
ANNALES DE L’INSTITUT FOURIER

PASCAL ROMON
A rigidity theorem for Riemann’s minimal surfaces
Annales de l’institut Fourier, tome 43, no 2 (1993), p. 485-502
<http://www.numdam.org/item?id=AIF_1993__43_2_485_0>

© Annales de l’institut Fourier, 1993, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1993__43_2_485_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
43, 2 (1993), 485-502

A RIGIDITY THEOREM
FOR RIEMANN^S MINIMAL SURFACES

by Pascal ROMON

1. Introduction.

We are interested here in properly embedded minimal surfaces in
R3, which are invariant under a translation r. Much has been proven
about complete embedded minimal surfaces in general (see [6], [7], [8] for
example) and singly-periodic ones in particular ([I], [2], [5]). However the
classification of examples satisfying certain geometric constraints, like fixed
genus or number of ends, is still open in almost all cases.

The most famous of these surfaces are Riemann's Examples (see
fig. 1), which are, with the catenoid, the only minimal surfaces fibered
by circles. However, while the catenoid is fibered by circles only, Riemann's
Examples' circles tend periodically to parallel lines. Two successive lines
bound an annulus. Using Schwarz Reflection, we can extend this annulus
by rotation around these lines and their images, in order to reconstruct
the complete surface 7^. The translation r induced by rotation around two
successive lines leaves the surface invariant. In fact there is a one-parameter
family of singly-periodic minimal surfaces. A more detailed construction of
7^ will be found in section 2 and in [3].

A natural question to ask is whether there are any non trivial
e-deformations of Riemann's Examples (keeping some straight lines fixed),
or if all minimal planar domains bounded by straight lines and lying in a
slab belong in this family. The latter was proven in [3] to be true if the

Key words : Complete minimal surface - Singly periodic - Embeddedness - Period
problem.
A.M.S. Classification : 53A10 - 53C42.
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Fig. 1. Part of a Riemann Example with its level curves,
which are circles.
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lines are parallel and the total curvature of the domain is 47T ^. We will
now generalize that result to the following :

THEOREM 1. — If A is a properly embedded minimal annulus,
punctured in a single point, that lies between two parallel planes, and
is bounded by two parallel lines in these planes, then A is a piece of a
Riemann Example.

Equivalently, we can state a result about minimal surfaces properly
embedded in R3 modulo a translation, since they are in 1-1 correspondance
with singly-periodic embedded minimal surfaces.

THEOREM 2. — Any complete minimal torus embedded in some R3 /rl.
with planar ends and two straight lines, and total curvature IGTT or less, is
a covering of a Riemann Example.

Proof of Theorem 2. — Let M be such a surface. After a rotation in
R3, if necessary, we may assume that its ends are all horizontal. The number
of ends is even because M is embedded and thus orientable (see [3]). Using
the Callahan-Hoffman-Meeks formula (see [2])

/ \K\ dA = 47r(r + 7 - 1)
J M

where 7 is the genus of M and r the number of ends, we deduce the
following : if the total curvature of M is STT, there are only two ends, which
obviously correspond to each of the two lines. Furthermore, the degree of
the Gauss map g is 2, by the Gauss-Bonnet Theorem. If, on the other hand,
the total curvature is IGTT, then there are four ends and the degree of the
Gauss map g is 4. Since the ends are planar, the Gauss map is branched at
each one of them, and takes the values 0 and oo alternatively. Thus their
branching order is exactly 1.

Since genus(M)=l, any fundamental domain is planar, and so is its
intersection with a horizontal slab. Namely, if there were topology in any
subdomain, say genus 7, then the genus of M would be at least 7+1. So
if V is a limit plane for an end, its intersection with M must be a simple
infinite curve. The genus 1 assumption forbids any closed loop, and if there
were another curve going to infinity, then the branching order of g would
be strictly greater than 1, which is excluded. Recall that the order of the

(1) It was also proven by Toubiana [11] and then by Perez and Ros [9] that the lines
have to be parallel, provided they lie in parallel planes.
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Gauss map at a finite point equals the number of level curves crossing at
that point, minus 1, and at a planar end, the order is equal to the number
of curves going to that end divided by 2. Consider now the two horizontal
lines : rotation around them generates the whole surface, so that they
bound a fundamental piece of the surface, lying between two horizontal
planes. Furthermore, it is a planar domain, punctured at most once. So we
are back to Theorem 1.

I also want to thank Harold Rosenberg, David Hoffman and Fu Sheng
Wei for their support and fruitful discussions.

