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REMARKS ON HOLMGREN^S
UNIQUENESS THEOREM

by Ears HORMANDER

1. Introduction.

Holmgren's uniqueness theorem states that a solution of a linear
differential equation with (real) analytic coefficients must vanish in a full
neighborhood of a non-characteristic surface if it vanishes on one side.
The original proof of Holmgren [5] for the case of two variables was given
for n variables by John [9] who also treated C1 surfaces by a geometric
deformation argument. (John considered only classical solutions, but
the result was later extended first to distribution solutions and then to
hyperfunction solutions.) The method of Holmgren consisted in proving
that certain mean values of solutions over non-characteristic surfaces
depending analytically on a parameter A must vanish if they vanish initially.
Fritz John observed that they are always analytic functions of A, and by
developing this idea he proved in particular the analyticity of solutions of
linear elliptic differential equations with analytic coefficients.

It was realized by the author [6] and Kawai [11] that one can reverse
this argument and consider the Holmgren theorem as a combination of
a (microlocal) analyticity theorem for solutions of a linear differential
equation with analytic coefficients, and a general relation between the
support and the analytic singularities of a 'distribution (hyperfunction).
To state the result we must first recall the notion of exterior conormal set
of an arbitrary closed set, as given in [7, Def. 8.5.7]:

Key words: Analytic wave front set - Conormal set - Holmgren's uniqueness theorem.
A.M.S. Classification: 35A05 - 35A07 - 35A27 - 35A30 - 58G07.
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DEFINITION 1.1. — If F is a closed subset of a C2 manifold X, then
the exterior conormal set Ne(F) C T*{X) \ 0 is defined as the set of all
(a*0, ̂ °) such that x° e F and there exists a real valued function f € C2(X)
with df(x°) = $° ^ 0 and

(1.1) f(x) ̂  f(x°} when x € F H (7,

for some open neighborhood U ofx°.

Naturally it suffices to have / denned in U. The symmetric conormal
set N(F) is defined by allowing df(x°) to be —$° also. The classical
Holmgren argument can be adapted to a proof that

(1.2) Tv(suppn) C WFA(U),

where WF^u) is the analytic wave front set of u. (A definition is given
for distributions in [7, Section 8.4] and for hyperfunctions in [7, Section
9.4]; in the second case the original definition was given in Sato-Kawai-
Kashiwara [13], where the notation SS{u) is used.) A proof of (1.2) is given
in [7, Theorem 8.5.6'] for distributions, and it extends to hyperfunctions
as indicated in [7, Section 9.3]. We shall give another in Section 2. The
deformation argument of John [9] proves that if x° € F and (1.1) is valid
with / € C\ df(x°) = $° ^ 0, then {x°^°) G 'N^F). Since WF^u) is
closed it follows that (1.2) remains valid if one allows C1 functions in the
definition of the conormal set.

The Holmgren-John theorem is obtained by combining (1.2) with the
non-characteristic regularity theorem which states that

(1.3) Pu = 0 =^ WFA{u) C CharP

if P is a linear differential operator with analytic coefficients and charac-
teristic set Char P. This gives

(1.4) Pu = 0 ==> N(s\ipp u) C Char P.

As observed above we may allow C1 functions in the definition of the
conormal set here.

The advantage of the splitting of Holmgren's theorem just outlined
is that any improvement of the two component facts (1.2), (1.3) can be
combined to give an improved uniqueness theorem. For example, combining
(1.2) with results on the propagation of WFA{u) when u satisfies a partial
differential equation gives unique continuation across some characteristic
surfaces. This was the original motivation in [6].
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In Section 2 we shall review earlier results related to (1.2) and
prove some new refinements. In Section 3 we then recall some purely
geometric properties of the conormal set, and in Section 4 we state some
uniqueness theorems for solutions of analytic differential equations which
follow. Section 5 is devoted to a uniqueness theorem for a second order
hyperbolic equation with non-analytic coefficients which are translation
invariant in time. The result is close to what Holmgren's theorem gives
in the analytic case but so far it is an open question if (1.4) holds with
no change. In a final Section 6 we have collected miscellaneous related
remarks.

The author wants to thank Jan Boman at the University of Stockholm
for suggesting the example discussed at the end of Section 2. He has also
made various conjectures which would improve the results in Section 2 and
in particular settle the problem left open in that example. In addition
he raised the question whether Theorem 6.1 is true. It turned out that
there was a proof in unpublished notes of lectures given by the author in
Stockholm 1974; it is included here in a somewhat simplified form.

2. The analytic wave front set and the support.

The basic inclusion (1.2) is a consequence of the following much
stronger result:

THEOREM 2.1 (Kashiwara). — Ifu is a hyper function in a real analytic
manifold and (a:°,$°) e ^Ve(suppn), then

(2.1) (x°^) C WFA{U) =^ (x°^ + ̂ °) e WFA{U)
for all t C R with $ +1^° ^ 0.

For a proof see [7, Corollary 9.6.8]; another will be given below.
Theorem 2.1 implies (1.2), for if x° is a boundary point of suppu we must
have (^°,$) € WFA(u) for some $ since u would otherwise be analytic in
a neighborhood of x°. Since WFA(u) is conic it follows from (2.1) that
(x°^/\t\ + t^°/\t\) C WFA(u) for large t, and when t -> ±00 we obtain
(a?f, ±$°) € WFA(u), for this is a closed set.

Thus the fiber WFA(u)^o can be identified with a closed conic subset
of T^o/R4°. At a corner we may have (a;°,$) 6 -Ne(suppu) for several
vectors $. Then Theorem 2.1 yields that WFA(u)^o is invariant under
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translation along the vector space 5° generated by these covectors, so it
can be regarded as a closed cone in T^o/S0.

Theorem 2.1 is only a special case of Kashiwara's theorem. To state it
in full generality we need another definition (see [7, Vol. I, pp. 364-365]).

DEFINITION 2.2. — Ifx° C M C R71 then the tangent cone T^o(M)
is denned as the set of limits of sequences tj(xj — x°) where tj —> +00 and
Xj € M.

It is clear that T^o(M) is a closed cone, and it is easy to show (see
[7]) that it is invariant under a C1 change of coordinates. Thus T^o(M)
is invariantly defined as a closed cone C T^o (X) if M is a subset of a C1

manifold X.

THEOREM 2.3 (Kashiwara). — Ifu is a hyper function in a real analytic
manifold X, x° € X, and WQ = WFA{u)x° is considered as a subset of the
vector space T^o (X) with the origin removed, then

(2.2) N(Wo) C 9Wo x r^o(suppn).

This is [7, Theorem 9.6.6]. Note that if (a;°,$°) € ^(suppu), then

r^o(suppn) c {t e T,o(x), <u°) ^ o}.
This is also true if C1 functions are allowed in the definition of TVg. Thus
it follows from (2.2) that the component of the symmetric conormal set
N(Wo) in T^o(X) is in the orthogonal space of $°. Hence the standard
consequences of Holmgren's theorem are valid as if we were considering
the continuation of a solution of a differential equation with constant co-
efficients for which all characteristic hyperplanes contain a fixed direction.
This implies that if an open set does not intersect WQ then this remains
true for the cylinder it generates in the $° direction, so Theorem 2.1 follows
even with Ne defined using C1 functions. For an even more general version
of Kashiwara's theorem we refer to [7, Theorem 9.6.6'].

