bernstein (see
[AR]).

When dimM > dimL the solutions of P F = 0 satisfy differential
equations on M. Thus we want to parametrize solutions of P F = 0 by
solutions of the "induced system" PM/M = 0 on M. If M = R71 then
Pj^ = P and everything is trivial.

This article contains the germs of our ideas. Full details appear in the
author's book: The Radon Transform [E2].

We now clarify what we mean by Parametrization Problem. We start
with differential operators Q\, • • • , 9s (of arbitrary order) which are "normal
derivatives" meaning that they cannot be expressed in terms of tangential
derivatives to M. The parametrization problem is related to the map

a:F-^[~PF^9,F\M}].

a is a map of a suitable function or distribution space W on R71 into
W p © [IV(M)]3 where W p is the subset of Wr satisfying the compatibility
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relations of the Pj and W(M) is a space of functions or distributions on M
related to W. For example if W is the space of C°° functions on R71 then
W(M) is the space of C°° functions on M.

In case (a) the elements of W(M) satisfy differential equations.

In case (b) there are infinitely many 9j so [^(M)]8 must be inter-
preted in a somewhat different manner which we shall explain presently.

Denote by a' the adjoint of a. Thus a' is a map
a^.Cr^s^-.^^Q^.

In the right side of this formula Sj are considered as elements of W using
the adjoint of restriction to M.

In case s = oo we regard ̂  Q'^Sj as an element of a suitably defined
topological tensor-like product W'(M)W of a suitable subspace W'{M) of
[IV7 (M)]00 with some space of functions or distributions U ' in the directions
"orthogonal to M"; U' is a space spanned by {9'} in a suitable topological
sense. We shall present some examples of this tensor product below. As
we shall see, we do not get an actual topological tensor product but some
modification of it.

Our work on (al) is inspired by Lewy's theorem (see [L]) that if M
is a hypersurface then, under suitable "convexity" conditions, a solution
of QM/M on M can be extended on an a priori "inside" neighborhood
to a solution of 9F = 0. Actually Lewy's work applies to some M with
codimension M > 1.

Our first task is to define the induced system PM' This is done most
simply formal using power series. Suppose first that M is a smooth (local)
hypersurface defined by \{x} = 0. We choose some coordinates 0 on M
and we use \ to define the "orthogonal" coordinate. We study formal power
series solutions h = ̂ hj(0)\3 of P h = 0. The hj(0) are assumed to be
smooth. (For 9 the calculations appear in [E6].)

PROPOSITION 1. — Suppose P has holomorphic coefficients. For
generic M there is an integer N and an N x N matrix [p]^ of differential
operators in 0 such that
(3) ~P h = 0 implies [p]^ ̂  == 0.
JEfere h^f = (ho(0), - - • , fa^-i(0)). Moreover for any "fa^ satisfying (3)
there is a unique formal power series solution h of h = 0 starting with

.̂
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__ ivr ^

It is reasonable to regard [p]^ h ̂  = 0 as the equation induced
by P on M. For the P = 9 the induced system is Lewy's. For the
pluriharmonic operator 99 an analog of Lewy's condition was formed by
several mathematicians. For the general 9^ (symmetric derivatives) a_^
beautiful formalism for writing [P\^ in an explicit fashion was developed
by my student J. Wang in his thesis (see [W]).

Remark. — Consider the Cauchy-Riemann equation in 2 complex
variables Zj = Xj + yj. The restriction of a holomorphic function to the
surface S : y ' y = l , x ' y = 0 satisfies independent differential identities of
all odd orders. These do not arise from holomorphic tangent vectors but
rather from pairs, triples, ... of nontangential holomorphic vectors which
meet near S.

This example shows that, in general, there is no finite N for M of
codimension >_ 1. (It arose in joint work with P. Kuchment.)

So much for the formal theory. When do formal solutions extend to
actual solutions?

One way of thinking of this extension question is in the spirit of
hyperbolicity. Thus we want to use fundamental solutions to construct the
extension.

DEFINITION. — A mouth for P is a smooth submanifold (local or
global) A such that there exists an operator A? in the left ideal generated
by Pj with the properties:

(i) A-P is denned on A, meaning it is in the algebra generated by tangent
vectors to A.

(ii) For each point A C A there exists a fundamental solution ̂ e\ in P'(A)
for A? with singularity at A

(4) APACA = <?A.

