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MEROMORPHIC EXTENSION SPACES

by LE MAU HAI and NGUYEN VAN KHUE

The extension of meromorphic maps from a spreaded domain over
a Stein manifold to its envelope of holomorphy has been investigated
by some authors. This problem for meromorphic functions was proved
by Kajiwara and Sakai [9], for meromorphic maps with values in a
compact subalgebraic space by Hirschowitz [8].

The extension of meromorphic maps with values in a compact
Kahler manifold through an analytic set of codimension ̂  2 has been
established first by P. Griffiths [6] in a particular case and by Siu [17]
in general. In the present paper we shall prove the following two
theorems are based on ideas of Dioussky [2].

THEOREM 2.2 — Let 9 : X —> Y be a Hartogs meromorphic extension
map. Assume that Y is a Hartogs meromorphic extension space. Then for
every meromorphic mapping f from a domain D over a Stein manifold to
X, there exists an analytic subset A of codimension at least 2 in ^D
such that f extends meromorphically to ^D\A. Moreover, if X is a
compact Kahler manifold and Y is a Hartogs meromorphic extension space
and 6 is a Hartogs meromorphic extension map then X is a meromorphic
extension space.

THEOREM 3.1. — Let Q : X -> Y be a finite proper surjective holomorphic
map. Then X is a meromorphic extension space if and only if Y has the
same property.

Using Theorem 3.1 we prove that every compact non-singular elliptic
Kahler surface is a meromorphic extension space. Moreover using
Theorem 2.2 we also prove that every complex Lie group is a
meromorphic extension space.

We would like to thank referees for their helpful remarks.
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Elliptic Kahler surface.
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1. Meromorphic extension spaces.

We first recall that a meromorphic map f: X -> Y is an analytic
set F(/) in X^ Y such that the canonical projection p(/): r(/) -> X
is proper and there exists an open subset X(f) of X such that
r(/) n (A'(/)x Y) is the graph of a holomorphic map from X(f) into
Y. F(/) is called the graph of/. It is known [14] that in the case
where X is normal, the indeterminacy locus of /

/(/) = {xeX //is not holomorphic at x} = {x(=X : dim p(f)~\x) > 0}

is an analytic set of codimension ^ 2.

We now give the following

DEFINITION 1.1. — Let X be a complex space. We say that X is a
meromorphic extension space if the two following conditions are satisfied :

H) every meromorphic map from a spreaded domain D over a Stein
manifold into X can be extended meromorphically to AZ), the envelope of
holomorphy of D.

R) Every meromorphic map from Z\S into X, where Z is a normal
complex space and S is an analytic set of codimension ^ 2 in Z can be
meromorphically extended to Z.

In the case where only the condition H) (resp. R)) holds, X is called
a Hartogs (resp. Riemann) meromorphic extension space.

We have the following

PROPOSITION 1.2. — Let X be a complex space. Then the following
conditions are equivalent :

(i) every meromorphic map from a Hartogs domain to X can be
meromorphically extended to its envelope of holomorphy.

(ii) \j^ is Stein for every Stein manifold R, where ^ denotes the
spread domain over R associated to the sheaf of germs of meromorphic
maps on R with values in X .

(iii) X is a Hartogs meromorphic extension space.



MEROMORPHIC EXTENSION SPACES 503

Proof. - (i) -> (ii). By the Docquier-Grauert theorem [3] it suffices
to show that 4^ is ^-convex, i.e. every holomorphic embedding
a : Hk(r) -> HJ| can be holomorphically extended to A\ where A denotes
the unit disc in C and Hk(r) is given by

Hk{r) = { ( z i , Z 2 , . . . , z ^ e A ^ : |z,| < rj= 1 , 2 , . . . , fe- 1}
u { ( z „ z „ . . . , Z k ) e ^ k : \ z , \ > l - r } , 0 < r < 1,

k = dim R.