If the boundary of suppn is in (71, the preceding results do not
strengthen (1.2). For example, if the support ofu is {x € R2;^ ^ l-^il1'^}
for some a e (0,1) it only follows that WFA(u)o D {(0,^2); 6 7^ O}.
However, we shall see that WF(u)o = T^R2) \ {0} as a very special
case of results taking curvature into account. Before stating them we shall
make some technical preparations which allow us to analyze WFA(u) at
exposed boundary points using the Fourier-Laplace transformation.
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Let u be a hyperfunction with compact support in R71, that is, an
analytic functional carried by a compact subset of R/1, and let

H^)= sup M, $eR71,
a;€suppn

be the supporting function of supp u. Then the Fourier-Laplace transform
defined by u(Q = -u(e~^''^) has a bound

(2.3) KC)|^exp(C,+^|C|+^(ImC)), C e C71,

for every e > 0, so the plurisubharmonic and positively homogeneous
indicator function

^(C)=lim lim t-1 \og\u(t6)\
6—>Q i;—»'+oo

has the bound

(2.4) ^(C)^(ImC), C6C71.

By the three line theorem

h{ri) = sup jy,(^ -+- irj), rj e R71,
^eR71

is positively homogeneous and convex, so h is the supporting function of
a convex compact set K, and (2.3) holds with H replaced by h. By the
analogue of the Paley-Wiener theorem for analytic functionals, due to Polya
and Ehrenpreis, it follows that supp u C K. Hence H < ^ h ^ H s o H = h .
From the Phragmen-Lindelof theorem and the fact that ju ^ 0 in R71 it
follows if Im ZQ > 0 that

Ju ($ + zrj) ̂  _——jy, (zorj), Im z ^ 0,
1m ZQ

for Inn ju(^tzor])/t ^ jn(^o^) since ju is upper semi-continuous. Hence

H(lmzrj) ^ _——ju(zori) ^ -^Hdmzorj)
1m ZQ Im ZQ

= Im zH(rj) = ff(Im zrj), Im z > 0,

which proves that ju(^o'n) = Im ̂ 0^(77) = H(lmzorj) when Im^o > 0.
By the upper semicontinuity of plurisubharmonic functions it follows that
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Ju(zorf) ^ H(lmzorj) = 0 when Im ZQ = 0, and since the opposite inequality
holds by (2.4), we conclude that

(2.5) ^(C)=^(ImC), CeCR71.

In addition to these basic and well known facts we need a supplement
to the Paley-Wiener theorem (see [14, Theorem 2.3.1]):

PROPOSITION 2.4. — Let u be a hyperfunction in R/1 with compact
support, and let H be the supporting function ofsuppu. Let ^°,r]° e
R71 \ {0}. Then

(2.6) Jn^+irf0)^!!^0)

if and only if(x^°) e WFA(u) for some x € supp-a with {x,r]°) = H(rf°).

Note that if x° e supp^ and supp-u c B where B is a ball with
x° e QB, it follows that (x°, ±rj°) e WFA{u) if r? is the exterior conormal
of B at x°. In fact, (2.6) follows from (2.5) if ^° = ±77°, and since x° is
the only point x € suppu with (x,rj°} = H(rj°), the assertion follows. By
a localization and a change of local coordinates we obtain (1.2). Also (2.1)
is an immediate consequence. In fact, ifju($° + irj0) = H(rj°), then

v(z)=jn^o^zrJO)-lmzH(rJO)

is a subharmonic function of z with v(z) ^ 0 when 1m z > 0, and since
v(i) = 0 it follows that v(z) = 0 when Im z > 0. Hence ̂ ($° + tr]° + irj°) =
H(rj°) for every t e R. If {x',x e suppn; {x,rj0) = H(rj°)} consists of a
single point re0, it follows by Proposition 2.4 that (x°, $°) e WFA(u) implies
(x0,^0 + trj°) e WFA(u) for every t € R. Localization and a change of
local coordinates (and notation) gives (1.2) and also (2.1) in full generality.

Our improvements of (1.2) and (2.1) will depend on an analysis of
the condition (2.6). First we prove a lemma:

LEMMA 2.5. — If (p is a subharmonic function and (p ^ 0 in
C+ = {z e C'Jmz > 0}, then

(2.7) ^ f ' ̂  + re10) d0 ̂  C(z, r)^(tz), t ̂  1,

with a constant C(z,r) which is locally bounded when z € C+ and
0 <r < Imz.
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Proof. — By the Riesz representation formula

1229

y?(z) = 7lm 2; + / ,———-^da(x}-\- / log
JR \z - x\ Jc+

^ -C
^ -C

^(C), 2; e C+,

where 7 ^ 0, da ^ 0 and dp, ^ Q. Normalizing </? we can assume that
t^p(ti) = —1, that is,

-^7
r t2 r- \ -^——2 da{x) +1 \

J^x2-^!2 7c4
x) +1 / log tz+C

tz -C
^(0 = 1,

where all terms are non-negative so each of them is ^ 1. We have for
0 < r < Im z

1 f2^ /* Im z
— / y(z+reie)d0=^lmz+ \ .———,, da(x)
^ Jo JR F — x\R \Z-X

+
r max(r, \z - C|)
/ log —————— ̂ (C).
Jc-. p - C7c^ ° 1^ -C I

Here 7 ̂  —1 when ̂ 1, and since

Imz 1+2M2 1 14-2|^|2 t2

^1,-? ^ 2'\z-x Imz 1 + x2 Im z x +1

we conclude that the second term is ^ —(1 + 2\z\2)/lmz. Since Im^/(l +
K|2) = A implies

IC+^/IC-^ = (|C|2+l+2ImC|)/(|C|2+l-2ImC) = (1+2A)/(1-2A),

and (1 + 2A)/(1 - 2A) ^ e4A, 0 ^ 2A < 1, by Taylor's formula, we have
21og |(C + z)/(C - i)\ ̂  4ImC/(l + |C|2), hence

Hog t z+C
ti-C,

=Hog
z+C/t

^2ImC/(l+|CA|2)^2ImC/(l4- |d2) ,z - CA
^l, C e C + ,

so it remains to prove that

106 J^)^^^ <60-
The left-hand side is harmonic when \z — d 7^ T* and the right-hand side is
superharmonic, so it suffices to verify this when | z — Cl = r ^d on K- B^
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at oo. Thus the inequality follows with

/r+2Im2;^l+27•24-2|2: |2

C(z,r)=\og[————\——-—————
V r f Im z — r

PROPOSITION 2.6. — Let H be a supporting function in R71 and let
j be a plurisubharmonic function in C71 such that

(2.8) j (C)^f f ( ImC) , CeC71; j (C)=^(ImC), C € CR71.

If 77,0 € R71 are linearly independent and H is flat at 77 in the direction 0
in the sense that

(2.9) Inn (H(rj + r0) + H(r] - r0) - 2H(ri))/r2 = 0,
(r,(9)-KO,0)

then for $ (E R71

(2.10)
j(^ + $ + ̂ ) = ^(Irn^), iff e R, Im^ > 0, and j($ + irf) = H(rj).

In particular,

(2.11) j ( t 0 - { - z r j ) = H(Imzrj), ift € R, Imz > 0,

which is also true if instead of (2.9) we only have

(2.9)' Urn (H(rj + r0) + H(rf - r0) - 2^(7y))/T2 = 0.
(r,ry,0)-.(0,77,0)

Proof. — Assuming first that (2.9) is valid, we choose sequences
TV [ 0 and 6v —> 0 such that

(2.12) H(r] + r,A) + ^(77 - T^) - 2^(77) ^ r^/^ ^=1 ,2 , . . . .

