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CONSTRUCTIVE INVARIANT THEORY FOR TORI

by David L. WEHLAU

Introduction.

Let p : G —> GL(V) be a rational representation of a reductive
algebraic group over the algebraically closed field k. The action of G on V
induces an action of G on k[V], the algebra of polynomial functions on V,
via (g • f)(v) == /(p(^-1)^) for g € G, f e k[V] and v € V. The functions
which are fixed by this action form a finitely generated subalgebra, k^]0,
the ring of invariants. The problem of constructive invariant theory is to
give an algorithm which in a finite number of steps will explicitly construct
a minimal set of homogeneous generators for the k-algebra, k^]0.

Now if { / i , . . . , fp} is such a set with deg /i > deg /2 > . • • > deg fp
then although the fi are not uniquely determined the p-tuple of degrees
(deg /i , . . . , deg fp) is unique. The number Ny,G = deg/i is of special
interest. It is the minimal integer N such that ^[V]0 is generated by

N
the subspace ® k[V]^ of invariants of degree at most N. Clearly an

m==0
algorithm which constructs { / i , . . . , fp} also produces NV,G = max{deg /, |
1 < i < p}' For many groups, G, (e.g. if char k = 0 and G is reductive)
the converse is also true : given Ny^c there is a finite algorithm which
constructs { / i , . . . , fp} (cf. [K], [P]).

If G is a finite group and the characteristic of k does not divide |G|,
then by a celebrated theorem of Emmy Noether's, NV,G < \G\ (see [Nl]),
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[N2]). Recently Schmid has considered the question of whether this bound
is sharp ([S]). She has shown that Ny^c < \G\ if G is not cyclic and has
determined Ny,G for various groups of small order including all abelian
groups of order less than 30.

If G is semi-simple and the characteristic of k is zero and the
representation p is almost faithful, then Popov has given in [P] an upper
bound for NV,G- Following the methods of Popov, Kempf ([K]) derived an
upper bound for Ny,G m the case that G is a torus and the characteristic
of k is zero. Kempf also observed that these three bounds (for G finite, G
semi-simple and G a torus) could be combined (by multiplying them) to
obtain a bound for the general reductive group in characteristic zero.

The bounds for infinite groups are very large. In this paper we will
consider the case G = T is a torus and give better bounds for Ny,T- In
addition we will construct certain distinguished elements of a minimal
generating set for klY]7'.

I would like to thank John Harris for many helpful conversations.

Diagonalization.

Let k be an algebraically closed field of any characteristic. Let T
be a torus, i.e., T is an algebraic group which is (abstractly) isomorphic
to (k*)7' and suppose that p : T —> GL(V) is a rational representation
of V. Let X*(T) denote the lattice of characters of T. Then X*(T) is
(abstractly) isomorphic to Z7'. From now on we will assume that we have
chosen a fixed basis of V consisting of eigenvectors, { ^ i , . . . , z^}, and that
{.TI, . . . ,3:71}, is the corresponding dual basis of V*. Furthermore we will
denote the weight of Vz by o^. Then p induces an action of T on V* C k[V]
which in terms of weights is given by t ' xi = —uji(t)xi. The action on
all of k[y] ^ k[a*i,. . . ,Xn] is obtained from the action on V* by the two
requirements t • (fg) = (t • f)(t • g) and t • (/ + g) = t ' f + 1 ' g for t € T
and/ ,^€k[y].

We will consider monomials XA = x^x^2 • . . . • x°^- where A =
(ai , . . . . an) C N71. Clearly T acts on XA by t ' XA = xWXA where x
is the character \ = —(aia;i + ... + dn^n)' We will denote \ by w^X^.
The invariant monomials are in one-to-one correspondence with the semi-
group, 5 := {A G N71 | ^A C ktVf} = {A € N71 I aicc;i + . . . + dn^n = 0}
where o is the trivial character in X*(T). This semi-group was first studied
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by Gordan. He used it to show that l^V]7' is a finitely generated algebra
by showing that S is finitely generated as a semi-group (see [Go]).

Recall that a representation p : G —> GL(V) is called stable if the
union of the closed G-orbits in V contains an open dense subset of V. It
is sufficient to consider only faithful stable torus representations, (cf. [W],
Lemma 2). From now on we will suppose that p is both faithful and stable.

