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ANALYTIC POTENTIAL THEORY OVER THE p-ADICS

by Shai HARAN

In these notes we develop the potential theory of the p-adic analogue
of the symmetric stable distributions. We do this purely analytically and in
an explicit manner. In §1 we recall Weil’s formulation [11] of (the local part
of) Tate’s thesis (3] in terms of a-homogeneous distributions, and relate
these in §2 to probability. We prove that the function |z|* is negative
definite over Q, for a € (0,00), generating a semi-group of probability
measures g, explicitly given by

(d.’L‘ Z( t Cp(l +n7;6;)| |—(1+na) dzx

n>1

(this formula being an analogue of a formula of Feller [4] for the a-
symmetric stable distribution over the reals R). For o € (0,1), p@ is
transient, and its potential is the Riesz potential

kg (x) = /:0 w(z) dt = ng(Tl(;Ta)-lmla_l'

When we approach the boundary @ — oo (in analogy with the real
case a — 2) we obtain the “normal law”, a very simple process which
degenerates and “lives” on Q,/Z,. In §3 we recall the analytic properties
of the Riesz potentials [10], their distributional meromorphic continuation,
and the Riesz Reproduction formula. In §4 we begin to develop the potential
theory of Ry, a € (0,1). In view of §2 we can identify our potentials
with probabilistic potentials and deduce the various potential theoretic
principles in one blow [1], [2], [7], [9]; we prefer, nevertheless, to develop
these principles purely analytically, and to grasp things along the way in a
most explicit manner. We note, for example, that the Harnack inequalities
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become in our p-adic situation trivial equalities. We prove the principles
of Descent, Dichotomy, Maximum, Regularization, and Uniqueness. We
follow mostly the analogous real case as developed in [8], the p-adic setting
offering many simplifications. In §5 we consider the finite energy measures
leading to the proof that they form a complete positive cone in the Hilbert
space of finite energy distributions. In §6 we prove the existence and various
characterizations of the equilibrium measure, and show that the a-capacity
satisfies the usual properties and, moreover, is given explicitly via the a-
diameter :

_ Cp(a) . . 1 a—1 -1
capo(K) = =5 "oy N5, [zl,..’.‘,‘iﬁex n(n—1) ; ] ] '

In §7, we approach Balayage and the Green measure using the Keldish
transform [8]; i.e. instead of using Cartan’s method of projections in the
Hilbert space of finite energy distributions (which equally works well), we
use the more geometrical situation of the analysis of the PGL2(Q,)-action
on P1(Q,) and on equilibrium measures. We calculate explicitly the Green
measures of balls and their complements. Throughout §4 to §7 there are
various strengthenings of the uniqueness principle which demonstrate the
increasing grasp we have over our potentials. In §8, we develop the concepts
of a-(super)-harmonic functions. Explicitly, a function f : Q, — C is o-
harmonic at € Q, if for all N sufficiently large :

1 N aY

5@ =gy L e

We give an explicit solution to Dirichlet problems, prove the Riesz repre-

sentation theorem, and prove our last principles for potentials : Domination

and Harmonic minorant, concluding with a convexity property of the a-

capacity. We note that with slight modifications one can carry over the

whole discussion to the case of an arbitrary finite dimensional vector space
over an arbitrary non-archimedean local field.

1. The local zeta function and homogeneous distributions.

We let ¢ denote the “canonical” character of Q,, given b
0y & y

. e—Zﬂiz
Y(e) = e Q- Q2 Lzl
The self-dual Haar measure with respect to 1 is given by dz(Z,) = 1.

We let S = {¢ : Qp — C, ¢ locally constant and compactly supported},
and its dual S* = the space of temperate distributions.
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Q; acts on Qp, hence on S via m,¢(z) = p(az) and hence on S* via
Tap(p) = p(mayp), egmyb = 6, my dx = |a|™! da.

We let S*[a] = {u € §* | mju = |a|~*u, Va € Q;}, the homogeneous
distributions of order a € C/é——g%z, e.g. 6 € §;[0], dr € Sp[1].
We normalize the Haar measure d*z on Qp by d*z(Z;) = 1, so

that d*z = (l—p‘l)_ Tl ‘ By uniqueness of Haar measure, if 4 € S*[a]

qQ: = cons: |z|* d*z. Thus, if pi1,u2 € S*[a], there exist constants
P

¢1,¢2 € C such that ¢;u; + capp has support {0}. The only distribution
on Q, with support {0} is 6. For Rea > 0 we have |z|*~! € L] _ hence

Ma |z|* d*z € S*[a], and by the above :
S*la]=C-M*, Rea>0.

The “additive vacuum” is ¢ = characteristic function of Z,; ¢ € S,
and we have : M%(¢) = (1-p=*)~! & ¢(a), Rea > 0.

We denote the Fourier transform by Fo(y) = / o(z)Y(zy) dz so

that FF = m_y, Fme = |a| " 71 F, Fp = ¢. On distributions we have
Frulp) = w(Fo), F*F* = w*,, niF* = |a|~'F*n*_,; in particular,
F* :8*[a] = S*[1—q], and hence

S*aj=C-F*M'"* Rea<l.
—~ 1

1 a — (1—q*_ a_ (]—p-@ a_ _~ MO F ,
We let M (1 L )M (1-p~ )M C(a)M orp €S
M- (p) = / (p(x)—p(p~'z))|z|* d*z, where the integral converges for all
a, since p(z)—¢(p~'z) = 0 for z near 0 (¢ locally constant') Hence,
M2 =((c)- M has meromorphic continuation to all « € C / Z with
a unique simple pole at a=0. On the other hand, M- 1sﬂ\e/>nt1re,jnd since

F*M® = cons M=% M*(¢) = 1, F¢ = ¢, we get F*M> = M=% a

hence F*M* = C(Cl( Ol)a)./\/t1 “. An easy check gives M® = §, and hence
Res M® = —— .4,
a=0 log p
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2. Probabilistic interpretation.

¢(1-a)

Consider the “Riesz kernel” : k%(z) = —C(—aj—|x|°‘_1. For a €
p*-1 dr . .
[—p-Ha) g[ita i1s a positive measure

(0,00), L%(z) = —k~*(z)dz =

on Q, \ {0}.
2.1. LEMMA.
E k<0
, dro{PH kS

) /ms,,k ¥p(x) do {0, k>0
pk(l_p_l), k S 0
(it) / Yp(z) de =< -1, k=1
|zl=p* 0, E>1

0, ly| <p~*

dz _ o _
I R ey R o
l=I<p pR(1-p7),  lyl>p R

Proof. — Straightforward using (i) = (ii) = (iii).

Using this lemma we get : |y|* = / (1— Rey(zy))dL(x), the
Q,~{0}

~{0
“Levy representation” (cf. [1], Cor. 18.20, p. 184).

2.2. COROLLARY. — For a € (0,00), |y|* is a negative definite
function with associated Levy measure L(x).

Hence we get a convolution semi-group of probability measures pg,
(the p-adic analogue of) the “symmetric stable semi-group of order o”,
given by :

ug=Fe W, te(0,00), a€(0,00),

i.e. puf is a probability measure on Qp, pf * pg, = Uf 41, Bi 2 6
(where “~” denotes vague convergence : py ~» p iff p(¢) — p(p) for

all ¢ € Co(Qp))-
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Explicitly, we have
g = / e8I y(ay) dy

= Z e / Y(zy) dy (and using 2.1)
ly|=p—™ :

meZ
— _p—l) Z e-tlp'"‘:c|“’|p—mw|—1_e-—t|pz|_°‘|x|—1
m2>0
=" - _
Z | |-ka= 1[ (1-p I)ZP (ka+1)m_pka]
k>0 m>0
1 n
_Z ) k—na )
n>1

i.e. we have the following “Feller’s formula” (cf. [4] XVII, 6, Lemma 1 (6.8)
p. 549) :

(23) up =Y -

n>1

(z).

o0

For a € (0,1), |z|~* € L], hence u¢ is integrable, i.e. / pe dt
4 0
defines a potential kernel which is nothing but k*(x). Thus,

(2.4) k() = F(lz| dz) = /0 " (a) dt
(cf. [1] Theorem 13.23, p. 108).

Note that ug(z) is “symmetric”, i.e. it is invariant under Zj-action.
The support of u¢ is all of Qp, i.e. uZ(z) > 0 for all z € Q,. We have
pE(@) = (1-p™h) 3 pTme .

m2>0

o 1
As a — oo, e % 5 e~te(x) + (l—e_t)qS(—a:), pointwise, hence,
p
upon taking Fourier transform, we get u$ ~ uP(z) = e 'é(z) +
(1—e t)p~lé(pz), vaguely. u is a convolution semi-group of probability
measures on Q,/Zy, (the p-adic analogue of) “the normal distribution”, i.e.
pee is a probability measure on Qp/Zy, pug? * pgs = pgo, ., and ug® et 6
on Qu/Z,.
Its infinitesimal generator, (the p-adic analogue of) “the Laplacian”,
is

g7 M) =P 60m)-912) = ~A(@).

0o
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Letting ¢*(z) denote the characteristic function of Z;, we can rewrite
the above in the following form, remembering that 1(x) induces duality

1
between Z, and Qp/Z, : the Levy measure is L = — 3 §,/, on
p amod P
Q,/Z,; the associated negative definite function on Z,, is

8@ = [ (1-plan)dc> ()

»/Zp
and the associated “normal law” is given by p® = F e~ t¢" (@) while its
infinitesimal generator is A = Fo*.