2. Riemann's Examples.

2.1. Some notations.

We will first recall briefly the construction of Riemann's Examples.
Let T denote the rectangular torus whose vertices are (O,/^,^ + z , z ) in
the complex plane (/^ 6 R^). We can associate to this torus the lattice

generated by (2c^i,2a;3), where (o;i,o;2,^3) are defined as ( — , — — — , - j

as usual. Let P be the unique elliptic function having a double pole at 0, a
double zero at 0^2 (and no other pole or zero), and two other branch points
at uj\ and 0^3, whose respective values are A, —I/A, where A is a positive
constant characterizing the lattice. Then P has the following properties of
symmetry : P{—z) = P{z) and P{z) = P{z). Furthermore it satisfies the
functional equation : P'{z)121 = C\ P(P — A)(P + I/A), for some positive
real C\ depending on the lattice. The function P will allow us to define
the Weierstrass-Enneper representation of Riemann'Example on this torus.
For more details about this function, see [3].

2.2. The Weierstrass-Enneper representation.

We define a minimal immersion R: T —> R3 up to translation by :

R{z)=Re F ( l -^,z(l+^),2p)772 „(

where g = P is a degree two meromorphic map from T to S2 corresponding
to the stereographic projection of the Gauss map of the surface, and
rf = i d z / g is a holomorphic 1-form defined on T minus the ends. The
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ends will naturally be 0 and o^? and then we define r to be the translation
of vector

Re ^( l-^ ,z( l+(7 2) , 2g)r]

the integration being taken along any "vertical" simple loop, that is
homologous to the segment [0, z] oriented upward. Then R induces a proper
finite total curvature embedding of the torus in R^/r. This embedding also
has the following properties : each horizontal curve on T is mapped to a
horizontal circle, except for the heights 0 and 1/2, where the curves are
mapped to horizontal lines. There is a natural rotational symmetry around
these lines (see fig. 1). Conversely, we can state the'uniqueness theorem
proven in [3].

THEOREM 3. — Let A be a. property embedded minimal annulus
bounded by two parallel lines; assume further that A lies between two
planes with one line in each plane. Then there exists a real constant fjL such
that A lies in the image of R, up to obvious isometrics.

3. General properties.

3.1. Extension of the surface.

Let us now prove Theorem 1. We will start with two horizontal parallel
lines LQ and L\ bounding a properly embedded minimal annulus A with
one end. We also suppose that A lies between two horizontal planes, each
containing LQ or L\ respectively. Applying Schwarz Reflection Principle,
we can rotate by 180° around those lines in order to extend the surface.
Repeating this procedure, we get a complete orientable minimal surface
5, with parallel horizontal ends. If we define the translation r as the
composition of the two basic rotations around LQ and around L\, then the
quotient M = S / r J , is an orientable, genus 1, embedded minimal surface,
with four horizontal ends. It is a general result in minimal surface theory
([8]) that any complete finite topology properly embedded minimal surface
is conformally equivalent to a punctured Riemann surface. Our purpose
will now be to prove that M is conformally a rectangular torus.
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3.2. The first conformal representation.

Let a denote the 180° rotation in space around Li; then B = AUo-(A)
is a fundamental domain of M and is topologically an annulus bounded by
two lines, Z/o and L^ = ^(^0)5 minus three points, namely < i , ^2 and a(l^).
Here Zi is the end at the height of Li, and we will write abusively Zi e L\; ̂
is the additional end in between the two original lines. Since B is minimal,
it is conformally isomorphic to an annulus in the complex plane, that is
{z € C; 1 < 12; | < r}; from now on, we will see B as that particular annulus.
Furthermore the third coordinate X^ of the embedding is harmonic and
constant on the boundary (here circles); thus it has to be something like

Xs(z) = a log |;z;|+6.

An obvious consequence of this is that Li is also a circle in this conformal
representation, whose radius is the geometric mean of the radii of the
boundary circles.

Considered as an isometry of R3, a is orientation-preserving; but by
construction of M, we see that a sends the normal vector at any point
q C M to the opposite of the normal at a{q) :

(1) ^(ri(q))=-n(a(q)).

We can now conclude that a is an orientation-reversing isometry of the
surface. But the only anti-conformal map from B into itself that sends
LQ to Z/2 and leaves the circle L\ pointwise invariant is the affine inversion
z t—^ k / z , where k is some real constant uniquely determined by the position
of Z/i. So that M is conformally this annulus in the complex plane with
boundary identified through a. However we will use another representation.

