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CONSTRUCTIVE INVARIANT THEORY FOR TORI

by David L. WEHLAU

Introduction.

Let p : G — GL(V) be a rational representation of a reductive
algebraic group over the algebraically closed field k. The action of G on V
induces an action of G on k[V], the algebra of polynomial functions on V,
via (g f)(v) = f(p(g~ )v) for g € G, f € k[V] and v € V. The functions
which are fixed by this action form a finitely generated subalgebra, k[V]¢,
the ring of invariants. The problem of constructive invariant theory is to
give an algorithm which in a finite number of steps will explicitly construct
a minimal set of homogeneous generators for the k-algebra, k[V]C.

Now if {f1,..., fp} is such a set with deg fi > deg fo > ... > deg f,
then although the f; are not uniquely determined the p-tuple of degrees
(deg fi,...,deg fp) is unique. The number Ny g = degfi is of special
interest. It is the minimal integer N such that k[V]® is generated by

the subspace @ k[V]$ of invariants of degree at most N. Clearly an

algorithm whlch constructs {f1,..., fp} also produces Ny, = max{deg f; |
1 < i < p}. For many groups, G, (e.g. if char k = 0 and G is reductive)
the converse is also true : given Ny, there is a finite algorithm which
constructs {fi,..., fp} (cf. [K], [P]).

If G is a finite group and the characteristic of k does not divide |G|,
then by a celebrated theorem of Emmy Noether’s, Ny ¢ < |G| (see [N1]),
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[N2]). Recently Schmid has considered the question of whether this bound
is sharp ([S]). She has shown that Ny ¢ < |G| if G is not cyclic and has
determined Ny, for various groups of small order including all abelian
groups of order less than 30.

If G is semi-simple and the characteristic of k is zero and the
representation p is almost faithful, then Popov has given in [P] an upper
bound for Ny,g. Following the methods of Popov, Kempf ([K]) derived an
upper bound for Ny ¢ in the case that G is a torus and the characteristic
of k is zero. Kempf also observed that these three bounds (for G finite, G
semi-simple and G a torus) could be combined (by multiplying them) to
obtain a bound for the general reductive group in characteristic zero.

The bounds for infinite groups are very large. In this paper we will
consider the case G = T is a torus and give better bounds for Ny r. In
addition we will construct certain distinguished elements of a minimal
generating set for k[V]T.

I would like to thank John Harris for many helpful conversations.

Diagonalization.

Let k be an algebraically closed field of any characteristic. Let T
be a torus, i.e., T is an algebraic group which is (abstractly) isomorphic
to (k*)" and suppose that p : T — GL(V) is a rational representation
of V. Let X*(T) denote the lattice of characters of T. Then X*(T) is
(abstractly) isomorphic to Z". From now on we will assume that we have
chosen a fixed basis of V' consisting of eigenvectors, {vy,...,v,}, and that
{z1,...,2n}, is the corresponding dual basis of V*. Furthermore we will
denote the weight of v; by w;. Then p induces an action of T on V* C k[V]
which in terms of weights is given by ¢ - z; = —w;(t)z;. The action on
all of k[V] & k[z1,...,z,] is obtained from the action on V* by the two
requirements ¢t - (fg) = (t- f)(t-g) and t- (f+g) =t - f+t-gforteT
and f,g € k[V].

We will consider monomials X4 = z{'z§? - ... 23» where A =
(ay,...,a,) € N Clearly T acts on X by t - X4 = x(t)X* where x
is the character x = —(ajw; + ... + a,wy,). We will denote x by wt(X4).
The invariant monomials are in one-to-one correspondence with the semi-
group, S :={AeN" | XA ek[V]T} = {4 e N" | qyw; + ...+ apw, = 0}
where o is the trivial character in X*(T'). This semi-group was first studied
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by Gordan. He used it to show that k[V]7 is a finitely generated algebra
by showing that S is finitely generated as a semi-group (see [Go]).

Recall that a representation p : G — GL(V) is called stable if the
union of the closed G-orbits in V contains an open dense subset of V. It
is sufficient to consider only faithful stable torus representations, (cf. [W],
Lemma 2). From now on we will suppose that p is both faithful and stable.