Let ̂  denote the spread domain over R associated to the sheaf of
germs of holomorphic maps on R with values inX. Obviously (9^ is
dense open in ^. Consider the canonical map e: (9^ -> X given by

e(gz) = gz(z) for z e R and g, e (^),.

It is easy to see that e extends meromorphically by definition |i .̂ Hence
ea: Hk(r) -> X is meromorphic. By hypothesis it is extended to a
meromorphic map ^e : A^ -> X. Let p : ̂  -> R denote the locally
biholomorphic canonical map and let < f : A^ -> R be a holomorphic
extension of pa. Since every hypersurface in A* meets Hh(r), it follows
that € is a locally biholomorphic map. Define now a holomorphic
extension ^ : A^ -^ ̂  by

^)=(^),WlA) for z e A ^

where ^ is a neighbourhood of z in A^ on which ^ is biholomorphic.
Therefore (ii) is proved.

(ii) -> (iii). Given a meromorphic map f:D->X, where Z) is a
spread domain over a Stein manifold. Consider!) as a spread domain
over ^D with the canonical map e : D -> AZ). By D(/) we denote the
envelope of meromorphy of /. Then D(f) is a Stein manifold and /
has a canonical meromorphic extension/to D(f). By the Steiness of
D(f) the canonical map P : D ->- D(f) can be extended to a holomorphic
map A? : ̂  -^ D(f). Therefore y^P is a meromorphic extension of /
to ^ D .

(iii) -» (i) is trivial.
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2. Meromorphic extension maps.

DEFINITION 2.1. — Let 9: X -> Y be a holomorphic map between
complex space. We say that 6 is a Hartogs (resp. Riemann) meromorphic
extension map if for each y e Y there exists a neighbourhood U of y
such that G'^LO 15 a Hartogs (resp. Riemann) meromorphic extension
space. If both conditions of Hartogs and Riemann meromorphic extension
are satisfied, then 9 is called a meromorphic extension map.

THEOREM 2.2. — Let Q: X -> Y be a Hartogs meromorphic extension
map. Assume that Y is a Hartogs meromorphic extension space. Then for
every meromorphic mapping f from a domain D over a Stein manifold to
X, there exists an analytic subset A of codimension at least 2 in ^D
such that f extends meromorphically to ^D\A. Moreover if X is a compact
Kahler manifold and Y is a Hartogs meromorphic extension space and 9
is a Hartogs meromorphic extension map then X is a meromorphic
extension space.

Proof. — (i) Given /; D -> X a meromorphic map, where D is a
spread domain over a Stein manifold. By hypothesis we have a following
commutative diagram

where g is a meromorphic extension of 9 • /.

We show that y , = ylw)\y-i(w) ^COVr1^)) ̂  ^D\I(g) is locally
pseudoconvex. Let z e ^D\I(g). Take a neighbourhood V of g(z) in Y
and a Stein neighbourhood U of z in ^D\I(g) such that g(U) c: V.
As in Proposition 1.2 ((i)-)-(ii)), it follows that y~\U) is j^-convex.
Therefore y"^^) is Stein [3], and the local pseudoconvexity of
^(/AY"^)) over ^D\I(g) is proved.
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We now write I(g) = n Z(hy), where hy, is holomorphic on ^D and
vanishes on I(g) and Z(^) denotes the zero-set of h^. Since
yo^C/Ay"1^)) -> ^Vfe) is locally pseudoconvex and ^D\Z(h^) is
Stein, y^^D^^a)) also is Stein for every a. For each a consider the
holomorphic map P, == Plz)\z(/^: D\Z(h,) -. yo-^ZAZ^,)). Then P, can
be extended to a holomorphic map ^: ^(D\Z(hy)) =
^D\Z(h^) -> D(f) [2]. By uniqueness the maps ̂  define a holomorphic
map A? : ̂ Vte) ^ 2)(/) such that ^^ = P on ^-'(/(g)). The map
A /=/• A ? : ^D\I(g) -> X is meromorphic and is a meromorphic
extension of/.