3.3. Parameterization on the flat rectangular torus.

We now consider now the rectangle in C whose vertices are 0, ̂ , /A+%, i
(as in the section 2, whose notations we will use). It is conformally
equivalent to the annulus defined above, provided we identify the vertical
edges. The equivalence mapping is z \-^ e^ for some real constant c. We see
also that the lines jLo,Li,2y2 correspond to horizontal segments of height
respectively equal to 0,1/2,1 (see figure 2). For the sake of simplicity, we
will keep on calling these lines LQ, L\ and £2-

Note that X^ is here an affine function of Im(2:), therefore X maps
the horizontal lines to horizontal curves in R3. L\ is the middle horizontal
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line, and the rotation a in space induces a line symmetry on the torus. It
is easy to see that a is here the usual reflection around Li, which identifies
any point of LQ with the point of 1/2 with the same real part. Therefore
the conformal model of M is a rectangular torus. In that quotient, a can
be seen as the usual complex conjugation. Then we have to remove the
four ends. We will keep on calling ^ the end that is "on" the line Z^,
for k = 0,1 and we can always suppose /o = 0. Let l^ still be the end
between LQ and L\ and, because of the symmetry, l^ is the other one. So
that M c^ J - {lo.li.l-z.h} conformally. We deduce from section 2 that in
the case of the double covering of Riemann's Example, the four ends are
located at (0,0:3,0:2 - V4,o;2 + ^/4) (provided of course we locate lo at 0).
We will prove that these points are the only possible choices.

3.4. The Weierstrass-Enneper representation.

Now that we have a proper conformal model for M, we will try
to determine the Weierstrass-Enneper parametrization of the immersion
X : M —^ H3. Let us sum up what we know about M : it is a finite topology,
orientable, embedded minimal surface; its genus is equal to 1, with four
ends. Then the Euler characteristic \{M) = -4; the total curvature is
finite and satisfies the Callahan-Hoffman-Meeks formula :

[ KdM= 27rOc(M) - 4) = -167T = -
J M

47Td(^).

Here g denotes the extended Gauss map, which is a meromorphic map
from T, the completion of M as a Riemann surface, to 52, the extended
complex plane. Thus the degree of g is 4. Using the orientability of M, we
may suppose that the normal map at /o and /i is vertical in the upward
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direction while at p and its conjugate it is vertical but goes downward. In
terms of the Gauss map, lo and l\ are poles, while l^ and ^2 are zeros.

Up to a scaling, we have X^{z) ^ Re J^ 2i dz (mod 2). Thus
if 77 denotes the holomorphic 1-form associated to g in the Weierstrass
representation, then gr] = i dz.

i dz

9

Equivalently, we can write dh = grj = i dz where h is the "height function".
Furthermore, the ends are double points; namely, at a flat end, g must have
branching order greater or equal to 1; but the degree ofg is 4, so all the ends
of M have branching order 1 for g. We can now easily write the coordinates
of the immersion :

X^z) = Ref^l - g2)^ = Ref^g-1 - g)i dz = Imf^g - g-^dz
X^(z) = Refi^+g2^ = -Re f(g-1 + g)dz
Xs{z) = Re f 2grj = Re f 2i dz = -21m{z - zo).

3.5. Properties of the Gauss map g .

We have seen that M has by construction a symmetry, namely
the complex conjugation corresponding to the rotation around the lines
in space. Whether we choose rotation around LQ or around L\ does
not matter, since they yield the same isometry on the torus. The most
important point is the behaviour of g under conjugation. If we choose the
lines Lo and L\ to follow the X^ direction, the property stated in (1) in
terms of the normal vector translates as

g(z)=g(z).
We check easily that z == z on the torus is equivalent to saying that z
belongs to LQ or Li, and in that case g has to be real, which means exactly
that the normal map is orthogonal to the X^ direction.

Since g is an elliptic function of degree 4, we know it can be written
as F(^)(z)) + p'^G^p^)), where F and G are rational functions, and p
is the Weierstrass p-function associated with the lattice defining this torus.
Rather than p, we will use the function P defined in 2.1, which similarly
generates the field of elliptic functions, and has the advantage of having a

u, + i
double zero at 0^2 = ———• Then

^
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PROPOSITION. — The end /i is one of the two branch points ofP on
Li, namely 0:2 or ^3. F is a degree 2 fraction with simple poles at infinity
and P(/i), while G is only a degree 1 fraction, with a pole at P(/i) and a.
zero at infinity, unless it vanishes everywhere.

