FRANÇOISE LUST-PIQUARD Means on $CV_p(G)$ -subspaces of $CV_p(G)$ with RNP and Schur property

Annales de l'institut Fourier, tome 39, nº 4 (1989), p. 969-1006 http://www.numdam.org/item?id=AIF 1989 39 4 969 0>

© Annales de l'institut Fourier, 1989, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble **39,** 4 (1989), 969-1006.

MEANS ON $CV_p(G)$ -SUBSPACES OF $CV_p(G)$ WITH RNP AND SCHUR PROPERTY

by Françoise LUST-PIQUARD

Introduction.

Let G be a lca group and $1 \le p \le 2$. We generalize to the space $CV_p(G)$ of bounded convolution operators: $L^p(G) \to L^p(G)$ $(1 \le p \le 2)$ some results which are obvious for p = 1 and were obtained for p = 2 by L. H. Loomis, G. S. Woodward, P. Glowacki and the author. We also generalize some results of N. Lohoué on convolution operators. Our motivation was a question raised by E. Granirer: is there a generalization of Loomis theorem [Loo] for convolution operators? A positive answer is given in theorem 2.8: Let $E \subseteq G$ be compact and scattered. Then $CV_p(E)$, the space of convolution operators on $L^p(G)$ which are supported on E, is the norm closure of finitely supported measures on E, and this space has Radon-Nikodym property. We also prove (theorem 2.14) that under the same assumptions $CV_p(E)$ has the Schur property.

The natural predual of $CV_p(G)$ is $A_p(G)$, which by C. Herz fundamental result is an algebra for pointwise multiplication and has some properties similar to those of $A_2(G)$ (we recall that $A_2(G)$ is isometric to $L^1(\hat{G})$ and $CV_2(G)$ is isometric to $L^{\infty}(\hat{G})$). But the proofs of Loomis theorem for p = 2 actually use the fact that every $\chi \in \hat{G}$ defines an isometric multiplier : $CV_2(G) \to CV_2(G)$ and that if $S \subset CV_2(G)$ has a compact support

$$\|S\|_{CV_2(G)} = \sup_{\chi \in \hat{G}} |\langle S, \chi \rangle|$$

where \hat{G} is a group (the dual group of G).

 $\mathit{Key-words}$: Invariant means - Convolution operators - Schur property - Radon-Nikodym property.

A.M.S. classification : 43A07 - 43A22 - 43A26 - 46D22.

One of the ingredients in this paper is to provide $CV_p(G)$ with an equivalent norm such that

$$|||S|||_p = \sup_{f \in \mathcal{G}_p(G)} |\langle S, f \rangle|.$$

where $\mathscr{S}_p(G)$ is a semi-group of functions of $A_p(G)$. This is done by using numerical ranges. We can thus adapt to $CV_p(G)$ a theory of means which is the usual one on $CV_2(G)$ or rather on $L^{\infty}(\hat{G})[Gr]$, and which fits Eberlein's theory ([Eb1] Part. I). Topological means on $CV_p(G)$ were already defined in [G]. This is done in part 1 where we also give notation, definitions and recall the properties of $CV_p(G)$ and $A_p(G)$ that we need.

In part 2 we prove our main results theorems 2.8 and 2.14. The crucial lemma 2.2 allows to adapt the techniques of [Loo] [W1] [W2] [L-P1] [L-P2] [G1]. In part 3 we show how theorems 2.8 and 2.14 also imply results on some $CV_p(\Lambda)$ where Λ is discrete. The main result is theorem 3.3, which is a generalization of a result of [L-P1] and [L-P3].

In part 3, 4 we give some transfer theorems between $CV_p(G)$ and $CV_p(G_d)$ (G_d is G provided with the discrete topology) and we prove an Eberlein decomposition (theorem 4.2) for elements of $CV_p(G)$ which are totally topologically *p*-ergodic (see definition 1.7) and we precise it for (weak) *p*-almost periodic elements of $CV_p(G)$ (see definition 4.5). This generalizes results of [Eb2] [W2] [L-P2] [Gra] [Loh1].

We take this opportunity to thank Ed. Granirer for nice and useful discussions.

1. Notation, definitions, states and means on $CV_p(G)$.

We consider Banach spaces over the field \mathbb{C} of complex numbers. We denote by X^* the dual space of a Banach space X.

For $\varepsilon > 0$ D_{ε} is the open disc in \mathbb{C} centered at $\{0\}$ with radius ε .

G denotes a lea group, G_d is the same group provided with the discrete topology, \hat{G} is the dual group of G.

For $1 \le p < \infty$ $L^{p}(G)$ is the space of equivalence classes of *p*-integrable functions with respect to the Haar measure on G; $L^{\infty}(G)$ is the dual space of $L^{1}(G)$. For $1 \le p \le 2$ p' is defined by $\frac{1}{p} + \frac{1}{p'} = 1$;

MEANS ON $CV_p(G)$

the duality between $L^{p}(G)$ and $L^{p'}(G)$ is defined by

$$\langle f,g\rangle = \int_G f(x) g(x) dx.$$

 $C_0(G)$ is the space of continuous functions on G which tends to 0 at infinity. M(G) is the space of bounded Borel measures on G, i.e. the dual space of $C_0(G)$. For $1 \le p \le 2$ $CV_p(G)$ denotes the space of bounded convolution operators: $L^p(G) \to L^p(G)$, i.e. operators which commute with translation by elements of G, provided with the operator norm. We recall that $CV_1(G) = M(G)$ and $CV_2(G)$ is the space of Fourier transforms of the functions in $L^{\infty}(\hat{G})$.

 $CV_p(G)$ is also the space of bounded convolution operators: $L^{p'}(G) \to L^{p'}(G) (1 hence, by Riesz interpolation theorem, identity is continuous with norm 1$

$$CV_{p_1}(G) \rightarrow CV_{p_2}(G), \quad 1 \leq p_1 \leq p_2 \leq 2.$$

For $1 \le p \le \infty$ and $f \in L^p(G)$ we denote f(x) = f(-x).

For 1 denotes the space of functions <math>f on G which can be represented as

$$f = \sum_{n \ge 1} u_n * \check{v}_n$$

where $\sum_{n \ge 1} ||u_n||_{L^p(G)} ||v_n||_{L^{p'}(G)} < +\infty$ and the norm of f is the infimum

of these sums over all such representations of f.