3. The Riesz kernel.

We call the measure

3.1) k*= (Cl( ;Y)l [*~!dz, a>0, a#1, the M. Riesz kernel.

As a distribution, it has a meromorphic continuation to all a # 1

(mod 2mi
logp

B2) ko) =

Z), given by

(=) . ((1-a) 4
o O [/|z|>1¢(z)|xl“"

dz
S RGO

In particular, for Re(a) >0 :

ka((p) — C(l;;)) 2mi

a—1
/cp(:c)|x| dz, a#1 (mod _—logpz)

(3.3)
o) = 43 [e@-eo)
For a = 0, k() = ¢(0), i.e. k9 = &.

For Rea < 1, F*k® = |z|™® dz; in particular, for a € (0,1), both kK~
and Fk® are measures. Consider next k* as an operator via convolution,

namely for ¢ locally constant and such that /
|z} >1
we can form the convolution k% * ¢ :

(34) K xp(zo) = (<<>) 20) +

((1-a) dz
(@) [/lx.n“"(z" RIrE

* 0+ D ]
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and again, for Re(a) > 0,

k* x p(zo) = ((Cl(;;x) /‘P(wo +x)|z|*"! da,
k- pten) = S [ otoo +2)-pleo) i

(3.5)

E.g., generalizing Levy’s representation, k= * ¥y (z) = |y|* - ¢y(x), i.e.
Yy(z) = ¢P(y - x) is a k~*-eigenvector with eigenvalue |y|*. For ¢ € S,
k* x ¢ is again locally constant (with the same modulus as that of ¢), and
moreover, k* x p(z) = O(|z|R¢*~1), hence we can form k? * (k® * ) for
Re(a + B) < 1. For a, B such that 0 < @,83, a + 8 < 1, the equation
k® % k# = k>tB is immediate upon taking Fourier transforms, and since
everything is holomorphic in a, 8 we get

3.6. M. RIESZ REPRODUCTION FORMULA. — For ¢ € S, and
o
a,8 # 1 mod —~7Z with Re(a + f) < 1,
logp

E* % (kP % o) = k2P x .

o
3.7. COROLLARY. — For ¢ € § and a # =1 modggipz,

k=% xo(y) = O(Jy|~(1+Re)) as |y| — oo, and we have : k* x (k= % p) = .

4. Basic principles for potentials.

We let :
Mt = {positive measures on Q,},

M = {signed measures on Q,},
M}, M. = {(positive) measures with compact support on Q,},
MT(K), M(K) = {(positive) measures with compact support on K}.

We shall consider next k* as an operator on M via convolution,
restricting ourselves to the case a € (0,1).

For v € M7, we have

C(l_a) _la—1 v
@ /I:v y|*  dv(y)

. ((1—a) a—1
=1 - d
Jm S /MZP—N e~y du(y)

k* xv(z) =
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an increasing limit of continuous functions, hence is a lower-semicontinuous

function of z, i.e. k* x v(z¢) < lim k* * v(z); moreover k* x v € L} _ as
T—To
follows from Fubini’s theorem :

/ k* xv(z) dz = / dl/(y)/ k*(z—y) dz < oo.
lz|<p™ sup(v) |z]<p¥

For 0 # v € M¥, k® % u(z) = (1 o /|x —yoY du(y) is a

well-defined positive function of z, although 1t may assume the value oo,
0 < k*x*xv(zx) < oo.
4.1. DEFINITION. — For v € M™*, we write v € M} if it satisfies

one of the following equivalent conditions :

(i) {z | k™ *v(z) = oo} has measure 0 w.r.t. dz.

(ii) / ly|*~! dv(y) < oo for some N.
ly|>p™

(iii) ly|*~! dv(y) < oo for all N.
ly|>p™

Indeed, if (iii) is not satisfied, then for |z| < p™V

C(a) a _ oa— a— _
(-0 -k xv(z) = / lz—y|*~! dv(y) > /|y|>]xI [y|*~! dv(y) = oo,

and k® * v(x) = oo, showing (i) = (iii); while since / |lz—y|*! dz =
lz|<pN

O(|y|*™") as |y| — oo, we have assuming (ii),

/lxl<pN k*xv(z) dz = /du(y) /|z|<pN k*(z—y) dx
B O(/Iyl>pN Iyla—l du(y)) < 09,

showing (ii) = (i).
We say v € M, if v = vt—v~ with vT,v= € MZ. We have
MF CME, M S M.

We denote by B(p") = {z | |z| < p"}, By = {2 | |z| > p~"}, the
ball of radius p” and its exterior.

We note that the Harnack inequalities (cf. [8] IV, §5, n°20, p. 266)
become in our non-archimedean setting actually equalities. For v €
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M(B(™)) and any y ¢ Bo") we have k= + v(y) = L=, 1) . yja-1,

¢(a)
and 50 for g1, 4 & BY) : k% (1) = lyn/92]*~ -k » 1(ys). Similarly,
for v € M(By) and any y ¢ By, k® xv(y) = CCI(;;I) ‘/|:1c|"'_1 dv(z), and

so for y1,y2 ¢ By : k*x v(y1) = k**v(yz). For a general v € M, we have
that k* * v is locally constant away from supp v, and
dz ¢(1-a) -1y,1-(1
|k x v(z)| = dl/(y)/ z—y|* Y|+ dg
L. ERGING L

< cons-/|y|"‘”1 dv(y) < oo.

4.2. PRINCIPLE OF DESCENT. — Let v, € MZ, vy ~ Voo, Tn —
Too, then

K% % Voo (Too) < lm k% % v (25).
n-—oo

4.3. COROLLARY. — For v € M}, k* % v is lower-semicontinuous.
4.4. COROLLARY. — For v, € MZ, vy ~ v, k* x v = limk® * vy,.

4.5. COROLLARY. — For v, € M, vy~ v, vy < Upy1, k¥ v =
lim k% * v,.

Proof of 4.2. — Assume first supp(vn) C {z | |z| < pN} for all

n. Let k% x vp(z) = / k*(z—y) dvn(y), it’s uniformly continuous
lz—y|>e
and k2 xv(z) = lim k2 * v,(z), hence we have k& * v(zo) = lim kZ *
n—o0 n—oo

Un(zn) < limk® * v, (z,) and taking € — 0 we get the theorem in this

special case. In the general case, let V,(lN), l/c(,év ) denote the restrictions
of Up, Voo to {z | |z| < pN}. Then iV ) and by the above
n—oo

ke % S (Too) < lim k* % u,(lN)(xn). Taking the limit N — oo, first on the

n—oo
right-hand side and then on the left we conclude the theorem.

4.6. DICHOTOMY PRINCIPLE. — Let v, € M such that k* x v, <
k* % vpy1. Then either lim k® x v, (x) = oo for all z, or lim k® xv,(z) =
n—0o0 n—oo

k® * v(z) + ¢, for some v € M7, ¢ > 0, and almost all z.

Proof. — Suppose lim k® x v, (x) # oo.

n—00
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(i) For any compact K, v,(K) is bounded. For if v,,,(K) — oo then

71— 00
lim & * vy, (z) > lim / lz—y|*~! duy,, (v) = co.
1—0Q 11— 00 K
(ii) For any N, ly|*~! dvy(y) is bounded. For if/ ly|*~t
ly|>pN lyl>p™

dvp, (y) — oo then
71— 00

zllglo K% vn (2) Zi@o C(Cl(;)a)

/ y|*™ v, (y) = o0 .
lyl>z]

From (i), (ii) we get vy, ~» v, for some v € M.
Let F(z) = lim k® xv,(z). F € L] _ since

/ll . F(z) dz < lim k* x v, (z) dz
z|<p

=0 Jlz|<pN

< lim dun(y)/ k*(z—y) dz < oo.
lz|<p™

Let ¢ € S, /cp(x) dx = 0, then |z|7*Fp(z) € S, and k* x ¢ =
Flz|Fp € S. We have :

/F(x)gp(a:) dz = lim [ k% xv,(z)p(z) dzx

n— o0

= lim [ k%% p(z) dv,(z)

= /k" * o(z) dv(z) = /k"‘ *v(z)p(z) d.

Thus, for any ¢ € S orthogonal to 1 : / lim k% * v,(x)p(z) dz =

k* * v(z)p(x) dr and hence lim k% * v, (xz)—k® *x v(z) = c almost

everywhere, where c is a constant, by the principle of descent ¢ > 0.

4.7. 1%¢ MAXIMUM PRINCIPLE. — Let v € M be such that k* x
v(z) < M, v-almost everywhere. Then k® x v(z) < M for all x.

Proof. — Assume first © € supp(v), then the inequality follows by
the lower semi-continuity of k* x v, hence k* x v(z) < M for z € supp(v).
Let z ¢ supp(v), and let ' € supp(v) be such that |z—z'| is minimal.
Then for y € supp(v), |y—z'| < max(ly—z|, |z—z'|) < |y—=z|, hence
ly—z'|%~! > |y—z|*~1, and so k® *x v(z) < k* xv(z') < M.
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4.8. COROLLARY. — If k® % v is continuous on supp(v), then it’s
continuous everywhere.