COROLLARY 1. — There exist a degree 2 polynomial E, which does
not vanish at P(li), and a complex constant v such that :

^ E(P{z))^vP\z)
g [ ) P(z)-P(h) '

COROLLARY 2. — Since g is invariant under complex conjugation,
then v and all the coefficients in the expansion of E are real.

Proof of proposition.

- By considering a neighbourhood of zero in the 2-plane, we can see
that F has a simple pole at infinity, whereas G vanishes there. Namely,
if F(w) = cw^ + 0(1^) and G(w) = cv^ + o(w^) when w -^ oo
(here and afterwards, c will denote some non zero complex constant),
then g{z) ~ cz-^ + cz-3-211. This is compatible with the double pole
requirement if and only if h < -1 and k = 1.

- We will now prove by contradiction that /i equals 0:2 or 01:3 (in other
words 2/i = 0 on the torus). Indeed let us suppose that l^ is not a branch
point of P. We can find a function g having double poles at 0 and /i , and
double zeros at ^ and ~l^, provided these points satisfy 2(/i - ̂  -h) = 0 on
the torus, by the Abel-Jacobi theorem. However, in order to eliminate the
periods, the Gauss map must also satisfy the following criterion (proven
in 4.1) : both g and g~^ have no residues. We will prove that under the
hypothesis 2^i ^ 0, the function f = g~1 has non-vanishing residues at l^.
We proceed in technical lemmas.

LEMMA 1. — /'"(O) = 0.

Proof. — This condition is actually equivalent to Res(^,0) = 0.
Indeed, let us write the Taylor expansion of / = 1/g in a neighbourhood
of the origin : if f(z) == az2 + bz3 + 0(^4) then :

^)=—==2.fl-^+o(.2)yf{z) az2 \ a v / ;
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So b = —(^ResQ^O), which vanishes by hypothesis. Hence /'"(O) = 0.
Q.E.D.

LEMMA 2. — Let f be the odd part off; then :

_______aP______
J [(P-P(y)(P-P(/2))]2

where a 6 C* is a constant

Proof. — By hypothesis 2Zi ^ 0, hence ^2+^2 ^ 0- Consequently, ±^25
^ ^ 1

±^2 are four distinct point on T. / is denned by f(z) = -^{f{z) — /(—^)),
Zi

and has double poles at each of these four points, and nowhere else : hence
d{f) = 8. Being odd, / must vanish at 0,o;i, 0:2^3; using lemma 1, we
see that / has a zero of order at least 5 at the origin. We conclude that it
has simple zeros at cc^-, j = 1,2,3. Finally we consider //P7, which has the
same poles as / with the same multiplicity, and only one zero of order 8 at
the origin. It can only be a[(P - P(h))(P - P(L))]~2 for some a € C*.

Q.E.D.

LEMMA 3. — Res(/,y == ^Res(/,^2)-z

Proof. — Since f(—z) is non singular at —1'z, then in some neighbour-
hood of ^2; one can write :

7(^) = |(/(^) - /(-^)) = |(/(^) + o(i))-
Q.E.D.

LEMMA 4. — The residues of f and f at 1'z never vanish.

Proof. — Let us write the Taylor expansion of P in a neighbourhood
of /2 ; P{h/Q == a + ^C + ^C2 + 0(C3)- Notice that neither a nor b vanish.
Then

(^-^yr^^fi-^c+o^2))
(P-p^^-^fi-^C+o^2))a \ a I
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where a' = a — d(a' -^ 0 because (2 ^ ~h)-

pi 1 / 2c \
[(P - P(h))(P - P(h))}2 = ̂  [1 + ̂  + 0(C2)J

(l-J^-^^^^——fl-^+CXC2)).^ ^a fty y &a c \ a /

The residue of / is -^aa'"3 which never vanishes under our hypotheses.
Using lemma 3, we see that / itself has non vanishing residues, which
contradicts section 4.1. We must exclude this case. Q.E.D.

Therefore we know that l\ = 0^2 or <i =0:3; equivalently, P(l\) = 0
or P(li) = —I/A. One deduces that F has another simple pole at P(^i),
while G can have at most a simple pole there.

- Let us finally look for the other possible poles of G. There must
be at least one pole, since we have shown G vanishes at infinity (unless
G =. 0). If G has a pole at some P{zo), then ZQ must be a pole for g. In
fact, if it were not, then P'{z)G{P{z)) would have to stay bounded near
ZQ ; this is never possible, whether ZQ is a branch point of P or not. Thus
P(zo) is either infinity or P(^i). The first is excluded, so we can conclude
that G has a simple pole at P(^i). The corollaries follow. Q.E.D.

