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ESTIMATES ON THE NUMBER OF
SCATTERING POLES NEAR THE REAL AXIS

FOR STRICTLY CONVEX OBSTACLES

by J. SJOSTRAND & M. ZWORSKI

0. Introduction.

In this paper we consider scattering by strictly convex obstacles and
study the angular density of scattering poles near the real axis. We obtain
optimal estimates on the rate at which this density decays as the angle
goes to zero. This answers a question suggested by our work on the angular
density of poles conducted in a more abstract setting ([SZ2], Corollary 1.3).
The presentation in this paper is essentially self contained but the method
of proof follows some ideas first developed in [S].

Let 0 C R71 with n odd be an open bounded set with a smooth
strictly convex boundary. Let —P denote the Dirichlet Laplacian on ̂ {n\0.
In other words, P is the Friedrichs extension of —A = —S<9^. defined
on (^(R^O). Following the standard terminology, we then define the
scattering poles as the poles of the meromorphic extension of (P—k2)'1 :
C^R^O) —> C^CR^O) from {k e C;Im/c > 0} to C. Global bounds
on the number of poles in the case of odd n were first obtained by R.
Melrose [Ml], [M2]. More general results (for general compactly supported
perturbations of the Laplacian) were obtained by the present authors [SZ1]
and later by Vodev [V].

Key words : Resonance - Scattering pole — Complex scaling — Semi-classical.
A.M.S. Classification : 35P20 - 35S15 - 35P25 - 47A20.
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If for 6 e]0, 60} with 60 > 0 small and fixed, we let Ng(\) denote the
number of poles in {k G C; 0 ^ |A:| < A, 0 < — arg/c < ^}, then it follows
from the general result in [SZ2] that

(0.1) Ns{\) ^ ̂ A", A > A(^),

for some positive function A = \(6) and with a constant e(6) that tends to
zero when 6 tends to zero, and we were able to estimate e(6) by 6 2 / 5 . On the
other hand, in the case when 0 is a ball, the poles can be expressed as zeros
of special functions, in which case (see [0]) we can take e(6) = 0{63/2) and
in fact this estimate is optimal. In the present paper, we shall prove :

THEOREM. — There exist a constant Co > 0 and a positive contin-
uous function A == X{6) on ]0, 60}, such that

(0.2) ^(A) ^ Co^A71, for 0 < 6 < 60, A > A(<5).

Remark. — In the above result we assumed that n is odd. It will
be clear from the proof (and the techniques of [SZ1], [SZ2]) that the same
result holds for even n if 60 < TT and we replace A^(A) by A^(A), the number
of scattering poles in {k € C; 1 < \k\ <: A, 0 < — argA: < 6}.

We remark that if suffices to prove the theorem for some sufficiently
small 60, since the estimate (0.2) for 6 bounded from below by some fixed
constant follows from the result of Melrose (and from the method of proof
of [SZ1] in the case of even dimensions).

As in [SZ2], the proof is based on the method of complex scaling,
but contrary to the method of that paper, where a more abstract situation
was considered, we now scale all the way up to the boundary, and work
explicitly with the corresponding (scaled) elliptic boundary value problem.
We were led to the particular scaling by applying the point of view of escape
functions in [S].

Many open problems remain. One would be to understand the geo-
metric meaning of the best constant Co in (0.2), another problem is to get
also some estimates in certain parabolic neighborhoods of the real axis. The
methods of this work could certainly give some results about the second
problem at the expense of some technical complications (*).

The plan of the paper is the following :

(*) Added in proof : Progress on this problem has now been achieved and will appear
elsewhere.
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In section 1 we review complex scaling outside a strictly convex set
and add some considerations which become necessary by the fact that we
scale all the way up to the boundary. In section 2 we study ellipticity
properties of certain scaled boundary problems. In section 3, we construct
asymptotic parametrices of these boundary value problems. In section 4,
we study the trace of functions of a certain self-adjoint operator, and finally
in section 5, we end the proof, in the same spirit as in [S], [SZ1], [SZ2].

1. Complex scaling up to the boundary.

The convexity of the obstacle allows us to scale all the way to the
boundary. When studying characteristic values of the scaled operator this
will avoid additional contributions present when the more abstract situation
was considered in [SZ2].

The function d{x) = dist(.r, 0) belongs to C^CR^O) and d"{x) > 0,
Ker d"{x) is generated by the normal of 0 which passes through x. For large
x we also know that d"(x) restricted to the orthogonal space of the normal
direction is bounded from below by l/(C|.r|) and from above by C/\x\. For
x in some large ball shaped neighborhood of 0, we put f(x) = d(x)2/2.
Then f\x) = d{x)d\x), f^x) = d{x)d" {x)-{-d'{x} (g) d\x), so outside any
fixed neighborhood of 0, we know that /" > 1/C. We may extend / to
a function in (^(R^O) in such a way that the above properties remain
valid and so that f(x) = x ^ / 2 for large \x . As in [SZ2], we let 0 > 0 be
small but fixed, and put :

(1.1) Fe = [z = x+i0f\x^ x C R^O}.

We let Pe denote — A j r ^ , equipped with the domain (H^ D H'2)^^)^ where
TO is identified with R^O by means of (1.1). The principal symbol po of
PQ is then of the form :

(1.2) pe(x, 0 = {(l+i6f"{x))-1^ (l+i0f"(x))-^}

={(l-(0f"(x))^^}-'2i0{f"(x^,^,

with ^ = (l+^.y^))2)"1^, and we may notice that p-e = po. Here we
assume that 0 > 0 is sufficiently small so that :

(1.3) |OT;c)||<2-1/2.