Since r i—> H(r] + r^^) is convex, we can choose c^ € R such that

H{r] + r^) - H(rj) ̂  C^T, r e R,

and then it follows that

(2.12)' 0 ^ H{r] ± r^) - H{r{) ̂  c,r, ^ r,2/ .̂

With ty = l / T y and ^ C R71 set

F^(w,^) = t^{j(w0y + ^ + ̂ 77) — ^Im2;I:f(77) — CiJmw), (w,^) € C2.
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By (2.8) and (2.12)' we have if 1m z > 0

Fy{w^z) ^ t^{H(lmw0^ + tyimzr]) — t^lmzH(rj) — c^Imw)

= t2,lmz[H((Tylmw/lmz)0^ + rj) — H(r]) — c^lmw/lmz)

(2.13) ^ ^(ImwY/lmz = Imz/v, Imw = ±lmz.

Assume as in (2.10) that j^+irj) = H(rj). This means that F^(0, i / t y } = 0.
Since F^(0, z) == ^(j($ + tyzr]} - t^mzH(T])) ^ 0 by (2.8), it follows that
-Fi/(0, z) = 0 for every z in the upper half plane C+. Fix <z = i for the sake
of convenience. Since F^(0,i) = 0 and the upper bound (2.13) remains
valid in Cz = {̂  ^ C; |Imw| < Imz} by the three line theorem, there is a
subsequence F^ (w, i) converging in 'D'(C^), and the limit is a subharmonic
function f(w) with /(O) =0 and f(w) ^ 0, w C Ci. But this implies that
/ = 0 in Cj,. The uniqueness of the limit proves that it was not necessary to
pass to a subsequence, so Fy{w^i) —> 0 in ^(C^). Hence lim F y ( w ^ i ) = 0

V—>00

for w € R \ E where E has measure zero (in fact exterior capacity zero).
For the non-positive subharmonic functions

^(z) = j(w6y + $ + zrf) - lmzH('n), z € C+,

we have lim t^ip^(tyi) = lim F^(w^i) = 0 if w € R \ E. Hence we
V—>00 V—^00

conclude using Lemma 2.5 that the upper limit of every circular mean
value of (py in the upper half plane is equal to 0. Since j is upper
semicontinuous and (^ ^ 0, Fatou's lemma proves that the mean values
of z i-̂  j(w0 + ^ + zri) — lmzH(rj) are equal to 0 when w € R \ E. Thus
j(w6 + $ + zrj) = lmzH{rj) for z e C+ and all w € R \ E. By the upper
semi-continuity of j and (2.8) we conclude that this is true for w € R,
which completes the proof of (2.10).

If we only assume that (2.9)' holds, we can choose sequences r]y —^ 77,
Ov —^ 6, Ty I 0, and Cy such that (2.12) and (2.12)' hold with rj replaced by
r]v. With ty = I/TV and

Fy(w^z) = tv{j(w6v -\-tvZT]v) — tv}.~mzH(r]y) — c^Imw),

we obtain as before

Fy(w^z} ^ Imz/^, |Imw| ^ Im2;.

By (2.8) we have Fy(Q^z) = 0 when Im z > 0; in particular when z = %.
Hence the same argument as before shows that lim Fy(w^i) = 0 for
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w € R \ £', where E has measure 0. Applying Lemma 2.5 to the non-
positive subharmonic functions

^(^) = 3(^6y + zr]v) - lmzH{r]v), z € C+,

as in the first part of the proof, we can now conclude that j(w0 + zrj) =
Im zH(rj) for arbitrary z € C+ and w C R, and this completes the proof.

COROLLARY 2.7. — Let u be a hyperfunction with SMppu C B, where
B c R" is a ball, let x° € 9J3 D suppn and Jet 77 be the exterior conormal
ofB at x°. If H is the supporting function ofsuppn then

(2.14) (x°^+te)eWFA(u),

if (x°, $) e WFA^u), (2.9) is vah'd, and t € R, $ +10 ̂  0. Moreover,

(2.15) (re0,0) € W^A(n), if (2.9)' is vahd.

Proof. — This follows from Proposition 2.6 by the arguments given
after Proposition 2.4.

If (x°, $°) e 7Ve(supp n) we can always localize and change coordinates
so that the fiber of WF^u) at x° can be analyzed using Corollary 2.7.
However, to state the result we must examine to what extent it depends on
the local coordinates chosen. In the following preliminary lemma we have
chosen x° = 0 and rf = (0, . . . , 0,1); later on K will be suppn.

LEMMA 2.8. — Let K c R71 be a compact set such that 0 e K
and Xn < -cla/12 for some c > 0 when x = {x'.Xn) C K; here
x' = {x^...,Xn-\). Then

(2.16) o < H^e^i) = sup«^,0') -}-xn) < \e'\2/^ e' e R71-1;
xeK

if x e K and {x',6'} + Xn > 0 then |a/ - y/2c\2 < l^l2^2, hence
\x'\ < \6'\/c, and 0 ̂  Xn > -l^'p/c. We have the Lipschitz continuity

(2.17) HK^ i) ^ HK^ i) +1^ - e'M/c, e[^ e R71-1.

Proof. — Since 0 e K we have ^((9',1) > 0, and H K ( O ' , I ) ^
le'l2^ since

(rz:7,0') - c|o/|2 = |0f/4c - c|^ - 072c|2.
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If {x',e'} + Xn > 0 and Xn ^ -c\x'\2 then \x' - 0'/2c\2 < l^f^c2, hence
la/I < 1^1/c, and Xn > -(x1\61} > -I^P/c. We also obtain

{xf,6'}-{xl^)^\61-6^\\et\|c,

which proves (2.17).

From (2.17) it follows at once that \i0y —> 0, r^ —> 0 and HK^O^ 1+
T^n)/r^ —^ 0, then HK^Q' , l)/r^ —> 0. Under the hypotheses of the
lemma the condition (2.9) is therefore not strengthened if we take 0=9
fixed = (^.O).^ With the notation in the lemma and 0 = (0',0) the
condition then becomes

(2.9)" Inn^T^, 1) + H^-rO^ l))/r2 = 0.
r-^O

Before examining the invariance of (2.9)" under changes of coordi-
nates we shall discuss the stronger condition

(2.9)'" ^(^ + r0) + H(rj - r6) - 2H(rj))/r2 = 0,

which is much easier to do. Under the hypotheses in Lemma 2.8, for
77 = (0, . . . , 0,1), this condition is equivalent to

(2.9)"" lim H(re1, l)/r2 = 0,
T-+0

or explicitly, that for every e > 0 we can find 6e > 0 such that

H(re^l)^er2, |r| < <?,.

Thus {x' , r6 ' ) + Xn ^ er2 if x C K and |r| < ̂ , which implies that

Xn ^ -{x^e'}2/^, if x e K and \{x',e'}\ < 2^.

Conversely, if this is true then (x'\r61) 4- Xn ^ er2 if x e K and
l^',^)! < 2e6e. V x e K and [(a;',^)! ^ 2e6, then |.r'| ^ 2^/|(9'|, so
^', T(9') +^ ^ 0 by Lemma 2.8 if 2^/|(9'| ;̂  IT^I/C. Thus Jf(r(9', 1) ^ ^r2

if |r| < 2ce6e/\0'\2, so we have proved that (2.9)7" is true if and only if for
every K > 0 there is a neighborhood U^ of the origin such that

(2.18) Xn < -/^a/, 0')2, x C K H [/„.