KempPs bound.

Choosing an explicit isomorphism -0 : T —> (A;*)7' induces an explicit
isomorphism -0* : X*(T) —> V. The isomorphism ^ is determined only
up to Aut (T) ^ GL(r^ Z). Having fixed a choice for '0 we may write out the
weights of V as r-tuples: ̂  = (0^1,... ,c^y.) G Z7' for 1 < z < n. Then we
may define w := max{ \uJij\: 1 < i < n, 1 <: j < r}. Kempf showed in [K]
that NV,T <: nC(nr\ w7') where C{m) is the least common multiple of the
integers 1,2, . . . , m. This bound has the disadvantage of being dependent
on w which depends on the choice of '0.

Example 1. — Let T ^ (k*)2 and let V be the 4 dimensional
representation of T with weights (2,2), (-1,0), (0,-5) and (2,-1). It is
fairly simple, for example using the iterative method of the next section, to
compute a homogeneous minimal system of generators for k^]^ We find
that kIVf = ^[X^.X^.X^ where R^ = (5,10,2,0), R^ = (1,6,0,2)
and A = (3,8,1,1). Therefore NV,T = degjRi = 17. Here r = 2, n = 4 and
w = 5. Hence for this example Kempfs bound gives NV,T <: 4 (7(4-2! • 52) =
4C'(200)>4(3xl089)>1090 .

An iterative method.

Consider first the case r = 1. Here the isomorphism of T with k* is
determined up to GL(1^) ^ {±1} and thus w is completely determined
in this case. Fixing one of the two choices if) : T —> k* we may write the
weights of V as integers : c^i,^ • • • ̂ n e Z. Set w- := min{o;i|l < i < n}
and w^ := max{a^|l <: i <: n}. Our assumptions that p is stable and
faithful together imply that w- < 0 and w+ > 0.

THEOREM 1. — Let V be a representation of k* with weights
^i > ̂ 2 > - " > ̂ n and set B := uj\ — Un- Then Ny^ <: B.
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Proof. — Suppose XA e k^^ has degree d. We will construct a
sequence of d monomials: hi, /is, . . . , hd with o;n <: wt(/^) ^ 0:1 - 1 for all
1 < z < d as follows. Choose j such that ujj < 0 and define h^ := xj. If
wt(/4n) ^ 0 then we choose j such that a^ divides XA/hm and ̂  < 0.
Similarly if wt(hm) < 0 then we choose j such that Xj divides XA/hm
and {jjj > 0. In either case we define hm-^-i '-= Xj hm' If d > B then by
the pigeon hole principle, two of the monomials have the same weight :
wt(^) = wt(^) where we may assume z < j. But then h := hj/hi e k^Y
divides XA and so we see that XA is not irreducible. D

Remark 1. — If gcd(o;i,a;n) = 1 then the invariant x^x^ is
irreducible and has degree B = Ny,^.

Remark 2. — Note that w = max{ci;i, -ujn} and therefore Ny^ <
2w.

THEOREM 2. — NV,T <! (2w)2r~ l

Proof. — We proceed by induction on r. The theorem is true for the
case r = 1 by Remark 2. For higher values of r we consider the coordinate
decomposition of T induced by the isomorphism '0, i.e., T ^ Ti x ... x Tr
where Tj ^ k* and the weight of xi with respect to Tj is c^j. Set
T ' = T2 x ... x Tr so that T = Ti x T. By induction, there exist
monomial generators / i i , . . . , / ip of k^]^ with deghz < (2w)(2r-l~ l) for
all 1 < i ̂  p. Write hi = XA and set ^ := wt(/i,) e X*(Ti) ^ Z. Then
^ = aici;i,i + ... + Oyi^n,!- Hence |^| < a\w + . . . + OnW = (deg/i^w <,
(2w)(2r~ l- l)w.