Writing

(1.4) pe = ae(x^)-ibe(x, Q,
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we conclude that ae{x, Q - ̂ 2, and that be - ̂ 2 outside any neighborhood
of 0. Near the boundary we also see that be > <?-l(d(tr)^2+Q >
C-^C^+Q, with ̂  = W.rU), ̂  = W^U). Near any boundary
point, we can choose local (normal geodesic) coordinates y = (y1\y^)
such that yn = d(y) and such that (V^.V^-) = 0, 1 ^ j < n-1.
Then the principal symbol of -A = Po becomes po = rj^+r^y.rf) =
{\9y/9x)rj,\0y/9x)ri). We also notice that (9y/0x o ̂ y/o^^k vanishes
for j < k = n and for k < j = n and is equal to one for j = k = n. For
Vn = 0, we have

r(x) = t(oy/9x)7^n9y/9x = (f^x))2,
where Ti-n is the orthogonal projection on the n:th canonical basis vec-
tor. We also notice that 9 y / 9 x f f / t 9 y / 9 x = 7^. Then (l+iOf^x))-1 =
(l-(z(9/(l+z(9))///) and a simple calculation gives :
(1.5) pe(x\ 0,0 = ((1+^n-1 \9y/0x)^ (1+z^)-1 \Qy/8x)r]}

=(l+^)-2^+r(^,0^/).

PROPOSITION 1.1.— Choosing first 0>0 and then 6o>0 sufficiently
small, the spectrum of the operator pe in the sector {k <E C; 0 <, - argA; <,
60}, consists only of isolated eigenvalues of finite algebraic multiplicity, and
moreover these eigenvalues coincide with the squares of the scattering poles
in the same sector.

In what follows, the squares of the scattering poles will be called
resonances.

Proof. — It suffices to link our new scaling to the scaling away from
the obstacles in [SZ1], [SZ2] by means of the following local result :

LEMMA 1.2. — There exists an OQ > 0 such that for all XQ C 90
and all A e C, we have the following : Let u € (^(R/^O) satisfy
(-A-A)^ = 0, Q^u^ = u^ G C°°((9^) in a neighborhood of XQ.
Then there exists a complex neighborhood W of XQ such that u extends
holomorphically to an open neighborhood ofWn U\e\<^ (Interior of Ye)
and such that UQ = u\^ is smooth up to 00 and satisfies (-A-A)^0^ = 0,
^^^YQ = UQ in To n W. Moreover, in the above result, we may replace
R^O by any fixed 1̂  with \rj\ < 0o.

Proof of the lemma. — Let XQ e 90, and assume that u is of class
C^CR^O) in a neighborhood of XQ, and satisfies :
(1-6) (-A-A)^ = 0,
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for some ko 6 {1, 2, 3,...}. We have to show that u extends holomorphically
sufficiently far so that UQ = u^e can be defined, that this restriction is of
class C^^Fe) (near XQ, where we work), and finally that the boundary
values of UQ (i.e. the restriction to 90) and of its derivatives, coincide with
the corresponding boundary values of u.

In order to prove this, we take some boundary point x\ close to XQ
and make the change of variables :

(1.7) x\—>y, x^x^ey.
Here e > 0 is a parameter that will tend to 0, so that we are "blowing-up"
a neighborhood of XQ. We now restrict the attention to the region \y\ < 2.
The equation (1.7) becomes :

(1.8) (-A^-^A^^O.

Let VQ with \yo\ = 1 be close to the normal to the boundary through
y = 0. (We now express everything in the y- variables.) Let F^i^ be
the image in (the complexified) ^/-space of To, parametrized by z =
y+iOe^fix^ey) = y+i00y(f^{y)), f,^{y) = e-^f^ey). Notice
that Q^fe^ = (^(bl2-!^), for a < 2 and = (9(^1-2), for a > 2.
Let \ G Cg°(B(yQ,l/2)) be equal to 1 on B(yo, 1/4) and consider the
intermediate contour F^a^e, defined by z = y-}-i00y(xfe,xi(y))' We let
^0^15^2 C r<9,a;i,£ be the images of the balls B(yo, 1/4), B(yQ, 1/2) and
B(^/ch3/4) respectively, so that f2o C F^^ and ^2\^i C R71.

If 0 is not too large, then we have uniformly with respect to x\ and e :

(1.9) 1Mb, < C(||(-A^-^A)^^||^+||^||^^),
for smooth functions, defined on ^2. Here A^ indicates the restriction of
the Laplace operator to the intermediate contour and || • ||^. is the L2-
norm over flj. The inequality (1.9) is a consequence of the ellipticity of the
restriction of the Laplace operator and of the strong uniqueness property
of (—A^—^A)^ 0 , see the appendix for more details.

By a non-characteristic deformation, u extends to a holomorphic
solution of (1.8) over a family of contours which are intermediate between
B(^o?3/4) D R71 and F^i,^ and in particular, u satisfies (1.8) on ^2.

Let u(x-i) be the boundary value of u at x\ (when u is considered as
a function on the original real domain). From (1.8), we get :
(1.10) (-A^A)^-^)) = -(-^A^z^i)
and applying (1.9), we get :

(1.11) \\u-u(x,)\\^ ^ C^A)^ u(x^\\u-u{x,)\\^^).
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We can also combine (1.8), (1.9) directly and get :

(i-i2) |H|^<C|H^.
If we use (1.12) with suitable x\ and e and go back to the original
coordinates, we see that U\Y^ is well defined in L2 (we still only discuss the
situation locally near xo). Since U\YQ satisfies a non-characteristic equation
(deduced from (1.8)), we see that u\r^ has a boundary value w G 'D'[QO)
and we shall show that w coincides with n, the "real" boundary value of u.
By (1.11), we have