Kempf’s bound.

Choosing an explicit isomorphism ¢ : T — (k*)" induces an explicit
isomorphism ¢* : X*(T) — Z". The isomorphism ' is determined only
up to Aut (T') =2 GL(r,Z). Having fixed a choice for ¢ we may write out the
weights of V' as r-tuples: w; = (wi1,...,wir) € Z" for 1 <i < n. Then we
may define w := max{|w; ;| : 1 <i <n, 1 <j <r}. Kempf showed in [K]
that Ny < nC(nr!w”) where C(m) is the least common multiple of the
integers 1,2,...,m. This bound has the disadvantage of being dependent
on w which depends on the choice of .

Example 1. — Let T = (k*)? and let V be the 4 dimensional
representation of T with weights (2,2), (-1,0), (0,—5) and (2,-1). It is
fairly simple, for example using the iterative method of the next section, to
compute a homogeneous minimal system of generators for k[V]T. We find
that k[V]T = k[XF, XF2 X4] where R; = (5,10,2,0), Rz = (1,6,0,2)
and A = (3,8,1,1). Therefore Ny = degR; = 17. Here r = 2, n =4 and
w = 5. Hence for this example Kempf’s bound gives Ny,7 < 4C(4-2!-52) =
4C(200) > 4(3 x 10%) > 10%.

An iterative method.

Consider first the case r = 1. Here the isomorphism of 7" with k* is
determined up to GL(1,Z) = {£1} and thus w is completely determined
in this case. Fixing one of the two choices 9 : T — k* we may write the
weights of V' as integers : wy,ws,...,ws € Z. Set w_ = min{w;|1 <i < n}
and wy := max{w;|l1 < i < n}. Our assumptions that p is stable and
faithful together imply that w_ < 0 and wy > 0.

THEOREM 1. — Let V be a representation of k* with weights
w1 2wy >...2>wy and set B :=w; —wy. Then Ny~ < B.
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Proof. — Suppose X4 € k[V]T has degree d. We will construct a
sequence of d monomials: hq, hg, ..., hqg with w, < wt(h;) < w; — 1 for all
1 < i < d as follows. Choose j such that w; < 0 and define hy := z;. If
wt(hsm) > 0 then we choose j such that z; divides X4 /h,, and w; < 0.
Similarly if wt(h.,,) < O then we choose j such that z; divides X4/h.n,
and w; > 0. In either case we define hpq1 = zj hp,. If d > B then by
the pigeon hole principle, two of the monomials have the same weight :
wt(h;) = wt(h;) where we may assume i < j. But then h := h;/h; € k[V]T

divides X4 and so we see that X4 is not irreducible. O

Remark 1. — If ged(wi,w,) = 1 then the invariant z7“"z¥' is
irreducible and has degree B = Ny x-.

Remark 2. — Note that w = max{w;, —w,} and therefore Ny« <
2w.

THEOREM 2. — Nyr < (2w)? !

Proof. — We proceed by induction on 7. The theorem is true for the

case r = 1 by Remark 2. For higher values of r we consider the coordinate
decomposition of T" induced by the isomorphism ¥, i.e., T =T} x ... x T,
where T; = k* and the weight of x; with respect to Tj is w; ;. Set
T = T, x ... x T, so that T = T; x T'. By induction, there exist
monomial generators hy,...,h, of k[V]T with degh; < (2w)® '~ for
all 1 < i < p. Write h; = X4 and set v; := wt(h;) € X*(T1) = Z. Then
Vi = w11 + ...+ Gpwp,1. Hence |v;| < aqw + ... + apw = (deghy)w <
(2w)@ =Dy,

Let V3 be a p dimensional k-vector space and suppose that T3
acts on V; by the weights —v,...,—v,. Then we have a Tj-equivariant
surjection k[Vi] — k[V]T = k[hi,...,hp]. In particular we have the
surjection k[V3]Tr — (k[V]T)T = k[V]T. Hence Ny7 < Ny - Ny, 1, <

(2w)@ 7D L 2(2w)@ T Dy = (2w)? L. O

For the representation described in Example 1 (for which Ny = 17)
this theorem gives the bound Ny, < 1000. This is a better bound than
Kempf’s for this example but this is only because r is so small in the
example. As a function of r the bound given in Theorem 2 grows much much
faster than Kempf’s bound. This new bound is, however, distinguished by
the fact that it is independent of n = dim V.
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Geometric bounds.