Let YI be a p dimensional k-vector space and suppose that Ti
acts on Vi by the weights -z/i, . . . , -Vp. Then we have a Ti-equivariant
surjection k[Vi] -^ ktV]717 = k[/ii, . . . ,hp\. In particular we have the
surjection k^if1 ^> (ktV]^)^ = ktV]71. Hence TVvr < N y r ' • ̂  n <
(2w)(2r-l-l) . 2(2w)(2r-l-l) w = (2W)2'-1. ' ' ' D

For the representation described in Example 1 (for which NV,T = 17)
this theorem gives the bound Ny^ < 1000. This is a better bound than
Kempfs for this example but this is only because r is so small in the
example. As a function of r the bound given in Theorem 2 grows much much
faster than Kempf's bound. This new bound is, however, distinguished by
the fact that it is independent of n = dim V.
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Geometric bounds.

In this section we will construct a set of distinguished monomials
which is a subset of a minimal generating set for klY]71. We begin with
some notation and definitions. We will use o to denote the origin in
X*(T) 0 Q ̂  Q^. If Z = (^ i , . . . , Zn) G Q71 define degZ := z^ + . . . + Zn.
We also define supp(Z) := {i | 1 < i < n, zi -^ 0} and the length
of Z, ^(Z) := #supp(Z) - 1. If { Z i , . . . , Zd} C V then H{Z^..., Zd)
denotes the convex hull of the points Z \ , . . . , Zd and V[Z\,..., Zd) denotes

f d 1the convex set ^ ^ a^ | o^ € [0,1] for z = l , . . . , d k Notice that if11=1 J

{ Z i , . . . , Z^} is linearly independent then P(Zi,.. . , Zd) is a d-dimensional
parallelepiped.

By a polytope we will mean a compact convex set having finitely many
vertices. The vertices of a polytope P are characterized by the property
that V is a vertex of P if and only if the set P \ {Y} is a convex set. A
d dimensional polytope having d + 1 vertices is a simplex. We will often
consider the case of a d dimensional polytope P C Q171 with m > d. In this
case when we refer to the volume of P we mean the (positive) d dimensional
volume of P obtained by considering P as a subset of the d dimensional
affine space, A^, spanned by P. If we wish to consider the m dimensional
volume of P (which is zero if d < m) we will write volyyi(P). Similarly the
relative interior of P refers to the interior of P defined by the subspace
topology induced by P C A^.

The monomial generators of k^^ correspond to generators of the
semi-group S. Gordan showed how to find the generators of S (see for
example [O], Proposition 1.1 (ii)). Consider the pointed (half) cone F C
(Q+)71 generated by S: F := (Q-^ • S) where Q ^ ^ g e Q l g ^ O } . This
cone, r, is just the set of solutions (^ i , . . . , Zn) € (Q"^ of the system of
equations :

(*) Zl^l + . . . + ZnUJn = 0.

If C is an extremal ray of F then C D S is a semigroup isomorphic to N. Let
RC denote the unique generator of this semigroup. Write {^ i , . . . , Rs} =
{RC | C an extremal ray of (7}. The intersection V[R\^... ̂ Rs) H S is
a finite generating set for S. Following Stanley ([St]), we call these Rj
completely fundamental generators of S. These are characterized by the
fact that if mRj = A-{-B for some m € N and some A, B e S then A = kRj
and B = (m — k)Rj for some integer k < m ([St], p. 36). The elements
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X^,..., X^ are the distinguished monomial generators we referred to
earlier.

Now we are ready to begin our construction of the completely
fundamental generators.

LEMMA 1. — There exists A € S with supp(A) = Q if and only if
o lies in the relative interior ofH(uji \ i G f^).

Proof. — Suppose 0 7^ A e S and supp(A) = Q. Then we have
n

o = S ̂ ^ == S a^ == S(^/degA)c^. Since a^ ^ 0 for all i and
%==! z€0 i€0

^ a^ = degA we see that o 6 7-((o^ | i € ^). Furthermore, since the
ie^
coefficient a^/degA is non-zero for each i 6 0, o is an interior point of
U(uji | i C ̂ ).

Conversely, suppose that o lies in the relative interior of7<(o^ | i € ^2).
Then there exist rational numbers p i / q where p z ^ q € N with 1 < pi < q
such that ^ (pi/q)^i = o and ^ p^/g = 1. Hence if we define pi = 0 if

%€^ i€^t
n

i ^ fl, we have ^ p^, = o and A := (pi,.. . ,pn) € S with supp(A) = Q.
i=l

D

Define a partial order on F \ {0} by inclusion of supports, i.e., if
YI, V2 € F\ {0} with supp(Vi) C supp(V2) then Y^Y^. Also given Y € F,
define a(V) := H{uj, \ i e supp(V)).