(1) Lemma 2.5 is then not needed in the proof of the first part of Proposition 2.6. It
suffices to note that lim t(p(ti) = 0 implies y? = 0 if y? ^ 0 is subharmonic in C-i_.

t—^oo
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(Note that Xn has a negative upper bound in K H CE/^ so (2.18) is valid for
every x e K with \{x/,0/)\ small enough.)

We shall now give this condition an invariant form.

PROPOSITION 2.9. — Let F be a closed subset of a C2 manifold X,
and let (x°^°) e Ne(F). Then the set G^o of all f e C2(X) such that
f(x°) = 0,/'(:r°) = ̂ °, and (1.1) holds for some open neighborhood U of
x°, depending on /, is a convex set. If fo e G^o^o then

(2.19) 0,o^o = {(/ - /o)"^0);/ C Gxo^o}

is a convex set in the symmetric tensor product ^(T^o^O) consisting of
quadratic forms on Txo(X), and it is independent of the choice offo apart
from a translation. The asymptotic cone Qxo ̂ o is a closed convex cone
independent of the choice of fo, and it contains all negative semide finite
forms. The positive semidefinite forms of maximal rank in Qxo,^o have the
same radical, and the annihilator g(x°^0) in T^o contains ^° and ~^°.

Proof. — If /o, fi ^ Gxo^o then it is obvious that A/o + (1 - A)/i €
G^o^o, and we have

0,o^o = {(/ - A)"^0); / c 0^0} + (A - /o)"(^°).

(Note that the second differential is invariantly defined when the first
differential vanishes.) If / € G^o^o and g is a negative semidefinite
quadratic form in x-x°, then f-\-g e G^o^o which proves that Qx^^^-g" C
Qx°,^' In particular, Qa;o^o has interior points. We can choose /o so that
the origin is an interior point. Then

(2.20) Q.o^o = {7; R+7 c O.o^o},

which is a closed convex cone with 71 + Qx0,^0 C Qx°^° for every interior
point 71 in Qxo^o- In fact, if 7 € Qxo,^ then

7 + 7i = e ^ / e ) + (1 - e)(7i/(l - e)) € Q.o^o,

if e > 0 is so small that 71/(I - e) € Qxo,^' In particular, Qxo^o + B C
Qx^^o if B C Qx°^° is an open ball with center at 0, so the closure of Qx^^o
is a subset of Qx°^o' Hence Qx°^o is closed and independent of the choice of
interior point fo C Qx^^o- If 7i?72 G Qx^^o are positive semidefinite then
7 = 7i + 72 ^ Qx0,^0^ and the radical of 7 is the intersection of those of 71
and of 72. If7i has maximal rank, then the radical of 71 is contained in that
of 72. Since / e G^o^o implies / + ^/2 € G^o^o for every K if f(x°) = 0,
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it follows that (df{x°))2 € Qa;o^o, so the radical of 7j is orthogonal to $°,
which means that d=$° e Q(x°^°). (Note that Qa;o^o contains all quadratic
forms with radical containing the annihilator of g(x°^0).)

PROPOSITION 2.10. — If (x°,^) C Ne(F) for j = 1,2, then
0.0^+Q.o^o c 0^o+^o andQ{x^^) C Q{x°^W)J = 1,2. When^
is in the relative interior of the convex set Ne(F)^o it follows that Q(x°, $) C
Q{x°^°) for every ^ e Ne{F)^o. In particular, N(F)^o c Q(x°^°).

Proof. — Since Qa;o^o_^o D Qx0,^0 ~^~Qx0^0^ ^ne statement is obvious.

DEFINITION 2.11. — Let F be a closed subset of a C2 manifold X.
Then the effective conormal set Neff(F) is denned as the set of all (.r°,$)
such that x° € F and 0 ^ $ C Q(x°^°) if^° is in the relative interior of
the convex set Ne(F)^o and g is defined as in Proposition 2.9.

Recall that the relative interior of a convex subset of a finite dimen-
sional affine space is the interior of the set considered as a subset of the
smallest such affine space. By Proposition 2.10 the definition is indepen-
dent of the choice of $ in the relative interior of Ne{F)^o. It follows from
the definition that if Fi C F and x° e F\ then

(^°,0 e TVeff(F) =^ CT°,O € ^eff(^l),

for the set G^o^o in Proposition 2.9 does not decrease if F is replaced by
^i.

We are now ready to improve Theorem 2.1:

THEOREM 2.12. — If u is a hyper function in a real analytic manifold
X, then

(x^O) e ̂ eff(suppn), (^°,0 e WFA(u) ==^ (x°^^te) e ^FA(^),
if ten, $ + t < 9 ^ o .

In particular,

(2.21) Neff(snppu)cWFA(u).

Proof. — Choose (^°,$°) as in Definition 2.11, and take /o as in
Proposition 2.9 with F = suppn so that 0 is an interior point of Qx°^°-
Replacing /o by the second order Taylor polynomial, we may assume that
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/o is analytic. We choose local coordinates so that x° = 0 and fo{x) = Xni
thus $° === (0,. . . , 0,1). That 0 is interior in Qx°^o means that there is some
/ € G^o^o with (/ - /o)" positive definite, that is, f(x) ^ fo(x) + c\x\2 in
a neighborhood U of 0 for some c > 0. Thus

(2.22) Xn ^ -c\x\2 ^ -c\x'\2, x e U H supp u,

where x ' = (a:i,... ,o?n-i). If u is a distribution we can multiply u be a
suitable cutoff function equal to 1 in a neighborhood of the origin, and
when u is a hyperfunction we can use the flabbiness of the hyperfunction
sheaf to make sure that u has compact support in R71 and that Xn ^ —cl^'l2

in suppn, while u is not changed in some neighborhood of 0. Let A(x) be a
positive semi-definite form of maximal rank in Qxo^o' If 0 ̂  0 = (0',0) €
^°,^°), then 0 is orthogonal to the radical of A so {x^O')2 ^ CA(x),
hence x ^—> {x^O')2 is also in Qa;o^o. This means that for any K. > 0 there
is some / 6 G^o^o with /(a:) — /o(^) — i^{x^ 6'}2 ^ 0 in a neighborhood U^
of the origin. Thus we have

(2.23) Xn ̂  -^/, O'}2, x € U^ H supp n.

This is condition (2.18), so we conclude that (2.9)"' is fulfilled with rj = $°,
and the theorem follows now from Corollary 2.7.