In this section we will construct a set of distinguished monomials
which is a subset of a minimal generating set for k[V]T. We begin with
some notation and definitions. We will use o to denote the origin in
X*T)Q=Q™.If Z=(21,-..,2n) € Q" define deg Z := 21 + ... + 2.
We also define supp(Z) := {¢ | 1 < i < n, 2z # 0} and the length
of Z, U(Z) := #supp(Z) — 1. If {Z4,...,Z4} C Q™ then H(Z1,...,2Z4)
denotes the convex hull of the points Z1, ..., Z; and P(Zy,...,Z4) denotes

d
the convex set {EaiZi | a; € [0,1] for i = 1,...,d}. Notice that if
=1

{Z1,...,Z4} is linearly independent then P(Z1, ..., Z4) is a d-dimensional
parallelepiped.

By a polytope we will mean a compact convex set having finitely many
vertices. The vertices of a polytope P are characterized by the property
that Y is a vertex of P if and only if the set P\ {Y'} is a convex set. A
d dimensional polytope having d + 1 vertices is a simplex. We will often
consider the case of a d dimensional polytope P C Q™ with m > d. In this
case when we refer to the volume of P we mean the (positive) d dimensional
volume of P obtained by considering P as a subset of the d dimensional
affine space, A¢, spanned by P. If we wish to consider the m dimensional
volume of P (which is zero if d < m) we will write vol,(P). Similarly the
relative interior of P refers to the interior of P defined by the subspace
topology induced by P C A4,

The monomial generators of k[V]T correspond to generators of the
semi-group S. Gordan showed how to find the generators of S (see for
example [O], Proposition 1.1 (ii)). Consider the pointed (half) cone I' C
(Q*)™ generated by S: I := (Q* - S) where Qt = {qg€ Q| ¢ >0}. This

cone, T, is just the set of solutions (z1,...,2,) € (Q*)™ of the system of
equations :
(%) ziw1 + ...+ zpwy, =o0.

If £ is an extremal ray of I" then £N S is a semigroup isomorphic to N. Let
R, denote the unique generator of this semigroup. Write {Ry,...,Rs} =
{Rz | £ an extremal ray of C}. The intersection P(R;,...,Rs) N S is
a finite generating set for S. Following Stanley ([St]), we call these R;
completely fundamental generators of S. These are characterized by the
fact that if mR; = A+ B for some m € N and some A, B € S then A = kR;
and B = (m — k)R; for some integer £ < m ([St], p. 36). The elements
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XPBi . XPRs are the distinguished monomial generators we referred to
earlier.

Now we are ready to begin our construction of the completely
fundamental generators.

LEMMA 1. — There exists A € S with supp(A) = Q if and only if
o lies in the relative interior of H(w; | i € Q).

Proof. — Suppose 0 # A € S and supp(A4) = Q. Then we have
o= Xn: aw; = z aw; = Z (a;/ deg A) w;. Since a; > 0 for all i and
Z ail==1 deg A vtfinsee that 2(6)96 H(w; | © € Q). Furthermore, since the
:Séfﬁcient a;/ deg A is non-zero for each i € , o is an interior point of
H(w; | i € ).

Conversely, suppose that o lies in the relative interior of H(w; | i € ).
Then there exist rational numbers p;/q where p;,q € N with 1 < p; < ¢
such that > (p;/q)w; = 0 and Y p;/q = 1. Hence if we define p; = 0 if

€D i€Q

n
i ¢ Q we have Y p,w; =0 and A := (p1,...,pn) € S with supp(A) = .
=1

O

Define a partial order on I' \ {o} by inclusion of supports, i.e., if
Y1,Y, € T'\ {0} with supp(Y1) C supp(Y2) then Y7 X Y. Alsogiven Y €T,
define o(Y') := H(w; | © € supp(Y)).