PROPOSITION 1. — Let o -^ Y e S with Y/m ^ S for all m>_2.
Then the following are all equivalent :

(1) Y is minimal in F.

(2) cr(Y) is an £(Y) dimensional simplex with o in its relative interior.

(3) Y is a completely fundamental generator of S.

Proof. — The proof that (1) =^ (2) follows from Lemma 1. Let Y
be an element of S which is minimal with respect to the partial order. Then
by Lemma 1, o lies in the relative interior of a{Y). Therefore a(Y) is an
£(Y) dimensional simplex with o in its relative interior. For if this were
not true, by Caratheodory's theorem (see for example [B], Corollary 2.4
or [O], Theorem A.3), we could find a proper subset fl, C, supp(V) such
that o C H(<jJi \ i G 0). But this would contradict the minimality of Y.
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In particular, this implies that any proper subset of {uji \ i 6 supp(V)} is
linearly independent.

Now to see that (2) ===> (3), suppose (2) holds and that there exists
n € N and A, B € S with nY = A + B. Since o-(Y) is a simplex, o can be
expressed uniquely as a convex linear combination of {^ [ i € supp(V)}:

^ o^ = o where o^ € [0,1] and ^ o^ = 1. Now ̂  a^ = o
i€supp(r) i€supp(y) i
and cbi = 0 if z ^ supp(V). Hence, by the uniqueness, we have a^/ deg(A) =
c^ = ̂ / deg(V). Therefore A = (deg A/ deg Y)Y from which it follows that
Y is completely fundamental.

Finally, we prove that (3) ==> (1). Suppose Y is a completely
fundamental generator of S and Z G F with Z ^ Y. Clearly, clearing
denominators, we may suppose that Z 6 S. Since Z ^ V, for m € N
sufficiently large we have rnyi >_ z^ for all 1 <_ i < n. Hence mY decomposes
within 5" as mY = Z + (mY — Z). Since Y is completely fundamental, this
implies that Z = A;y for some k < m. Hence supp(V) = supp(Z) and
y^z. D

Thus to each minimal element Y of F we have an associated f(Y)
dimensional simplex, o'(Y) :=• 7i(uji | i € supp(Y)). Given supp(V) we
can recover Y since every point in a simplex can be written uniquely as
a convex linear combination of the vertices of the simplex. Therefore the
map Y ^—> supp(V) is one-to-one. Moreover, if Y € F is minimal then
{uji | z 6 supp(V)} is a minimal linearly dependent subset of {o;i, . . . ̂ n}-

Note that the map Y i—^ cr(Y) is not necessarily one-to-one. More
precisely, supp(V) i—^ cr(Y) is one-to-one if and only if the weights of V are
distinct. If V\ and V^ are two representations of T having the same weights
(except for multiplicities) then clearly, NV^,T = M/2,T and thus it would
suffice to consider only representations whose weights were distinct.

THEOREM 3. — If the Rj are ordered so that degJ?i > deg ̂ 2 >.

. . . > degRs then Ny^ < E deg^ < (n - r) degfii.
j=i

Proof. — Suppose o -^ A € S. By Caratheodory's theorem we may
write

A = OiRj, + . . . 4- On-rRj^

where each Oj ^ 0. If aj > 1 then we may decompose A within S as
A = (A — Rj^) 4- Rji. Hence if A is a generator of S then each 0.1 <, 1. But
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then deg A = ai deg Rj^ +.. .+0n-r deg Rj^_, < deg R^ 4-.. .+deg Rj^_, ^
degJ?i+...+deg.R^. D

Remark 3. — Applying these two bounds to the representation of
Example 1 we get Ny,T < 17 + 9 = 26 and Ny^ < 2 • 17 = 34.

A theorem of Ewald and Wessels ([EW], Theorem 2) allows us
to improve the preceding theorem. Specifically, (using the notation of
Theorem 3) they show that if a\ + . . . + On-r > n — r — 1 > 1 then A
is decomposable within S. Thus we have the following corollary.

COROLLARY 1. — Ifn - r > 2 then Ny,T < (n - r - 1) degJ?i.

