# LE MAU HAI NGUYEN VAN KHUE Meromorphic extension spaces

Annales de l'institut Fourier, tome 42, nº 3 (1992), p. 501-515 <http://www.numdam.org/item?id=AIF\_1992\_42\_3\_501\_0>

© Annales de l'institut Fourier, 1992, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## $\mathcal{N}$ umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble **42**, 3 (1992), 501-515.

## **MEROMORPHIC EXTENSION SPACES**

by LE MAU HAI and NGUYEN VAN KHUE

The extension of meromorphic maps from a spreaded domain over a Stein manifold to its envelope of holomorphy has been investigated by some authors. This problem for meromorphic functions was proved by Kajiwara and Sakai [9], for meromorphic maps with values in a compact subalgebraic space by Hirschowitz [8].

The extension of meromorphic maps with values in a compact Kahler manifold through an analytic set of codimension  $\ge 2$  has been established first by P. Griffiths [6] in a particular case and by Siu [17] in general. In the present paper we shall prove the following two theorems are based on ideas of Dloussky [2].

THEOREM 2.2 – Let  $\theta: X \to Y$  be a Hartogs meromorphic extension map. Assume that Y is a Hartogs meromorphic extension space. Then for every meromorphic mapping f from a domain D over a Stein manifold to X, there exists an analytic subset A of codimension at least 2 in  $^D$ such that f extends meromorphically to  $^D A$ . Moreover, if X is a compact Kahler manifold and Y is a Hartogs meromorphic extension space and  $\theta$  is a Hartogs meromorphic extension map then X is a meromorphic extension space.

THEOREM 3.1. – Let  $\theta: X \to Y$  be a finite proper surjective holomorphic map. Then X is a meromorphic extension space if and only if Y has the same property.

Using Theorem 3.1 we prove that every compact non-singular elliptic Kahler surface is a meromorphic extension space. Moreover using Theorem 2.2 we also prove that every complex Lie group is a meromorphic extension space.

We would like to thank referees for their helpful remarks.

Key words : Meromorphic map - Meromorphic extension spaces - Branched covering map -Elliptic Kahler surface.

A.M.S. Classification : 32H25 - 32H20.

### 1. Meromorphic extension spaces.

We first recall that a meromorphic map  $f: X \to Y$  is an analytic set  $\Gamma(f)$  in  $X \times Y$  such that the canonical projection  $p(f): \Gamma(f) \to X$ is proper and there exists an open subset X(f) of X such that  $\Gamma(f) \cap (X(f) \times Y)$  is the graph of a holomorphic map from X(f) into Y.  $\Gamma(f)$  is called the graph of f. It is known [14] that in the case where X is normal, the indeterminacy locus of f

 $I(f) = \{x \in X : f \text{ is not holomorphic at } x\} = \{x \in X : \dim p(f)^{-1}(x) > 0\}$ 

is an analytic set of codimension  $\ge 2$ .

We now give the following

DEFINITION 1.1. — Let X be a complex space. We say that X is a meromorphic extension space if the two following conditions are satisfied :

H) every meromorphic map from a spreaded domain D over a Stein manifold into X can be extended meromorphically to  $^{\wedge}D$ , the envelope of holomorphy of D.

**R**) Every meromorphic map from  $Z \setminus S$  into X, where Z is a normal complex space and S is an analytic set of codimension  $\ge 2$  in Z can be meromorphically extended to Z.

In the case where only the condition H) (resp. R)) holds, X is called a Hartogs (resp. Riemann) meromorphic extension space.

We have the following

**PROPOSITION 1.2.** – Let X be a complex space. Then the following conditions are equivalent :

(i) every meromorphic map from a Hartogs domain to X can be meromorphically extended to its envelope of holomorphy.

(ii)  $\mu_R^X$  is Stein for every Stein manifold R, where  $\mu_R^X$  denotes the spread domain over R associated to the sheaf of germs of meromorphic maps on R with values in X.

(iii) X is a Hartogs meromorphic extension space.

*Proof.* – (i)  $\rightarrow$  (ii). By the Docquier-Grauert theorem [3] it suffices to show that  $\mu_R^X$  is  $p_7$ -convex, i.e. every holomorphic embedding  $\sigma: H_k(r) \rightarrow \mu_R^X$  can be holomorphically extended to  $\Delta^k$ , where  $\Delta$  denotes the unit disc in C and  $H_k(r)$  is given by

$$H_k(r) = \{(z_1, z_2, \dots, z_k) \in \Delta^k : |z_j| < r, j = 1, 2, \dots, k-1\} \\ \cup \{(z_1, z_2, \dots, z_k) \in \Delta^k : |z_k| > 1-r\}, \quad 0 < r < 1,$$

 $k = \dim R$ .