4. The period constraints.

4.1. The different types of periods.

In order for X to be well defined, we need to check that there are
no periods for X on the torus. These real periods fall into two distinct
categories : "analytical" periods coming from poles of a differential form,
and "geometric" periods coming from the homology. For the latter, we
will take into account only the real periods along any horizontal loop (by
horizontal loop, we mean homologous to Z/o).

It is obvious already that dX^ = —21mdz has no period, either around
the ends, or along a horizontal loop. However dXi == Im((^ — g~l)dz) and
dX^ = —Re{(g 4- g~l)dz) may have periods around the poles and zeros of
g. Clearly their analytical periods vanish if and only if g and g~1 have no
residues. There remains then to check the homological periods.
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4.2. The planar symmetry.

We will show that there has to be a plane of symmetry for the
immersion X, and how this translates into analytical terms.

PROPOSITION. — The function g is even; this implies that there is a
plane of symmetry perpendicular to the X^ direction.

We will need the following

LEMMA. — The residue o f g a t O is —2z/ .

Proof of the lemma. — We have found an expression of g as

E(P(z})+yP\z)
9^)= P(z)-P(h)

where l\ is the pole of g on Li, and is one of the two branch points of P on

LI. Obviously, ——————— is even, and thus has no residue at 0; then
P{z) - P(^i)

Res(^O) = z.Res(P7(P - P(Zi)),0).

Near zero, we know that

P\z)/(P{z)-P(h))^-2/z.

This proves the lemma.

Proof of the proposition. — According to the previous section, it is
necessary for v to vanish; thus g(—z) = g(z). One checks easily that it
amounts to saying that there is a vertical plane of symmetry, orthogonal
to the X^ direction. QED.

Finally, we deduce

COROLLARY. — P(h) ^ IR ^d there is a real number a such that :

{P(Z) - P(;2))2

g{z) = a
P{z) - P^i)

Proof. — Now that we have eliminated the odd part in the expansion
of^, we can easily determine its accurate expression. In fact, let us compute
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the derivative of g :

, ( . _ p / / . E'(P{z))(P{z) - P(Zi)) - E(P(z))
g ( ) ~ ( )—————TO-^i))2—————

and apply the condition g(l^) = ^'(^) = 0. Since obviously P(^) 7^ P(^i)
and P'(y 7^ 0^ -P(^) has to be a double zero of E. Furthermore all
parameters in the expansion of g must be real in order to satisfy the
requirement that g(z) = g(z). QED.

4.3. The value oHi.

We have two possibilities for ^ : either 0:2 or 0:3, whose values under
P are respectively 0 and -I/A < 0. We also know from section 3.5 that
^(Li) lies either in R^ or R*.. Namely the image of each of these lines lies
in IR but doesn't include zero, and reaches oo only once (though with order
1). We will prove that the sign of g along both LQ and Li must be the
same, namely the sign of a. As a corollary this will force ^ to be 01:3.

Proof. — A necessary condition on g is that neither g nor g~1 have
residues on T. Thus

/ g^dz = / g-^dz
J L i J L o

both lines having the same orientation (say increasing real part). It is clear
then that g has the same sign on both of them. Suppose now that /i = o;2,
or equivalently, P(^i) = 0. Let us evaluate g in the neighbourhood of this

(^
pole. It is easy to compute that for small ^ P(/i 4- C) ~ -—^C2- Hence

9(h +0 ~ ~~^^aP(h)2/^'2' Meanwhile, near zero, on Lo, g ( z ) ~ -p-a/z2.
^x ^\

Both expressions have opposite signs, we get a contradiction (recall C\ >
0). We can now write :

g(z)=a{p(z)-p(l^g{ ) P(z) + I/A •

4.4. The period condition at the l^ end.

Let us now consider periods around l^ (or l^ which is equivalent). We
need only check that the residue of g~1 vanishes. Therefore we write for
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small ZA,