Proof. — On Q, \ supp(v), k* * v is locally constant, so it’s enough
to check continuity at the points of supp(v). Let zo € supp(v), v. the
restriction of v to {z | |z—zo| < €}, V. = v—v,, so that k* x v(z) =
k* x ve(z) + k* x v.(z), hence |k* * v(z)—k™ * v(zo)| < k* x v(x) + k* *
Ve(xo)+|k* v, (x)—k**v.(z0)|. Since k1. is continuous at o, it suffices to
show that k* xv(z) s 0 uniformly in z. Let > 0. Since k* xv(xo) < oo

1
we can find €; such that k® v, (z¢) < 577; and since k* * ., is continuous

1
on supp(v) we can find € < e; such that |k * v, (z)—k® * ve, (z0)| < 7
for all z € supp(v), |x—xo| < €; hence k* x v.(z) < k* * v, (z) < 7 for
x € supp(ve). By the maximum principle, k* * v.(z) < 5 everywhere.

Let ¢ (z) = pV¢(p~Nz) denote the uniform distribution on {z |
|| < p~N}. For any measure v, let v(V) = v x () its N*» regularization,
and let (M) = y(M) . §(pMz) denote the restriction of vN) to {x | |x| <

N
P}

4.9. REGULARIZATION PRINCIPLE. — Let v € M, then k®xv™)
is locally constant and k*xv(N)(z) N k*su(x), k%N (x) o
— 00 —00

k*xv(z) for all x.

Proof.
1-a) _
k® * 1/(")(:17) = C(——--pN/ dz/ |z—y|*~t dv(y)
() lz=zl<p=N  Jsupp(v)
¢(1-a) N/ a1 lz—y|
=2y z—y dv(y ——dz
C(a) supp(u)l I ( ) |z—z|<p—N IZ—yP—a
<C-k**xv(x)

|l
where C'=sup pN/ le=y|
I

T e dZ} < 00.
Ny z—z|<p—N lz_yl

If k% x v(z) = oo then k* x v(V)(z), k* % (M) (g) N o0 by lower-

semicontinuity. So assume k° * v(z) < oo. Given 7 > 0, we can find € > 0
such that writing v = v, +v., where v, is the restriction of v to {z | |z—z| <
€}, we have k® * v.(z) < 1. Hence by the above, k® * (v.)(V) < C - n. Now
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k% v/ is continuous at x, so k * (v2)(N)(z) N k> xv.(z), and we get :
—00

K xv(@)=(C+ )0 < lim b+ 0™M(2) < Tim k5o (a)
—00

N—o0
Sk xv(z)+ (C+1n.
Letting 7 — 0 we obtain the theorem for (M),

Next, considering v((M), we have :

kx M) () — k(M) (z) = M/ le—y[>t dv ™) (y)
lyl>pN

¢(a)
((A-a) N/ / -1
< p dz |z—2—y|*™" dv(y).
(@) |z|<pN ly|>pN
But since v € M{, we know that lim lz—z—y|*! dv(y) = 0

N=oo Jiy|>pN
uniformly with respect to bounded 2’s, which gives the theorem for v((™)),

4.10. UNIQUENESS PRINCIPLE. — Let v € M,, if k* xv(z) = 0 for
a.a.z’s, then v =0 (and k* xv = 0).

Proof. — Let ¢ € S, ¢(z) = p(—z), and apply Riesz formula to
write ¢ = k® x (k= % ). Since [k~ x ¢|(z) = O(|z|~ (1)) as |z| — oo,
we easily obtain k% * |[k=% x @|(x) = O(|z|*~!), and since by assumption,

/ ly|*~1d|v|(y) < oo, we see that the convolution |v|* (k% * |k~ x @|)
lyl>p™

is defined, and hence v * (k® * (k=% * @)) = (k* * v) * (k=% * ). Thus,
v(p) = v*@(0) = vx (k% x (k7% % @))(0) = (k* *v) * (k™% x )(0) = 0 since
k® x v(z) = 0 for a.a.x’s. Since ¢ € S was arbitrary, we get v = 0.

5. Measures with finite energy, 0 <a<1.

We shall consider next signed measures v = v+ —v~ € M, such that

// k*(z—y) dvt(z) dv (y) < co.

The “mutual a-energy” of two such measures v; and vs is
(e = [ [ K@= v) da(o) dialo)

which is well defined under the condition that / / k (z—y)dviE (z)dvi (y) <oo.
Since k*(z—y) = k*(y—z), we get the
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5.1. SYMMETRY PRINCIPLE. — (V1,V2)q = (V2,V1)q-

5.2. POSITIVE DEFINITENESS. — (V1) > 0 and (v,v), = 0 <
v=0.

Proof. — Write v = v*—v~, |v| = vt + v~; we are assuming

(vt,v7)e < o0, and we may assume (v,v), < oo, which gives us
(v, |¥])o < 0. Hence we can apply Fubini’s theorem and the M. Riesz
Formula to obtain :

)= [ [ @) avlyie(e-y)
= / / dv(z) dv(y) / k2 (z—y—2)k*/?(2) dz
= / / dv(z) dv(y) / k®/?(2—2)k*/?(2—y) dz
= / dz / k%% (z—2) dv(z) / k%2 (z—y) dv(y)

= /Ik“’/2 *v(z)|2 dz > 0.
Le. (1,V)q = [|k*/2 xv||2,.

Moreover, if (v,v) = 0 then k*/2 x v = 0 for a.a.z’s, and by the 1%
uniqueness principle v = 0.

As a corollary we get,

5.3. 2"? UNIQUENESS PRINCIPLE. — Let vE M, satisfy (v, v7) o <00.
Ifk* xv(z) = 0 for v—a.a.x’s, then v = 0.

We can now define the “a-energy” of v, by |v|l. = (v, u)é/ 2 We let
Es = {v € M, such that (vy,v_), < 0o and ||v|lo < 00} denote the space
of signed measures with finite a-energy, and £ = £, N M™T :

e.g. supp(v) compact and k* x v bounded on supp(v) = v € &,;
e.g. k* x v bounded of compact support = v € &,.

£, with the inner product { , ), is a pre-Hilbert-space. In particular
we have Schwartz inequality : |(v1,12)a] < |Villa * |¥2|la- We write
Un=>qV for strong convergence (i.e. |V — vp|a — 0), and v,—4v for
weak convergence (i.e. (Un,t)a — (V,M)a, V,une Ea). By the Schwartz
inequality, v,= oV implies I/n—>ar;/_.>oo
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We note also the “lower-semi-continuity” of ( , ), namely : if
Un, Vi € EX, Uy ~ v, V), ~ V' then (v, V), SNli_m (Vn, V,)a- In particular,

IVlla < lim |lvnla-

N—o00
5.4. REGULARIZATION LEMMA. — If v € &, then v"M)=_v and
UM .
Proof. — It’s enough to consider v € £F.

v — VM2 = / 5%/ 5 (z) — ko2 % M) ()2 da.

But
[k*/2 x v(z) — k%% x v M) ()2 < 2|k%/2 % v(z))? + 2|k%/2 % vV (2) |2

< Co - k2 5 v(z)[%.
Hence, lim |jv—v™M|2 = / lim k%2 xv(z) — k%% ™) (z)|dz = 0 by
N—-oo N—-oo

the regularization principle; similarly for (M),

5.5. COROLLARY. — S NE&, is dense in &,.

Proof. — Indeed v((M) € S.

5.6. COROLLARY. — {v € &, such that k* x v € S} is dense in &,.

Proof. — By the above it’s enough to show that for any v € SN &,,

Jpn € &, such that k* * @, € S, Pp=>qV. Let fo(z) = k* *x v(z) - d(p"x)

where n > 0 so that v = v((")), We have f, € S hence f, = k® * @,

¢n = k™% f,,. Note that k* * @, (z) = k®*v(z) for |z| < p™, and ||, |2 =

/ fa(@)on(z) dz < 00, SO @, € Eu. Recall that p,(z) = k=% % fo(x)
|z|<p™

is given by

1-p~1
T @ )+1—pu—+a—>[/|,>1fn($+y>, BT

+/|y|§(fn(w+y) fn(m))| |1+a]

which for |z| > p™ reduces to

1-p© dy 1-p° dz
v | EH TS = /| e "D e

lyl>1
1—p

——|z|” (H"‘)/ k*xv(z)dz.

1—p=(+e) |2 <pn
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1-p=«
l_pa—l

lon(@)] = O(le|~0+*)p™), |a| > p.

But for |z| > p™, k* *xv(z) = v(1)|2|*1, hence we get for n > ng

Now,

lonvlE = [ ks (oar)(@)on-0)(a) do
> since k% x (pp,—v)(z) =0, |z| <p",

= —/ k* x v(z)pn(x) dz
lel>e since k% x pp(z) = v(z) =0, |z| > p",

=0 [ (al"t ol do) = 0GreD) — 0
|z|>pn . n—oo
since a < 1.

So pp=>oV and the theorem is proved.

5.7. COROLLARY. — Let v, € £}, v,—q4v, then vy, ~ v.

Proof. — Let f € S and write f = k%*xp, p = k™% x f, then p € £,
and so lim (p,Vn)e = (@, V)q, i.e. lim /f(z:) dvp(z) = /f(x) dv(z),

hence v, ~ v.

5.8. COROLLARY. — Let v, € EF, vy ~ v, |[Un|la < C. Then
v €EF and vp—qv.

Proof. — By lower-semi-continuity ||[v||o < lim |vplla < C, so
n—0o0

ve&r.
Let p € &, k* * p € S, then

(Vs ) = / B p(e)dva () — / K % u(2)dv(z) = (v, .