Hence $A_2(G)$ is the space of Fourier transforms of the elements of $L^1(\hat{G})$.

For p = 1 we replace $L^{p'}(G)$ by $C_0(G)$ in the definition above, hence $A_1(G) = C_0(G)$.

The duality between $CV_p(G)$ and $A_p(G)$ is defined by

$$\langle S, u * \check{v} \rangle = \langle S(u), v \rangle.$$

 $CV_p(G)$ is clearly the dual space of $A_p(G)$. In particular

$$A_{p_1}(G) \leftarrow A_{p_2}(G), \qquad 1 \leq p_1 \leq p_2 \leq 2.$$

As functions which are continuous on G with a compact support are dense in $L^{p}(G)$ $(1 \le p \le 2)$ $A_{p_{2}}(G)$ is dense in $A_{p_{1}}(G)$, hence identity: $CV_{p_{1}}(G) \rightarrow CV_{p_{2}}(G)$ is one to one.

For $x \in G$ and $f \in L^p(G)$ $(1 \le p < \infty)$ or $A_p(G)$ $(1 \le p \le 2)$ we denote by f_x the translate of f by x i.e. $f_x(t) = f(t-x)$. For $S \in CV_p(G)$ $(1 \le p \le 2)$ the translate S_x is defined by $S_x(f) = (S(f))_x$ for $f \in L^p(G)$. Translation in $A_p^{**}(G)$ is defined by duality, i.e. $\langle S, F_x \rangle = \langle S_x, F \rangle$ for $F \in A_p^{**}(G)$; when restricted to $A_p(G)$ this definition coincides with the first one. The support of $S \in CV_p(G)$ is the (closed) set of $x's \in G$ such that for every neighborhood V(x) there exists $f \in A_p(G)$ such that f is supported on V(x) and $\langle S, f \rangle \neq 0$.

Let $E \subset G$ be a closed subset; we denote by $CV_p(E)$ the closed subspace of $CV_p(G)$ whose elements are supported on a subset of E. We denote by $\ell^1(E)^{|| ||_{W_p}}$ the closed subspace of $CV_p(E) \subset CV_p(G)$ spanned by measures whose support is finite and lies in E. We denote by $CV_p(E_d)$ the closed subspace of $CV_p(G_d)$ whose elements are supported on a subset of E. We recall Herz's fundamental results ([P] proposition 10.2, 19.8): $A_p(G)$ is a Banach algebra for pointwise multiplication $(1 \leq p \leq 2)$. Let $B_p(G)$ denote the algebra of pointwise multipliers of $A_p(G)$. Then for $f \in A_p(G)$

$$||f||_{A_n(G)} = ||f||_{B_n(G)}.$$

More generally let H be a lca group such that G_d is a subgroup of H_d , the embedding $G \to H$ is continuous and G is dense in H (hence H continuously embeds in \overline{G} the Bohr compactification of G i.e. the dual group of \hat{G}_d). Then ([Ey] théorème 1, [Loh1] chap. IV, théorème IV.1, p. 108)

$$\forall f \in B_p(H), \|f\|_{B_p(G)} = \|f\|_{B_p(H)}.$$

In the sequel we will write only $G \to H$ and this will mean that the above assumptions on G and H are satisfied. Actually we will only use the particular cases $G \to G$, $G_d \to G$, $G \to \overline{G}$.

Let $\varphi \in B_p(G)$; we will consider the pointwise multiplication operator associated to φ and the adjoint operators

$$A_{p}(G) \rightarrow A_{p}(G)$$

$$f \rightsquigarrow \varphi f$$

$$CV_{p}(G) \leftarrow CV_{p}(G)$$

$$\varphi S \leftarrow S$$

$$A_{p}^{**}(G) \rightarrow A_{p}^{**}(G)$$

$$F \rightsquigarrow \varphi F.$$

Let $E \subset G$ be a closed subset; $I_p(E)$ is the closed ideal of functions of $A_p(G)$ which are zero on E. We denote the quotient algebra $\frac{A_p(G)}{I_p(E)}$ by $A_p(E)$. We recall that every $x \in G$ is a set of synthesis for $A_p(G)$ ([H1] theorem B, [P] proposition 19.19) which means that if $f \in A_p(G)$ and f(x) = 0, f is the norm limit of a sequence of functions in $A_p(G)$ which are zero on a neighborhood of x in G.

Let $W \subset G$ be a set of positive finite Haar measure. We denote

$$\varphi_W = |W|^{-1} \mathbf{1}_W * \check{\mathbf{1}}_W.$$

 $\|\phi_W\|_{A_p(G)} = 1 = \phi(0) (1 \le p \le 2).$

The group G satisfies Fölner-condition ([Gre] theorem 3.6.2): for every $\varepsilon > 0$ and every compact $K \subset G$ there is a compact set $W = W(K) \subset G$ with finite positive Haar measure such that

$$\forall x \in K, \quad \frac{1}{|W|} |W_x \Delta W| \leq \varepsilon.$$

Hence

$$\forall x \in K, \quad \left\| \frac{(1_w)_x}{||W|^{1/p}} - \frac{1_w}{|W|^{1/p}} \right\|_{L^p(G)} \leq \varepsilon^{\frac{1}{p}}.$$

By [H2] 9. lemma 5, the family $(\phi_{W(K)})_K$ is an approximate identity for $A_p(G)$ i.e. for every $\varepsilon > 0$ and $f \in A_p(G)$ there exists a compact set $K \subset G$ such that $||f - f\phi_{W(K)}||_{A_pG} \leq \varepsilon$. Obviously every $\phi_{W(K)}$ has a compact support.

If G is provided with its discrete topology and if $F \subset G$ is a finite set (i.e. F is a compact set in G_d) we denote $P_F = |F|^{-1} \mathbf{1}_F * \check{\mathbf{1}}_F$ (convolution is taken in G_d) instead of φ_F . Let \mathscr{F} be the net of finite subsets of G. For every $x \in G P_F(x) \xrightarrow{\mathscr{F}} 1$.