Let  $\mathcal{O}_R^X$  denote the spread domain over R associated to the sheaf of germs of holomorphic maps on R with values in X. Obviously  $\mathcal{O}_R^X$  is dense open in  $\mu_R^X$ . Consider the canonical map  $e: \mathcal{O}_R^X \to X$  given by

$$e(g_z) = g_z(z)$$
 for  $z \in R$  and  $g_z \in (\mathcal{O}_R^X)_z$ .

It is easy to see that e extends meromorphically by definition  $\mu_R^X$ . Hence  $e\sigma: H_k(r) \to X$  is meromorphic. By hypothesis it is extended to a meromorphic map  ${}^{\wedge}e: \Delta^k \to X$ . Let  $p: \mu_R^X \to R$  denote the locally biholomorphic canonical map and let  $\mathscr{E}: \Delta^k \to R$  be a holomorphic extension of  $p\sigma$ . Since every hypersurface in  $\Delta^k$  meets  $H_k(r)$ , it follows that  $\mathscr{E}$  is a locally biholomorphic map. Define now a holomorphic extension  ${}^{\wedge}\sigma: \Delta^k \to \mu_R^X$  by

$$^{\wedge}\sigma(z) = (\mathscr{E}(z), \ ^{\wedge}e(\mathscr{E}|_{U_{z}})^{-1}_{\mathscr{E}(z)}) \text{ for } z \in \Delta^{k}$$

where  $U_z$  is a neighbourhood of z in  $\Delta^k$  on which  $\mathscr{E}$  is biholomorphic. Therefore (ii) is proved.

(ii)  $\rightarrow$  (iii). Given a meromorphic map  $f: D \rightarrow X$ , where D is a spread domain over a Stein manifold. Consider D as a spread domain over  $^{\wedge}D$  with the canonical map  $e: D \rightarrow ^{\wedge}D$ . By D(f) we denote the envelope of meromorphy of f. Then D(f) is a Stein manifold and f has a canonical meromorphic extension  $\tilde{f}$  to D(f). By the Steiness of D(f) the canonical map  $\beta: D \rightarrow D(f)$  can be extended to a holomorphic map  $^{\wedge}\beta: ^{\wedge}D \rightarrow D(f)$ . Therefore  $\tilde{f}^{\wedge}\beta$  is a meromorphic extension of f to  $^{\wedge}D$ .

(iii)  $\rightarrow$  (i) is trivial.

### 2. Meromorphic extension maps.

DEFINITION 2.1. – Let  $\theta: X \to Y$  be a holomorphic map between complex space. We say that  $\theta$  is a Hartogs (resp. Riemann) meromorphic extension map if for each  $y \in Y$  there exists a neighbourhood U of y such that  $\theta^{-1}(U)$  is a Hartogs (resp. Riemann) meromorphic extension space. If both conditions of Hartogs and Riemann meromorphic extension are satisfied, then  $\theta$  is called a meromorphic extension map.

THEOREM 2.2. – Let  $\theta: X \to Y$  be a Hartogs meromorphic extension map. Assume that Y is a Hartogs meromorphic extension space. Then for every meromorphic mapping f from a domain D over a Stein manifold to X, there exists an analytic subset A of codimension at least 2 in ^D such that f extends meromorphically to ^D\A. Moreover if X is a compact Kahler manifold and Y is a Hartogs meromorphic extension space and  $\theta$ is a Hartogs meromorphic extension map then X is a meromorphic extension space.

*Proof.* – (i) Given  $f: D \to X$  a meromorphic map, where D is a spread domain over a Stein manifold. By hypothesis we have a following commutative diagram



where g is a meromorphic extension of  $\theta \cdot f$ .