(ii) Now assume that X is a compact Kahler manifold and Y is a
Hartogs meromorphic extension space and 9 is a Hartogs meromorphic
extension map. By [17] and since (i) it implies that X is a meromorphic
extension space.

3. Finite proper holomorphic surjections
and meromorphic extension spaces.

The aim of this section is to prove Theorem 3.1 on invariance of
meromorphic extendibility under finite proper holomorphic surjections.

THEOREM 3.1. — Let 9: X -> Y be a finite proper holomorphic
surjective map. Then X is a meromorphic extension space if and only if
Y has the same property.

For the proof of the theorem we need following four lemmas.

LEMMA 3.2. — Let (p : W —> Z\S be unbranched finite covering map,
where W, Z are complex manifolds and S is an analytic set in Z of
codimension ^ 1. Then there exists a following commutative diagram

W ————>W

<P <P

Z\S————. Z
e

where (W^,Z) is a branched covering map and e is an open embedding.

Proof. - See [5] and [18].
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LEMMA 3.3. — Let (p : G —> D be a branched covering map, "where G
is a normal complex space and D is a spread domain over a Stein
manifold such that points of D are separated by holomorphic functions
on D. Assume that H is the branch locus of (p and DQ == D\H,
Go = G\^~\H), ( p o = (p l^o .

Then there exists an analytic set H ' in D contained in H such that
^(D\H') = ^D and a commutative diagram of normal complex spaces

where ^o, 4, P : G^cp"^^') -> Im p are branched covering maps, a is
an open embedding and P-l(a^(Go)) = Go.

Proof. — Since D and G are normal, it follows that either H is a
hypersurface in D or H ^ 0. The case where H = 0 is trivial.
Therefore we can assume that H is a hypersurface. Then there exists
an analytic set ^H in A!) such that

^o = ^\ A^ P].

Observe that ^H n 2) c= H . We write Z/ == ^Hr\D) u 7T, where ^T
is an analytic set in D such that ^ { D / H ' ) = A/). By [11] the map
^o: ^o -> ^o ls an unbranched covering map and using Lemma 3.2
to ^o, we can construct a commutative diagram

where D ' = D \ H ' , G ' = G ^ ' ^ H ' ) and (p' == (p|o, in which 4 is a
branched covering map of the normal complex space W onto ^ and
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a is an open embedding. Put ^ = ae. We shall prove ^ can be
extended to a holomorphic map P from G ' to W. Since the Steiness is
invariant under finite proper holomorphic surjections [13], W is Stein.
Thus by the normality of G" it suffices to show that ^ is locally
compact on G", i.e for every z e G' there exists a neighbourhood U of
z such that ^(L^nGo) is relatively compact in W. Assume that
ZQ e (p'"1^7) and {zj c Go converging tozo .

Then
lim 4 ^(z^) = lim cp^) = (po(zo) e D ' c-, ̂

Thus from property of 4, it follows that {^(z,,)} is relatively compact
in W. This yields the local compactness of Aa.

Let P : G ' -> W be a holomorphic extension of A a . Since q/ and 4
are finite proper maps andZ)7 is contained in ^D as an open subset,
it is easy to see that P : G ' -> P(G7) is finite proper. Hence by the
normality of W and by the equality dimG' = dim W, it follows that
P(G') is open in W and P : G ' -> P(G') is a branched covering map.
Finally, if ^(zo) == P(^i), where Zo £ Go and Zi e G 7 , then

cp^zO = 4p(zQ == 4 ^(zo) = (po(zo).

This implies Zi e Go. Hence P'^o^Go)) == Go.

The lemma is proved.

LEMMA 3.4. — Let X be a meromorphic extension space and Z a
normal Stein space. Assume that H is a hypersurface of Z and G is an
open subset of Z meeting every irreducible branch of H . Then every
meromorphic map f : (D\H) u G —> X can be meromorphically extended
to Z .