We recall that a Banach space X has the Schur property if every sequence $(x_n)_{n\geq 1}$ in X such that $x_n \to 0$ $\sigma(X, X^*)$ is norm convergent. A Banach space X has the Radon-Nikodym property (RNP in short) if every bounded linear operator $T: L^1[0 \ 1] \to X$ is representable i.e. there exists a bounded strongly measurable function $F: [0 \ 1] \to X$ s.t.

$$\forall \varphi \in L^1[0 \ 1], \quad T(\varphi) = \int_{[0 \ 1]} F(t)\varphi(t) \, dt \, .$$

We recall that if every separable subspace of X has RNP so has X and that every separable dual space has RNP.

States on $CV_p(G)$.

 $CV_p(G)$ $(1 \le p \le 2)$ is a convolution algebra with unit δ_0 .

Following the theory of numerical ranges [BD], we denote by $\mathscr{S}_p(G)$ the following set of states on $CV_p(G)$:

$$\mathscr{S}_p(G) = \{ f \in A_p(G) | || f ||_{A_p} = 1 = f(0) \}.$$

Let

$$\pi_p(G) = \{ f \in A_p(G) | f = g * \check{h}, ||g||_{L^p(G)} = ||h||_{L^{p'}(G)} = \int g(x)h(x)dx = 1 \}.$$

Obviously $\pi_p \subset \mathscr{S}_p$.

LEMMA 1.1. – (i) $\mathscr{S}_p(G)$ is the norm closure of the convex hull of $\pi_p(G)$.

(ii)
$$\mathscr{G}_{p}^{00}(G) = \{F \in A_{p}^{**}(G) | ||F||_{A_{p}^{**}(G)} = 1 = \langle F, \delta_{0} \rangle \}.$$

Proof. – Let us denote the last set by \mathcal{D}_p .

Obviously \mathcal{D}_p is norm closed and convex, and

 $\bar{C}_0 \pi_p \subset \mathscr{G}_p \subset \mathscr{G}_p^{00} \subset \mathscr{D}_p.$

By [BD] chap. 1, § 2, definition 1 and chap. 3, § 9, theorem 3:

$$\forall S \in CV_p(G), \quad \overline{C}_0 \{ \langle S, f \rangle \}_{f \in \pi_p} = \{ \langle S, F \rangle \}_{F \in \mathscr{D}_p} \subset \mathbb{C}$$

As

$$\overline{C}_0\left\{\langle S,f \rangle\right\}_{f \in \pi_p} \subset \overline{\left\{\langle S,f \rangle\right\}}_{f \in \mathcal{S}_p} = \left\{\langle S,F \rangle\right\}_{F \in \mathcal{S}_p^{00}} \subset \left\{\langle S,F \rangle\right\}_{F \in \mathcal{D}_p}$$

these sets are the same and Hahn-Banach theorem implies (i) and (ii).

By the fundamental theorem on numerical ranges [BD] chap. 1, §4, theorem 1,

$$||S||_{CV_p(G)} \ge \sup_{F \in \mathscr{D}_p} |\langle S, F \rangle| \ge e^{-1} ||S||_{CV_p(G)}$$

hence by lemma 1.1

(1)
$$\forall S \in CV_p(G) ||S||_{CV_p(G)} \ge \sup_{f \in \mathscr{S}_p(G)} |\langle S, f \rangle| \ge e^{-1} ||S||_{CV_p(G)}.$$

As we are investigating geometric properties of subspaces of $CV_p(G)$ we can as well provide $CV_p(G)$ with the equivalent norm $\sup_{f \in \mathscr{S}_p(G)} |\langle S, f \rangle|$. The set $\mathscr{S}_2(G)$ is the set of functions in the unit sphere of $A_2(G)$ such that $\hat{f} \ge 0$ on \hat{G} . Hence $\mathscr{S}_p(G)$ $(1 \le p \le 2)$ will replace the face of positive elements in the unit sphere of $L^1(\hat{G})$.

Remark 1.2. – Let us mention ([BD] chap. 6, § 31, theorem 1) that the mappings

$$S \rightsquigarrow (\langle S, f \rangle)$$

$$CV_p(G) \rightarrow C(\mathscr{S}_p) \text{ or } CV_p(G) \rightarrow C(\mathscr{S}_p^{00})$$

are isometries of $CV_p(G)$ provided with its new norm into a closed subspace of the continuous functions on \mathscr{S}_p or \mathscr{S}_p^{00} provided with the $(A_p(G)^{**}, CV_p(G))$ topology. \mathscr{S}_p^{00} is compact for this topology and the closure of \mathscr{S}_p . Every $F \in A_p^{**}(G)$ can be written as

$$F = \alpha_1 F_1 - \alpha_2 F_2 + i \alpha_3 F_3 - i \alpha_4 F_4$$

where $F_i \in \mathscr{G}_p^{00}(G)$, $\alpha_i \ge 0$ $(1 \le i \le 4)$ and $\sum_{i=1}^4 \alpha_i \le \sqrt{2} \sup |\langle S, F \rangle|$ where the supremum is taken on

$$\{S \in CV_p(G) \mid \forall f \in \mathcal{S}_p(G) \mid \langle S, f \rangle | \leq 1\}.$$

As $A_p(G)$ is an algebra for pointwise multiplication $\mathscr{S}_p(G)$ is an abelian semi-group. Multiplication by $f \in \mathscr{S}_p(G)$ is continuous on $\mathscr{S}_p(G)$ provided with $\sigma(A_p(G)^{**}, CV_p(G))$, i.e. $\mathscr{S}_p(G)$ is a semi-topological semi-group. In this setting the measures $\alpha \delta_0(\alpha \in \mathbb{C})$ are constant functions on $\mathscr{S}_p(G)$ and if $S \in CV_p(G)$, $f \in \mathscr{S}_p(G) fS$ is the translate of S (considered as a function on $\mathscr{S}_p(G)$) by f. The set $\{fS\}_{f \in \mathscr{S}_p(G)}$ is the orbit of S under the action of $\mathscr{S}_p(G)$. We denote by K_S its pointwise closure (for pointwise convergence on $\mathscr{S}_p(G)$); by remark 1.2 K_S can be also identified with the closure of $\{fS\}_{f \in \mathscr{S}_p(G)}$ for $\sigma(CV_p(G), A_p(G))$. $\mathscr{S}_p(G)$ is convex (as a subset of functions on G) and S defines an affine function on $\mathscr{S}_p(G)$.