We show that  $\gamma_0 = \gamma|_{D(f)\setminus\gamma^{-1}(I(g))} : D(f)\setminus\gamma^{-1}(I(g)) \to {}^{\wedge}D\setminus I(g)$  is locally pseudoconvex. Let  $z \in {}^{\wedge}D\setminus I(g)$ . Take a neighbourhood V of g(z) in Y and a Stein neighbourhood U of z in  ${}^{\wedge}D\setminus I(g)$  such that  $g(U) \subset V$ . As in Proposition 1.2 ((i) $\to$ (ii)), it follows that  $\gamma^{-1}(U)$  is  $p_{\gamma}$ -convex. Therefore  $\gamma^{-1}(U)$  is Stein [3], and the local pseudoconvexity of  $D(f)\setminus\gamma^{-1}(I(g))$  over  ${}^{\wedge}D\setminus I(g)$  is proved. We now write  $I(g) = \bigcap Z(h_{\alpha})$ , where  $h_{\alpha}$  is holomorphic on  $^{\wedge}D$  and vanishes on I(g) and  $Z(h_{\alpha})$  denotes the zero-set of  $h_{\alpha}$ . Since  $\gamma_0: D(f) \setminus \gamma^{-1}(I(g)) \to ^{\wedge}D \setminus I(g)$  is locally pseudoconvex and  $^{\wedge}D \setminus Z(h_{\alpha})$  is Stein,  $\gamma_0^{-1}(^{\wedge}D \setminus Z(h_{\alpha}))$  also is Stein for every  $\alpha$ . For each  $\alpha$  consider the holomorphic map  $\beta_{\alpha} = \beta|_{D \setminus Z(h_{\alpha})} : D \setminus Z(h_{\alpha}) \to \gamma_0^{-1}(^{\wedge}D \setminus Z(h_{\alpha}))$ . Then  $\beta_{\alpha}$  can be extended to a holomorphic map  $^{\wedge}\beta_{\alpha} : ^{\wedge}(D \setminus Z(h_{\alpha})) = ^{\wedge}D \setminus Z(h_{\alpha}) \to D(f)$  [2]. By uniqueness the maps  $^{\wedge}\beta_{\alpha}$  define a holomorphic map  $^{\wedge}\beta : ^{\wedge}D \setminus I(g) \to D(f)$  such that  $^{\wedge}\beta \cdot e = \beta$  on  $D \setminus e^{-1}(I(g))$ . The map  $^{\wedge}f = \tilde{f} \cdot ^{\wedge}\beta : ^{\wedge}D \setminus I(g) \to X$  is meromorphic and is a meromorphic extension of f.

(ii) Now assume that X is a compact Kahler manifold and Y is a Hartogs meromorphic extension space and  $\theta$  is a Hartogs meromorphic extension map. By [17] and since (i) it implies that X is a meromorphic extension space.

# 3. Finite proper holomorphic surjections and meromorphic extension spaces.

The aim of this section is to prove Theorem 3.1 on invariance of meromorphic extendibility under finite proper holomorphic surjections.

THEOREM 3.1. – Let  $\theta: X \to Y$  be a finite proper holomorphic surjective map. Then X is a meromorphic extension space if and only if Y has the same property.

For the proof of the theorem we need following four lemmas.

LEMMA 3.2. – Let  $\varphi: W \to Z \setminus S$  be unbranched finite covering map, where W, Z are complex manifolds and S is an analytic set in Z of codimension  $\ge 1$ . Then there exists a following commutative diagram



where  $(\tilde{W}, \tilde{\phi}, Z)$  is a branched covering map and  $\tilde{e}$  is an open embedding.

Proof. - See [5] and [18].

LEMMA 3.3. – Let  $\varphi: G \to D$  be a branched covering map, where G is a normal complex space and D is a spread domain over a Stein manifold such that points of D are separated by holomorphic functions on D. Assume that H is the branch locus of  $\varphi$  and  $D_0 = D \setminus H$ ,  $G_0 = G \setminus \varphi^{-1}(H), \ \varphi_0 = \varphi \mid_{G_0}$ .

Then there exists an analytic set H' in D contained in H such that  $^{(D\setminus H')} = ^{D} D$  and a commutative diagram of normal complex spaces



where  ${}^{\wedge}\phi_0$ , 4,  $\beta: G \setminus \phi^{-1}(H') \to \operatorname{Im} \beta$  are branched covering maps,  $\alpha$  is an open embedding and  $\beta^{-1}(\alpha e(G_0)) = G_0$ .