It is clear from the proof that Theorem 2.12 gives a complete expres-
sion of (2.14) with (2.9) replaced by the stronger condition (2.9)'". We
shall now examine the weaker condition (2.9) in Proposition 2.6 and Corol-
lary 2.7 from the point of view of invariance. Again we assume that the
hypotheses of Lemma 2.8 are fulfilled and that 77 = (0,...,0,1). Since
(2.9) is invariant under affine transformations it suffices to consider a dif-
feomorphism ^ defined in a neighborhood of K such that ^(0) = 0 and
-0'(0) is the identity. In addition we assume that Xn < —ci|a/|2 for some
other constant c\ > 0 when x € ^(K). Set ^(x) = (^(a;),^^)). When
examining

^w(^l)=sup(^),(0 /,l))
xEK

it is by Lemma 2.8 legitimate to assume that ^(a:)! < \0'\/c\ and
0 ^ ^n(x) > -I^P/ci, which implies |a;| == O^}) and Xn = 0(|0'|2).
Then we have

(^) - ̂ , (0', 0)) = Od^l3), ^(x) - Xn == q(x/) + 0(|0'|3)
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where q(x') is the second order polynomial in the Taylor expansion of
^n(^O). Hence

H^K^O', 1) = h^91,1) + Od^l3), where
/i,(0',l) == sup^e') +g(^) +^),

o;e^

which means that (2.9)" with jRT replaced by ^(K) is equivalent to

(2.24) lim^T^, 1) + hq(-re', l)/r2 == 0.
T-^O

Since hq increases with q it is clear that this condition remains valid if q
is replaced by a smaller quadratic form. Now we claim that if q\{x') =
-Alrc'l2, corresponding to the diffeomorphism ^(x) = {x'.Xn -\\x'\2) with
GI = c-t- A, then (2.24) is independent of A when A > —c. We have already
observed that if (2.24) is valid for q\ with one value of A then it is valid
for every larger value. Now (2.24) with q = q\ means that there exist
sequences Ty —^ 0 and Ey —>• 0 such that

±(xf,r^e/} - A|a/|2 +xn ^ £yT^ x e K .

Replacing Ty by Ar^ and Cy by e^/\ we see if A > 0 that this is equivalent
to the existence of sequences e^ —> 0 and r^ —> 0 such that

Xn < A(|^|2 + 4^2 T <^, T^')), ^ € ̂ .

If A > 0, this inequality is always valid when the parenthesis on the right
is ^ 0, and when it is negative the condition becomes more restrictive the
larger A is. Hence (2.24) for q = q), is independent of A when A > 0. If we
start from g-^ with 0 < p. < c we conclude that this is true for all A > —c.
Hence (2.24) is equivalent to (2.9)" for an arbitrary q ^ 0, and we have
proved:

PROPOSITION 2.13. — Let F be a closed set in a C°° manifold and
let (x0,^0) e Ne{F). Then the condition (2.9) on 9 € T^ is either valid
for the supporting function of a compact neighborhood K of x° in F in
any local coordinate system C R/1 for which K is a compact subset of the
coordinate patch and K C B where B is a ball with x° e 9B and exterior
conormal $° = 77 at x°, or else this is false for all such local coordinates.

DEFINITION 2.14. — The linear subspace of T^o generated by all
6 satisfying the condition in Proposition 2.13, for some ^° such that
(x°^°) € Ne(K) will be denoted by N(F).
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As for Neff(F) we note that if Fi c F and x° C Fi, then

(^^OeTV^^^^Oe^Fi).

This is clear from (2.9), for if H is replaced by another supporting function
H^ ^ H with ^1(77) = ^(77) then (2.9) remains valid since

0 < H^rj + r0) + H^rj - r0) - 2H^(rf) ^ H(r] + r6) + H{r] - TO) - 2H(rj).

However, we shall see later that this is not the case for condition (2.9)'
where rj may differ from T].

Since Definition 2.14 is an expression of the condition (2.9) while
Neff{F) expresses the stronger condition (2.9)'", we have

Neff{F) c N(F).

That the two sides may differ is easily seen when F c R2 is defined
by a-2 ^ -/(^i) where / is an even convex function with /(O) = 0
such that for the Legendre transform f(6) = sup(.z*i0 - /(^i)) we have
0 = !im f{0)/02 < lim f(0)/02, or equivalently if / e C2,

0—»-0 0~~)•0

r1 . _ /•i
0 = Hm / (1 - t)f\0t) dt < lim / (1 - t)f"{et) dt.

0—>-0 JQ Q—^O JQ

Such a function is obtained by taking /// equal to 0 and equal to 1 in every
other interval bounded by the points 2-n2, n = 1,2,.. . . By Corollary 2.7
we can improve Theorem 2.12 as follows:

THEOREM 2.127. — If u is a hyper function in a real analytic manifold
X, then

(rc°,0) e Tv(suppu), (x°^) e WFA^U) =^ (x°^+t0) e WFA(U}^

ifteR, ^+ t (9^0 .

In particular,

(2.21)' N{suppu) C WFA{U).

Theorem 2.12' is an improvement of Kashiwara's Theorem 2.1 and
thereby of (1.2). We could also use (2.15) to give a further extension
of (1.2). The condition (2.9)' is much weaker than condition (2.9) (or
(2.9)"); with the notation in the example above it is fulfilled unless /" ^ c
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for some positive constant c in a neighborhood of the origin. Without
giving a complete geometric interpretation of (2.9)' we shall now give some
consequences of the fact that (2.9)' implies (2.11).

If 6 C R71, r] (E R71 and there exists a plurisubharmonic function j
satisfying (2.8) and some t € R, z e C with 1m z > 0 such that

(2.25) j(t0^zrj)<H(lmzri),

then it follows from Proposition 2.6 that (2.9)' is not valid. Moreover, since

j(t{6 + srj) + (z - ts)rj) < H(lmzrj)

for every s € R, it follows that (2.9)' does not hold with 0 replaced by
6 + srj either. The negation of (2.9)' means that there are constants c > 0,
6 > 0, such that

H(rj + r0) + H(rj - r0) - 2H(r]) ̂  cr2, if \r]-rj\< 6, \0 - 0\ < 6, |r| < 6.

If e is sufficiently small this remains true with H replaced by i^,

H^)=H(d)-e\^
and c replaced by 0. This means that r ^—> He{rj + r0) is convex when
\rj - rj\ < 6, \0 - 0\ < 6 and |r| < 6. If this is true for every 0 c R/1 \ R^,
and II = {0; (0,77) = 0} is the hyperplane orthogonal to 77, we can by the
Borel-Lebesgue lemma find 6 > 0 and e > 0 such that r ̂  He(rf + r0) is
convex when |77-77| < 6, 0 e II, \0\ = 1 and |r| < 6. Thus 11 3 0 ̂  He(rf-{-0)
is convex when \0\ < 6, and by the homogeneity of He it follows that He is
convex in the cone

^=U;|$-^r7)77/|77|2|<^,77)/H2}.

Let K = {x; (x,^) ^ H{(,) when $ e R71} be the convex compact set
with supporting function H, and let

K^={xe K'^ M = H(^)} ={xe K ' ^ H ^ ) ^ (x^)}

be the convex 'face5 C 9K of K where $ is an exterior normal. If x e K^
then H(-) - ( x , ' ) is non-negative in R71 and vanishes at $. To interpret this
geometrically we need an elementary lemma:

LEMMA 2.15. — Let f be a non-negative convex function in TU1 which
is positively homogeneous of degree 1, and assume that /($i,0) = 0 when
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$1 > 0 and that /($) - £|$[ is convex when ^/Q + ... + ̂  < ̂ i. Then it
follows that

(2.26) /(Q ^ r(|$| - $1), r = J£(l - 1/^TT^).

Proof. — It suffices to prove (2.26) when n = 2 and / is smooth and
strictly convex except in the radial direction. Then / is the supporting
function of a convex compact set k C R2 with smooth boundary F, and
the radius of curvature is ^ e when the direction y of the exterior unit
normal satisfies |sin<^| < 6 cosy, thus [tany?[ < 6 or \(p\ < (po where
cos^o == 1/VTT^, 0 < yo < JTT. If s is the arc length on F then
d y / d s ^ 1/£, and since dx^/ds == -siny? we have

/•^O /^o rtpo

y da;i = - y simpds ^ -e smydy = -£:(! - cosy?o) = -2r
^o Jo Jo

and similarly f°^ dx^, ^ 2r. Hence the disc of radius -r with center at
(-r, 0) is contained in k, for the boundary cannot cut through F which has
smaller curvature when x^ > -2r. The proof is complete.