Means on $CV_p(G)$.

DEFINITION 1.3. – Let G be a lea group and let $G \to H$. Let $1 \le p \le 2$. A H-mean on $CV_p(G)$ is an element $\hat{m} \in \mathscr{G}_p^{00}(G)$ such that

$$\forall \phi \in \mathscr{S}_p(H), \quad \phi \hat{m} = \hat{m}.$$

This definition is consistent because $\mathscr{S}_p(H) \subset B_p(G)$. The set of *H*-means is compact for $\sigma(A_p(G)^{**}, CV_p(G))$.

If H = G a H-mean is called a topological mean [Gra].

If $H = \overline{G}$ a *H*-mean is called a mean. If p = 2 means and topological means on $CV_2(G)$ are Fourier transforms of usual means and topological means on $L_{\infty}(\widehat{G})$. If G is discrete the only topological mean on $CV_p(G)$ is $1_{\{0\}}$ ($1 \le p \le 2$). If p = 1 and G is any lca group the only mean on $CV_1(G) = M(G)$ is $1_{\{0\}}$.

LEMMA 1.4. – Let G be a lca group, $G \rightarrow H$, $1 \leq p \leq 2$.

(i) Let \hat{m} be a H-mean. Let $\varphi \in B_p(H)$ be such that $\|\varphi\|_{B_n(H)} = 1 = \varphi(0)$. Then $\varphi \hat{m} = \hat{m}$.

(ii) A topological mean on $CV_p(G)$ is a H-mean.

Proof. – (i) Let $\varphi_0 \in \mathscr{S}_p(H)$. By definition $\varphi_0 \hat{m} = \hat{m}$ hence $\varphi \varphi_0 \hat{m} = \varphi \hat{m}$. As $\varphi \varphi_0 \in \mathscr{S}_p(H) \varphi \varphi_0 \hat{m} = \hat{m}$.

(ii) Let \hat{m} be a topological mean and $\varphi \in \mathscr{S}_p(H)$. As $\varphi \in B_p(G)$ $\varphi \hat{m} = \hat{m}$ by (i).

This proof is similar to [Gre] proposition 2.1.3.

LEMMA 1.5. – Let G be a lca group, $G \rightarrow H$, $1 \leq p \leq 2$.

(i) Let $(W_{\alpha})_{\alpha \in A}$ be a basis of open neighborhoods of $\{0\}$ in H. Let $(f_{\alpha})_{\alpha \in A}$ be a net in $\mathscr{S}_{p}(G)$ such that f_{α} is supported on W_{α} for every α . Then every cluster point of $(f_{\alpha})_{\alpha \in A}$ for $\sigma(A_{p}^{**}(G), CV_{p}(G))$ is a H-mean.

(ii) Conversely let \hat{m} be a H-mean on $CV_p(G)$. There exists a net $(f_{\alpha})_{\alpha \in A}$ in $\mathscr{S}_p(G)$ such that (a): $f_{\alpha} \to \hat{m}$, $\sigma(A_p^{**}(G), CV_p(G))$; (b) for every open neighborhood W of $\{0\}$ in H there exists $\alpha_0 \in A$ such that for every $\alpha > \alpha_0$ f_{α} is supported on $W \cap G$.

Proof. - (i) Let $F \in \mathscr{G}_p^{00}(G)$ be a cluster point of $(f_{\alpha})_{\alpha \in A}$. Let $\varphi \in \mathscr{G}_p(H)$. As $\{0\}$ is a set of synthesis for $A_p(H)$, for every $\varepsilon > 0$ there exists φ_{ε} such that $\|\varphi - \varphi_{\varepsilon}\|_{A_p(H)} \leq \varepsilon$ and $\varphi = 1$ in a neighborhood W of $\{0\}$ in H. As soon as $W_{\alpha} \subset W \varphi_{\varepsilon} f_{\alpha} = f_{\alpha}$ hence $\varphi_{\varepsilon} F = F$ and $\|\varphi F - \varphi_{\varepsilon} F\|_{A_p^{*}(G)} \leq \|\varphi - \varphi_{\varepsilon}\|_{B_p(G)} \leq \varepsilon$. This implies $F = \varphi F$.

(ii) Let \hat{m} be a *H*-mean on $CV_p(G)$. For every neighborhood W of $\{0\}$ in *H* let W' be a neighborhood of $\{0\}$ in *H* such that $W' - W' \subset W$.

MEANS ON
$$CV_p(G)$$
 977

As $\varphi_{W'}$ is a multiplier of $\mathscr{S}_p(G) \hat{m} = \varphi_{W'} \hat{m}$ lies in $\{\mathscr{S}_p(G) \cap I_p(W^c \cap G)\}^{00}$. Hence

$$\hat{m} \in \bigcap_{W} \{\mathscr{S}_{p}(G) \cap I_{p}(W^{c} \cap G)\}^{0}$$

where W runs through a basis of neighborhoods of $\{0\}$ in H, and this proves the claim.

Let G be a lca group and $G \to H$. For $1 \le p \le 2$ and $S \in CV_p(G)$ let us define

$$M_p^H(S) = \{ \langle S, \hat{m} \rangle | \hat{m} \text{ is a } H \text{-mean on } CV_p(G) \}.$$

If H = G we will write $M_p^G(S) = M_p(S)$.

 $M_p^H(S)$ is a compact subset of \mathbb{C} and $M_p^H(S) \supset M_2^H(S) (1 \le p \le 2)$.

If $\varphi \in \mathscr{G}_p(G)$ $M_p^H(\varphi S) = M_p^H(S)$.

LEMMA 1.6. – Let G be a lea group and $G \to H$. Let $S \in CV_p(G)$ $(1 \le p \le 2)$. Then for every $\varepsilon > 0$ there exists an open neighborhood W(0) in H such that $M_p^H(S) \subset \{\langle S, f \rangle | f \in \mathcal{S}_p(G), f \text{ is supported on } W \cap G\} \subset M_p^H(S) + D_{\varepsilon}$.