*Proof.* – Since D and G are normal, it follows that either H is a hypersurface in D or  $H = \emptyset$ . The case where  $H = \emptyset$  is trivial. Therefore we can assume that H is a hypersurface. Then there exists an analytic set  $^{h}H$  in  $^{h}D$  such that

$$^{\wedge}D_{0} = ^{\wedge}D \setminus ^{\wedge}H \quad [2].$$

Observe that  ${}^{\wedge}H \cap D \subset H$ . We write  $H = ({}^{\wedge}H \cap D) \cup H'$ , where H' is an analytic set in D such that  ${}^{\wedge}(D/H') = {}^{\wedge}D$ . By [11] the map  ${}^{\wedge}\phi_0 : {}^{\wedge}G_0 \to {}^{\wedge}D_0$  is an unbranched covering map and using Lemma 3.2 to  ${}^{\wedge}\phi_0$ , we can construct a commutative diagram



where  $D' = D \setminus H'$ ,  $G' = G \setminus \varphi^{-1}(H')$  and  $\varphi' = \varphi|_G$ , in which 4 is a branched covering map of the normal complex space W onto  $^{\wedge}D$  and

 $\alpha$  is an open embedding. Put  $\alpha = \alpha e$ . We shall prove  $\alpha$  can be extended to a holomorphic map  $\beta$  from G' to W. Since the Steiness is invariant under finite proper holomorphic surjections [13], W is Stein. Thus by the normality of G' it suffices to show that  $\alpha$  is locally compact on G', i.e for every  $z \in G'$  there exists a neighbourhood U of z such that  $\alpha(U \cap G_0)$  is relatively compact in W. Assume that  $z_0 \in {\varphi'}^{-1}(H')$  and  $\{z_n\} \subset G_0$  converging to  $z_0$ .

Then

$$\lim 4^{\wedge} \alpha(z_n) = \lim \phi'(z_n) = \phi_0(z_0) \in D' \subset A^{\wedge}D$$

Thus from property of 4, it follows that  $\{ {}^{\wedge}\alpha(z_n) \}$  is relatively compact in W. This yields the local compactness of  ${}^{\wedge}\alpha$ .

Let  $\beta: G' \to W$  be a holomorphic extension of  $\[ \ \alpha \]$ . Since  $\varphi'$  and 4 are finite proper maps and D' is contained in  $\[ \ D \]$  as an open subset, it is easy to see that  $\beta: G' \to \beta(G')$  is finite proper. Hence by the normality of W and by the equality dim  $G' = \dim W$ , it follows that  $\beta(G')$  is open in W and  $\beta: G' \to \beta(G')$  is a branched covering map. Finally, if  $\[ \ \alpha(z_0) = \beta(z_1), \]$  where  $z_0 \in G_0$  and  $z_1 \in G'$ , then

$$\varphi'(z_1) = 4\beta(z_1) = 4^{\wedge}\alpha(z_0) = \varphi_0(z_0).$$

This implies  $z_1 \in G_0$ . Hence  $\beta^{-1}(\Lambda \alpha(G_0)) = G_0$ .

The lemma is proved.

LEMMA 3.4. – Let X be a meromorphic extension space and Z a normal Stein space. Assume that H is a hypersurface of Z and G is an open subset of Z meeting every irreducible branch of H. Then every meromorphic map  $f: (D \setminus H) \cup G \to X$  can be meromorphically extended to Z.

*Proof.* – Since Z is normal, codim  $S(Z) \ge 2$  [4], where S(Z) denotes the singular locus of Z. We write by the Steiness of ZS(Z) in the form

 $S(Z) = \cap \{Z(h) : h \text{ is holomorphic on } Z, h|_{S(Z)} = 0 \text{ and}$  $h \neq 0 \text{ on every irreducible branch of } H\}.$ 

From hypothesis, it suffices to show that for every such h the map  $f_h = f|_{Z_h \setminus H}$ , where  $Z_h = Z \setminus Z(h)$ , can be meromorphically extended on  $Z_h$ . Put  $G_h = G \setminus Z(h)$  and  $H_h = H \cap Z_h$ . Then  $G_h$  also meets every

irreducible branch of  $H_h$ . Consider the meromorphic map  $f_h|_{(Z_h \setminus H_h) \cup G_h}$ . Since  $^{((Z_h \setminus H_h) \cup G_h)} = Z_h$  [2] it follows that  $f_h|_{(Z_h \setminus H_h) \cup G_h}$  can be extended to a meromorphic map  $^{\wedge}f_h$  to  $Z_h$ .

The lemma is proved.

LEMMA 3.5. – Let  $\pi: Z \to W$  be a banched covering map and  $f: Z \to X$  a meromorphic map which can be factorized through  $\pi|_{\pi^{-1}(V)}$  for some non-empty open subset V of W. Then f can be factorized through  $\pi$ .