(1.13) (volQor'h-^i)!!^ = o(l), e -. 0,
uniformly with respect to a;i, when x\ varies in a compact set of the
boundary and where we now write u instead of ^ j r ^ - Notice that the
statement (1.13) is independent of whether we take L^norms with respect
to the x or the ^/-coordinates. It is the ^/-coordinate version which most
clearly follows from (1.11). Choosing yo and the coordinates x = (a/, Xn) in
TO conveniently, we may assume that yo corresponds to { x ' r , E\ x\ = (x ' ' , 0).
Using the continuity of u(x') we then deduce from (1.13) that

(1.14) e-^W-u^)^^^ -^^ ^ 0.
uniformly with respect to y ' ' . From this we deduce that the boundary value
w coincides with u(x'} in the following way : We know that u e C7([0,^o[;
/D/(I{n~l)) and we want to show that u(Q^x') = u(x'). We replace u by
u(x)—u(x/) so that (1.14) becomes

(*) ^hll^^^/o—o-
Let ^n ^ C§°(R), ^(a/) e C^R71"1) be non-negative functions with
support close to 1 and 0 respectively, and with J^n(^n) dXn = 1,
S x ' { x 1 ) dx' = 1. For ^ e C^^R71-1), we have

(^(a/,0),^)p/(Rn) =jmi j u^e^^n^n/e^x') dx

= hm̂  ^-n (uWx^Xn/e^^'-y^/eW) dx dy

-0,

since ^-n Jn(rE•)^(a;n/£)^ /((a; /—2/ /)/^)^(^ /) dx has a uniformly compact
support with respect to y ' and tends to zero (uniformly in y ' ) by Cauchy-
Schwarz and (*).

In the same way we can show that the boundary values of 9^u (with x
being the original coordinates) along R^O and along F^ coincide. In fact,
we just have to repeat the above arguments for the differentiated equation
(1.15) (-A-A^L^n) =0.



POLES FOR STRICTLY CONVEX OBSTACLES 775

Finally, we notice that in the above proof, we can replace R/^0 by
r^ for any fixed r] with \rj\ < OQ. This concludes the proof of the lemma
and of the proposition. D

As in [S], [SZ1], [SZ2] the strategy now is to choose UJQ e C with
Recjo? Imo;o > 0, and to study the following two problems when h —> 0 :

1) get a lower bound for (h^Pe-^oY^Pe-uJo},

2) estimate the number of eigenvalues smaller than (Imo;o+^)2 of the
same operator.

The final step in the proof will be to apply some inequalities of H. Weyl.

2. Ellipticity properties of Q.

We put

(2.1) Q = Qe = {h^Pe-^Y^Pe-uj^.
The domain of (h^Pe-u^o) is H^ H H2 (using the global parametrization
(1.1)) and the same is true for (/i2?^—^)*- The natural domain of Q is
then [u G H^^rQ^-.u^Qo = (^Pe—ujQ^u)^ = 0} and we notice that the
domain does not change if we replace the second boundary condition by
h2P0U\Qo == 0. Using the next result, we can verify that Q is selfadjoint
with the domain just indicated.

PROPOSITION 2.1. — If 6 ^ 0 is small enough, then the problem

(2.2) Qeu = v, U\QO=VQ, {(^Pe-^u)^ = ̂ i

is an elliptic boundary value problem in the classical sense.

Proof. — This property only concerns the principal symbols in the
classical sense and we may assume that h = 1. The classical principal
symbol of Q is qe = Pe(x^)pe(x^) = ae(x^)2-\-be{x^)'2, which is elliptic
since ae is. (This also follows more easily from the fact that 0 is small.)
Recall also that pe = p-e-

We now work near a boundary point and choose local coordinates
in r^, so that Ye becomes the half-space Xn >. 0 (locally) and so that
(1.5) holds. The symbol pe(xf, 0; ^/, <^n) has the roots ̂  = A±^(^ ^ /) with
±lm\^^(xf^f) > 0, when ^/ ^ 0 is real. Notice that A-^ 7^ A+^ when
0 ^ 0 so in this case qe has the four distinct roots A±^ and A±^ = A=F,-6>.
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In order to show that (2.2) is elliptic, it suffices to show that for all
real x ' ' , ^f with ^/ -^ 0, there are no bounded non-trivial solutions of the
problem :

(2.3) qe(x'^^D^)u=Q, Xn > 0, n(0) = 0, ^(^O^AzJ^O) = 0.

We also recall that the bounded solutions of the first equation in (2.3) are
exponential solutions which are decaying near infinity. We first notice that
if v is a bounded solution ofp-o^x^O^^Dx^v = 0, Xn >. 0, with v(0) = 0,
then v = 0. Since qe{x', 0; ̂ /, D^J = p - e ( x ' , 0,^, D^)pe{x', 0, ̂ /, D^), we
conclude then from (2.3) that ^(a/.O,^, D^^)u = 0, u(ff) =- 0, and hence
that u = 0. D

The next problem is to determine when (2.3) is an elliptic boundary
value problem in the natural semi-classical sense.

The semi-classical principal symbol of Q—z is (pQ—ujQ){pQ—ujo)—z =
\pe—^o ^—z. Since pe takes its values in the lower half plane, we have
\pQ—ujQ\2 > (Imc<;o)2- It follows that Q—z is elliptic in the semi-classical
sense, when z (E C\[(Imo;o)2, oo[.

In the following discussion we may choose the coordinates so that
(1.5) holds and we assume that z G (^[(Imc^o)2; oo[- Let

(^_0(.^/,0;^,^)-^o)(^(^,0;^,^)-^o)-^=0

have the roots A-^i, A-^2 m ̂ e upper half plane and the roots A _ ^ i , A -^
in the lower half plane. We are interested in knowing whether

(2.4) ((p_0-^o)(^-^o)(^0;^AcJ-^ = ̂  Xn > 0

n(0) = VQ

pe(xt^xf,D^)u(Q)=v^

is elliptic for all real ^' in the sense that the corresponding homoge-
nous problem (v = 0, vj = 0) admits no non-trivial bounded solu-
tions. In the case A-^i -^ A+,2 ellipticity is equivalent to the fact that
^(^O^A+^—P^^O^A-^i) 7^ 0 which is clear from (1.5) since we
obviously cannot have A+^ = —A+, i . In the case A+^i = A+^ the ellipticity
of (2.4) amounts to (9^pe)(x^O'^^X^^) -^ 0, which holds by (1.5), since
A+,i + 0.