Proof. – The left inclusion is obvious by lemma 1.5 (ii). If the right one does not hold there exists $\varepsilon > 0$ such that for every W(0) in H there exists $f_{(W)} \in \mathscr{S}_p(G)$, supported on W(0) such that $d(\langle S, f_{(W)} \rangle, M_p^H(S)) \ge \varepsilon$. By lemma 1.5 (i) any cluster point of $(f_{(W)})$ for $\sigma(A_p^{**}(G), CV_p(G))$ (when W runs through a basis of neighborhoods of $\{0\}$ in H) is a H-mean \hat{m} , and the distance from $\langle S, \hat{m} \rangle$ to $M_p^H(S)$ would be greater than ε , which is a contradiction.

DEFINITION 1.7. – Let G be a lea group, $G \to H$, $1 \le p \le 2$. An element $S \in CV_p(G)$ is H-p-ergodic at 0 if $M_p^H(S)$ is a point. S is H-p-ergodic at $x \in G$ if S_x is H-p-ergodic at 0 and S is H-p-totally ergodic if it is H-p-ergodic at every point $x \in G$. If H = G we say that S is topologically p-ergodic at x instead of G-p-ergodic at x.

This definition is apparently weaker than [Eb1] definition 3.1. Hence our next lemma is stronger than [Eb1] theorem 3.1 applied to this setting.

For p = 2 it was proved in [W1] corollary 3, under the assumption that \hat{S} is uniformly continuous and in full generality in [L-P2] proposition 1.

LEMMA 1.8. – Let G be a lca group, $G \to H$, $1 \le p \le 2$. The following assertions on $S \in CV_p(G)$ are equivalent:

- (i) S is H-p-ergodic at 0.
- (ii) There exists $M \in \mathbb{C}$ such that

$$\forall \varepsilon > 0, \quad \exists \varphi \in \mathscr{S}_p(H), \quad \|\varphi S - M\delta_0\|_{CV_p(G)} \leq \varepsilon.$$

(iii) There exists $M \in \mathbb{C}$ such that for every $\varepsilon > 0$ there exists $\psi \in A_p(H)$ whose support is disjoint from $\{0\}$ and

$$\|S - M\delta_0 - \psi S\|_{CV_n(G)} \leq \varepsilon.$$

Proof. - (iii) \rightarrow (i) by lemma 1.5 (ii), and $M_p^H(S) = \{M\}$.

(i) \Rightarrow (ii): let us put $\{M\} = M_p^H(S)$ hence $M_p^H(S - M\delta_0) = \{0\}$. For every $\varepsilon > 0$ we choose W as in lemma 1.6. Hence if $W' - W' \subset W$ and W' is an open neighborhood of $\{0\}$ in H

$$\forall f \in \mathscr{G}_p(G), \quad |\langle S - M\delta_0, f\phi_W, \rangle| \leq \varepsilon$$

which implies by (1)

$$\|\phi_W, S - M\delta_0\|_{CV_n(G)} \leq e\varepsilon$$

(ii) \Rightarrow (iii) For every $\varepsilon > 0$ let φ be as in (ii). As $\{0\}$ is a set of synthesis for $A_p(H)$ there exists $\varphi_{\varepsilon} \in A_p(H)$ such that $\|\varphi - \varphi_{\varepsilon}\|_{A_p(H)} \leq \varepsilon$ and $\varphi_{\varepsilon} = 1$ in a neighborhood of $\{0\}$ in H. For $\psi = 1 - \varphi_{\varepsilon}$

$$\|S - M\delta_0 - \psi S\|_{CV_p(G)} = \|\varphi_{\varepsilon}S - M\delta_0\|_{CV_p(G)} \leq \varepsilon + \varepsilon \|S\|_{CV_p(G)}. \quad \Box$$

DEFINITION 1.9. – Let G be a lea group, $1 \le p \le 2$. $UC_p(G)$ is the closed subspace of $CV_p(G)$ spanned by compactly supported elements.

Obviously $UC_p(G)$ is the norm closure in $CV_p(G)$ of

$$\{fS|f\in A_p(G), S\in CV_p(G)\}.$$

It is a norm closed unitary subalgebra of $CV_p(G)$ ([Gra], proposition 12). $UC_2(G)$ is the space of Fourier transforms of uniformly continuous functions on \hat{G} . $B_p(G)$ can be identified with a subspace of $UC_p(G)^*$ in the following way: let $(\varphi_{\alpha})_{\alpha \in A} \in \mathscr{S}_p(G)$ be an approximate identity for $A_p(G)$ and $F \in B_p(G)$. For every $S \in CV_p(G)$ and $f \in A_p(G)$

$$\langle fS, F\varphi_{\alpha} \rangle = \langle S, fF\varphi_{\alpha} \rangle \rightarrow \langle S, fF \rangle$$

hence the net $(F\varphi_{\alpha})_{\alpha \in A}$ which is bounded in $A_p(G)$ (hence in $UC_p^*(G)$) converges for $\sigma(UC_p(G)^*, UC_p(G))$, its limit can be identified with F.

LEMMA 1.10. – Let G be a lea group, $G \rightarrow H$, $1 \leq p \leq 2$.

(i) Let \hat{m} be a H-mean on $CV_p(G)$. For every $\varphi \in \mathscr{S}_p(G) \ \varphi \hat{m}$ is a topological mean.

(ii) A topological mean is uniquely determined by its restriction to $UC_{p}(G)$.

(iii) Let $S \in UC_p(G)$. Then $M_p^H(S) = M_p(S)$.

Proof. – Let $K \subset G$ be a compact set. The topologies on K induced by G and H are the same. For every neighborhood V of $\{0\}$ in G there exists a neighborhood W of $\{0\}$ in H such that $V \cap K \supset W \cap K$.

(i) Let $(f_{\alpha})_{\alpha \in A} \in \mathscr{S}_{p}(G)$, $f_{\alpha} \to \hat{m}$ as in lemma 1.5 (ii). Hence if $\varphi \in \mathscr{S}_{p}(G) \quad \varphi f_{\alpha} \to \varphi \hat{m}$, $\sigma(A_{p}^{**}(G), CV_{p}(G))$ and if φ has a compact support K the above remark and lemma 1.5 (i) imply that $\varphi \hat{m}$ is a topological mean. Every $\varphi \in \mathscr{S}_{p}(G)$ is the norm limit in $A_{p}(G)$ of $(\varphi_{n})_{n \geq 1} \in \mathscr{S}_{p}(G)$ where φ_{n} has a compact support $(n \geq 1)$. Hence $\varphi_{n} \hat{m}(n \geq 1)$ and $\varphi \hat{m}$ are topological means.