**Proof.** – Let H denote the branch locus of  $\pi$ . It is easy to check that there exists a holomorphic map g from  $W \setminus (H \setminus \pi(I(f)))$  to X such that  $g\pi = f$  on  $\pi^{-1}(W \setminus (H \cup \pi(I(f))))$ . Since  $\pi \times \text{id} : Z \times X \to W \times X$  is proper,

$$\Gamma(g) = (\pi \times \mathrm{id})\Gamma(f)$$

is an analytic set in  $W \times X$ . Hence from property of  $\pi$  and p(f), it follows that  $\overline{\Gamma(g)}$  defines a meromorphic map  $g_1$  on W such that  $g_1 \cdot \pi = f$ .

The lemma is proved.

We now can prove Theorem 3.1.

a) First prove sufficiency of the theorem.

(i) Given  $f: D \to X$  a meromorphic map, where D is a spread domain over a Stein manifold. From hypothesis we have a following commutative diagram



where g is a meromorphic extension of  $\theta \cdot f$ .

As in Theorem 2.2,  $\beta|_{D \setminus e^{-1}(I(g))}$  can be extended to a holomorphic map  ${}^{\wedge}\beta : {}^{\wedge}D \setminus I(g) \to D(f)$ . Put  $A = (\mathrm{id}^{\times}\theta)^{-1}(p(g)^{-1}(I(g)))$ . Then  $\Gamma({}^{\wedge}f) \subset ({}^{\wedge}D \setminus I(g)) \times X \subset (D(f) \times X) \setminus A$ , where  ${}^{\wedge}f = \tilde{f}^{\wedge}\beta$ , and is closed in  $(\gamma(D(f)) \times X) \setminus A$ . Indeed, let  $\{(x_n, z_n)\} \subset \Gamma({}^{\wedge}f)$  converge to

508

 $(x_0, z_0) \in \gamma(D(f)) \times X \setminus A$ . Since  $(x_0, z_0) \in A$ ,  $(\text{id} \times \theta)(x_0, z_0) = (x_0, \theta z_0) \in p(g)^{-1}(I(g))$ . If  $x_0 \in I(g)$ , then  $(x_0, z_0) \in (^D \setminus I(g)) \times X$ . Hence  $(x_0, z_0) \in \Gamma(^{\wedge}f)$ . In the case where  $x_0 \in I(g)$ , we have  $(x_0, \theta z_0) \in \Gamma(g)$ . This is impossible, because of the relation  $\Gamma(g) \supset \{(x_n, z_n)\} \to (x_0, \theta z_0) \in \Gamma(g)$ . Therefore  $\Gamma(^{\wedge}f)$  is closed in  $(\gamma(^{\wedge}D(f)) \times X) \setminus A$ . Since dim  $\Gamma(^{\wedge}f) = \dim ^{\wedge}D > \dim A$ , by the Remmert-Stein theorem [7]  $\overline{\Gamma(^{\wedge}f)}$  is an analytic set in  $^{\wedge}D \times X$ . Since  $\theta$  is proper, it follows that  $\overline{\Gamma(^{\wedge}f)}$  defines a meromorphic extension of f to  $^{\wedge}D$ .

(ii) Let now  $f: Z \setminus S \to X$ , where Z is a normal complex space and S is an analytic set in Z of codimension  $\ge 2$ . From the Riemann meromorphic extendibility of Y we have a following commutative diagram



Similarly as in (i), where D,  $^{\Lambda}D \setminus I(g)$  and  $\tilde{f}^{\Lambda}\beta$  are replaced by Z,  $Z \setminus (I(g) \cup S)$  and f respectively we obtain a meromorphic extension  $^{\Lambda}f$  of f to Z.

b) We now prove necessity of the theorem.

(i) Let f be a meromorphic map from a spread domain D over a Stein manifold to X. By Proposition 1.2 we can assume that D is a Hartogs domain. Consider the commutative diagram



where  $D_1 = D \setminus I(g)$ ,  $G_1 = (D_1 x_Y X)_{red}$  is the fiber product,  $f_1 = f|_{D_1}$ and  $\varphi_1$ ,  $g_1$  are canonical projections.

Without loss of generality we may assume that  $G_1$  is normal. Observe that  $\varphi_1$  is a branched covering map. Let  $H_1$  denote the branched locus of  $\varphi_1$ , Since dim  $H_1 > \dim I(f)$ , it follows that  $\overline{H}_1$  is an analytic set in D. Using Lemma 3.2 to the unbranched covering map  $\varphi_1$ :  $G_1 \setminus \varphi_1^{-1}(H_1 \cup I(f)) \to D_1 \setminus (\overline{H}_1 \cup I(f))$  we have a following commutative diagram



in which  $\varphi$  is a branched covering map and G is normal. Since dim  $G_1 = \dim (\varphi \times \theta)^{-1} \Gamma(\underline{f}) > \dim (\varphi \times \theta)^{-1} p(\underline{f})^{-1}(I(\underline{f}))$ , by the Remmert-Stein theorem [7],  $\overline{\Gamma(g_1)}$  is an analytic set in  $G \times X$ . Hence by property of  $\theta$ , it defines a meromorphic extension of g on G such that  $\theta g = f$ . In notations of Lemma 3.3 we have a following commutative diagram of normal complexe spaces