Remark 4. — If we apply this result to Example 1 we find that
NV,T < (4 - 2 - 1) • 17 = 17.

The following proposition shows how the completely fundamental
solutions are distinguished among the elements of a monomial minimal
generating set.

PROPOSITION 2 (Stanley [St], Theorem 3.7). — Suppose
{X^, . . . .X^} is any minimal set of monomials such that ^.[V^ is in-
tegral over ̂ [X^,..., X^]. Then q = s and there exists a permutation TT
o f{ l , . . . ,5} such that supp(J^) = supp(A-^)). In fact, there exist positive
integers mi , . . . , nis such that A^) = rnj • Rj.

Remark 5. — Kempf ([K]) also constructed the elements - R i , . . . , Rs.
His method of construction is somewhat less direct than that which we will
give in the next section and consequently the bound he gave for degRj is
larger than the one we will give.

Computing the completely fundamental generators.

In this section we will give an algorithm for finding the completely
fundamental generators. Suppose f^ is a minimal linearly dependent subset
of {cc ; i , . . . ,ujn} with o € 7Y(c^ G f^). Then Q. = {o^ | i e supp(T^) } for
some j. We want to compute Rj. Set d '.= £{Rj) < r. Then without loss of
generality we may suppose that supp(J^) = { 1 , 2 , . . . , d+ 1}. Consider the
system of r linear equations in d unknowns :

(t) Vl^l + • • • + Vd^d = -^d+1.
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These r equations impose only d conditions and so in order to solve this
system we take the r x d matrix of rank d, M := (0:1 uj^ . . . uJd) and choose
a d x d non-singular submatrix M'. If M' consists of the rows j i , . . . ,jd
of M then the zth column of M' is uj[ := (o^,... ,c^^) for 1 :< i <, d.
Also define ̂ ^i := (^d+iji ̂ " • •> ^d-Hjd)- Then solving (f) is equivalent to
solving

(tt) 2/ i^i+-.-+2/^d=-^+r

But we may solve (ff) by Cramer's rule :

_ K+i^—^dl _ K^—^d-i^d+il
2/1 —— | / / / | 5 • • ' 5 -/d I / / / I *|a/i,a;2,...,^| l^,^,...,^^

Then if we define
qi =2/z|ct/i,...,^|

= [^,...,^_i,^i,a;^i,...,a;rf| for 1 < i <, d
and qd-^-i == -l^,^,... ,^|

we have
<7icji + ... + ^d+icjd-n = o

where each qi G Z. This solution is unique up to scalar multiplication
by an element of Q. Since o C /H(^\,... ,^d+i) all the ^ must have the
same sign and, multiplying by —1 if necessary, we get each qi G N. If we
define qi == 0 for all i f. { 1 , . . . , d + !}(= supp(^)) and Qj := (g i , . . . , qn)
then Rj == Qj/m where m is the greatest common divisor of the integers
< 7 l 5 . - . 5 < ? d + l -

Thus to construct { - R i , . . . ,J?g} we consider each minimal linearly
dependent subset, Q, of the weights {0:1,... ,c^}. For each such f^ we
compute the determinants g i , . . . , 9d+i. If any two of these determinants
have opposite signs then Q, does not correspond to any invariant. If however,
all the qi have the same sign then (qi/m,.... 9n/m) is one of the completely
fundamental generators.

Degrees as volumes.

In this section we will continue to study the fixed Rj of the previous
section. We will obtain bounds on degRj and thus on NV,T m terms of
volumes of certain polytopes.
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THEOREM 4. — Let (jj be the simplex crj == M(c^ | i € supp(^)).
Then deg Rj <, d\ vol (a,).

Proof. — Let A denote the perpendicular (coordinate) projection :

A : X*(T) 0 Q ̂  (̂  -^ (̂  given by A(m,... ,0 = (n^,... ,̂ J.

Then A(o;z) =^. Define (Tj(i) := M(o,a;i,... ,^-1,^+1,... ,0:^+1), .̂ :=
A(oj) and ^(i) '•= A(cr^(z)). Notice that qi is the d dimensional volume of
the parallelepiped^^,... ,c^_i,a;^.i,... ,^-n). Hence 9^ = d!vol(cr^)).