(ii) Let \hat{m} be a topological mean on $CV_p(G)$. Then

$$\forall S \in CV_p(G), \quad \forall \phi \in \mathscr{S}_p(G), \quad \langle S, \hat{m} \rangle = \langle S, \phi \hat{m} \rangle = \langle \phi S, \hat{m} \rangle$$

hence if \hat{m} and \hat{m}' are topological means which coïncide on $UC_p(G)$ they coïncide on $CV_p(G)$.

(iii) Let us first assume that S has a compact support and let $K \subset G$ be a compact set whose interior contains the support of S. Let $\varphi \in \mathscr{S}_p(G)$. As $\{0\}$ is a set of synthesis for $A_p(G)$, for every $\varepsilon > 0$ there exists φ_{ε} such that $\|\varphi - \varphi_{\varepsilon}\|_{A_p(G)} \leq \varepsilon$ and $\varphi_{\varepsilon} = 1$ in a neighborhood of $\{0\}$ in G which we denote by V. Let $W \subset H$ be such that $W \cap K \subset V \cap K$. Hence for every $f \in A_p(G)$ which is supported on $W(1-\varphi)f \in I_p(K)$ and $\langle S, (1-\varphi_{\varepsilon})f \rangle = 0$. For every H-mean \hat{m} lemma 1.5 (ii) now implies $\langle S, \hat{m} \rangle = \langle S, \varphi_{\varepsilon} \hat{m} \rangle$ hence $\langle S, \hat{m} \rangle = \langle S, \varphi \hat{m} \rangle$. The same is true if S is a norm limit of S_n 's with compact supports. By (i) $\varphi \hat{m}$ is a topological mean, hence $M_p(S) = M_p^H(S)$.

Lemma 1.10 (iii) generalizes the fact that there is no need to distinguish means and topological means on uniformly continuous functions of \hat{G} ([Gre], lemma 2.2.2).

Though we won't use the next results in the next parts of this paper we think they are worth being noticed.

LEMMA 1.11. – Let G be a lea group, $G \to H$, $1 \le p \le 2$. Let $(V_{\beta})_{\beta \in B}$ be a basis of neighborhoods of $\{0\}$ in H and $S \in CV_p(G)$. The following assertions are equivalent:

(i) S is H-p-ergodic.

(ii) For every net $(f_{\alpha})_{\alpha \in A}$ in $\mathscr{S}_{p}(G)$ such that for every V_{β} there exists $\alpha(\beta)$ such that f_{α} is supported on V_{β} for every $\alpha > \alpha(\beta)$, the net $(\langle S, f_{\alpha} \rangle)_{\alpha \in A}$ converges.

(iii) For every net $(f_{\alpha})_{\alpha \in A}$ as in (ii) $(f_{\alpha}S)_{\alpha \in A}$ is norm converging in $CV_{\varphi}(G)$.

Proof. – (i) \Rightarrow (ii): by lemma 1.5 (i) every cluster point of $(f_{\alpha})_{\alpha \in A}$ for $\sigma(A_{p}^{**}(G), CV_{p}(G))$ is a *H*-mean.

(ii) \Rightarrow (iii) \ddagger if $(f_{\alpha})_{\alpha \in A}$ is a net as in (ii) such that $(f_{\alpha}S)_{\alpha \in A}$ is not a Cauchy filter for the norm there exists $\varepsilon > 0$ such that for every $\alpha \in A$ there exist $\alpha'' > \alpha' > \alpha$ and

$$\|f_{\alpha''}S - f_{\alpha'}S\|_{CV_n(G)} \ge \varepsilon,$$

hence by (1) there exists $g_{\alpha} \in \mathcal{S}_{p}(G)$ such that

$$|\langle f_{\alpha''}S, g_{\alpha}\rangle - \langle f_{\alpha'}S, g_{\alpha}\rangle| \geq \varepsilon e^{-1}.$$

The net $(h_{\gamma})_{\gamma \in C}$ defined by $h_{\alpha,1} = f_{\alpha'}g_{\alpha}$ $h_{\alpha,2} = f_{\alpha''}g_{\alpha}$ i.e. $C = (A, \{1,2\})$ satisfies the assumptions of (ii), yet $(\langle S, h_{\gamma} \rangle)_{\gamma \in C}$ does not converge.

(iii) \Rightarrow (i): let $(f_{\alpha})_{\alpha \in A}$ be a net as in (ii). The norm limit of $(f_{\alpha}S)_{\alpha \in A}$ must be $M\delta_0$ where $M \in \mathbb{C}$ might depend on $(f_{\alpha})_{\alpha \in A}$. Hence $M\delta_0$ belongs to the norm closure of $\mathscr{S}_p(G)S$. Let \hat{m} be a topological mean on $CV_p(G)$. Then $\langle S, \hat{m} \rangle = \langle M\delta_0, \hat{m} \rangle = M$ hence M does not depend on the net $(f_{\alpha})_{\alpha \in A}$. In particular for every net $(f_{\alpha})_{\alpha \in A}$ as in (ii)

 $f_{\alpha}S \rightarrow M\delta_0, \quad \sigma(CV_p(G), A_p^{**}(G))$

hence

 $f_{\alpha}S \rightarrow M\delta_0, \quad \forall \sigma(UC_p(G), \quad UC_p^*(G)).$

As the constant function 1 belongs to $B_p(G)$ hence to $UC_p^*(G)$

 $\langle S, f_{\alpha} \rangle = \langle f_{\alpha}S, 1 \rangle \to M.$

By lemma 1.5 (ii) this implies $\langle S, \hat{m} \rangle = M$ for every *H*-mean \hat{m} on $CV_p(G)$.

Lemma 1.11 generalizes [L-P2], theorem 1.

Actually $(f_{\alpha})_{\alpha \in A}$ in lemma 1.11 can be taken in $\mathscr{S}_{2}(G)$; hence if $S \in CV_{p}(G)$ is *H*-p-ergodic there is a scalar multiple of δ_{0} in the norm closure of $\mathscr{S}_{2}(G)S$ in $CV_{p}(G)$.