From Lemma 2.15 applied to H ( ' ) - {x, •}, where x e K^ we conclude,
if He is convex in the open cone r and ^ e F, that 9K is differentiable at
x and that K contains a ball with x on the boundary. The radius of the
ball has a positive lower bound when $ belongs to a compact subset of F.
If B is the closed unit ball it follows that we can choose r > 0 such that if

K{r}=[y\{y}^rB^K},

which is a compact convex subset of K, then the compact convex subset
K(r) 4- rB of K contains K^ for all $ in a neighborhood of 77, so it contains
a neighborhood of K^ in K. Hence

K=(K^+rB)UK^

where the supporting function of K'^ is strictly smaller than H in a
neighborhood of 77. Let \r be the characteristic function of rB, and let Ur,
u^ be positive measures with support equal to K(r) and K[^ respectively.
Then the support of u = ^r*^r+< is equal to K, and since j^ «) < r|Im C|
if C C C71 \ CR71, it follows that ^(C) < ff(Im <) if X € C71 \ CR71 and Im C
is sufficiently close to 77. Hence we have proved the following theorem:
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THEOREM 2.16. — Let K be a convex compact subset ofTU1 with
supporting function H, and let rj € R71 \ {0}. Then the following conditions
are equivalent:

(i) There is a positive measure u with supp u = K such that ju (0+zrj) <
H(lm zrj) for every z € C with Im z > 0 and every 6 € R71 \ Hr].

(ii) For every 9 C R71 \ Tirj there is a plurisubharmonic function j
satisfying (2.8) such that j(9 + irf) < H(r]).

(iii) (2.9)' is not valid for any 0 G R71 \ Rry.

(iv) H(^) — e\^\ is convex in a neighborhood ofrj for some e > 0.

Proof. — That (i) implies (ii) is trivial, that (ii) implies (iii) follows
from Proposition 2.6, and we have just proved that (iii) implies (iv) and
that (iv) implies (i). (That (iv) implies (i) was essentially proved in [14,
Prop. 3.8]; what is new here is that (i) implies (iv).)

However, already our definition of N(F) above was rather cumber-
some, and examining the invariance properties of condition (2.9)7 for fixed
0, rf seems much more complicated still, so we shall not give a general invari-
ant formulation of (2.15). However, we shall discuss an instructive example
based on the following consequence of Corollary 2.7:

COROLLARY 2.17. — Let u be a distribution or hyper function in R3

such that 0 C supp-u and x^ ^ —9(^1,^2) ifx G supply where q ^ 0. Set

r^ = {x' = (x^x^ e R2; \x2\ < toi},
and assume that there is a constant c > 0 such that for every 6 > 0

(2.27) q(x^, x<i}lx\ —^ oo when re' e Fc \ 1̂  and x/ —^ 0.

Then (0,0 € WFA^u) when $1 = 0 unless

(2.28) a^/la/l2 —> —oo when x € suppu, x ' € Fc and x —r 0.

Proof. — Assuming that (2.28) does not hold, that is, that

m = lim \x^ \/x^ < oo
^(Esuppii^erorE—^O

we choose a sequence x^ —^ 0 for which the lower limit is attained. With
e^ = x\ we have x ^ / C y —>• 0 by (2.27), and x^/e2, —^ —m, as v —> oo. We
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change coordinates introducing

v{x) = u{x\X3 + jA|a/|2)

for some large A to be chosen later. We have (0, $) € WF^u) if and only if
(0,$) C IV-FA(^)- Without restriction we may assume that v has compact
support. The supporting function H is

W,l)= sup ((^O+rrs),
a;6suppv

and we shall first prove that

(2.29) liin H(e^\ l)/^ ^ max (^/(2A + 4m), (|^|2 - d^')2)^),
V—^00

where c?c($') is the distance from ^ to Crc. For the proof we first note that
since 0*3 ^ —-Ala/ l 2 when x e suppz?, it follows that

((x^e^)^)/el ^ ^^/)-^A|2//|2 = (l^f-^-A^I2)^, y 1 =x'/e^

This is bounded by (l^l2-^)2)/^ if^ ^ Fc and by 0 if \^'-Ay'\ > |̂ |.
To prove (2.29) it remains to find a bound when y/ € Fc and A\y'\ ^ 2|^|.
For arbitrary 6 > 0 and M > 0 we obtain using (2.27) if x ' 6 Fc \ r<$ and
z/ is large enough

«^0 +^)/^ ^ { y ' ^ } - M\y'\2 ^ K'l^M.

which is a better bound than (2.29) for sufficiently large M. If x ' € r<§ and
mi < m we obtain for large z/ by the definition of m

((^^') +^)/^ ^ ( '̂) - ̂ Ab'l2 -mi^
^ Hd^il + ̂ |$2|) - (^A + mi)^ ^ (|$i| + W2/(2A + 4mi).

When mi f m and 6 [ 0 the estimate (2.29) follows. When $ 2 = 0 and
$1 > 0 we have \^\2 - c?c(^)2 = $?/(1 + c2). If we choose A so large that
A + 2m < A(l + c2), that is, A > 2m/c2, it follows that the right-hand
side of (2.29) is equal to ^/(2A + 4m) in a neighborhood of the positive
$1 axis.

Next we note that

H(e^, 0, l)/e2, ̂  (x\e^ + ̂  - ̂ A(xf + a^2))/^
-^ $1 - m - \A = ̂ /(2A + 4m)
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if ^i = A + 2m. Hence it follows from (2.29) in view of the convexity that

Urn H{E^', l)/el = ̂ /(2A + 4m) = |A + m,

provided that ^i = A + 2m and |$2| is sufficiently small. Since the limit is
independent of $25 hence flat, we conclude that (2.9)' is fulfilled with

rj =(^i,0,l), 0=(0,$2,0), r=^.

Hence Corollary 2.7 applied to i; proves that (0,$) € H^EA^) if $1 = 0.

Example. — If 0 e supp u C R3 and

a-3 ^ —x\x^/\x'\^ when a: € suppu,

where u. > 2, it follows from Corollary 2.17 that (0,0 C WFA{u) either
for all $ with $1 = 0, or for all $ with $2 = 0, or else (2.28) is valid with
Fc replaced by R2 \ 0. Then we have (0,0 € WFA^u) for all $ ^ 0 by
Theorem 2.12. If we assume that the origin is not an isolated point in the
intersection of supp u and the x\ or the x^ axes then (0,$) € WFA(u) when
^$2 = 0. The examples Uj = 6(xj)Y(—x^), j = 1,2, and u\ + u^ show
that these conclusions are optimal. (Here Y is the Heaviside function.) It
is not clear if (0,$) 6 WFA^u) for every $ when suppn is equal to the set
where x^ ^ —x^x^/^^^ in a neighborhood of the origin. However, the
example shows that we may have N{F)\^o ^ WFA(u)\^o for every u with
xQ C supp^ C F, although the intersection of WFA(u)\^o for all such u is
N{F)\,o.

3. A general property of the conormal set.

The conormal bundle of a smooth manifold is always Lagrangian,
that is, the dimension equals that of the manifold and the symplectic form
vanishes there. In particular, it is involutive which means that the Hamilton
field of any function vanishing on it is tangential. The general conormal
set introduced in Definition 1.1 has a weak form of this property.