Proof. - Since Z is normal, codim5'(Z) ^ 2 [4], where S ( Z )
denotes the singular locus ofZ. We write by the Steiness of Z S ( Z ) in
the form

S ( Z ) == n {Z(h): h is holomorphic on Z,h ̂ ^O and
h 7^0 on every irreducible branch of H } .

From hypothesis, it suffices to show that for every such h the map
fh = f\z^\H, where Z^ = Z\Z(7i), can be meromorphically extended
onZ^. Put Gh = G\Z(h) and H^ = H n Z^. Then G/, also meets every
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irreducible branch of H^. Consider the meromorphic map //J(Z^)UG •
Since \(Z^\H^ u G,) = Z, [2] it follows that /, (Z^\H^G, can be
extended to a meromorphic map ^ to Z^.

The lemma is proved.

LEMMA 3.5. — Let n: Z -> W be a banched covering map and
f: Z -> X a meromorphic map "which can be factorized through K\^-I(V)
for some non-empty open subset V of W. Then f can be factorized
through TC .

Proof. — Let H denote the branch locus of n. It is easy to check
that there exists a holomorphic map g from W\( H \n (/(/))) to X such
that gn = fon TC"^ W\(Hun( I (/)))). Since n x i d : Z x X - > W x X
is proper,

r(^)=(7cxid)r(/)
is an analytic set in W x X. Hence from property of K and p(/), it
follows that F(g) defines a meromorphic map^i on W such that
gr^ = f'

The lemma is proved.

We now can prove Theorem 3.1.

a) First prove sufficiency of the theorem.

(i) Given f: D -> X a meromorphic map, where D is a spread
domain over a Stein manifold. From hypothesis we have a following
commutative diagram

where g is a meromorphic extension of 9'/.

As in Theorem 2.2, PI^-^)) can be extended to a holomorphic
map ^•.^DVte)-^/). Put ^=(idxQr\p(gr\I(g)). Then
r(Y) c CD\I(g)) x X <=. (D(f)xX)\A, where ^=7^, and is
closed in (y(D(f))x X)\A. Indeed, let{(x,,z,)} c= V^f) converge to
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(xo,zo)ey( /)(/)) x x\A. Since (x,,z,)eA, (id x 9)(xo,Zo) =
(xQ,QzQ)ep(g)~\I(g)). I fxo e /(^), then (xo.Zo) e (^V^)) x z. Hence
(xo,zo) € FCY). In the case where XoG/ (g ) , we have (xo,9zo) e r(^).
This is impossible, because of the relation
r^) ^ {(^n,z^)} -> (xo,9zo) 6 r(^). Therefore I^/) is closed in
(Y(A D (/)) x X)\A. Since dim W) = dim ^D > dim A, by the Remmert-
Stein theorem [7] r^/) is an analytic set in ^D x x. Since 9 is
proper, it follows that I^/) defines a meromorphic extension of / to
A^.

(ii) Let now f:Z\S->X, where Z is a normal complex space and
S is an analytic set in Z of codimension ^ 2. From the Riemann
meromorphic extendibility of Y we have a following commutative
diagram

Z\5'——f-——>X

Z—————-Y
g

Similarly as in (i), where D, ^V^) and /^ are replaced by Z,
Z\(I(g)uS) and/respectively we obtain a meromorphic extension A/
o f / t o Z.

fc) We now prove necessity of the theorem.

(i) Let / be a meromorphic map from a spread domain D over a
Stein manifold toX. By Proposition 1.2 we can assume that D is a
Hartogs domain. Consider the commutative diagram

gi
GI—————> X

d f e

A————-Y
A

where D, = D\I(g), G, = (D^XyX)^ is the fiber product, / = /^
and (pi, ^i are canonical projections.