 $g_2 = {}^{\wedge}g_0 \text{ on } {}^{\wedge}G_0 \text{ and } g_2 = \tilde{g} \text{ on } \beta(G').$ 

Since 4 is finite proper and every irreducible branch of  $^{\wedge}H$  meets D', it follows that this holds for  $4^{-1}(^{\wedge}H)$  and  $\beta(G')$ . Thus by Lemma 3.4 we have a meromorphic extension  $g_3$  of  $g_2$  on W. From Lemma 3.5,  $g_3$  can be meromorphically factorized through 4. Hence f is extended to a meromorphic map to  $^{\wedge}D$ .

510

(ii) Finally we show that Y has the Riemann meromorphic extension property. Given  $f: Z \setminus S \to Y$  a meromorphic map, where Z is a normal complex space and S is an analytic set in Z of codimension  $\ge 2$  which can be assumed to contain the singular locus of Z.

As in (i) we can construct a following commutative diagram of normal complex spaces



where  $\varphi_0$ ,  $\varphi_1$  are branched covering maps and  $g_0$ ,  $g_1$  are meromorphic maps. The problem is local without loss of generality we may assume that there exists a branched covering map  $\gamma: Z \to \Delta^n$ ,  $n = \dim Z$ . Let *H* denote the branch locus of  $\varphi_1$ .

Then  $\overline{H}$  is an analytic set in Z because of the inequality codim  $I(f) \ge 2$ . Take a hypersurface  $\widetilde{H}$  in  $\Delta^n$  containing the branch locus of  $\gamma$  such that  $\gamma(S \cup H) \subset \widetilde{H}$ . Using Lemma 3.3 we give a following commutative diagram



where  $\eta = \gamma \varphi_1$ , 4,  $\beta : G_1 \rightarrow \beta(G_1)$  are branched covering maps.

Obviously  $\beta^{-1}(\alpha(G_1 \setminus \eta^{-1}(\tilde{H}))) = G_1 \setminus \eta^{-1}(\tilde{H})$ . Thus  $g_1$  can be meromorphically factorized through  $\beta: G_1 \to \beta(G_1)$ . Hence  $g_0$  and  $g_1$  induce a meromorphic map  $g_2$  on  $G_1 \setminus \eta^{-1}(\tilde{H}) \cup \beta(G_1)$  with values in X. Since

every irreducible branch of  $\tilde{H}$  meets  $\Delta^n \setminus \gamma(S)$ , it follows that this holds for  $4^{-1}(\tilde{H})$  and  $\beta(G_1)$ . By Lemma 3.4,  $g_2$  can be extended to a meromorphic map  $g_3$  on W. Thus from Lemma 3.5 we give a meromorphic extension of f to  $\Delta^n$ .

Theorem 3.1 is completely proved.

#### 4. Some applications.

We first recall that an elliptic surface is a compact regular surface V equipped with a holomorphic map  $\theta$  from V onto a non-singular curve C such that  $\theta^{-1}(x)$  is an elliptic curve outside a finite set in C.

Using now Theorem 3.1 we prove the following.

THEOREM 4.1. – Let V be an elliptic Kahler surface. Then V is a meromorphic extension space.

*Proof.* – From a result of Siu [17], V is a Riemann meromorphic extension space. Thus it remains to prove that V has the Hartogs meromorphic extension property.

(i) In [12] Kodaira constructed for V a branched covering map  $\alpha$  from an elliptic surface  $\tilde{V}$  on V such that for each  $x \in C$  there exists a sufficiently small disc  $U_x$  containing x for which  $(\theta \alpha)^{-1}(U_x)$  is biholomorphic to a locally pseudoconvex open subset of a projective surface  $P_x$ . Put  $\eta = \theta \cdot \alpha$ . Given  $f: D \to \eta^{-1}(U_x)$  a meromorphic map, where D is a spread domain over a Stein manifold.