Given any & € &,, and € > 0, we can find by Corollary 5.6 such a u
with ||é—plle < €, and then for n > ng(e) :

l(erg)a - (Va€>a| < ‘(Vnaﬂ>a - <Vaﬂ>a| + l(Vnaé_lJ'>a| + |(V’£_/-‘L>Otl
< ns )a — (Vs p)al +2C - < (1420) -«

Thus (Up,€)a — (1,€)e and v,—qv.

5.9. LEMMA. — Let v, € £} be a Cauchy sequence such that
Un ~ v. Then v € £} and v,= V.
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Proof. — There exists a bound ||v, ||« < C, so by the above corollary,
v € &} and v, —,v. Hence we get

“”_Vn"i = (V—Vn,V=Vp)a = m!i_gloo@_”m’/m"’/n)a

< lim |lv=vplla - IlVm=Vnllas
m—00
80 ||v—vp|la < 1211 1¥m=vn | and

lim ||[v—vplla < hm hm lvm—vnlla =0,
—00 Mm—

n—oo

Or Up=>qoV.

5.10. COMPLETENESS OF THE POSITIVE CONE. — &Z is a complete
metric space.

Proof. — Let v, € &} be a Cauchy sequence. By Lemma 5.9
it suffices to show v, ~» v for some v. Given any p € &,, we have
[(Un—Vm, a| < |¥n—Vmlla - ||4]lo hence the sequence (v, p)o converges.
Since any ¢ € S can be written as ¢ = k* x g with g € &,, and

©(z)dvp(z) = (Vn, 1) converges, we conclude the theorem.

6. Capacity and equilibrium measure.

K C Q, will denote a compact set.

MH(K), resp. M)(K), will be the positive, resp. probability, mea-
sures supported in K.

EXK) = MT(K) N Eq, EM(K) = MO(K) N E,.

6.1. LEMMA. — MW (K) is convex and vaguely compact.

Proof. — That MM(K) is convex is immediate; we prove com-
pactness. Let Sq denote the set of locally constant compactly supported
functions ¢ : Qp — Q. Sq is denumerable; write Sq = {Ym}oo_;. Let
pn € M (K) be an arbitrary sequence. Since |, (¢)| < sup ¢, we can find
a subsequence p, @ such that {u @ (p1)} converges. Proceeding by induc-
tion we find a subsequence R such that {u,, (m)(wl)} i, ) (pm)}
all converges. Looking at the dlagonal we have a subsequence {u (m)} =
{pn;} of our original sequence {y,} such that {yun;(¢m)} converges for
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all m’s. Define u(pm) = lim pin,(¢m), and extend p by linearity to all of
S = Sq ® C, to give a positive distribution, hence a positive measure p.
Moreover, gn, ~ p, hence p € MM(K).

Let Wo(K) = inf{||lul2 | # € MW(K)} € (0,00]. We have

Wa(K) > Mdiam(K)“’l > 0, and Wo(K) = oo iff EP(K) is

¢(a)
empty. We let cap,(K) = W,(K)™! € [0,00), the a-capacity of K. We
have
6.2. THEOREM. — The following conditions are equivalent :
(i) cap,(K)=0;
(if) &(,1)(1{ ) is empty;
(iii) »(K) =0 for all v € £} ;
(iv) ¥(K) =0 for all v € &,.

Proof. — Easy.

In particular, if cap,(K) = 0 then K has measure zero with respect
to Haar measure. For an arbitrary set X C Q, we define the inner and
outer capacity respectively by

cap (X) = sup{cap,(K) | K C X compact}
cap,(X) = inf{cap (U)|X C U open}.
We have cap (X) < @ap,(X); if equality holds we say X is capac-
itable and denote the common value by cap, (X).
We say that a property holds for a-almost-all z’s (o — a.a.z’s) if the

set of x where it doesn’t hold has inner capacity 0.

6.3. THEOREM. — Assume cap,(K) > 0. There exists a unique
Ak € S&l)(K) such that |Ak||%2 = W, (K); moreover, if u, € &9)(K) is
any sequence such that ||u,]|2 — Wa(K) then p, =4 Ak.
n—0o0

Proof. — Let u, be as above; by vague compactness there is a
subsequence p,; such that u,, ~~ X € MM (K), and by the principle
of descent A2 < lim|lpn,||% = Wa(K), so |A|2 = Wa(K). Moreover,

. 1 1 1
since Wa(K)? < 15 (tn + im)lla < 3linlla + 5llimlle and flanlla —



922 SHAI HARAN

1
Wo(K)Y?, we get ||§(un + pm)lI2 ey Wa(K); and since we have
,M—00

1
lin = pmlle = 2Mnllg + 2llumllG = 4015 (n + )l

we see that ||un — ptmlla — 0, i.e. u, is a Cauchy sequence. By Lemma
n,m—o0

5.9 in; =a A, hence also p, =4 A. Suppose next A, X" € 8&1)(1() are such
that ||A2 = || V]2 = Wa(K), then

1 1 1
Wa(K)'2 < [l5 0+ W)l < 51 + 51Nl = Wa(K)'/
SO 1
5 Z = Wa(K)
I3+ Xl

1
and since |A = N|2 =2 [|AJ2 +2- [[N]2 - 4- ||§(/\ + )\’)“i = 0 we get
A=),

6.4. — We let vk = cap,(K) - Ak € £} (K) be the equilibrium
measure of K. Thus ||vk||2 = 7k (1) = cap,(K).

6.5. THEOREM. — g is characterized among all v € M*(K) by
any of the following equivalent conditions :

(i) k**vy(z) =1 for a —a.a.x € K, and k* xy(z) <1 for all x;
(ii) k* *y(z) <1 for all z, and (1) is maximal;
(iii) ¥(1) = cap,(K), and ||k® * y|| L is minimal;
(iv) ||v|I2 — 2v(1) is minimal.

Proof. — We first show vy satisfies (i), by showing
(a) k**yk(z) 21 for a — a.a.x € K,
(b) k* xyg(z) < 1 for x € suppyk-

Indeed, by the maximum principle we get k* * vk (z) < 1 for all z,
hence (i). Assume that (a) does not hold, then we find a compact Ky C K,
cap,(Kp) > 0, such that k® xyx(z) < 1forz € Ko. lf v € S&l)(Ko) then,
on the one hand,

VYK )a = /k"‘ * vk (z)dv(z) <1 and so (v, Ak)a < || Ak

On the other hand, for any t € [0,1], t- v+ (1-t)\x € 8&1)(K), 80
that

ElIvlZ + 26(1-t) (v, Ax)a + (1= Ak llz = It - v + 1=k % 2 Mk 1%
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from which we get (v,Ak)a > [|Akl|%, a contradiction. Assume that
(b) does not hold, say k® * yx(xo) > 1, T9 € supp~vk; then by lower
semicontinuity k* x yg(x) > 1 for ¢ € U, a neighbourhood of zy, and
moreover vx(U) > 0. But then we get a contradiction, using (a), namely

capa(K) = [yxc|12 = /U Ky (2)dx (2) + / Ky (2)d (2)

supp Yk \U
> vk (U) + vk (supp vk \U) = 7k (1) = cap,(K).
Next, let v € M*(K) satisfy (i). We have ||p||2 = /k"*(p(x)d'y(x) =
(1), but v(1)~ -y € MI(K), so

cap, (K)™' < Iy (1)~ - AlI2 = v(@) 72 12 = (1),
or y(1) < cap,(K). Hence
Iy = v&lI2 = V112 + vk M2 = 207, 7K )a

— (1) + capa (K) — 2 / K+ (@) dyic ()

< 2-cap,(K) — 27k (1) =0
and we get that v = vk

To prove (ii), let v € MT(K) be such that k* * y(z) < 1. Then
V% = /k“ * y(z)dy(z) < (1), and since v(1)~! - v € MO(K), we
get k()™ = Wa(K) < IvQ)71-9ll2 = v(1)72 - )2 < v(D)7, so
7(1) < vk (1). Moreover, if equality holds, then |y(1)~!- |2 = W,(K), so
(1)t y = Ak and ¥ = k.

To prove (iii), assume v € M*(K) is such that v(1) = cap,(K)
and K% <7l < Ik vcle= = 1 Then [yl = [ k% x2(z)dr(e) <
(1) = cap,(K) = 7k(1), and again since y(1)~! - v € MM(K) we
have Wo(K) < [[v()7! - 9lPe = v()72 I < v((1)7F = Wa(K),
y(1)~t -y = Ak, ¥ = vk. To prove (iv), we note that for any vy € M+ (K),
ly=xll3 = ||7||§+||7K||i—2/k"*vx(w)dv(w) < VM3 +capa (K) ~27v(1)
hence ||||2 —2-v(1) > ||y — k|2 — cap,(K) and the minimum is obtained
for v = vk where |7k |2 — 2 vk (1) = — cap, (K).