THEOREM 3.1 (Sjostrand). — Let F be a closed subset of a C°°
manifold X and assume that p 6 Cfoo(^*(X) \ 0) is real valued and
vanishes on Ne(F). If (a;°,$°) € Ne{F), it follows that Ne(F) contains
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a neighborhood of (x0,^0) on the ^characteristic strip T for p through
(x°^°) defined by the Hamilton equations

dx/dt = 9p(x^)/9^ d^/dt = -Qp(x^)/9x', (x^) == {x°^°) when t = 0.

Ifp^(x0, $°) ̂  0 there is a function ̂  e C'°°(X) such that for some e > 0

^(t))=0, c^(:r(t))=$(t), if|t|<£,

and ^(x) < 0 when x is in a neighborhood of {x(t)', \t\ < e} in F but
xiT.

This is [7, Theorem 8.5.9], and by [7, Corollary 8.5.10] the following
improvement of earlier results due to J.-M. Bony and the author follows:

THEOREM 3.2. — Let F be a closed subset ofX, and set

ATp = {p € C°°(T^X) \ 0);p = 0 on Ne(F)}.

Then Afp is an ideal in C^T^X) \ 0) which is closed under the Poisson
bracket

{P.q} == ̂ (Qp/9^9q/9x, - 9p/9x,9q/9^).

If pi,... ,pk G MF are real valued with linearly independent differentials at
(a;°,$°) € Ne(F), then k ^ n, there is a k dimensional manifold through
{x°^°) contained in Ne(F) in a neighborhood, and the symplectic form
vanishes on it.

4. Solutions of analytic differential equations.

If P is a linear differential equation with real analytic coefficients,
then (1.3) is valid for all solutions of the equation Pu = 0. There are many
equations for which better results are known; for example, one can replace
the characteristic set by the empty set when P is subelliptic. We shall not
review the extensive literature on this matter here but just denote by C'(P)
the smallest subset of Char P such that

(4.1) Pu = 0 =^ WFA(u) C C(P).

An immediate combination of (2.21)' and (4.1) gives of course

7V(supp u) C C(P) H C(P) if Pu = 0.
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Here C'(P) = {(a:,$); (re, -$) e C(P)}. However, Theorem 3.2 often allows
one to make a much stronger conclusion:

THEOREM 4.1. — Let P be a differential operator with real analytic
coefficients and let ^V(P) be the smallest subset ofC°°(T*(X) \ 0) which
contains all C°° functions vanishing on C(P) n G(P) and is closed under
Poisson brackets. Then it follows that

pu = o =^ Tv(suppn) c G(P) = {(x^) e r*(x) \ o;
(4-2) q(x^)=0^qeAT(P)}.

With TV(suppn) instead of AT(suppu) this is essentially [7, Theorem
8.6.6]. The inclusion (4.2) may be^much stricter than (4.1); in [7, p. 310]
an example in R3 is given where C(P) = 0 but C(P) is of dimension 3.

The inclusion (4.2) gives a great deal of information on the support of
a solution of Pu = 0, such as the absence of sharp corners and even points
of infinite curvature.

5. A non-analytic differential equation.

The proof of the Holmgren theorem which we have discussed shows
in a very convincing way that the analyticity of the coefficients is essential,
for otherwise one can hardly expect microlocal analyticity of all solutions
as in (1.3). Indeed, there are very strong counterexamples in the non-
analytic case. For example, if D = D§ - f^Dj is the wave operator in

R1-^, with coordinates denoted (xo,... ,Xn), and if n ̂  2, then one can
find u, dj e (^(R1-^), j = 0, . . . , n such that

n

Ou + ̂  OjDjU = 0 in R^, supp u = supp dy = {x; x^ ^ 0},
o

J=0,...,n.

Thus there is no unique continuation at all across the timelike plane where
•TI = 0 although the coefficients are smooth and the leading ones are
constant. It was therefore very surprising that Robbiano [12] was able
to prove a uniqueness theorem when the coefficients are independent of t.
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(This result has applications in control theory.) In [8] we gave the following
improvement of Robbiano's result:

THEOREM 5.1. — Let

P= Y^a^D^
H^2

be a second order hyperbolic differential operator in an open set X C R1^"',
such that da is locally Lipschitz continuous when |a| = 2 and a^ € Iq°̂  for
all a. Assume that there is a timelike vector 6 such that aa(x-\-t6) = aa(x)
i f x e X and x +10 C X. Denote by p the real valued principal symbol of
P,

(5.1) p(x^) = ̂  a,(^)r, x e X, $ e R^,
H=2

denote the corresponding symmetric bilinear form byp(x, $, 77), and denote
by 0^ the covector defined by p(x, 0^ •) = (0, •). Then it follows that

(5.2) TV(suppn) C {(x^)^ ^ p(x^\0^p(x^^) ̂  (1-X2)^,^)2},

ifn e ^^(X) satisfies the equation Pu = 0 in X. Here K is a universal
constant with optimal value € [1, ^27/23].

The translation invariance can be stated invariantly by letting 6 be
a G151 real vector field with [P, 0} = 0. When K = 1 the right-hand side
of (5.2) becomes the characteristic set. Holmgren's uniqueness theorem
states that (5.2) is valid with K = 1 for arbitrary real analytic coefficients.
It is not known if K can be taken equal to 1 in Theorem 5.1. In any
case it shows that there are hypotheses other than analyticity which lead
to inclusions of the form (1.4) not much weaker than that in Holmgren's
uniqueness theorem although they cannot be obtained via an analyticity
result such as (1.3). Another result of this form is the Calderon uniqueness
theorem and its later refinements; we refer to [7, Theorem 28.1.8] for a
general form of it stated along the lines of this paper. (The other results
proved in [7, Chapter 28] involve very precise relations between curvature
and operator so they are quite different in spirit from those which follow
in the analytic case from Theorems 2.12 and 2.12'.)
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6. Miscellaneous remarks.

So far we have only discussed differential operators, for they are mi-
crolocally the most convenient ones since they cannot enlarge the analytic
wave front set (if the coefficients are analytic) and are microlocally bijective
at non-characteristic points. However, the splitting of the Holmgren theo-
rem discussed here is also useful in connection with other Fourier integral
operators such as the Radon transform

W){H)= ( fdSn
J H

where H is an affine hyperplane in R71, dSn is the Euclidean surface
measure in H, and / is a continuous function in R71 such that f(x) =
Oda;!"71) as x —^ oo. Writing

H = {x', (x,uj) + o;n+i = 0}, where uj € R71, H2 4- o;̂ i = 1,

we can regard H as a point in the projective space P71, obtained by
identifying antipodal points in the unit sphere S71 C R71"^1. Writing

F(X) = [X^il-71/^), i f^eR",^ ±(^,l)/v^TI,

we obtain a bounded even function on 5'71, defined when Xn-^-i ^ 0, thus a
function on P71. An elementary calculation (see Boman [1]) gives

W)(H) = c[F(X)6({X^))dS = c(AF)(Q),

where ^ is one of the points in S71 defining H, c is a constant, dS is the
Euclidean surface measure on 571, and fl,n+i ̂  ±1. The analytic wave front
set of the distribution 6{(X,Y)) on Sn x S71 is

{(x,y;ry,rX);o^TeR, x.ye^x.y^o}.