Summing up, we have verified that for z e (^[(Imc^o)2,^,

(2.5) (Qe-z)u = v, U\QQ = ̂ o, (h^Pe-^u^o = ̂
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is an elliptic boundary value problem in the sense that ̂ e-^-z ^ 0
everywhere and that for every {x1',^) e r*<90, the problem (2.4) with v,
VQ, ^i all equal to zero, has non non-trivial bounded solutions on Xn > 0.

In the next two sections we will also need to consider slightly degen-
erate cases, and we will then have to verify the ellipticity of our boundary
value problems differently.

3. A semi-classical parametrix.

The main work will be local near some fixed point of the boundary and
we shall concentrate on that case. Our constructions will be "elliptic" and
in the absence of propagation phenomena we shall simplify the arguments
by never writing explicitly the partitions of unity required to build a global
parametrix. Choose the coordinates near a boundary point of F^, so that
Fe is given by Xn > 0. We let z vary in a compact set in C\[(Imo;o)2, oo[.
To start with, we let this set be independent of h and later we will also
have to consider the slightly degenerate case when the distance from z to R
may tend to zero, but remains > h^ for some fixed sufficiently small e > 0.

We recall that the semi-classical principal symbol of Q—z is :
(3-1) q-z= pe-uj^-z,
and that q(x',^' ̂ n)-z = 0 has the roots ̂  = A+j, j = 1,2 in the open
upper half-plane and the roots ̂  = A-j, j = 1, 2 in the open lower half-
plane (when <^ is real and when Xn is sufficiently small). For large |^| we
have | ImA±j| ~ |^|, |A±j ~ |<f| and to the leading order (in ^ /) A±^ are
homogeneous of degree 1 and independent of UJQ and z.

If V C R^ x R^ is open and conic with respect to ^ for large ^, we
let S^^V) = S^^V) be the space of functions a(x,^h) on Vx]0,/io]
for some ho > 0 which are C°° with respect to (x,^) e V, and such that
for all a, f3 G N71 and all closed sets V C V with compact projection in
R^ x S^-1 and with {x^) e V ===^ dist((x^),9V) > <^)/Const. there is
a constant C = Ca^y/ such that

(3.2) \Q^a\ ̂  C^h-^^ for all (^) e V .
Our symbols may also depend on z or some other parameters, and it is
then understood that the constants in (3.2) should be independent of those
additional parameters. If dj e S^-3^-^ we say that a ~ Ea, (in 5^) if

N-l " '
a- E ^ ^ Sm-N^-N, for every N e N.

o
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The standard elliptic construction gives us a symbol R(x,^z;h) of
class S07-4 denned for a; in a neighborhood of 0, and for ^ <E R71, such that

(3.3) (Q-^)^R^ ^(0-^-1 in ^°,

where #/^ indicates compositions of symbols of /i-pseudodifferential oper-
ators (using the classical and not the Weyl quantization). For the corre-
sponding operators (that we shall denote by the same letters), this means
that

(3.4) (Q-z)oR=I+K^ Ro(Q-z)=I+K^

where the distribution kernels Kj(x,y) of Kj satisfy :

(3-5) \Q^K,(x^y^z^K)\ ̂  C^^
for all a, /3, N.

In order to treat boundary value problems, we notice that we can
choose R with a holomorphic extension in the ^-variable, still of class
S°^4 in the obvious sense, to the domain {(x, ̂ ) ; x C neigh(O), <f e R72"1,
^ € ̂ ^} with 0 ,̂ = {^ e C ; |̂  < e-1^)^ |^-A^| > ^^/),
j = +, -, k = 1, 2}, for an arbitrary but fixed e > 0. Let 7 = ̂ {x1', ^ /) C
^e^ n {^ e C; Im^n > £(^}} be a suitable simple loop, which encircles
A+j and A^,2 in the positive sense. We can then define (locally) the
operators Hj : C^R71-1) —> C°°(R^), j = 0,1 (with R^ denoting the
half-space Xn > 0) by :

(3.6) H,u(x) = f^ f e^R^x^ ̂  z^ h^u^)

«/(27^^)n-l) ^/(2^),

where u^) = f e-^^^^x') dx1 is the natural semi-classical Fourier
transform. Notice that

UjU = (i/h)R(u (g) (hD^6^o)^KjU,

where Kj has a kernel Kj(x,y'-, h) satisfying Q^Q^K = 0(h00). (See the
explanation following (3.19).)

It is easy to see that the distribution kernel Tlj(x, y ' , z; h) satisfies

(3.7) ^^n, = 0^)

for all a, /3, N , uniformly in any compact set disjoint from {(x, y ' ) ; Xn = 0,
x ' = y ' } . Further,
(3.8)

(Q-z)H,u = ffe^^Q-z^R^W d^ <(27^/^)-(n-l)(27^z)-l,
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and using that (3.3) extends to complex ̂ , we get :

(3.9) (Q-z)Hj = 0 modulo an operator with kernel satisfying :
Q^Q^K = 0^) for all a, (3, N.

Let ̂ u(x', 0) = u{x', 0) (boundary value from Xn > 0). Let B« $; h)
be of class S^'^ and polynomial in ^. Then,

^B{x1\hD^u{x') = (27^/^)-^-l)(27^z)-l ( [ e^^
^ ^nC7

(3-10) x Wx^^R^^z^h))^^ d(inW d^
=C(x^hD^^h)u{xf)^

where

(3.11) C{xf^f^h)=(2m)-l [ W^^R^^z^^Cn3

^ne7
d^ e ^^+2^-3.