Now a' = ^•(l) U . . . Ucr'(d+1) is a triangulation of cr^ by d-simplices
since o lies in the relative interior of a^. Thus degQj = q\ -+ - . . .+ (?d+i =
d!vol(a^). Therefore degRj < degQj == d!vol(c^) < d!vol(^) where the
last inequality follows for example from [Ga], (30) p. 253. D

Let W := 7<(o;i,... ,o;n), the convex hull of the weights in X*(T) (g)
Q^Q7'.

THEOREM 5. — degRj < r!vol(H;).

Proof. — It is not true in general that d!vol(cr^) < r!vol(W) when
d < r. Hence to prove this theorem we consider a slightly different
construction of Rj (when d < r). Recall that we have assumed that
supp(J^) = { l , . . . ,d+l} . Without loss of generality we may assume that
E := 7<(o;i,... ,ci;d+i,... ,c^y.+i) is an r dimensional simplex. To construct
Rj we solve the system of r linearly independent equations in r unknowns :

V2^2 + . . . + 2/r+l^r+l = -^1 •

As before we apply Cramer's rule to solve this system and so find
(ai,...,ar-n) CN7'^1 with

a\UJ\ -(-...+ Oy+l^r+l = 0

and di = r!volr(M(o,o;i,... ,Li;,-i,a;,+i,... ,0^4-1)).

Again we set c^+2 = ... = On = 0 and A = (a i , . . . ,an) . Notice
that Od-j-2 = . . . = = ay-i-i = 0 and that A is a multiple of Rj. Hence
degRj < d e g A = a i + . . . + a n = r ! v o l ( E ) <r!vol(W). D

COROLLARY 2. — Ifn-r>2 then NV,T < (n - r - 1) r! vol (W).
J f l < n - r < 2 then NV,T < r\ vol (W).

Remark 6. — This bound is invariant under the action of Aut(r) ^
GL(r, Z) and thus is independent of the choice of ^.
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Remark 7. — For the representation of Example 1, W is a quadri-
lateral of area 23/2. Hence we get the bound NV,T < 2! • (23/2) = 23.

It seems likely that the factor n — r — 1 is unnecessary in the
first statement of Corollary 2. I know of no examples of representations
where NV,T > r!vol(>V). Conversely for all values of n and r there exist
faithful stable n dimensional representations, V, of T ^ (k*)7' such that
Ny,T = r\ vol(W) - for example this often occurs when W is itself a simplex.

CONJECTURE. — There is a (small) constant c € R such that
Ny,T ^cr!vol(W).

Bounds in terms of w.

Next we bound deg-Rj in terms of w := max{|a;^yn| : 1 < z < n, 1 <
m <, r}.

THEOREM 6. — degRj ^ [wd(d^\^d+1^2\.

Proof. — We have degRj < d!vol(c^) where cr .̂ == ^(o/i,... ,0^1)
C [-w.w^ C Q< Define ̂  := W(o/i/2w,... ,^i/2w) + (1/2,.... 1/2).
Then a' is a d dimensional simplex contained in [0,1]^ with vol(a^) =
(2w)dvol(^.).

Thus we now seek to bound the value B := max{vol(r) | r C [0,1]^
is a c? dimensional simplex}. By linear programming it is clear that the
value B is attained by a simplex p, all of whose vertices are also vertices of
the cube [0,1]^. Without loss of generality we may assume that (0 , . . . , 0)
is one of the vertices of /A. Let z ^ i , . . . , i/d be the other vertices of p,. Then
vol(/z) = | det(M)|/d! where M = (v\ . . . Vd) is a d x d matrix all of whose
entries are either 0 or 1. But then by a theorem of Ryser (see [R], Equation
(11)) we have

d+l

|det(M)| <2

Thus we get the bound degRj ^ wd{d + l)^)/2 < w^r + l)^)/2. D

COROLLARY 3. — Ifn-r>2then^^<(n-r-l)[wr(r+l)^+l)/2J.
Ifl<n-r<2 then NV^T < [wr(r+l)^/2\.
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Remark 8. — In Example 1 we had n = 4, r = 2 and w = 5. Thus
Corollary 3 gives 7Vv,r < |_52 • (2 + l)^)/2] = |_25 • S3/^ == 129.
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