Since the maximum in (ii) above is equal vk (1) = cap, (K) we get
6.6. DE LA VALLEE-POUSSIN’S DEFINITION OF CAPACITY.

cap,(K) = max{y(1) | y € MH(K), k* xy(z) < 1 for all z}.
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Let ¢ (z) = pNo(p~Nz), the uniform distribution on B(p~V) =
{z|]z| <p~N}. We have

e = STV [ s
z|<p~—

((1-a) N(1-a) -N
———p forye B
_ Cé(” | yeB(™)
e - B
_C(Oélel b for [yl >p7V.
¢(1) N(a=1) . 4(N) 1—-p*t -N
Th - =27 pi¥le=l), = . pNe

us, YB(p-n)(T) G- ¢ (@) = 5 —, TP (p~ ")
is the equilibrium measure on B(p~™%) :

1 for y € B(p~")

E® xvpp-m(@) =< C1) | N a1 _ C(1) N

—-Ip <==<1 forly|>p
) P < ) i
1) _ 1 _pa—l _

d Bo-NY) = S N@-1 - L=P" N@-1) (o 19l A
and cap, (B(p™")) a-a)? =17 (cf. (8], Ap-
pendix A.1, A.2 on p. 401).

6.7. THEOREM. — cap,, satisfies the following properties :

(i) monotoneness : K1 C Ky = cap, (K1) < cap,(K>);
(ii) subadditivity : K = |J K; = cap,(K) < > cap,(K;);
=1 1=1

(iil) continuity : given K, € > 0, we can find an open U 2 K such that
for all K',
K CK' CU = cap,(K') < cap,(K) +¢;

(iv) translation invariance : cap,(a + K) = cap,(K), cap,(a.K) =
la|' = cap, (K).
Proof.
(i) follows since M* (K1) C M*(K3), hence W, (K1) > Wo(K2).
(ii) follows since if v; = vk |k, is the restriction of yx to Kj;, then
o0 o0
7i(1) < capy(Ki), and so cap,(K) = vk (1) < 3 %i(1) < 3 capa(Kj).
=1 i=1
Assume (iii) does not hold, so that we have K, ¢ > 0, and a

o0
sequence of compact sets K; 2 K; 2 --- 2 K, (] K; = K, cap,(K;) >
1=0
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cap, (K) +e¢. The equilibrium measures g, are weakly bounded (yg, (1) =
cap, (K;) < cap,(Kp)), hence vaguely compact, so after passage to a
subsequence we may assume vk, ~ pu € MT(K). By the principle of
descent k® x p < imk® * vk, < 1 so p(1) < cap,(K). On the other hand,
(1) = lim vk, (1) = lim cap, (K;) > cap,(K) + €, a contradiction.

(iv) follows easily from the definition.

By Choquet’s Theorem, we obtain

6.8. COROLLARY. — Every analytic set is capacitable.

-1
n
For z1-- -z, € K, put d*(z;---x,) = (2> 3 |zi — z;|*t. This
i<j
function obtains its minimal value on the compact set K at certain points
=¢™ | and we define

o () = [ min, a1 2] = () [ 16 -]

zl...zne Z<J

We have

-1 n
im0 = () g T Y g

k=1
i J;ék

() 4 e

= [diam{" "V (K)] 7.

Thus diam* V(K) > diam{™(K), and we have a well defined limit
diam, (K) = lim diam{™(K).

3

6.9. THEOREM. — cap,(K) = diam, (K).

((1-a)

Proof. — Taking the inequality ( )[dlam(")(K N < Y m —
i<j
z;|*1, multiplying by du(z;)du(z;), where p € MW (K) and integrating

(n) times with respect to (z;,z;) € K x K, we get

lIn(n) 1 a-1 z () 2
@) < [ [ o=yl (o)) = 75 sl

Letting n — oo, then taking the inf over all p € MW(K), we get

[diam, (K)]7! < %{capa(K)]_l. On the other hand, let



926 SHAI HARAN

um =

S

> ey € MO(K), and consider the truncated kernel
a3

PR (.20 € N - .
k¢ (z) = {k"(e), | < ||’ where € € Qp is small. We have

[] ki @an
KxK

_ a—-1
<UL g g+ L

G i# "
1— 2 . " _ a—1
= ——C(C(a)a) [;;2— (Z) (dlamfx KN+ __|5|n ]

By vague compactness, after passage to a subsequence, we may
assume p(™ ~ u € MM (K). Since k% is continuous, we can pass to
the limit n — oo, and obtain

. (1—a) . -1
//KkaE (z — y)dp(z)du(y) < @) [diam, (K)]~*.
Now letting ¢ — 0, we get [|ul|2 < %[diama(l()]_l, hence
eapa ()™ < = i (5)]
Note. — By the uniqueness of the measure Ak, we also get Ax = p.

6.10. COROLLARY. — Iff : K — Q, satisfies |f(z)— f(y)| < |z—yl,
then cap, (f(K)) < cap,(K).

Proof. — This property is immediate if cap, is replaced by diam,,
hence it follows from the above theorem.

6.11. LIMIT THEOREM. — Let v, € M}, v, ~ v, and assume that
we have

lim |z|*~Ydv,(z) = O uniformly with respect to n.
R—o00 |z|>R
Then k™ * v(z) =lim k* * v,(x) for a — a.a.x’s. Moreover, if we set
n—0o0
f(z) =lim k* % v,(z) and introduce its lower semicontinuous regular-
n—oo
ization f(z) =lim f(y), then k® x v(z) = f(z) for all z’s.

Yy—

Proof. — By the descent principle k% * v(z) < lim &k * v,(z), so
n—oo
assume we have strict inequality on a set K of a positive a-capacity, and
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without loss of generality K compact. Then
/ k% x v(z)dyk(z) < / lim &% * v, (z)dyk ()
K K n—oo

<lim [ k% *v,(x)dyk(z).

n—oo JK

On the other hand,
[ B = @nc(o)
K

_ /K k% % i (2)d(vn — v)(x)
< /|z|5R d(v, — v)(z) + 0[/|m|>R lz]*~td(vy, — u)(x)]

Since v, ~» v, the first integral approaches zero n — oo, while the second
can be made arbitrary small by our uniformity assumption. This gives the
desired contradiction and establishes the first part of our theorem. For the
second part, note that since k“ % v is lower semicontinuous and everywhere
< f, we have
k® xv(z) <lim k* * v(y) <lm f(y) = f(2).
y—a y—z

On the other hand, using the above and the regularization principle, we
have

f(z) = lim min < lim fM(z
fe)= im min_ f@) < lm f™()

= lim k*xv™(z) = k* x v(z).
N—-oo

7. The Green measure.

The group PGL2(Q,) acts on P!(Q,) by fractional linear transfor-
mations, and we get an induced action on C(P*(Q,)), the C-valued contin-
uous functions on P1(Q,), and an adjoint action on the (signed) measures
on PI(QP)’ We write Pl(Qp) = Qp U {OO}, C(PI(QP)) = CO(QP) ® C,
M(PYQ,)) = M(Qp) ® R.6. For g € PGL2(Q,) and ¥ € M(P(Q,)),
we have gv € M(P1(Q,)) defined by the formula

[ et@dgr(o) = [ plgm)av(z) or o € R (Q,))

We shall be concerned only with the action of the “inversion” I, =
[a:o 1— 23

1 x ], zo € Qp, where I (z) = (z — o)~} + xo for = # g, 0o and
— Zo
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Iy (z0) = 00, Ipy(00) = xo. We have : I, o Iy = id, |Iz,(z) — I, (y)| =
lz—y|
|z—o| - ly—zo|
If K C Q, is compact and o ¢ K, there are positive constants I'; =
p™, I'y = p™2 such that for all z,y € K : 'y - |[z—y| < |Ig,(x) — Iz, (y)| <
T - |z—y|. We obtain T'}™* - cap,(K) < cap, (I, (K)) < T3 - cap, (K);
in particular, cap,(K) = 0 if and only if cap, (I, (K)) = 0, from which we
get that I, preserves the collection of sets of inner capacity zero.

In the following, let K C P!(Q,) be an arbitrary closed set such that
zo ¢ K. Since g ¢ K, 0o ¢ I, (K), the set I, (K) is compact, so let
Voo (K) denote its equilibrium measure. We have a well defined measure
k* % 6,, € M (I,,(K)) given by

¢ -

(K% * 820) * V1o (1) (¥) = T(a)i)ly—:vol‘”“1 Vo (5) (Y)-

We define Pgéz, = L, (k® * 6z, - Y1, (k) € MT(K), explicitly :

[ owaPss.) = S [ ewly-sol =y o ((v=20) + o).

Let us estimate the potential of the measure Pgé,,. We have
k%x P&z, (x)
¢(1-a a—1 1pa
0o [ -y iapge )
= (S0 [ oyt s, o (o (9))
(@) « Yy Y—%o Vo (K)\Lzo\Y
and upon substituting y := I, (y) we get
_ (C(l—a)>2/ ( Lz (%) — 9] )"—1,
@ ) iy \T@) = 2ol Ty =70l ) _
ly — zo|*™ “dvr,, (1) (¥)

((1-a)

C(l_a) a-1 a-1
(a) |z—0| : T(a)— ey () Lz () — 9l d’YIIO(K)(y)

= k,‘a * 61;0(:1:) k% x 'YIEO(K)(IIL'()(:B))‘

Since k% 1, (k)(2") < 1, with equality for a —a.a.z* € I;,(K), and since
I, preserves sets of capacity zero, we get :

k% % Pgég,(x) < k® * 854(x), with equality for o — a.a.z € K.