We have R = (q-z)~1 modS-1^5, and if we assume that B = b
mod^-1^-1, then

(3.12) C^cmody1'^-4,

where

(3.13) c(x'^') = (27TZ)-1 f^x'^^Wx'^^-z)-1 d^.
Jf

If A+,i 7^ A+,2, we get

(3.14) c(^,0== ̂  ̂ /,^, A+,,)(A+,,)2V^„ q(x',0, ̂ ,A+,,).
^=1,2

If A+,i (^ 0, ̂ , ^)=A+,2(^, 0, ̂  ̂ ) we write 9(^, 0, $)-^=a(^)(^-A+,i)2

(with a defined only for certain values of x ' , ̂ , z\ and we get :

(3.15) c(^) = O^x^^/a)^^^^.

We shall now take BQ = id, Bi = h2Pe for which we know that the
problem Qu = v, ^BQU = VQ, ^oB^u = v^ is an elliptic boundary value
problem in the semi-classical sense. (See the discussion of (2.4).) We want
to find tangential /i-pseudodifferential operators Aj k with symbols of class
^0,3-2j-2^ g^ ̂

(3.16) (7o^-n,)(A^)=J

in the sense of 2 x 2-matrices of operators and modulo operators with
distribution kernels K satisfying 9^9^K = 0^) for all a,/3,7V. Of
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course there will be a unique (up to " =") such choice, if we check that
(7o-Sjn/,;)o^j,A;^i is an elliptic matrix of /i-pseudodifferential operators.

1) In the case when A+^'.O,^) ^ A+^C^O,^), the principal
symbol of this matrix (in the natural semi-classical sense) becomes

( ̂  ̂ (^(^^/(Q^X^))}
\=1,2 ^O^fe^l

^o(A+,i) &o(A+,2)Wl/9^(A+,i) 0 \ / 1 A^\
WA+,i) MA+,2)A 0 l/^(A+,2)Al A^J-

Here the first factor is invertible since our boundary value problem is
elliptic, and clearly so are the other two.

2) We now assume that A+,i = A+ 2 = A. The principal symbol of
' def

(7o^nfc)o<j,/c<i becomes

/cUW^=A 9^Cnbo/a)^=x\
{9^(b,/a)^ 9^(enbi/a)^=J

which has the same determinant as
_i/9^o 2A6o\i/cVo 2A6o\

{O^b, 2\bJ

Since bo = 1, 9^6i(A) ^ 0, this determinant is non-vanishing, and this
concludes the verification that we do have unique Aj^ satisfying (3.16).

Put
Go = IIoAo,o+niAi,o
Gi = IIoAo,i+niAi,i

so that

(3.17) (Q-z)G, == 0, ^B,Gk = 6^1, 0 < j, k < 1.

If u C (^(R^.) (with support in a neighborhood of the origin, since our
whole discussion is local), we let u denote the zero extension of u to R71,
and we define Ru = Ru. Put

(3.18) E = R-Go-foBoR-G^oB^R.

We have (Q—z)R = I modulo an operator with kernel K(x,y;h)
in C^R^2), satisfying Q^Q^K = O^) for all a,/?, TV. Moreover,
(Q-z)Gj^oBjR = [= 0] o -yoBjR. The kernel of this operator is of the
form

(3.19) ( ( k(x^ z'; hy^-y^a^K)^', 0, ̂  h) < dz',
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where Q^Q^k = 0(h°°), For any N € N, we can write the symbol of
BjR as p{zf,^h)+rN(zf,^h), where r^v C S-N^-4-N and where p is
holomorphic in ̂  and of class S0^3-^ in the domain given by z ' , ̂  e R71"1,
l^n-A^^,^)! ^ ̂ '). The contribution from r^ in (3.19) is of the form
K{x,y',h) with Q^Q^K = 0(^M) for |a|+|/3| ^ M, where M = M(AQ
tends to infinity when N tends to infinity. In the contribution from p, we
may change the contour of integration to the negatively oriented boundary
of {^ C C ; Im^ < 0, |̂ | < £-1<;0} for some sufficiently small e > 0.
Applying repeated integrations by parts, we then see that this contribution
is of the form K(x, y; h), with 9^9^K = (^(/i^ for all a, f3, M, and finally
we conclude that the kernel (3.19) has the same property. Summing up we
have proved

(3.20) (Q-z)E(z) = I .

Using (3.17), we also prove (as above) that

(3.21) 7o^(^0, j = 0 , l .

Modifying E(z) by an operator = 0, we may even achieve that

(3.21Q -foB,E(z) = 0.

We shall next extend the above constructions to the case when z
varies in some compact set in C and satisfies the additional restriction

(3.22) |Im^| >^,

for some sufficiently small but fixed e > 0. To do that, we reexamine the
preceding constructions. If V C R^ x R^ has the same properties as in the
definition of ^^(V), and if 0 <, 6 < 1, we let ^^(V) be the space
of a(x,^h) e C°°(V) which are of class S^ for ^ outside some fixed
bounded set, and which satisfy :

(3.23) \9^0^a\ ̂  C^^h-^'-^^,

for (a;,^) e K, for all a,{3 € N" and all compact subsets K of V. We may
remark that these spaces are semi-classical analogues of the Hormander
spaces S^Q ^, and we have a corresponding analogy on the quantized level.

Under the assumption (3.22) with 0 < E < 1/2, we can still construct
R as in (3.2), now of class S^~4. Again we have (3.3), (3.4).