For the d system every A is a mouth. For the 9 system holomorphic
curves are the primary example of mouths.

Suppose M is an hypersurface and q € M. We say that M is "?
mouth convex at q if there is a family of mouths A which intersect M
compactly and non tangentially, which depend smoothly on parameters,
and such that
(5) l i m A n M = g .
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For P = 9 mouth convexity is strict 1 pseudoconvexity.

For any point A in the interior of any A DM, if there were an extension
H of a formal solution h on M to A, then its value would be determined at
A by \e\. We might expect that, conversely, if M were P mouth convex
at each q € M then these values would fit together to form a solution.

We conjecture that such is the case but, thus far, we have been able
to prove a result of this type only in the elliptic constant coefficient case.
One of the difficulties is that A might belong to many mouths and we have
to know that the proposed extension does not depend on which mouth we
use.

In order to simplify the statement of our result let us assume that M
and the hj are real analytic.

THEOREM 2. — Suppose h is a formal solution to P (elliptic,
constant coefficients) with real analytic hj. Suppose M is P mouth convex
at each q € M. Then h extends to a real analytic solution of P H = 0 in
some one sided a priori neighborhood of M.

Remark 1. — We can replace ellipticity by a suitable unique contin-
uation property.

Remark 2. — Theorem 2 does not follow from the Cartan-Kahler
theory because the extension is to an a priori (not depending on h) one
sided neighborhood of M.

(a2) The results we have in mind have their origin in the work of
Bernstein and of Hartogs (see [AR]) on separate analyticity and edge-of-
the-wedge theorems. For the 9 system the separate analyticity result we
have in mind states that if / is defined on some neighborhood of zero in
R^ and if for each j and for each fixed (small) a^, • • • , «^-i? ̂ +i? • • • ? ̂
the function /(a^, • • • , X j , ' - • , x°^) of Xj has a holomorphic extension to
some fixed complex neighborhood of zero then / extends to a holomorphic
function on a complex neighborhood of zero in R71 = C171.

To put this in our present framework of parametrization, we think of
/ as being defined on some set M of real dimension m -\-1. M is formed
by keeping m — 1 coordinates real and complexifying the other variable.
Thought of as an edge-of-the-wedge theorem, the edge is K^ (locally) as
usual but the wedges are degenerate, being -R7"'® the various axes in the
imaginary space. (Here and in what follows we could replace the whole axes
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by the positive axes. The result would be holomorphicity for Im x in the
positive orthant. More generally we obtain the convexity of the complement
of the analytic wave front set.)

The extension to general P (D) (constant coefficients) goes as follows:
The real space -R771 is a Lagrangian for 9 which is, in fact, noncharacteristic
(see Chapter IX of [El]). Let 0 be a linear noncharacteristic Lagrangian for
P. Let h be a candidate for Cauchy Data on ^ for the Cauchy Problem
for "P.

Now let M be the union of the spans fl, -(- aj where aj are suitable
positive half-lines (finite in number) through the origin, with aj not
contained in f2.

The separate analyticity hypothesis is that h extends to a solution

h of P on
(6) M=U(n+o;^).
This means that —>•

h
is a formal solution of P on M whose Cauchy Data on fl, is h. This is

meaningful because it can be shown that h is determined by h .

Our general separate analyticity theorem is

THEOREM 3. — We can find a finite number of positive half-lines
-^ -^ —>

Oj so that if h 6 C°° extends to a formal solution h on M then h is
the Cauchy Data for a C°° solution F on a full neighborhood of zero in the
positive orthant.

In case h is globally defined and small at infinity and fl, is linear,
Theorem 3 is easily proven using Fourier transform. The whole difficulty
in Theorem 3 lies in the local theorem. To prove Theorem 3 we have to
appeal to a form of the nonlinear Fourier transform: If g(x) is a function
defined on ̂  which is small at infinity then we define the nonlinear Fourier
transform Q of order (. by

(7) Q(p.x)= f g^e^^ dx.

Here p == (pi, • • • ,p^) is an enumeration of the

(8) Ii-("+lt~l)
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monomials of degree (, and p is a vector with N components which are
complex numbers. Thus for any fixed pthe function p ' p ( x ) is a homogeneous
polynomial of degree t and we get all such homogeneous polynomials in this
fashion.