Without loss of generality we may assume that Gi is normal. Observe
that (pi is a branched covering map. Let H^ denote the branched locus
of (pi. Since dim^i > dim/(/), it follows that 7?i is an analytic
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set in D. Using Lemma 3.2 to the unbranched covering map (pi :
G'^cpi'^T^iU/C/')) -> Di\(H^uI(f)) we have a following commutative
diagram

^^-. g

in which (p is a branched covering map and G is normal. Since
dimGi = dim((px9)-T(/)_> dim ((p x 6)-W)-^/(/)), by the Rem-
mert-Stein theorem [7], r(gi) is an analytic set in G x X. Hence by
property of 9, it defines a meromorphic extension of g on G such that
Qg = /. In notations of Lemma 3.3 we have a following commutative
diagram of normal complexe spaces

in which (po and ^o are unbranched covering maps, (p', 4, P : G ' -> P( G")
are branched covering maps. Moreover Go = ^~\ae{Go)). Thus g\o
can be meromorphically factorized through P : G ' -> (3(6"). Let ^go be
a meromorphic extension of gl^ on ^Go and g a meromorphic map
on P(G") such that gp = g \ c ' • Define a meromorphic map g^ from
^ou P^) into X by

g2 == ^o on ^o and g2 = g on P^).

Since 4 is finite proper and every irreducible branch of ^ meets D 7 ,
it follows that this holds for 4-1(A//) and P(G' / ) . Thus by Lemma 3.4
we have a meromorphic extension ^3 of ^2 on W. From Lemma 3.5,
gs can be meromorphically factorized through 4. Hence / is extended
to a meromorphic map to AZ).
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(ii) Finally we show that Y has the Riemann meromorphic extension
property. Given/: Z\S -> Y a meromorphic map, where Z is a normal
complex space and S is an analytic set in Z of codimension ^ 2 which
can be assumed to contain the singular locus ofZ.

As in (i) we can construct a following commutative diagram of
normal complex spaces

where (po, cpi are branched covering maps and g o , g^ are meromorphic
maps. The problem is local without loss of generality we may assume
that there exists a branched covering map y : Z -> A", n = dim Z.
LetH denote the branch locus of (pi.

Then H is an analytic set in Z because of the inequality
codim /(/) ^ 2. Take a hypersurface H in A" containing the branch
locus of Y such that y ( S u H ) c= H . Using Lemma 3.3 we give a
following commutative diagram

where T| = y(pi, 4, (3 : G'i -> P(6'i) are branched covering maps.

Obviously ^~\^(G^~\H))) = G,\r[~~\H). Thus g, can be me-
romorphically factorized through |3 : Gi ->- P(G'i). Hence ^o and g^ induce
a meromorphic mapgz on G'Ari"1^) u (3(G'i) with values inA". Since
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every irreducible branch of H meets A"\y(5'), it follows that this holds
for 4-l(7r» and P(G'i). By Lemma 3.4, ^2 can be extended to a
meromorphic map ^3 on W. Thus from Lemma 3.5 we give a
meromorphic extension of / to A\

Theorem 3.1 is completely proved.

4. Some applications.

We first recall that an elliptic surface is a compact regular surface V
equipped with a holomorphic map 9 from V onto a non-singular curve
C such that O'^x) is an elliptic curve outside a finite set inC.

Using now Theorem 3.1 we prove the following.

THEOREM 4.1. - Let V be an elliptic Kahler surface. Then V is a
meromorphic extension space.

Proof. - From a result of Siu [17], V is a Riemann meromorphic
extension space. Thus it remains to prove that V has the Hartogs
meromorphic extension property.

(i) In [12] Kodaira constructed for V a branched covering map a
from an elliptic surface V on V such that for each x e C there exists
a sufficiently small disc ̂  containing x for which (Oa)"^^) is
biholomorphic to a locally pseudoconvex open subset of a projective
surface P^. Put T| = 9-a . Given f'.D -> TI"^^) a meromorphic map,
where D is a spread domain over a Stein manifold.