We will say that a measure v on Pl(Qp) is a-absolutely continuous if for
any set E, cap (E) = 0 implies ¥(E) = 0. Thus every measure of finite
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a-energy is a-absolutely continuous, but not conversely. We summarize the
above discussion of Pgdz, in the following

7.1. THEOREM. — Let K C P!(Q,) be a closed set, and fix

zo ¢ K. Then there exists a (unique) a-absolutely continuous measure
Pgég, € M (K) such that k* x Pg6,,(z) = k® * 65, (z) fora—a.a.x € K.
Furthermore k* x Pgby (x) < k® % 6;.(x) for all z, and Pgé, (1) =
k* x ’yIIO(K)(J,'o) S 1.

The: formula for Pgé,,(1) is immediate from the definition. The
uniqueness of Pgd;, follows from :

7.2. 3¢ UNIQUENESS PRINCIPLE. — Let K be a closed set, v1,vs €
M (K), v; a-absolute continuous. If k* x vy (z) = k® *vp(z) for a —a.a.x €
K, then v, = v,. ’

Proof. — Setting v = v; — vp, we claim that |[k* * v;(z)| < oo for
a — a.a.z’s, hence a posteriori for v — a.a.z’s. Indeed, otherwise we could
find a compact K’ C K, cap,(K’) > 0, with k* xv;(z) = oo for all z € K.
But then we would get a contradiction :

00 = k® *vi(z)dvi (z) = /ka * v (x)dv;(z)
K

< /|z|sady"(w)+0(/|m|>3 |a:|°‘_1du1~(z)) < .

We have, moreover, k* x v(z) = 0 for ¢ — a.a.x € K, hence again for
v — a.a.z’s, so that ||v||2 = / k® x v(z)dv(z) = 0, and we conclude that
K
v=0.

In the following we will let K C P(Q,) denote a closed set and
U = P(Qp) \ K its open complement, with y’s denoting points of U, z’s
points of K. We have the following

7.3. SYMMETRY PROPERTY. — k% x Pgéy, (y2) = k* x Pgéy,(v1),
y,y2 €U.
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Proof.
K Prcy () = [ K = 2)dPR8, (@) = [ K x PRo (2)dPR8(0)
K K

= [ k2 P8, @)dPRA (@)
K .

B /K k% (y1—2) * Prby, (z) = k% * dPRby, (11)-

7.4. DEFINITION.
Kieg = {z € K | k* % 6y(z) = k* * Pgtby(z) for ally € U}
Kire = {z € K | k* % 6,(x) > k* x Pgb,(z) for some y € U}.

The points of Keg (resp. Kiy) are called regular (resp. irregular)
points, and K = Kieg U Kjrr. By the regularization principle and since
ke x 6y(z) = k* * Pgby(x) for a — a.a.x € K, it follows that k* * §,(z) =

k> x Pgé,(x) for an interior point + €K= K \ 0K, so K;;; C 0K. In
particular, if 0K = 0, K = Kieg. If k™ % 6y(x) > k* x Pg6,(z), then also
k® x 6, (x) > k™ x Pg6,(x) for y' near y. From this we get cap, (Kirr) = 0.
Regular points of the boundary 0K are characterized by the following
property of “concentration” of the Green measure,

7.5. THEOREM. — Let o € 0K ; x9 € Koy <= Pgby ~ 65, as
y—x9,y€U.
Proof. — To prove “<=" we use the regularization principle and the

fact that k* %6, (z) = k® * Pgéy(zx) for a —a.a.x € K, hence for a.a.z € K,
to write :

8y (20) -k PR by (a0) = Jlim 5" [ K% (8y0— P28, (@)do

|z—zo|<p~N

N—oo

= pN[v—zoler k%% (by, — PR by, ) (y)dy.
yeU

Thus if zo ¢ Kieg, we can find yo € U such that the left hand side is
> 0, hence we can find a sequence of points y, — xo, y» € U, such that
lim k® (6, — Pgby,)(yn) > 0. But assuming Pgé,, ~ 6z,, we get using

n—00
the descent principle, and the symmetry property,

nli—»nolo K % by, (yn) = k % 8yo(z0) = k* * 624 (y0)
< lim k% x Pgéy, (yo) = lim k% x PRéy, (yn).

mn—00 n— 00
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To prove “==" we take 0 < ¢ € §(Qp), and show Pgd,(p) — 8g,(p) =
p(zo). We write ¢ = k® x ', where ¢’ = k=% x @ is locally constant and
O(|z|~(+9)) as |z| — co. We have

Plz0) = PRA,(0) = K 4 /(@) = [ K x ¢/ (0)dPR8, @)
= [k (0-0) — K x PRoy @) - /()
= [ -a) - b« P8, @) ()
+ / (k*(zo—x) — k*(y—1))¢' (z)dz.

Letting y — xo, the second integral tends to zero, and the first integral
may be rewritten

| [ ke 6, - PR8,) @ )| < maxio@)l - [ ke x 6, - PE8,) @)
U U

Smmclw'l-[/|~

g—xo|>6

k(- PRI+ [ ke a,)dg].

|§—z0|<6
Taking ¢ sufficiently small the second integral inside the brackets can be
made arbitrarily small, while for the first we have by the symmetry property

and our assumption that zo € Kieg,

lim B, PRE)D = [ k(5= PS)(z0)dg =O.

Y720 J|jj—zo|>6 |§—z0|>6

We shall next extend the Green measure Pgd, to points of K. For
T € Kreg We set PR6, = 6;.

Assuming = € Kj,r, by the above theorem we can find some sequence
Yn — T, Yo € U, such that Pgé,, does not converge to 6,. By the
vague compactness of {Pg6, } we may assume that Pgé,, ~ v # &.
Set m = v({z}) € [0,1) and define

1
Pgé, = 1__m(1/~m -6;) € MT(K).
The independence of this definition from the choice of {y,} follows from
the 37¢ uniqueness principle and the following property which completely

characterizes Pgé; :

7.6. THEOREM. — Pgé, is «a-absolutely continuous and
k® x Pgéy(z') = k* * 6,(a’) for a — a.a.x’ € K.
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Proof. — Using the limit theorem, we have for o — a.a.2’ € K,
k*xv(z') = lim k* x Pgé,y, (z') = lim k* * 6, (z') = k% % 6;(z")
n—oo n—oo

and by the descent principle k* xv(z') < k**8,(z") for all 2’. Since k* *v is

bounded away from z, it follows that Pgé, = is a-absolutely

—v
1-m |K~{z}
continuous. Moreover, for a — a.a.z’ € K,

k® x Pg6.(z') = %ka *(v—m-8;)(2') = 1—1——-k°‘ * (6, — méz)(z')

=k x §,(z').

7.7. DEFINITION. — Gg(z,y) = k* * 6y(x) — k™ * Pgéy(x) will

be called the Green’s function of U. We have Ggi(z,y) > 0 for all z, y;

2(z,y) =0 forallz € Kieg, y € U and all y € Kieg. Gg(2,y) = G (y, )
for all z,y ¢ K.

We consider next the problem of reconstructing the potential k% * v,
v € Mqy(K), from its values on K : for all y € U we have

G (2, y)dv(z) = /K G (2, y)dv (@)

Kirr

= f k® % 6y(z)dv(z) — / k® x Pgby(z)dv(z)
K K

=k**xv(y) — / k® * v(z)dPgby ().
K
Thus, we obtain

7.8. M. RIESZ RECONSTRUCTION FORMULA. — For v € M,(K),
yelU=Q,\K,

k* xv(y) = /K k* x v(z)dPgby(z) + /K Gt (z,y)dv(z).

irr

In particular, if v =0 then

]Kirr

k¥ xv(y) = /;( k% x v(z)dPgby(z).

As a corollary we obtain

7.9. 4" UNIQUENESS THEOREM. — Let vy, v € M(K), Vi|K~ =0
(or just 1/1|K. = 1/2|K_ ). If k* x vy (z) = k* *ve(z) for o —a.a.x € K, then
vy = V).
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Proof. — Setting v = v; — vs, =0, so k* x v(y) = / k%

’]

K;

irr K
v(x)dPgby(x) = 0 since Pgé, is a-absolutely continuous. Thus k* xv(z) =
0 for a — a.a.z’s hence for a.a.z’s and our theorem follows from the 1%t
uniqueness principle.

The family of measures {Pgé,} is Borel, i.e. for any ¢ € S(Q,),
Pg6,(p) is a Borel measurable function of z. For any measure v we

define Pgr = /Pﬁ&zdu(z), ie. PRu(p) = /Pﬁéz(go)du(z). Pgv is a
positive distribution, hence a measure : P§v € M*(K), and is such that

PI%I/IK = 0. Similarly, if v is any signed measure, Pgv is again a signed

measure. Moreover, Pgv solves the problem of “Balayage” or sweeping out
v onto K while preserving the potential.

7.10. BALAYAGE PRINCIPLE. — For any (signed) measure v there
exists a unique (signed) measure Pgv, such that :

(i) supp Pgv C K;;
(ii) P,%ll'Km =0;
(iii) k** Pgv(z) = k* xv(z) for a — a.a.x € K.
Moreover, if v is a measure, then we have also
(iv) k™ * Pgv(x) < k* *v(z) for all x.
Proof. — Properties (iii) and (iv) follow immediately from the cor-
responding properties of Pk6,. Uniqueness follows from the 4** uniqueness

theorem.