The nonlinear Fourier transform is useful in proving Theorem 3
because the polynomials p ' p serve the purpose of a cut off. [Actually we
need a more general form of (7) in which we use all polynomials of degree
< ^, not only those of degrees £ and 1.]

The nonlinear Fourier transform is a refinement of the FBI transform
which is essentially the nonlinear Fourier transform for £ = 2. It was
introduced at about the same time as the FBI transform by the author
and Paul Malliavin (see [E7], [E2]).

Observe that the nonlinear Fourier transform satisfies the relations

[tA-.Oi)]-«-
For any j = 1,2, • • • , N. We call these the heat (or Schroedinger) equations.
There are also Pliicker equations involving only p derivatives, for example

(io) \ 9 2 - 92 1^ -Q[9pj,9pj^ 9pk,9p^\
whenever

(11) PjiPj2 =Pk,Pk^
Finally

(12) G{^x)=g(x)

is the ordinary (linear) Fourier transform of g.

To prove Theorem 3 we start with property (12). We express a suitable
cut-off of h in terms of its linear Fourier transform. Using (12) and the
heat equations we can shift the contour and express h in terms of an
integral of its nonlinear Fourier transform over a favorable contour. The

fact that h extends to the formal solution h enables us to derive suitable
inequalities on this new contour. These inequalities imply that this integral
representation of h converges in an open set in J^ thus establishing
Theorem 3.

We can go further and drop the assumption that Q is linear. We start
with a real analytic P Lagrangian Q, and proposed CD h on Q. Assume
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that h extends to a formal solution of P on some real analytic M D n.
In some cases we can characterize such h using the nonlinear Fourier
transform. To define the nonlinear Fourier transform we pick a point q 6 0
and use the nonlinear Fourier transform on the tangent plane Tp to 0 at
p combined with a suitable local map of Q, onto Tp. In this way we can
determine if there is an extension theorem.

Our results are not yet complete. They can be applied to give another
proof of Theorem 2. We start with a P Lagrangian L in M and a suitable
Cauchy Problem with data on L. Using the nonlinear Fourier transform we
can study the Cauchy Data of h. Then the technique of proof of Theorem
3 yields an extension.

We call this process Fourier transform on Lagrangians.

We note in passing the relation between the nonlinear Fourier trans-
form and the nonlinear Radon transform.

The nonlinear Radon transform studies integrals of the form

(13) / g(x)dx=(Rg)(^^s).
Jp^.p=s

It is easy to see that the knowledge of (Rp)(p°, s) for all s is the same as
the knowledge of <7(tp°, 0) for all t. Thus the determination of g from part
of its nonlinear Radon transform amounts to determining Q from suitable
data on the p-axis (i.e. x = 0). This determination is possible because Q
satisfies the Pliicker and heat equations.

We now pass to case (b) for which dim M < dim "?. The simplest
example of this occurs for P = Q and M a point (say the origin). Then we
need infinitely many 9j and, in fact, it is clear that we can take

<14) {^'{sr^}-
By Fourier transform the operators 9j become

(15) {^}={^ l•••%m}.
It is clear in what sense the 9j span the space HQ which is the Fourier
transform of the dual of the space of locally holomorphic functions.

We pass to a highly nontrivial example. Let r = 1 and let ~? be the
wave operator

n^ n 92 y 92
(16) D=W2~^-9^'
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We have written D in this form to indicate that M is the Y axis and
t = (^1,^2) is the "time axis". We search for differential operators 9j in t
so that the map

(17) a':{^S,}^9'^
is an isomorphism of some topological tensor-like product U ' ( t ) 0 £\Y)
with £'/Df. This is the adjoint of the map

(18) a:F-^{9,F\y}

defined on solutions of DF = 0. (The inhomogeneous equation DF == g
is much more difficult than D-F = 0.) Recall the result of Malgrange and
Ehrenpreis (see [Ml], [E3]) that £ ' /Q£' is the dual of the kernel of D.

The simplest type of Qj are constant coefficient operators in t. Then
the Fourier transform of (17) becomes

(19) a':^.}^^.

The 9/ are polynomials in t and 5, e £'{Y). We want this to be a
topological isomorphism with £ ' /Q£'. The Fundamental Principle (see
[El]) describes ̂ '/Df intrinsically: It is the space £'(V) of entire functions
on V = {y2 = t^ +1^} which satisfy the growth conditions induced on V
from the growth conditions of £ ' .