Let A/: ^D -> P^ be a meromorphic extension of/|^j^. Put

G = ^(rh-W), where ^ = A/! ^D\lCj).
We may suppose that D is a Hartogs domain. Since D\I(f) c= G we
have ^G = ^ D . Let now G + ^D\lCf). Then we can find a point
Z o e 8 G in /'D\I^f) and two Stein neighbourhoods of Zo and ^0(^0)
in ^D\I^f) and P^ respectively such that Yo( ̂ ) c H^and Zo e ̂  £/nG').
Since W c\ r\~\U^) is Stein and ^fo(Ur^G) c F^n ri"^^), it follows
that Yo^o) e ^n TI-^^). This yields Zo e G. Hence G = ^/('V).
On the other hand, since a ^fo and r| ^o are extended to meromorphic
maps g : "D -> V and h: ̂  -> U^ respectively. We have Qg = h.

It is easy to see that r^/o) is contained and closed in
(id x oO-T^Vid x a)-1^)-1^)), by the Remmert-Stein theorem,
r^/o) defines a meromorphic extension /of/.
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From the relation r^ = /, it follows that / induces a meromorphic
extension of /with values in r\~\U^.

(ii) Let now / be a meromorphic map from a spread domain D
over a Stein manifold into V. Consider the following commutative
diagram

By (i) as in Theorem 2.1 we can find a holomorphic extension A? of
^\D\i(g) on ^D^^g). Let A/: Az) -^ F be a meromorphic extension of
/i = cxT^P^Vfe) -^ F. Then as in Theorem 2.1, it follows that
r^P) defines a meromorphic extension of /. Hence V is a Hartogs
meromorphic extension space.

(iii) Given a meromorphic map / from Z\S into V, where Z is a
normal complex space and 5" is an analytic set in Z of codimension
^ 2. Let g : Z -» V be a meromorphic extension of a/. Then as in (i)
we infer that F(/) defines a meromorphic extension of/.

(iv) From (ii) and (iii), V is a meromorphic entension space. Hence
by Theorem 3.1, V is a meromorphic extension space.

The theorem is proved.

THEOREM 4.2. — Every complex Lie group is a meromorphic extension
space.

Proof. — Let G be a complex Lie group.

(i) Given /: D —> G a meromorphic map, where Z) is a spread
domain over a Stein manifold. Since codim7(/) ^ 2, f\o\i(f) can be
holomorphically extended to ^D [1]. Thus G is a Hartogs meromorphic
extension space.
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(ii) Given now / a meromorphic map from Z\5' to (7, where Z is
a normal complex space and S is an analytic set in Z of codimension
^ 2. Let (p be a plurisubharmonic exhaustion function [10] on G. Since
codim7(/) ^ 2 and codim 5' ^ 2, (p/is plurisubharmonic on Z [8]. By
[19] there exists a holomorphic bundle map 9 from G onto a complex
torus T such that the fibers of 6 are Stein manifolds. Consider the
holomorphic map Qf\(z\s)\i(f)- Then, by the Kahlerness of the torus T, O/
is meromorphic onZ [17]. Le ty^Z-^Z be the Hironaka singular
resolution ofZ. By (i), h = 9/y is holomorphic on AZ. For each
Z Q e y ~ l ( S ) take the two neighbourhoods U and V of Zo 2in(^ h{zo)
respectively such that h(U) ^ F and G"^^) is a Stein manifold. Then
we have /y( L^"1^)) ^ O"^^). By the upper semi-continuity of (p/y
on ^ and since (p is an exhaustion function on G it follows that
fy\u\•Y~l(S) can be extended holomorphically a t Z o - Since Zo is arbitrary
/y is extended holomorphically to ^ Z . Then (/y)y~1 is a meromorphic
extension of/.

The theorem is proved.
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