We next look at the holomorphic extension of R with respect to the
^-variable. When |^[ > Const. this works as before. When |^| < Const,
we first observe that (3.22) implies

(3.24) ImA±,^,^)|>^/G,
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and that R has a holomorphic extension with respect to ^n which is of
class <5'^~4. It is denned for ̂  as after (3.5) when |^| > Const and for
|̂  < Const in a region :

{|^ <G, Im^>0}
n({Im^ < h^C} U {Im^ ^ /i7C and |^-A^| > C-\ j = 1,2})

for an arbitrarily large but fixed C. Choosing 7 suitably for \^ <: Const
(and as before when \^\ ^ Const), we can still define IIj by (3.6), and we
still have (3.7-3.11), now with C in (3.11) of class 5^+^+2j-3^ ^stead
of (3.12), we have :

(3.12Q C = cmod^1'77^1^'^2'"4.

with c given by (3.13).

For the study of the ellipticity at the boundary, we shall follow
a method which is slightly different from the one of section 2. Let
p ( x / , ̂ /, D^^) = pe{x ' ' , 0, ̂ /, D^^)—UJQ. We first give another proof of the ab-
sence of Z^-solutions u to the homogeneous version of (2.4), when Im z -^- 0.
Recall that p(D^) = aD^+(3, a,/3 C C, a ^ 0 (by (1.5)). In general for
ui,U2 eCo°°([0,+oo[) :

(3.25) (p(D)ni[^2) = a(9uiU2-u^8u2)W-\-(uz\p(Dyu2),

where ( • [ • ) is the standard L2 inner product on the half line. If u(0) = 0,
p(D)u(0) = 0, we have :

(3.26) {{p^p-z)u\u) = -z\\u\\^\\pu\\\

and taking imaginary parts, we get :

(3.27) |Im^| \\u\\^\\^p-z)u\\^

which easily implies :

(3.28) [H|4 < (C/lmz\) \\{p"p-z)u\\ (when n(0) =^(0) = 0),

where || • ||4 is the norm in the standard Sobolev space ^([O, +oo[).

Now consider u G C^°([0, +oo[) satisfying :

(3.29) ^p-z)u = v, u(0) = VQ, pu(0) = v^

which essentially is the same as (2.4). Let HQ,H\ 6 Cg°([0, +oo[) be fixed
functions with ^o(O) = 1, pHo(0) = 0, ffi(O) = 0, ^1(0) = 1. Put
u = u—voHo—v^H-i, so that (p*p—z)u = v—(p*p—z){voHQ-^-v^H-i) = v,

def
with 11^11 < |H[+G([?;o[+H). Applying (3.28), we get

(3.30) \\u\\^(C/lmz\)(\\v\\+\vo\+\v,\).
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Let (p^p-z)-1 denote the inverse for temperate distributions on the whole
a^-axis. For j = 0,1, 2, the distribution Uj = (p*p-^)-i(^(^ satisfies :

(3-31) ^>o = W I e^^q-z)-^ d^J^
with the contour 7 as in the definition of 11̂ . We denote this restriction
by Uj. Put

(-3 32) ^0,0 =uo(0), 60,1 =^2(0)
^1,0 =puo(0), 61, i =pZA2(0)

(with the natural boundary value from the right). Then, B = (6 • k) ==
0(\ Im z -1) (when x1',<f are fixed), and we want to estimate its inverse.
Let ao,ai e C, and put u = ao^o+ai^, so that

(3.33) (p^p-z)u = 0, n(0) == 60,0^0+60,101, ^(0) = 6i,oao+^i,iai.
From (3.30), we get :

(3.34) |H|4<(C7lm^|)||Ba||c2, with a = (ai^).
On the other hand, u = z^>o, where u = (p:'p-z)-l(ao6+a^D^6), so
(p*p-z)u = ao6+a-^D^6, and using that u is even :

(3.35) Hao^+aiD^H.4 < C\\u\\ < 21/2C\\u\\ < 21/2C\\u\\^

However, \\ao6+a^D^6\\^ is of the same order of magnitude as ||a||c2, so
combining this with (3.34), we get with a new constant C :
(3.36) l l B - ^ I ^ C / I I m ^ l .
We also recall that,

(3.37) \\B\\<C/\lmz\.

The symbol of 70 !̂̂  is in 5^-3+2^+2^ ̂  ^ congruent to
6^A;mod5^__^ E '- + J+2 , where the new bj^ is given by

(3.38) 6,,, = (27TZ)-1 Iw^^-^^/W^^-z) d^j-f
and differs from the earlier one by a constant factor (independent of
z,j,k,x',^.Vsmg (3.36), (3.37), we see that if (a,,fc) = (^-,fe)-1, then
aj,fc £ 5^-3-2j-2fc ^y.̂  ̂ ^ g^ ̂  satisfying (3.16) with

(3.39) A,,, e ̂ -3-^-2^ .̂̂  _ ̂  ̂  ^_7^-l,3-2,-2fc-l^

provided that £ < 1/6. We define Go, GI as before. Then (3.20), (3.21)
hold, and again we may modify E by an operator = 0 in order to have
(3.21Q.
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4. The trace of f{Q).

The function / which will be applied to the operator Q will belong
to Co^G—oo, (ImcJo+^)2[) for some sufficiently small 6 > 0. Before starting
the actual computations, we shall localize the problem in such a way that
certain operators will be of trace class.