Let $S \in CV_p(G)$. We recall that K_S is the closure of the convex set $\mathscr{S}_p(G)S$ for $\sigma(CV_p(G), A_p(G))$. K_S is compact for this topology. For every $F \in B_p(G)$ such that $||F||_{B_p(G)} = F(0) = 1$ FS belongs to K_S as a limit of $(\varphi_{\alpha}FS)_{\alpha \in A}$ where $(\varphi_{\alpha})_{\alpha \in A} \in \mathscr{S}_p(G)$ is an approximate identity for $A_p(G)$. Bus this does not give the whole of K_S in general (especially if G is compact). Let $\varphi'' \in \mathscr{S}_p(G)^{00}$. We define $\varphi''S$ as an element of $CV_p(G)$ as follows : let $(\varphi_{\alpha})_{\alpha \in A}$ be a bounded net in $\mathscr{S}_p(G)$ converging to φ'' for $\sigma(A_p^{**}(G), CV_p(G))$; $\varphi''S$ is the limit of $(\varphi_{\alpha}S)_{\alpha \in A}$ for $\sigma(CV_p(G), A_p(G))$. Clearly

$$K_{S} = \{ \varphi'' S | \varphi'' \in \mathcal{S}_{p}^{00}(G) \}$$

and actually we only have to consider the restriction of φ'' 's to $UC_p(G)$. If G is discrete $UC_p(G)$ is the norm closure in $CV_p(G)$ of finitely supported measures. In this case $UC_p(G)^* = B_p(G)$ by [Loh], chap. IV, theorem 1, p. 79, [H2], theorem 2, [P], proposition 19.11.

We now consider the following questions: when is a *H*-mean constant on K_s ? when is it a Baire - 1 function on K_s (provided with its $\sigma(CV_p(G), A_p(G))$ topology)?

LEMMA 1.12. – Let G be a lea group, $G \to H$, $1 \le p \le 2$. Let $S \in CV_p(G)$. Let \hat{m} be a H-mean which is constant on K_s . Then \hat{m} coïncide on K_s with a topological mean and S is topologically p-ergodic.

Proof. – By assumption for every $\phi'' \in \mathscr{S}_p^{00}(G) \langle \phi''S, \hat{m} \rangle = M$. For every $\phi \in \mathscr{S}_p(G) \phi \phi''S \in K_S$ hence

$$\langle \varphi'' S, \varphi \hat{m} \rangle = \langle \varphi \varphi'' S, \hat{m} \rangle = M$$

and $\varphi \hat{m}$ is a topological mean by lemma 1.10.

Let $(f_{\alpha})_{\alpha \in A}$ be a net in $\mathscr{S}_{p}(G)$ converging to \hat{m} for $\sigma(A_{p}^{**}(G), CV_{p}(G))$:

$$\forall \varphi'' \in \mathscr{S}_p(G)^{00}, \ \langle f_{\alpha}S, \varphi'' \rangle = \langle \varphi''S, f_{\alpha} \rangle \rightarrow \langle \varphi''S, \hat{m} \rangle = M = \langle M\delta_0, \varphi'' \rangle.$$

By Remark 1.2 it implies that $M\delta_0$ belongs to the weak closure of $\mathscr{S}_p(G)S$, hence to the norm closure of $\mathscr{S}_p(G)S$ which implies the claim by lemma 1.5.

LEMMA 1.13. – Let G be a lea group, $G \to H$, $1 \le p \le 2$. Let $S \in CV_p(G)$. The following assertions are equivalent:

- (i) S is H-p-ergodic
- (ii) every H-mean on $CV_p(G)$ is constant on K_s

(iii) all H-means on $CV_p(G)$ are constant and equal on K_s .

If H = G these assertions are equivalent to

(iv) there exists a topological mean which is constant on K_s .

Proof. - (i) \Rightarrow (ii): By lemma 1.8 there exists $M \in \mathbb{C}$ such that for every $\varepsilon > 0$ there exists $\psi \in \mathscr{S}_p(H)$ with $\|\psi S - M\delta_0\| \leq \varepsilon$ hence for every *H*-mean \hat{m} and $\phi'' \in \mathscr{S}_p^{00}(G)$

 $\langle \varphi'' S, \hat{m} \rangle = \langle \psi \varphi'' S, \hat{m} \rangle$ and $\| \psi \varphi'' S - M \delta_0 \| \leq \varepsilon$

which implies $\langle \phi'' S, \hat{m} \rangle = M$.

(ii) \Rightarrow (iii) by lemma 1.12.

(iii) \Rightarrow (i): we saw that $S \in K_S$ hence the claim is obvious.

If H = G (iii) \Rightarrow (iv) is obvious and (iv) \Rightarrow (i) by lemma 1.12. \Box

 $S \in CV_p(G)$ may be topologically *p*-ergodic without K_s being the norm closure of $\mathscr{S}_p(G)S$: for example if G is discrete, if S does not belong to the norm closure of finitely supported measures, S belongs to K_s and not to $UC_p(G)$ hence not to $\overline{\mathscr{S}_p(G)S^{||||}}$, though S is topologically *p*-ergodic.

LEMMA 1.14. – Let G be a lea group, $G \to H$, $1 \le p \le 2$. Let $S \in CV_p(G)$. Then $\mathscr{S}_p(H)S$ is dense in K_S for $\sigma(CV_p(G), A_p(G))$.

Proof. - As $\mathscr{G}_{p}(H)$ lies in $B_{p}(G)$ we saw that $\mathscr{G}_{p}(H)S$ lies in K_{S} .

By [Loh1], chap. II, theorem 1.2 or [Loh2], theorem 1, if $T \in CV_p(G)$ has a compact support it determines $\tilde{T} \in CV_p(H)$ such that $|T||_{CV_p(G)} = ||\tilde{T}||_{CV_p(H)}$ and

$$\forall F \in A_p(H), \quad \langle \tilde{T}, F \rangle = \lim_{\alpha} \langle FT, \varphi_{\alpha} \rangle$$

where $(\phi_{\alpha})_{\alpha \in A}$ is an approximate identity (in $\mathscr{G}_{p}(G)$) for $A_{p}(G)$.