Thus the desired isomorphism involves writing

(20) H(y^=^O^S,(y) on V.

Here H € £'(V) and Sj{y) € £'{y).

Now a large part of V is defined by

(21) I1 T08'
t^ =ysm0.

Thus one might guess that a reasonable choice for {9j} is given by

<22' ^'G^'iy 3 = 0 • 1 • 2 • • • •
for then

(23) 9f'^^±i^
^e^ on V.

This means that we can solve equation (20) by fixing y and then solving

(24) H(y, ycos0, ysm0) = ̂  ye^S^y).
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The solution is given by Fourier series

(25) ffSf{y) = (H^ycose.ysi^e^0 d6.

Of course one has to check that Sj defined by (25) belong to £ ' ( Y )
and one has to characterize those {Sj} which arise in this fashion.

THEOREM 4. — The S^ corresponding to H € £' are characterized
by being functions in E^Y) satisfying

(26) \Sf{y)\ ̂ ^^(l+l^e^l/j!

for all y and, for any q,

(27) \Sf{y)\ < c^\l + We^^j-^y^.

Because of the term \y\q~3 the space £'(V) is not quite in the form
of a topological tensor product.

The proof of Theorem 4 can be reduced to the problem of character-
izing the Fourier series coefficients on the circles \t\ =const. of functions in
e'd).

From Theorem 4 we can, by duality, characterize the data

(2S) {(^±^£)JF(0)2/)}

forFe£(t,2/), DF=0.

We refer to the parametrization problem defined by the data (28) as
the Watergate Problem (WP) and (28) as the Watergate Data (WD). The
reason is that the WP tells what information one has to gather if he stays
fixed and wants to know everything- just as at Watergate people stayed at
their phones and, eventually, (thought that) they knew everything.

The WP has several interesting applications. In the first place it
enables us to find the solutions of the wave equation which vanish inside
the light cone. Such a solution F must have all its WD supported at the
origin, e.g.

<29) (^O'^'^"
all other WD= 0. (Actually this does not fit into Theorem 4 which deals
with C°° solutions of D. But the same ideas apply to solutions which are
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distributions of finite order.) We can construct these solutions explicitly. If
JQ — i is large enough they are C3 in R3. Moreover they are homogeneous
under scalar multiplication. As such, by separation of variables, they define
eigenfunctions of the Laplacian on the hyperboloid of one sheet

z/2-^-^-!.

Because of the C3 regularity at the light cone such functions are L2 on this
hyperboloid. Since this hyperboloid is an orbit of 50(1,2), they belong to
the discrete series of representations of SL(2,R) (see [E5], [E2]).

Certainly a great number of interesting representations of semi simple
Lie groups arise in this fashion. We are now studying the scope of this
method.

The WP we just studied is called the compact WP because the real
parts of V H {y = c} (c real) are compact. If we write the wave operator in
the form

f30) y - 92 92w 9^~a^~9^
then this is no longer the case. If we want to find a WP with data on this Y
axis then we have to use Fourier integral expansions in C on the quadrants
defined by ?i = ±t^

(31) <[i=±ycoshC
^2 =i/sinh^.

and
t\ ==^sinh^
^2 = ±i/coshC.

There are many difficulties in extending the compact analysis to this
case:

(i) The coordinate system (31) degenerates on the cone ?i = ±t^- This
degeneration is much more complicated than in the compact case where
degeneration is only at a point.

(ii) The "normal differential operators" {9z} that arise in this theory are
the Fourier transforms in t of (ti ± t^)^. These operators must be defined
by analytic continuation in z. Moreover the 9z are not local operators.

We have not succeeded in characterizing the Fourier integral coeffi-
cients (in C) of H C V(k). [They are not defined, directly, for H e f(t).]
But we have solved the problem for the Schwartz space S(t). The result is
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quite complicated. Using this theorem we can construct a WP for the wave
operator D for the space S ' with data on the Y axis. We refer the reader
to Chapters III and IV of [E2] for details.