Let Rez <, (Imo;o+^)2, and z in a fixed compact set. If \ e C^{Yo)
is equal to 1 in a neighborhood of the boundary, and 6 > 0 is sufficiently
small, then Q—z is a semiclassical elliptic operator in a neighborhood of
the support of 1-^, in view of (1.4) and the properties of a<9, be. We can
therefore find Eo(z) depending holomorphically on z and such that

(4.1) (Q-z)Eo(z)=I-x+Ko(z)^ 7o^Eo(^)=0, j = l , 2 ,

when h is sufficiently small, and where the trace class norm of KQ is 0(h°°).
Near the boundary we can further construct a symbol R of class 5'0'"4 as
in the preceding section, provided that we let |^'| > Const > 0. We then
have the corresponding E^{z), depending holomorphically on z, such that :

(4.2) (Q-z)E,(z) = I-xi(x\hD^K,(z)^ -foB,E,(z) = 0,

where Xlix^^) vanishes for large ^/ and the trace class norm [^1(2;)] of
K-t(z) is 0(hN) for every N. Patching EQ and E\ together by means of
a partition of unity, we get E-^(z) depending holomorphically on z, such
that :

(4.3) (Q-z)E^(z) = I-X2{x, hD^)+K^z), ^BjE^(z) = 0,

where ^2 is supported in a region with Xn small and with ^/ bounded.
Moreover, [K^] = 0(h°°). If we add the assumption that Im z ^ 0, we get :

(4.4) (z-Q)-1 = {z-Q)-\^x^ hD^z-Q^K^-E^z).

Let / € C7ooo(]-oo,(Im^o+^2D. and let / € C§° ({z e C; Rez <
(Imc<;o+^)2}) be an almost analytic extension. Using the formula

(4.5) f(Q) = -7T-1 f 9f{z}{z-Q)^L(dz)^

with L(dz) = d(Rez)d{lmz), and the fact that £'2 is holomorphic, we get :
(4.6)

f(Q) = -7T-1 (9f(z){z-Q)-\^hD^)L(dz)+K^ [K^} = 0(/i°°).

We shall see that (z—Q)~l^(x,hD^) is of trace class and give
some (weak) estimate on its trace class norm. Let ZQ e C satisfy
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Im ZQ ^ 0, Re ZQ < (Imc<;o+^)2, and consider first (zo—Q)~~l^(x,hD^).
Let E == E(zo) be the corresponding parametrix, defined by (3.18), so
that {Q-zo)E = J+^4 where the trace class norm of K^ is 0(h°°}. Then
(zo—Q)~1 = —£'+^5, where the trace class norm of KQ = (Q—^o)"1^
is 0(h°°). If follows that (zo-Q^x^x.hD^) = -E(zo)^(x,hD^)+K6
with [KG\ = 0(h°°). In order to study £(^o)X2, we use (3.18). The
first contribution is then R(x, hDy:\ h)^(x,hD^). This composition is an
/i-pseudodifferential operator with the leading symbol (^—^o)"1^^^);
where we now give up gains in powers of (^) in the calculus and consider
symbols a(x^) satisfying 9^9^a(x^) = O^^^) for suitable m, k
independent of a, (3. Using a criterion of D. Robert [R] (Theoreme II-
49), we see that R^ is of trace class and that the corresponding norm
is O^h'71). The other two contributions to —E(zQ)\^(x^hDx') are of the
form, Gj^oBjR^ = (J^o^oj+^-i^j)^oBjR^. Here we recall that Ao,i,
Aij are /^-pseudodifferential operators on the boundary. From (3.6) it fol-
lows that Hj has a distribution kernel of the form :

(4.7) II,^) = (2^)-(71-1) I e ^ ' - y ^ ^ r ^ x ^ ^ ' ) <,

with

(4.8) |%'< '̂ (hD^r, (a-, y', ̂ ) |

^C^^^,^)-3^^'^-^^^.

Similarly, ^oBjR has a distribution kernel of the form

(4.9) kj(x',y) = (27T/i)-" [e^'-^'^b^x'^y^') <,

up to an error which can be estimated as (3.19), with

(4.10) ^Qfa^hDyJ^x'^,^

^ C^y^O-^^-l^e-^/^.

If we view all our operators as /i-pseudodifferential operators in x1\ we
conclude that Gj^oBjR^ has a distribution kernel of the form

(4.11) ^(x^h) = (27^)-" ( e^'-Y^^c^y^} <,

where

(4.12) ^a^a^hD^^hDy^c^x, y, CQI

^Ca',fs'^,k,e,N^}~Nexp(-(xn+yn)/Ch)-{-0(hoo).
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It follows that ('j is smooth with

(4.13) ^Q^hD^^hDyJ^x, y; h)\

<C^,k,f3',th~ne-(xrt+y'^^cfl+0(hoo).

We conclude that Gj'yoBjR^ is of trace class and that

(4.14) \G^B,Rx2\ = 0{h-^

for some fixed value of TVo.

We have then proved that (zo—Q)'1^ is of trace class and that the
corresponding norm is O^h-^). Returning to (4.6), we write

(4.15) {z-Qr\2{x^D^={I^-z){z-Qrl)(zQ-Qr\^hD^^

so for z in some fixed compact set in C and with Im2; 7^ 0, we conclude
that (z—Q)~l\^ is of trace class and that

(4.16) [(z-Q)-\^x,hD^)} < C^mz^h-^.

Since 9f(z) = 0(|Im/z N) for every N it follows from this estimate and
(4.6) that for every e > 0 :

(4.17) f(Q) = -7v-1 f 9f(z)(z-Q)-\^x^ hD^)L(dz)+K^
Jllm^l^

with [K^] = 0{h°°). We now recall that / e C§°(]-oo, (Im^o+^D, so we
may further restrict z to Re z < (Ima;o+^)2 m (4.17). We can then apply
the constructions of the end of section 3. Let E(z) be the parametrix of
{z-Q). As after (4.6), we see that {z-Q)~1 = E(z)+K with [K] - 0(h00),
when |Im2;[ > ^£, Rez < (Imc^o+^)2, z G compact, and using this in
(4.17), we get :
(4.18)

/(Q)=-7r-1 ( 9f{z)E{z)x2(x^ hD^)L(dz)+K^ [K}=0{h°°).
J\lm^\>h£

Here we substitute (3.18), where now R{x^^z\ h) ^ (q(x^)—z)~1 mod
'S'l"1^"1'"4. It follows that, 7r-1 J|im^|>^ 9f(z)R(z)L(dz) is an /i-pseudo-
differential operator with symbol f(q(x^))modS^^E~l'~4:, so the com-
position of this operator with ^(-^ hD^') to the right is of trace class and
the trace of the composition is

(4.19) (2^)-" ff f(q(x^ 0) dx d^O^-2^).