From the uniqueness of Pgv we get the following transitivity property
of balayage :

7.11. CoROLLARY. — Let K; D K, be closed sets, v a signed
measure, then

PR,y = P, (Pg,v).
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Note also that we have, for K compact,

Pgv(l) = /KldPI‘}u(:c) = /Kka*'y;((z)dPl%l/(z)
= / k* x PRv(z)dyk(z) = / k® * v(z)dvk (x)
K K
= /k"‘ * vk (z)dv(z) < /dl/ =(1).

7.12. EXAMPLE. — For B(p") = {z | |z| < p"}, 20 ¢ B(p"), we
have

¢(1) _nea
B(pN)‘S-'Eo = C(a)p N l

20| p(p" z)dx

Indeed, the potential of this measure is equal to

C(l a) C(l) —Na a—1 _ a—ld .
RO Mo i
for y € B(p") we can put z := z+y and we get C(Cl( ))Ix |1 =
k® * 6, (y). For y ¢ B(p") we obtain ¢l-a) c(1) pN (A=) gg|a— Lyt

(@) (@
< 1, and since for |y| > p" and |zo| > p¥,

<)
()

lzg* =y~ < p~V, hence pNU=M|zo|*y|*~1 < |zo — y|*7! (cf. (8],
Appendix, A.6, p. 402).

which is < k**6,,(y), since =——

7.13. EXAMPLE. — Let By = {z | |z| > p~"}, and set

oy, g(“)) p -0 Vo)), ]’Ha € M*(By).

We have for all zy ¢ By, PgNézo = 52"1\,). Indeed, for y € By
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((1——a)5@ —Na _jo—1 dz
@ (@’ /lz.zp-:v ly==l"" e
(1 a) C(l) —Na _1la—1

@) @’ /|m|sz lya=1|*"de

k® % 60y (y) =

¢(1-a) ¢(1) pNely|- ae
RO R
C(l_a) C(l) ~Naj,,|— ad‘r
(@) @)’ o 1/1z1>p~|y| = [e]
(1 a) C(l) —Nal I—IC( ) NaI la
@) (@ cn? v
_ ¢(1-a)

a-1 __ ra
@ [y|*=" = k% * 854 (y)-

On the other hand for y ¢ By,

ka*é(aN)( )= C(l—a)g_(}l -—Na/‘ _d_-'L'_ C(l—a)@ N(l—a)‘

(@ @) feppn 2P T (@) ((a)

Since for any xo ¢ By, [y—zo| < p~V so |y—zo|*~! > pN(1-); and
¢(1) - 1
since 22— < 1, we get k x 6%, (y) < ly—zo|* ™" = k* * 65, (y) (cf.
(( ) (N)( C(a) I o( ) (
[8], Appendix, A.3, A4, p. 401).
Lo _ C(l) —Na/ dz _ : fa 3
Note that oy, (1) = C(a) g [ =1, ie 6y is a
probability measure. We note also that we have, as is easily verified,
S?N)wéoasN—»oo,
SE’N) ~ S?N) as a — 3.
The measure 5?1\,) defines an operator (via convolution), applicable to any

function f € L] _ such that /
lz|>1
applicable to any potential f(x) = k* * pu(x), p € M,.

|f(:L')|| |1+°‘ < o0; in particular, it’s

8. a-super-harmonic-functions.

The following lemma establishes a relation between 6( ~) and k™ that
will motivate much of the development of this section.
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8.1. LEMMA. — Let f€ L}, / < 00, and assume

o T

f is locally constant near xo. Then
- 1+a a
k7 x f(azo) = U i 500006 — o)« £(ao),

¢(1) N
indeed, equality holds for N > Nj.

Pgoof
M5, - 5) » f(ao)
1
=S [ - s )i
z|>p—N
_ ((1+a) _ dz
= C('—a) [leP_N(f(wO + :1,') f(330)) l$|1+a
1
since —p* =p*—1= - and the lemma is obtained upon letting
N 55 ) ¢(=a)
8.2. DEFINITION. — A function f : Q, — [0,00], f # o0, is called

a-superharmonic (a-s.h.) if

(i) f is lower semicontinuous;

dz
ii F(@) s < 005
SN
(iii) For any zo € Qp, there exists Ny such that for all N > Ny :
f(=0) 2 8y * f(zo).

8.3. DEFINITION. — A function f : Qp — CU {00}, f # o0, is
called a-harmonic (a-h.) at o, if :

(i) f is locally constant near xo;

.. dx )
(i) /H @) e <00
(i) k= * f(zo) =

By Lemma 8.1 conditions (i) and (iii) are equivalent to f(zg) =
o¢ny * f(zo) for all N > No.

f will be called a-harmonic in an open set U, if it is a-h. at each
zo € U. Explicitly, f(zo) = (l—p“’)/ f(zo + pNz)|z|~*d*z, for all

|z|>1
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8.4. Example. — The constant function f(x) = c is everywhere
harmonic, since S?N)(l) =1; for ¢ > 0 it is a-s.h.

8.5. Example. — A potential f(z) = k* *xv(z), v € M, is a-s.h.
Indeed, we have

5(“N) * f(zg) = /k“ * v(zg — x)dS?N) (z) = /k"‘ * S?N) (zo—z)dv(x)

< /ka(xo—m)du(x) = k% xv(zo) = f(z0)-

Moreover, in the complement of supp(v) it’s a-h. Indeed, if z¢ +
B(p~™o) is disjoint from supp(v), then for x € supp(v), zo—z € By for all
N > Ny, and we obtain

52"1\,) * f(zo) = /k"‘ * v(zo — z)dSE“N)(z) = /k"‘ * 5?1\,) (zo—z)dv(z)

= /k"(zg—z)du(z) = f(zo)-
We shall establish below a converse to these examples.

8.6. LEMMA.
(i) Let f € L*(B(p"),dz) be extended to all of Q, by putting, for
5o > 2%, flo0) = Sehp ¥ [ fla)da (a0l then 1 is ach. in
C(Ol) |lz|<pN
Qp B(M).

(ii) Similarly, let f € L* (BN, lx—(ljgz) be extended to all of Q, by
giving it the constant value Zc%p_N“ /lmIZp—N f(:v)|—$|dl% on Q, \ By;
then f is a-h. in Qp By.

Proof. — An easy calculation gives for |zo| > p" > p™™ :

ST [ =0l a4+t = Mgt = pNag

le—=g|>pN
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To prove (i) we calculate for |zo| > pN, M > —N,

C(l) - dz
(M) * f(x()) C( ) \/'z|2p—M f(wo - .’L‘) Im|1+a

o Ll) -Mo A —(14a)
D [/|y|5pN f(y)dy - |zol

(@
ot~ g SA) - Na

L I - O L
=_C_(l)_ —Na du - a-1 —2a, (N-M)a

SO R

1

|zo|* _Ma% 'lszpl_MN |-’E—1:o|a_1|$|_(1+a)dw]

= f(zo)

by the definition of f(x¢) and the above claim.

The calculation for (ii) is even easier : for |zo| < p¥, M > N,

* f(x —ﬁ —Ma x _dz_
(M) f( 0) C( ) I:\/|z|2pN f( )|x|1+a

dy_ (1) dr
e B ) Joe @)

¢(1) _Na d ~M)a
- %p ) v/la:!>pN f(z)lxllaj'_a [p(N "

@ - dy
’ C(@)” /p—M5|y|<p—N Iyl”"]
= f(zo).

We note that if f is a-s.h., then since 6( N N 60 and f is semicontinuous,
we get ]\}Lr}loo 6(N) *x f(z) = f(z). In pa,rtlcular, if f1, fo are a-s.h., and
fi(z) = fao(z) for a.a.x’s then f; = fo everywhere.

Let U C P1(Q,) be an open bounded set and put K = Pl(Qp) \U.
Let f be a continuous function in K such that |f(z )|| |1 — < oo

|z >1
Define :

hy(y) = /K f(2)dPgs, (z).
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8.7. SOLUTION TO THE DIRICHLET PROBLEM. — hy is a-h. in U,

hg Krog Nk

reg

Proof. — For z € Kieg, Pgb; = 6, by definition, so indeed hs(z) =
f(z). Fix yo € U. The integral defining h¢(yo) is finite; indeed, take M
such that Bys C K, then as is easily seen Pg 6y, IBM < PgM dy,, and by our

assumption on f, we get

/ | (2)|dPE 8y, (x) < / F@)IdPE_6,0(2)
By Bum

1) _ma
IZ((‘;)SP " /z|_>_p‘ I (x)ll |1+a < oo

Next, let Ny be such that yo + B(p~™¥°) C U, then for any N > Ny,
K Cyo+ BN, and we have

Byt hslwo) = [ @B 5 8000)
Yo+BnN
/ / f(x)dPgbydP> 5 6y,(y) (by definition of hy)
yo+Bn /K y
~ [ f@a[  aPpe,@aRy, 5,80 W)
K yo+Bn v

= / f(x)dPgb,,(x) (by transitivity of Balayage)
K

= hg(yo)-

Since for any y} € yo + B(p~™°), yh + Bn, = yo + Bn,, we also see that
h¢(yy) = hy(yo), i.e. hy islocally constant in U, concluding the proof that it
is a-h. in U. We note that, since for U 3 y — z¢ € KegNOK, PR6y ~~ b4,
we have h¢(y) — hy¢(zo), i.e. hy is also continuous in Kieg, and its only
discontinuities can appear in Kj,.

8.8. PRINCIPLE OF THE HARMONIC MINORANT. — Let f be a-s.h.,
and let g be a-h. in an open set U, continuous in U, and assume co ¢U
(possibly oo € U).