Let  ${}^{\wedge}f: {}^{\wedge}D \to P_x$  be a meromorphic extension of  $f|_{D\setminus I(f)}$ . Put

 $G = {}^{\wedge} f_0^{-1}(\eta, {}^{-1}(U_x)), \quad \text{where} \quad {}^{\wedge} f_0 = {}^{\wedge} f | {}^{\wedge} D \setminus I({}^{\wedge} f).$ 

We may suppose that D is a Hartogs domain. Since  $D \setminus I(f) \subset G$  we have  ${}^{\wedge}G = {}^{\wedge}D$ . Let now  $G \neq {}^{\wedge}D \setminus I({}^{\wedge}f)$ . Then we can find a point  $z_0 \in \partial G$  in  ${}^{\wedge}D \setminus I({}^{\wedge}f)$  and two Stein neighbourhoods of  $z_0$  and  ${}^{\wedge}f_0(z_0)$  in  ${}^{\wedge}D \setminus I({}^{\wedge}f)$  and  $P_x$  respectively such that  ${}^{\wedge}f_0(U) \subset W$  and  $z_0 \in {}^{\wedge}(U \cap G)$ . Since  $W \cap \eta^{-1}(U_x)$  is Stein and  ${}^{\wedge}f_0(U \cap G) \subset W \cap \eta^{-1}(U_x)$ , it follows that  ${}^{\wedge}f_0(z_0) \in W \cap \eta^{-1}(U_x)$ . This yields  $z_0 \in G$ . Hence  $G = {}^{\wedge}D \setminus I({}^{\wedge}f)$ . On the other hand, since  $\alpha {}^{\wedge}f_0$  and  $\eta {}^{\wedge}f_0$  are extended to meromorphic maps  $g : {}^{\wedge}D \to V$  and  $h : {}^{\wedge}D \to U_x$  respectively. We have  $\theta g = h$ .

It is easy to see that  $\Gamma(^{\Lambda}f_0)$  is contained and closed in  $(\operatorname{id} \times \alpha)^{-1}\Gamma(g) \setminus (\operatorname{id} \times \alpha)^{-1}p(g)^{-1}(I(g))$ , by the Remmert-Stein theorem,  $\overline{\Gamma(^{\Lambda}f_0)}$  defines a meromorphic extension  $\tilde{f}$  of f.

512

From the relation  $\eta \tilde{f} = f$ , it follows that  $\tilde{f}$  induces a meromorphic extension of f with values in  $\eta^{-1}(U_x)$ .

(ii) Let now f be a meromorphic map from a spread domain D over a Stein manifold into  $\tilde{V}$ . Consider the following commutative diagram



By (i) as in Theorem 2.1 we can find a holomorphic extension  $^{\beta}\beta$  of  $\beta|_{D\setminus I(g)}$  on  $^{\Delta}D\setminus I(g)$ . Let  $^{\beta}f_1: ^{\Delta}D \to V$  be a meromorphic extension of  $f_1 = \alpha \tilde{f}^{\beta}\beta: D\setminus I(g) \to V$ . Then as in Theorem 2.1, it follows that  $\Gamma(\tilde{f}^{\beta}\beta)$  defines a meromorphic extension of f. Hence  $\tilde{V}$  is a Hartogs meromorphic extension space.

(iii) Given a meromorphic map f from  $Z \setminus S$  into  $\tilde{V}$ , where Z is a normal complex space and S is an analytic set in Z of codimension  $\geq 2$ . Let  $g: Z \to V$  be a meromorphic extension of  $\alpha f$ . Then as in (i) we infer that  $\Gamma(f)$  defines a meromorphic extension of f.

(iv) From (ii) and (iii),  $\tilde{V}$  is a meromorphic entension space. Hence by Theorem 3.1, V is a meromorphic extension space.

The theorem is proved.

THEOREM 4.2. – Every complex Lie group is a meromorphic extension space.

*Proof.* - Let G be a complex Lie group.

(i) Given  $f: D \to G$  a meromorphic map, where D is a spread domain over a Stein manifold. Since  $\operatorname{codim} I(f) \ge 2$ ,  $f|_{D\setminus I(f)}$  can be holomorphically extended to  ${}^{\wedge}D[1]$ . Thus G is a Hartogs meromorphic extension space.