Here we also use that X2(x^f) = 1 on the support of f(q(x,^)).
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The slightly degenerate calculus in the second half of section 3
now shows that (4.14) remains valid with ZQ replaced by z and that the
distribution kernel £j{x,y',h) of Gj^oBjR^ satisfies

(4.20) \ij{x,y;h)\ < Ce~}lmz^xn^yn)/chh~n~3£+0(hoo).

In particular,

(4.21) tTG^oB,Rx2 = 0^-^).

Returning to (4.18) we get :

(4.22) tr/(Q) - (2^)-71 [ [ f(q(x^)) dx d^O^-^-^).

A minor additional effort would certainly give a complete asymptotic
expansion for tr/(Q) in powers of /z, and in particular, one would be able
to improve the error in (4.22) to O^h"^1).

5. End of the proof.

For 6 > 0 small enough, let / G C^G-oo, (Im^o+2^)2!; [0,1]) be
equal to 1 on [0, (Imcc;o+<^)2], and consider f(q(x^)) = f(\pe(x^)~UJQ\2)•
On the support of / o q, we have pe(x^)—ujQ <^ Imc<;o+2<5, which implies
that with po = ae(x^)— ibe(x^) :

(5.1) be{x^) < C6, ae-Re^o\ < ((Ima;o+2(5)2-(Imcc;o)2)l/2 - ̂ 1/2.

In section 1, we showed that ae ~ S2, be > C7-'l(^+d(.r)^2), so we see that
the volume of this set is 0(62). From (4.22), it then follows that the number
M{6; h) of eigenvalues of l/^P^—cjol smaller than Imcc;o+^ satisfies :

(5.2) M(6', h) ^ C^h-", h < h(6),

for some h(6) > 0. Let 0 < ^i < ^2 ^ • " be an enumeration of these values
(followed by an infinite repetition of infad/^P^—c^ol) in the case there are
only finitely many eigenvalues).

From the fact that (/^P^—^o)*^2^—^))—^ is given by an elliptic
boundary value problem when z < (Imc<;o)2, it follows that

(5.3) /^i ^Im^o-o(l), h-^0.

Let A i , . . . , ATV, N = N(6'^ h) be the eigenvalues of h^Pe—c^o with 0 < |Ai| <
• • • < \^N ^ Imcc;o+<$)• We claim that

(5.4) N(S; h) < C^h-", h < h(6),
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when h(6) > 0 is sufficiently small.

If N(6',h) <^ M(2S;h'), there is nothing to prove. If not, we use the
Weyl inequality,

(5.5) l ^ r ' - l ^ N < | A i | — | A 7 v ,

with N = N(6', h), which implies (with M = M(2^; h)) :

(5.6) ^(^^0+2^^ ^ (Im^o+^

or equivalently,

(5.7) [(Ima;o+2^)/(Ima;o+^r ^ [(Imo^^)/^.

For some constant C > 0 we have

(Ima;o+2^)/(Ima;o+^) ^ 1+^/C7, (Imcx;o+2<5)/^i < 1+CT,

when 6, h are sufficiently small, and hence (l+^/C))^ ^ (l+CT)^ so
N < M(log(l+CT))/(log(l+^/G)) ^ CM, and again we get (5.4).

By a scaling argument, it is then clear how to complete the proof as
in [SZ1], [SZ2].

Appendix.

We outline here the proof of (1.9). Let P be an m'.th order differential
operator with holomorphic coefficients on some open set in C72. Let F be a
totally real connected smooth submanifold of maximal dimension, such that
P is defined in some neighborhood of F. Let Py be the natural restriction
of P to F (see [SZ1]), and assume that Py is elliptic. We then have the
following strong uniqueness property :

(A.I) If u e ̂ '(r), Pyu = 0 on r and u(x) is 0 in a neighborhood of some
point .TO ^ r, then u is identically 0.

In fact, if u is as above, then by Lemma 3.1 of [SZ1], u is the restriction
of a function u which is holomorphic in some neighborhood of F. On the
other hand u and all its derivatives vanish at XQ^ and hence be the unique
continuation property for holomorphic functions, we have u = 0 everywhere
in a neighborhood of F.

Let Qo CC ^2i CC ^2 CC F be open sets. Then

(A.2) There exists a constant C > 0 such that for all u 6 H^^t^) :

IHIj^(Qi) < C(\\Pu\\HO{^)-\-\\U\\HO^\flo)).
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In order to prove this we assume the contrary. Then there is a sequence
u^ e H171^) with

ll^^ll^°(^2)+ll^ll^°(^2\no) —^ ^^oo,

ll^llj^Qi) = 1- Let E be a properly supported parametrix of P in f^-
Then Uy\^ = EPu^^-\-Kuv^, where K has C°° kernel and is properly
supported. Since {u^} is bounded in L2^) and L2^) 3 u ̂  Ku\^ e
ir^i) is compact, and since EPu^\^ -> 0 in ^(^i), we obtain after
passing to a subsequence, that Uy —^ UQ in H^^t^), where [I'uoll^771^!) = 1.
Also UQ vanishes in ^i\^o and PUQ = 0. This contradicts the uniqueness
property (A.I).

Our final remark is that if P, F, f^o? ^i? ^2 depend continuously on
an additional parameter ji which varies in some compact set, then we still
have (A.2) with a constant C which is independent of /^. This is proved in
the same way be taking also sequences in the set of domains and operators.
The estimate (1.9) follows from this observation.
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