(Note that a cotangent vector ^ 0 of S71 at X can be identified with an
orthogonal vector in R71-^1.) Thus (X.rV), where (X,V) = 0, is not in
WFA(RF) if (±y,=FrX) ^ WFA^F). These two conditions are equivalent
when F is even, and since the symbol of the conormal distribution 6 is
non-zero, we can then reverse the implication: if (X, rY) ^ WFA(RF) and
(X,V) = 0, then (±Y^rX) i WFA(F). In particular,

X ^ supp RF =^ (V, rX) i WFA(F) if r ̂  0 and (X, V) = 0,
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which is an analogue of (1.3). (Recall that {X,Y) = 0 means that Y is in
the hyperplane denned by X.) If f(x) = Od^l'^) for every N as x —^ oo,
then F vanishes of infinite order on the plane at infinity I I==(0, . . . ,0 ,±1)
defined by X^+i = 0. If in addition RF(fl) = 0 for every hyperplane
which does not intersect a compact set K C R71, then n ^ suppAF, so the
conormal of II does not intersect WFA(F). As observed by Boman [1] it
follows, if a is a polynomial in R/14"1, that the integral of aF over the sphere
{X e S'n",Xn^l = t} is an analytic function of t m a fixed interval I 3 0,
vanishing of infinite order when t = 0. Hence it is identically 0, and since a
is arbitrary it follows that F = 0 in {X C 5^; Xn-^i € J}. (The argument
is here again the classical one of Holmgren.) One can now conclude using
(1.2) that -F vanishes in a neighborhood of every plane in the component
of II in the set of planes which do not intersect K, hence that supp F C K
if K is convex. This is Helgason's support theorem.

Boman [3] has also proved a localized version of Helgason's theorem
where he only assumes that / vanishes of infinite order at oo in the direc-
tions of an open cone F. The proof then requires a variant of (1.2), proved
in Boman [2]. The inclusion (1.2) means that a hyperfunction u vanishing
on one side of an analytic surface S must vanish in a neighborhood of any
point x € S such that (x, $) ^ WFA(u) for some conormal $ of S at x. Un-
der the stronger assumption that (o;,db^) ^ WFA(u) for both signs, there
is a neighborhood V of x such that the restriction of any derivative D^u
to S n V is well defined, and Boman [2] proved that if they all vanish and
u is a distribution then u = 0 in a neighborhood of x. This conclusion is
not valid if only one of the conormal directions is absent, even if u € C°°
so that the restrictions have an obvious and elementary meaning. It is also
false for hyperfunctions by an example of Sato presented in Kaneko [10,
Note 3.3].

Only the analytic wave front set has been discussed above. However,
(1.2) can be extended to

(6.1) N(suppu)cWFL(u)

if L is quasi-analytic and u is a distribution. (For notation and definitions
we refer to [7, Section 8.4].) The proof of (1.2) given in [7, Theorem 8.5.6']
extends at once if we prove the following substitute for [7, Corollary 8.4.16]:

THEOREM 6.1. — If u e V(X) where X is an interval on R, and if
x° e X is a boundary point of supp u, then (x°,±l) € WF^u) for every
quasi-analytic class L.
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Proof. — Since WF^u) is closed it suffices to prove the statement
when u vanishes in a onesided neighborhood of x°, that is, prove that if
u = 0 in (x° - e, x°) or (x°, x° 4- e) for some e > 0 and (x°, 1) ^ WF^u),
then L is non-quasianalytic. We may of course assume that x° = 0. From
[7, Theorem 8.4.15], which is very elementary in the one dimensional case,
we conclude that in a neighborhood (-26,26) of 0 we can write u = n+ +-u_
where u+ € C^ and u- is the boundary value of a function U- analytic in
the lower half plane. Thus we have for some constants C and N

(6.2) \u^(x)\ ^ C^1 :̂, j = 0 , 1 , . . . . \x\ < 26,
(6.3) \U,(x + iy)\ ̂  CM-^, \x\ < 26, -1 < y < 0,

where (6.3) is a consequence of the hypothesis that u e P'. Now we
compose u with the increasing function

(6.4) f(x)=6x/Vl+x2.

Set v± = n± o /. From the proof of [7, Proposition 8.4.1] and (6.2) we
obtain with a new constant C

(6.2)' |̂ )| < C^1 :̂, j = 0,1,. . . , x e R.

We have f(x) = 6(1 + x2)-^ > 0 and f'^z) = 0(6(1 + M2)-2) when
\lmz\ ^ j, hence

Im/(a; + zz/) ^ 6((1 + a;2)-^ + Cy2^ + a;2)-2) < ^(1 + x2)-^

if -c < y < 0, for sufficiently small c C (0,1), and we have |Re/(a; + iy)\ <
26 then. Hence V-(z) = U-(f(z)) is analytic when -c < 1m z < 0, and

(6.3)' I^-^+^I^CO+M)3^^-^, -c^<0.

Now we choose an analytic convergence factor such as e"^2 and set
w^(x) = e~x v^(x). Then w = w+ + w_ vanishes on a half axis by
hypothesis, and since

w-(Q = fe-^^e-^v^V^x + iy) dx, -c < y < 0,

it follows from (6.3)' that

(6.5) |w-(0|^C'e-^ when$>0.

Prom (6.2)' we obtain using the proof of [7, Proposition 8.4.1] that

Iw^^l^C^e-2/2, j=0 , l , . . . ,
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which implies

|w+(0| ^ c^(L,/\^^ j = o, l , . . . , $ e R.
When $ > 0 the same estimate follows for w_ from (6.5), so with still
another constant C we have

(6.6) |w(Q| ^ C^\L,/^\)^ j = 0,1, . . . , $ > 0.

Since w is supported by a half axis, the Fourier-Laplace transform is
analytic in a half plane and bounded by a polynomial, so

(6.7) r|log|w(0||^/(l+^)<oo,
J—00

for by hypothesis w is not identically 0. Combining (6.6) and (6.7) we
obtain

/>oolog(sup($/L,)^^/(l+$2)<
Jo v w /<S/-^j; ; U'^/\J• ~r<? )
/O v J^O ^

00,

and it is classical (Carleman [4, p.50]) that this is equivalent to ̂  1/Lk <
oo. The proof is complete.

The proof is not only valid for distributions. We could have allowed in
the proof a bound ey K instead of (6.2) provided that we use a convergence
factor e~x with 2N > 3^. Thus the proof extends to distributions in the
dual of any Gevrey class.

It is clear that (6.1) is false if L is not quasi-analytic, for suppn can
then be the closure of any open set while u € C11. A very weak analogue
for wave front sets is given in the following:

THEOREM 6.2. —IfV is a C°° submanifold of a C°° manifold X and
u C P'(X), suppn C V, then A^|suppn C WF{u).

Proof. — The statement is local and invariant so we may assume
that X C R71 is a neighborhood of 0 and that xi = 0 in V; it suffices to
prove that (0,ei) e WF{u) if 0 € suppn and ei = (1,0,... ,0). Shrinking
X if necessary we can assume that

N

u^^S^^^aj
o

where Oj are distributions in R71"1 near 0 with 0 G suppajv. Then
x^u = (-l^A^^i) (g) ON. Choose ^ C C'o^R/1-1) with support close
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to the origin and (pa^ ^ 0. Then the Fourier transform of x^^pu is
{-1^ N\(pON(^, • • • ? tin)' We can choose ̂  • • • 5 $n so that this is not equal
to 0. When $ 1 — ^ 0 0 the Fourier transform does not tend to 0 and we
conclude that (0,ei) 6 WF(u).

It is not clear if Theorem 6.2 remains true if V is just a C1 subman-
ifold.
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