P(<2 + u) = P(/2) + au + ̂ /2 + 0(^3)
then

(P02 +1^) - P(^))2 = aV(l + W^ + 0(u2))
and

g-i^ ^) _ ((p^) + V^ + a^ + o(^2)) (i - W^ + o(^2))
aa2^2

_ (P(h) + I/A) + (a - b(P(h) + l/A)/a)^ + 0(^2)
aa^u2

Therefore the residue is — — — 2 / — — y — / . Note that a = P'fZo) ^ 0aa v '
We will now show that only two possible choices of ̂  up to conjuga-

tion, make this residue vanish. The condition is :

a2 = b(P(h) + I/A)

where a, b are respectively the first and second derivative of P at l^. Let us
first compute b in terms of the other quantities. The structural equation
for P being P'2 = Cx P(P + 1/A)(P - A), derivation yields :

2W = C^ P\P(P + I/A) + P(P - A) + (P + 1/A)(P - A)),

therefore

'2b=C^ (P(h)(P(h) + I/A) + P(l2)(P(h) - A)
+(P(y+l/A)(P(y-A))

a2 == C\ P(h)(P(h) + 1/A)(P(<2) - A)
, a2 = b{P(h) + I/A).

This implies :

2P(/2)(P(/2) - A) = (P{h)(P(h) + I/A) + P(h)(P(h) - A)
+(P02)+l/A)(P(y-A))

namely

P(;2)2 + 2P(;2)/A - 1 = 0

whose solutions are P(h) = —————————.
A
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4.5. The homology period.

We have hencewith verified that no real period can arise from loops
around h,h^ 0 or ^i. This leaves us with two distinct families of solutions.
However there remains to check the homological condition, which will
eventually reduce the solution to the known Riemann's Example.

Suppose 7 is a simple horizontal loop. We must have :

(lm^{g-l-g)dz=0
\Ref^g-l+g)dz=^

We suppose of course that 7 does not meet any zero or pole of g ; however,
in order to evaluate the integral, we can split it and consider homologous
curves. The first integral is always zero, because of the invariance ofg under
conjugation. Namely, the integrals of g and g~1 along 7 are both real. The
second equation can be written as

r (P(z) - P(h)f i [ P(^)+I /A _
a ] , P(z)+l/\ d z } aJ^P^-Pik))2^

where we must find a real a, for one of the two possible P^)' A necessary
and sufficient condition is that both integrals have opposite signs (or both
0). But we see at once that f g~ldz is positive if a is, by integrating along
LQ. Thus f gdz and a must have opposite signs. However this integral can
be seen as a polynomial in P(^) 5 m fact let us define :

1 { , f(P(z)-w)2

aJ^^J P^+l/A'
W=V^=/^^.

a J-y J P{z) + I/A

= f (P(z) + I/A) - 2(w + I/A) + p^^l dz

= ( - ̂ (2w + I/A) + f P(z)dz + (w + I/A)2 f ^ ).

The study of P shows that : T is a upward-oriented parabola which is
positive at —I/A, negative at 0, and attains its minimum after A. Therefore

P ( ————————— ) > 0, which excludes the smallest possible value for
V A /

P(y- On the other hand,

/ < V / A 2 + 1 - 1 \
r{———A———<0?
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which corresponds to the known Riemann's Example.

Proof. — Note first that the leading term in P is positive. In fact

we can integrate J . .—-,-. along Lo instead of 7, where we have
r\Z) + I/A

the following inequality : P(z) > X (remember A > 0). So P(z) + I/A >
A+ I/A > 0; this yields the desired result but also a bound on the integral,
namely :

/ dz < I {X+l/Xrldz=^
J^P(z)+l/\ JL, ' ) 1 + A 2

Let us now evaluate the position for the minimum of this parabola,
which we will call Wm '-

^
Wm = -1/A+ dz/J P(z)+l/\

It is very easy to verify that the previous inequality is equivalent to

Wm > A.

Third and last point, we would like to have an estimate of P at 0 and
-I/A,

^-^/^^/p^
By integrating along Z/i, it is obvious that f P(z)dz < 0; we know more,
namely —/VA < f P(z)dz < 0. Therefore to prove that 7^(0) < 0 we need
only show that

1 /* dz IJL1 /* dz IJL
A 2 / P(z) + I/A < ATo" / ~ ~ ~ , ^ ~ 7 ~ ~ ^ ~

that is
dz/J P{z)+l/\

Using the previous result, we know that

< fi\.

[ d-i p.X
J P(z) + I/A < 1 + A2
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which is sufficient. And when w = —I/A,

P(-l/\)=^+jp(z)dz

which is positive, -as seen previously. QED.

4.6. Conclusion.

The Riemann Example is only minimal surface which is conformally a
once-punctured annulus lying between two parallel planes, bounded by two
lines in those planes. Up to scaling, there is only a one-parameter family
of such examples, parameterized by /ji (or A).
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