If f > gonQ,~\U, then f > g everywhere; if f(xo) = g(xo) for some
xo € U, then f = g almost everywhere.

Proof. — Let d = f—g; d is lower semicontinuous on U. At any point

be U~U,wehave lim d(z)=lim f(z)- lim g(z)> f(b)—g(b) > 0.
Usz—b z—b Usdz—b
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Consequently, if d assumes negative values, then there is a point zg € U,
where d(z() achieves its minimum, and we have a contradiction : for N >> 0,

d(z0) < 8yy * d(0) = 6y * f(20) — 6y * 9(0) < f(x0) — 9(x0) = (o).
If f(zo) = g(xo) for some zg € U, then again 52"1\,) * d(zo) = 0, hence

d(z) =0 for a.a.z’s.

8.9. COROLLARY. — Let f be a-s.h.. If f(z¢) = inf f(z) for some
xo9 € U, then f(z) = f(zo)-

E.g., we have G§;(y1,y2) > 0 for all y;,y2 € U; indeed, G&(y1,y2) is
a-s.h., and a-h. for y; # ys.

We have the following converse to the above principle :

8.10. LEMMA. — Let f : Q, — [0,00] (f # o0) be lower semicon-
tinuous, / f (x)ﬁ%w-;-_a < 00, and assume f satisfies the principle of the
|z|>1

harmonic minorant. Then f is a-s.h.

Proof. — Fix g € Q, N € Z and let g be the function constructed

in lemma (ii) with respect to f'z tBa Since g is a-h. and continuous (even
o N

constant) in the open (and closed) set {z | |[x—zo| < p~"}, and since on
the complement we have f > g (even f = g), we obtain by applying the
principle of the harmonic minorant 6¢y, * f (zo) = g(z0) < f(z0)-

Noting that in the above proof N was arbitrary, we get

8.11. COROLLARY. — If f is a-s.h., then S(C'N) % f < f for all N.

8.12. THEOREM. — The class of a-s.h. functions is closed under :
(i) addition and multiplication by a positive constant;
(ii) passage to the limit of a sequence converging uniformly;

(iii) passage to the limit of a monotone increasing sequence (if the
limit is # 00);

(iv) the operation inf, applied to a finite number of elements;

(v) convolution with a measure (if the result is # 00).

Proof. — (i), (ii) and (iv) are trivial. To prove (iii), assume fy are o-
sh., fn < fry1, f(2) = lim fr(2) # co. Then f(z) 2 fo(z) 2 6fy) * fa(2),
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and by monotonicity we can let n — oo to obtain f(z) > S?N) * f(z). To
prove (v), let f be a-s.h., u a positive measure such that p* f # oo. Then
we have u* f = lim (,ulB (pn)) * f a monotone increasing limit, so by (iii)
n—oo

we are reduced to the case that p has compact support, but then we can
use Fubini theorem to obtain

px f(@0) > p* (8 * F)(zo) = (1 * f) * 6, (o).

8.13. COROLLARY. — If f is a-s.h., then k~® x f is a positive
measure.

Proof. — Here k=% x f(yp) aef k=(f * ) for ¢ € S(Qp), and we

need to show that, if ¢ > 0, then k= % f(p) > 0. By (v), f * ¢ is again
a-s.h., and noting that it satisfies the conditions of Lemma 8.1, we get

k—a(f * <P) — C(;(_’l_)a) IJi_I}loop(l+N)a(60 _ S?N)) * (f *30) > 0.

We now arrive at the following important result :

8.14. RIESZ REPRESENTATION THEOREM. — A function f is a-s.h.
if and only if f = k* xv + ¢, v € MZ, ¢ > 0. In this representation, the
measure v and the constant c are unique. Moreover, f is a-h. at x¢ if and
only if £y ¢ supp(v).

Proof. — The “if” part of the first statement has been established
above, so let f be a-s.h.. Consider the function fy constructed in Lemma

8.6, (i) for le(pN), ie.

f(z) |z| < pV

an - |z|*1  |z| > pN where ay = ﬂp‘N"‘/ f(z)dz.
C(Oé) |lz|<pN

Since fy is a-h. outside B(p"), and since fy(z) < f(z) for z € B(p") and

x = 0o, we get by applying the principle of the harmonic minorant : fy < f

everywhere. Consequently, for zo € B(pV) : 5?M> * fn(xo) < S?M) * f(xg) <

f(zo) = fn(zo), i-e. fn is again a-s.h.. Moreover, since fy_1 is a-h. outside

B(pN~1), and since fx_1(z) < fn(z), for z € B(pV~!) and z = oo, we

obtain by another application of the principle of the harmonic minorant :

fn-1 < fn everywhere.

In(z) =

Since fn(z) — an|z|*~! has compact support, we easily get

In(zo) — an|zol®™! = k% * (k=% * (fn(2) — an|z|* ™)) (o) for a.a.z¢’s.
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But the right hand side equals k® * (k™ * fn)(x0) — an|zo|%~!, hence
fn(z) =k%* (k7% % fy)(z) for a.a.x’s.
Since fy is a-s.h., vy = k~%* fy is a positive measure and £ x vy is again
a-s.h., hence
fn(z) = k% xvn(z) for all z.

Since the fy monotonically increase to f, we obtain by the dichotomy
principle (4.6)
f(z) = lim fn(z) = lim k**xvy(z) = k* *v(z) + c for a.a.x’s
N—-oo N-oco
for some v € M7 and ¢ > 0. Again, since both sides are a-s.h., we get
f(z) = k% xv(z) + c for all z.

. dz
Furthermore, since / k* * v(2) =5 < 00, we have
|lz|>1 le to

, ) vy _do
a_ ka V)= ——— k*xv r)———— — 0
EmE )= a) fygsn ™0 e

hence : Nlim S?N)( f) = ¢, which proves the uniqueness of ¢, and hence of
——00

v. The harmonicity statement is clear.
8.15. COROLLARY. — A function f is a potential of a measure if

and only if f is a-s.h. and lim 5?N)(f) =0.
N——o00

8.16. COROLLARY. — Let f be a-s.h. and v € MY. Then
inf{f, k™ * v} is a potential of a measure.

Proof. — Since both f and k* x v are a-s.h. so is inf{f, k® * v}, but
we also have

: fa (s a < s Sa fe' =0.
NEr-r—loo o0y (inf{f, k% *x v}) < N}lr—x—loo oy (k* *xv) =0
As another application we have,

8.17. PRINCIPLE OF DOMINATION. — Let f be a-s.h., v € £} ; then
if k* xv(z) < f(z) for v — a.a.x’s, then k* x v < f everywhere.

Proof. — By the above corollary inf{f, k® x v} = k* * 1/, for some
vVoe ME. But ||V ]a = /k"‘ x V' (z)dV (z) < /ka x v(z)dV (z) =

/ko‘*l/(x)dl/(x) < /ka*y(x)du(x) = ||V||a < 00, i.e. V' € EF. Moreover,

Iy =V = [ vla) K 4 /(@) (dr(o) - /()
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and we can restrict the integral to {z | k* *v(z) > k® xvV'(2)} = {z |
k* xv(z) > f(z)} which by assumption has v-measure 0, hence we obtain
lv=v'2 = - /(k" xv(z) —k**1'(z))dv'(z) <0, hence ||v—2/||o = 0, and

by the 2"¢ uniqueness principle v = 1/, s0 k% v = k% x ' = inf{f, k* * v},
ie. k**xv < f.

8.18. Remark. — The condition v € £} can be weakened to :
k* x v(z) < oo for v — a.a.x’s (cf. [8], Theorem 1.29, p. 115).

Recall that for a compact set K, we have g its equilibrium measure,
and denote by fx = k™ * vk its potential, so fx(z) < 1, fk(z) =1 for
a—aazx€ K.

8.19. CoroLLARY. — IfK' C K, then fix' < fk.

Proof. — fk:/(z) =1 = fk(z) for @ — a.a.x € K’, so in particular
fr(z) < fx(z) for yx» — a.a.x’s, and by the principle of domination
frk' < fx everywhere.

8.20. COROLLARY. — fk,uk, *+ frkink, < fk, + fk,-
Proof. — Since frx,nkx, < fk,, and since for o — a.a.x € Kj,
lequ(fL') = 1 = le(x)) we Obt’a‘in kOt * (’YK1UK2 + nyanz)(x) =

fK1UK2(m) + fonKz(x) < le(.’E) + sz('/L') = k%« (’7K1 + 7K2)($) for
a—a.a.x € K;. By symmetry this inequality holds also for a — a.a.z € Ka,
hence it holds for (vx,uk, + Yk.nk,) — @.a.2’s and by the principle of
domination it holds everywhere.

This corollary gives us the following convexity property of cap,,.

8.21. COROLLARY.
cap, (K1 U K2) + cap, (K1 N K3) < cap, (K1) + cap, (K2).

Proof. — Set v = vk, +YK, — YK1UK, —YK1nKs, SO that k**v(z) > 0

for all z. We have
cap, (K1) + cap, (K2)— cap, (K1 U K3) — cap, (K1 N K3)

=TK, (1) + ’sz(l) - ’YKlUKz(l) - ’yKanz(l)
=v(l) = /k" * YK, UK, (Z)dv(z)

= /ka * V(Il))d’)/KluK2 (.’L’) >0.
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