There is an interesting bi-product of our theory when it is applied
to a type of periodic solutions of DF = 0. Instead of choosing the Y axis
as above, we choose a different space-like axis Yd which is fixed by an

infinite subgroup Td of the modular group F = ^ \ considered as a[ c d )
subgroup of SL(2,R) which is essentially S0^~(l,2). [Any g e SL(2,R)
defines a transformation X —> gtXg of real symmetric 2 x 2 matrices.
Such matrices X can be thought of as R3 and since g preserves detX
this essentially identifies SL(2,R) with S0^~(l,2).] Yd is thus fixed by a
hyperbolic subgroup I ' d of F which we can think of as the unit group of the
quadratic form ^ — cfcj.

Since 1̂  fixes Y it fixes the Minkowski normal. Suppose H is T
invariant (or even Td invariant). Then H is periodic in C for each y . Instead
of using Fourier integrals in the t direction we can use Fourier series. This
Fourier series WP is not much more difficult than the compact WP.

An interesting F invariant distribution is
(32) e=^<^, k^e-m2.

Since 9 is F invariant, so is its Fourier transform 6. (We use the Minkowski
inner product to define the Fourier transform.) We can compute the Fourier
series WD of 6.

THEOREM 5. — For space-like Yd the Mellin transform in scalar
multiplication of the Fourier series WD of 9 is the set of C functions with
Grossencharaktere for the field Q(Vd). The Mellin transform of the WD on
a time-like Yd (which is fixed by an elliptic rather than a hyperbolic group)
are the zeta functions with Grossencharaktere).

We plan to investigate the scope of these ideas in higher dimension.

Exotic Parametrization Problems arise in other contexts. One inter-
esting example is a variant of the edge-of-the-wedge theorem which is dif-
ferent from the separate analyticity of Theorem 3 because the data is given
on a lower dimensional set.

For the 9 system the result takes the following form (see [KN]^ ):
Let r be a proper open convex cone in imaginary space and let /± be

(*) This result was pointed out to the author by Yeren Xu.
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holomorphic in the tube over ±T. Suppose /± and all their derivatives
have continuous limits on a line Y in the real space and that these limits
are equal. Suppose Y is "noncharacteristic" in the sense that, when we
identify real and imaginary space, Y C F U —V U {0}. Then there is an
entire function / which agrees with /± in the respective tubes over ±r.

Actually in [KN] the result is proven when Y is a real analytic curve.
Yeren Xu extended this result to C°° curves. All these results hold locally.

How do we extend this result to general P (D)7 The real space
becomes a Lagrangian L which is noncharacteristic (see Chapter IX of
[El]). Call T the orthogonal to L. We suppose that P is elliptic. Let F be
a proper open convex cone C T.

As before we let /± be solutions of P (D)/^- = 0 in the respective
tubes over ±r, meaning ±r + L.

A linear variety Y C L is called P noncharacteristic for F if, for every
point a,
(33) PTO^[(i^+L)V}(Y±+a)

is compact. Here F is the dual cone to F in T and Y1' is the orthogonal to
y in L. r, -L, and Y are real, and V and a are complex.

It is readily verified that, for P == 9 and L =real space, this notion
of noncharacteristic agrees with our previous notion.

THEOREM 6. — Let Y C L be P noncharacteristic for T. If /±

have smooth limits at the "edge", meaning t = 0, all of whose derivatives
are equal on Y then there is a solution f of P(D)f = 0 in the whole
space which equals /± in the respective tubes over d=r. In particular if all
derivatives of/"1" vanish on Y then /+ = 0. The same result is true locally.

The crucial point in the proof is that the compactness of (33) means
that polynomials are dense on these sets. The polynomials come from the
Fourier transforms of the derivatives of /± on Y. The occurrence of Y1-
in (33) is a consequence of the fact that restriction to Y is the Fourier
transform (in y G Y) of integration over the sets Y1- + y .

The uniqueness statement in Theorem 6 is closely related to Theorem
9.30 of [El]. It is used to reduce Theorem 6 to an edge-of-the-wedge theorem
for P where the "edge" is L. Such a result can be proven by nonlinear
Fourier analysis.
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Remark 1. — If we assume only that for each differential operator 6
the limit of 6f~^~ on Y is holomorphic (even entire) then /+ need not have
a continuation.

Remark 2. — In case /± are globally defined and are suitably
small at infinity it is possible to prove Theorem 6 using standard Fourier
techniques. It is only for large /± (or locally defined /±) that one needs
suitable nonlinear Fourier analysis.
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