PROPOSITION 1. — Leto #Y € S withY/m ¢ S for all m > 2.
Then the following are all equivalent :

(1) Y is minimal inT.
(2) o(Y) is an £(Y) dimensional simplex with o in its relative interior.

(3) Y is a completely fundamental generator of S.

Proof. — The proof that (1) = (2) follows from Lemma 1. Let Y’
be an element of S which is minimal with respect to the partial order. Then
by Lemma 1, o lies in the relative interior of o(Y’). Therefore o(Y) is an
£(Y) dimensional simplex with o in its relative interior. For if this were
not true, by Carathéodory’s theorem (see for example [B], Corollary 2.4
or [O], Theorem A.3), we could find a proper subset  C supp(Y) such
that o € H(w; | i € Q). But this would contradict the minimality of Y.
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In particular, this implies that any proper subset of {w; | ¢ € supp(Y)} is
linearly independent.

Now to see that (2) = (3), suppose (2) holds and that there exists
n € Nand A,B € S with nY = A+ B. Since o(Y) is a simplex, o can be
expressed uniquely as a convex linear combination of {w; | 7 € supp(Y) }:
Y  ow;=owherea; € [0,1]]and Y a; =1 Now ) aw; =0
i€supp(Y) 1€supp(Y) i
and a; = 0 if ¢ ¢ supp(Y’). Hence, by the uniqueness, we have a;/ deg(A) =
a; = y;/ deg(Y). Therefore A = (deg A/ degY)Y from which it follows that
Y is completely fundamental.

Finally, we prove that (3) => (1). Suppose Y is a completely
fundamental generator of S and Z € T’ with Z <X Y. Clearly, clearing
denominators, we may suppose that Z € S. Since Z XY, for m € N
sufficiently large we have my; > z; for all 1 < ¢ < n. Hence mY decomposes
within S as mY = Z + (mY — Z). Since Y is completely fundamental, this
implies that Z = kY for some k£ < m. Hence supp(Y) = supp(Z) and
Y <Z a

Thus to each minimal element Y of I' we have an associated 4(Y")
dimensional simplex, o(Y) := H(w; | ¢ € supp(Y)). Given supp(Y) we
can recover Y since every point in a simplex can be written uniquely as
a convex linear combination of the vertices of the simplex. Therefore the
map Y — supp(Y) is one-to-one. Moreover, if Y € I' is minimal then
{w; | i € supp(Y)} is a minimal linearly dependent subset of {w1,...,wn}.

Note that the map Y — o(Y) is not necessarily one-to-one. More
precisely, supp(Y) — o(Y) is one-to-one if and only if the weights of V" are
distinct. If V; and V5 are two representations of 7" having the same weights
(except for multiplicities) then clearly, Ny, r = Ny, r and thus it would
suffice to consider only representations whose weights were distinct.

THEOREM 3. — If the R; are ordered so that deg R; > deg Ry >
n—r
...>degRs then Ny < ) degR; < (n—r)degR;.
i=1

Proof. — Suppose o # A € S. By Carathéodory’s theorem we may
write

A= alel +...+ an_,R]-

n—r

where each a; > 0. If @; > 1 then we may decompose A within S as
A =(A-Rj,)+ R;,. Hence if A is a generator of S then each o; < 1. But
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thendeg A = a;deg Rj, +...+an_rdegR;,_ < degRj +...+degR; <

degRy +...+deg R, . (]
Remark 3. — Applying these two bounds to the representation of
Example 1 we get Ny <17+ 9 =26 and Ny <217 = 34.

A theorem of Ewald and Wessels ([EW], Theorem 2) allows us
to improve the preceding theorem. Specifically, (using the notation of
Theorem 3) they show that if oy + ...+ ap—r >n—7r—1 > 1 then A
is decomposable within S. Thus we have the following corollary.

COROLLARY 1. — Ifn—r >2then Nyr < (n—7r—1)deg R;.