(ii) Given now f a meromorphic map from  $Z \setminus S$  to G, where Z is a normal complex space and S is an analytic set in Z of codimension  $\geq 2$ . Let  $\varphi$  be a plurisubharmonic exhaustion function [10] on G. Since codim  $I(f) \ge 2$  and codim  $S \ge 2$ ,  $\varphi f$  is plurisubharmonic on Z [8]. By [19] there exists a holomorphic bundle map  $\theta$  from G onto a complex torus T such that the fibers of  $\theta$  are Stein manifolds. Consider the holomorphic map  $\theta f|_{(\mathbb{Z}\setminus S)\setminus I(f)}$ . Then, by the Kahlerness of the torus T,  $\theta f$ is meromorphic on Z [17]. Let  $\gamma : {}^{\wedge}Z \to Z$  be the Hironaka singular resolution of Z. By (i),  $h = \theta f \gamma$  is holomorphic on  $^{\Lambda}Z$ . For each  $z_0 \in \gamma^{-1}(S)$  take the two neighbourhoods U and V of  $z_0$  and  $h(z_0)$ respectively such that  $h(U) \leq V$  and  $\theta^{-1}(V)$  is a Stein manifold. Then we have  $f\gamma(U\setminus (S)) \leq \theta^{-1}(V)$ . By the upper semi-continuity of  $\varphi f\gamma$ on  $^{\wedge}Z$  and since  $\varphi$  is an exhaustion function on G it follows that  $f^{\gamma}|_{U\setminus \gamma^{-1}(S)}$  can be extended holomorphically at  $z_0$ . Since  $z_0$  is arbitrary  $f\gamma$  is extended holomorphically to  $^{\Lambda}Z$ . Then  $(f\gamma)\gamma^{-1}$  is a meromorphic extension of f.

The theorem is proved.

#### BIBLIOGRAPHY

- [1] K. ADACHI, M. SUZUKI, M. YOSHIDA, Continuation of holomorphic mappings with values in complex Lie groups, Pacif. J. Math., 47, (1973), 1-4.
- [2] G. DLOUSSKY, Enveloppes d'holomorphie et prolongement d'hypersurfaces. Séminaire Pierre Lelong (Analyse), année 1975-76, Lecture Notes in Math., 578 (1977).
- [3] F. DOCQUIER, H. GRAUERT, Levisches problem and Rungescher Satz fur Teilgebiete Steinscher Mannigfaligkeiten, Math. Ann., 140 (1960), 94-123.
- [4] G. FISCHER, Complex Analytic Geometry, Lecture Notes in Math., 538, Springer-Verlag (1976).
- [5] H. GRAUERT, R. REMMERT, Komplexer Raume, Math. Ann., 136 (1958), 245-318.
- [6] P.A. GRIFFITHS, Two theorems on extension of holomorphic mappings, Inv. Math., 14 (1971), 27-62.
- [7] R. GUNNING, H. ROSSI, Analytic Functions of Several Complex Variables. Prentice-Hall, Englewood Cliffs, N.J, 1965.
- [8] A. HIRSCHOWITZ, Pseudoconvexité au-dessus d'espaces plus ou moins homogènes, Inv. Math., 26 (1974), 303-322.
- [9] J. KAJIWARA, E. SAKAI, Generalization of Levi-Oka theorem concerning meromorphic functions, Nagoya. Math. J., 29 (1967), 75-84.

- [10] H. KAZAMA, On pseudoconvexity of complex Lie groups. Mem. Fac. Sci. Kyushu Univ., 27 (1973), 241-247.
- [11] H. KERNER, Uberlagerungen und Holomorphiehullen, Math. Ann., 144 (1961), 126-134.
- [12] K. KODAIRA, On compact analytic surfaces I, Annals of Math., 77 (1963).
- [13] R. NARASIMHAN, A note on Stein space and their normalizations, Ann. Scuola Norm. Sup. Pisa., 16 (1962), 327-333.
- [14] R. REMMERT, Holomorphe und meromorphe Abbildungen komplexer Raume, Math. Ann., 133 (1957), 328-370.
- [15] B. SHIFFMAN, Extension of holomorphic maps into hermitian manifolds, Math. Ann., 194 (1971), 249-258.
- [16] B. SHIFFMAN, Holomorphic and Meromorphic Mappings and Curvature, Math. Ann., 222 (1976), 171-194.
- [17] Y.T. SIU, Extension of meromorphic maps into Kahler manifolds, Annals of Math., 102 (1975), 421-462.
- [18] K. STEIN, Analytische Zerlegungen Komplexer Raume, Math. Ann., 132, (1956), 63-93.
- [19] TAKEUCHI, On completeness of holomorphic principal bundles, Nagoya. Math. J., 57 (1974), 121-138.

Manuscrit reçu le 30 janvier 1991, révisé le 16 octobre 1991.

LE MAU HAI and NGUYEN VAN KHUE,

Department of Mathematics Pedagocial Institute 1 Hanoi (Vietnam).