Remark 4. — If we apply this result to Example 1 we find that
NV,T.<_(4—2_1)'17=17'

The following proposition shows how the completely fundamental
solutions are distinguished among the elements of a monomial minimal
generating set.

PROPOSITION 2 (Stanley [St], Theorem 3.7). — Suppose
{X4:,...,X44} is any minimal set of monomials such that k[V|T is in-
tegral over k[ X4, ..., X#44]. Then g = s and there exists a permutation
of {1,..., s} such that supp(R;) = supp(An(;))- In fact, there exist positive
integers my, ..., ms such that A,y =m; - R;.

Remark 5. — Kempf ([K]) also constructed the elements Ry,..., R;.
His method of construction is somewhat less direct than that which we will
give in the next section and consequently the bound he gave for deg R; is
larger than the one we will give.

Computing the completely fundamental generators.

In this section we will give an algorithm for finding the completely
fundamental generators. Suppose €2 is a minimal linearly dependent subset
of {w1,...,w,} with 0 € H(w € Q). Then Q@ = {w; | ¢ € supp(R;) } for
some j. We want to compute R;. Set d := ¢(R;) < r. Then without loss of
generality we may suppose that supp(R;) = {1,2,...,d+ 1}. Consider the
system of r linear equations in d unknowns :

(1) Yiwi + ... + Ydwd = —Wd+1-
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These 7 equations impose only d conditions and so in order to solve this

system we take the r x d matrix of rank d, M := (w; w2 ... wg) and choose
a d x d non-singular submatrix M’. If M’ consists of the rows ji,...,Jjq
of M then the ith column of M’ is wj := (wij,,...,w;j,) for 1 < i < d.
Also define w, ; := (Wa41,j;,- - »Wd+1,j,)- Then solving (1) is equivalent to
solving
(1) YIw) + .t Yawg =~y
But we may solve ({1) by Cramer’s rule :
_ lwgpr,ws, - - wyl _ lwi, .- wi_1, Way
n= 7 Ty e Yd = TR 7
lwi,wh, ..., wh lwi, wh, ..., wh
Then if we define
qi = y‘ilwll, oo 7w¢,11
= Wl Wi, Wiy Wiy wyl for 1 <i<d
and g441 = —|UJ/1,(A)£, oo aw:il

we have
Qw1 + ...+ g@d41Wd+1 = O

where each ¢; € Z. This solution is unique up to scalar multiplication
by an element of Q. Since 0 € H(ws,...,wq+1) all the ¢; must have the
same sign and, multiplying by —1 if necessary, we get each ¢; € N. If we
define ¢; =0 for all ¢ ¢ {1,...,d + 1}(= supp(R;)) and Q; := (q1,---,qn)
then R; = Q;/m where m is the greatest common divisor of the integers
q1;---59d+1-

Thus to construct {Rj,...,Rs} we consider each minimal linearly
dependent subset, Q, of the weights {ws,...,wn}. For each such Q we
compute the determinants qi,...,qq+1. If any two of these determinants

have opposite signs then €2 does not correspond to any invariant. If however,
all the g; have the same sign then (g1 /m, ..., g,/m) is one of the completely
fundamental generators.

Degrees as volumes.

In this section we will continue to study the fixed R; of the previous
section. We will obtain bounds on deg R; and thus on Ny,r in terms of
volumes of certain polytopes.



1064 DAVID L. WEHLAU

THEOREM 4. — Let o; be the simplex 0; = H(w; | i € supp(R;)).
Then deg R; < d!vol (g;).

Proof. — Let A denote the perpendicular (coordinate) projection :

A:X*(T)®QxQ" — Q% given by A(us, ..., ur) = (ujy,. .., uj,)-

Then A(w;) = w;. Define (i) := H(0,w1, ..., Wi—1,Wit1, - - -, Wit1), 05 =
A(o;) and 07(i) := A(0;()). Notice that g; is the d dimensional volume of
the parallelepiped P(wy, .. .,w;_1,Wjy1,- - -,Way;)- Hence g; = d!vol(o7}(4)).

Now 0} = 03(1)U...Uo’(d+1) is a triangulation of o’; by d-simplices
since o lies in the relative interior of a;. Thus degQ; = q1 + ...+ qa41 =
d!vol(o}). Therefore deg R; < degQ; = d!vol(o}) < d!vol(o;) where the
last inequality follows for example from [Gal, (30) p. 253. O

Let W := H(ws,...,wn), the convex hull of the weights in X*(T') ®
Q=Q".

THEOREM 5. — degR; < r!vol(W).

Proof. — 1t is not true in general that d!vol(c}) < r!vol(W) when
d < 7. Hence to prove this theorem we consider a slightly different
construction of R; (when d < 7). Recall that we have assumed that
supp(R;) = {1,...,d+ 1}. Without loss of generality we may assume that
Y :=H(wi,...,Wd+1,---,Wr+1) is an 7 dimensional simplex. To construct
R; we solve the system of r linearly independent equations in 7 unknowns :

Yowa + ... + Yr41Wr41 = —Wi.

As before we apply Cramer’s rule to solve this system and so find
(@1,...,a,41) € N'+1 with
aiw1 +...+0rp1Wrp1 =0
and a; = r!vol,(H(o,w1, ..., Wie1,Wit1,- -, Wrt1))-
Again we set ar42 = ... = a, = 0 and A = (ay,...,a,). Notice

that ag42 = ... = ar41 = 0 and that A is a multiple of R;. Hence
degRj <degA=a1+...+ap, =rlvol(Z) < rlvol(W). a

COROLLARY 2. — Ifn—r>2then Nyr < (n—r—1)rlvol(W).
If1 <n—r <2 then Ny < rlvol(W).

Remark 6. — This bound is invariant under the action of Aut(7T’) =
GL(r,Z) and thus is independent of the choice of 1.
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Remark 7. — For the representation of Example 1, W is a quadri-
lateral of area 23/2. Hence we get the bound Ny, < 2!-(23/2) = 23.

It seems likely that the factor n — r — 1 is unnecessary in the
first statement of Corollary 2. I know of no examples of representations
where Ny > r!vol(W). Conversely for all values of n and r there exist
faithful stable n dimensional representations, V, of T = (k*)" such that
Ny = r!vol(W) — for example this often occurs when W is itself a simplex.

CONJECTURE. — There is a (small) constant ¢ € R such that
Ny, < crlvol(W).

Bounds in terms of w.

Next we bound deg R; in terms of w := max{|wim|:1<i<n,1<
m<r}

THEOREM 6. — deg R; < |w?(d+ 1)(4+D)/2].

Proof. — We have deg R; < d!vol(c7) where o} = H(wy,...,wg,q)
C [~w,w]* C Q% Define 7} := H(w}/2w,...,wh,,/2w) + (1/2,...,1/2).
Then c;; is a d dimensional simplex contained in [0,1]¢ with vol(d}) =
(2w)dvol(a;-).

Thus we now seek to bound the value B := max{vol(r) | 7 C [0, 1]¢
is a d dimensional simplex}. By linear programming it is clear that the
value B is attained by a simplex y all of whose vertices are also vertices of
the cube [0, 1]¢. Without loss of generality we may assume that (0, ...,0)
is one of the vertices of u. Let v1,...,v4 be the other vertices of u. Then
vol(u) = | det(M)|/d! where M = (v; ... vg) is a d x d matrix all of whose
entries are either 0 or 1. But then by a theorem of Ryser (see [R], Equation
(11)) we have

| det(M)| 52(m>d+1.

2

Thus we get the bound deg R; < w(d + 1)(4+V/2 < " (r + 1)("+1)/2. O

COROLLARY 3. — Ifn—r>2 then Ny,r < (n—r—1)|w" (r+1)"+1/2]
If1<n-—r<2then Nyr < l_w’(r—{—l)("ﬂ)/z_l.
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Remark 8. — In Example 1 we had n = 4, r = 2 and w = 5. Thus
Corollary 3 gives Ny,r < |52+ (24 1)2+1/2| = |25.33%/2| = 129.
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