Hence there is a canonical isometry from $UC_p(G)$ to a closed unitary subalgebra E_p of $UC_p(H) \subset CV_p(H)$.

Every $\varphi \in \mathscr{S}_p(G)$ defines a state on $UC_p(G)$ hence it can be identified with the restriction to E_p of an element $\tilde{\varphi} \in \mathscr{S}_p^{00}(H)$. Hence there exists a net $(\varphi_{\beta})_{\beta \in B}$ in $\mathscr{S}_p(H)$ such that

 $\forall f \in A_p(G), \quad \langle \varphi_{\beta}S, f \rangle = \langle fS, \varphi_{\beta} \rangle \xrightarrow{\rightarrow} \langle \tilde{f}\tilde{S}, \tilde{\varphi} \rangle = \langle \varphi S, f \rangle$

which proves the claim.

Lohoué's theorem is obvious if p = 2 and easy if G is discrete (see lemma 13.2 below).

Lemma 1.14 implies that a *H*-mean which is continuous on K_s is constant on K_s .

PROPOSITION 1.15. – Let G be a metric lea group, $G \to H$, $1 \le p \le 2$. Let $S \in CV_p(G)$ and let \hat{m} be a H-mean on $CV_p(G)$. If $\langle S, \hat{m} \rangle \notin M_p(S)$ \hat{m} is not a Baire 1-function on K_s .

Proof. – If \hat{m} is a Baire 1-function on K_s there is an open set $0 \subset K_s$ such that

diam
$$\{\langle 0, \hat{m} \rangle\} \leq \frac{1}{2} d(\langle S, \hat{m} \rangle, M_p(S)).$$

As $\mathscr{S}_p(G)S$ and $\mathscr{S}_p(H)S$ are dense in K_S by definition and lemma 1.14 there exist $\psi \in \mathscr{S}_p(G)$ and $\varphi \in \mathscr{S}_p(H)$ such that

diam
$$\{\langle 0, \hat{m} \rangle\} \ge |\langle \psi S, \hat{m} \rangle - \langle \phi S, \hat{m} \rangle| = |\langle \psi S, \hat{m} \rangle - \langle S, \hat{m} \rangle|.$$

By lemma 1.10 $\psi \hat{m}$ is a topological mean, hence

$$|\langle \psi S, \hat{m} \rangle - \langle S, \hat{m} \rangle| \ge d(\langle S, \hat{m} \rangle, M_p(S))$$

which is a contradiction.

If G is discrete every $S \in CV_p(G)$ has a countable support hence K_s is metrizable and the conclusion of proposition 1.15 holds true:

If \hat{m} is a *H*-mean and if $\langle S, \hat{m} \rangle \neq \langle S, 1_{\{0\}} \rangle$ \hat{m} is not a Baire 1-function on K_S .

For general lca group G we do not know if there exist H-means on $CV_p(G)$ which are Baire 1-functions on K_s without being constant on K_s .

2. Some subspaces of $CV_p(G)$ with Radon-Nikodym and Schur property. A generalization of Loomis theorem.

We first prove a lemma (lemma 2.2 (b) below) which will be a key for this paper. It is obvious when p = 2 and is implicitly used in [W1], [W2] for p = 2, in [Loh1] for $1 \le p \le 2$. Neither in [W1] nor in [Loh] its whole strength is used.

LEMMA 2.1. – Let G be a lca group, $G \to H$, $1 \leq p \leq 2$. Let $F \subset G$ be a finite set. There exists a neighborhood W of $\{0\}$ in H such that, for every $(k,k') \in \pi_p(G)$ supported on $W \times W$, $(k * \check{k}') * P_F$ lies in $\mathscr{S}_p(G)$, where $(k * \check{k}') * P_F$ is defined by

$$(k * \check{k}') * P_F = \sum_{P_F(x_i) \neq 0} P_F(x_i)(k * \check{k}')_{x_i}.$$

Proof. – We choose W a neighborhood of $\{0\}$ in H such that the sets $x_i + W$ ($x_i \in F$) are pairwise disjoint. Let $(k, k') \in \pi_p(G)$ be supported on $W \times W$. Hence

...

. .

...

(i)
$$1 = \left\| |F|^{-1/p} \sum_{x_i \in F} k_{x_i} \right\|_{L^{p(G)}} = \left\| |F|^{-1/p'} \sum_{x_j \in F} k'_{x_j} \right\|_{L^{p'(G)}}$$

(ii) $1 \ge \left\| \left(|F|^{-1} \left(\sum_{x_i \in F} k_{x_i} \right) * \left(\sum_{x_j \in F} (\breve{k}'_{x_j}) \right) \right\|_{A_p(G)}$
(iii) $|F|^{-1} \left(\sum_{x_i \in F} k_{x_i} \right) * \left(\sum_{x_j \in F} (\breve{k}'_{x_j}) \right)$
 $= |F|^{-1} \sum_{F \times F} (k * \breve{k}')_{x_i - x_j} = (k * \breve{k}') * P_F$
(iv) $(k * \breve{k}') * P_F(0) = k * \breve{k}'(0) = 1$.

LEMMA 2.2. – Let G be a lea group, $G \rightarrow H$, $1 \le p \le 2$. a) Let W be a neighborhood of $\{0\}$ in H.

For every $f \in \mathcal{G}_p(G)$ $\varphi_w f$ lies in the norm closed convex hull of

$$\{k * \check{k}' | (k, k') \in \pi_p(G), (k, k') \text{ is supported on } W \times W\}.$$

b) Let $F \subset G$ be a finite set and \hat{m} be a H-mean on $CV_p(G)$. Then $\hat{m} * P_F$ lies in $\mathscr{S}_p^{00}(G)$, where $\hat{m} * P_F$ is defined by

$$\hat{m} * P_F = \sum_{P_F(x_i) \neq 0} P_F(x_i) \hat{m}_{x_i}.$$

Proof. – a) The claim is proved for $f \in \mathscr{S}_p(G)$ as soon as it is proved for $f = g * \check{g}'$ where $(g,g') \in \pi_p(G)$ owing to lemma 1.1.

By the proof of [Ey] theorem 1, $(g * \check{g}') \varphi_W$ belongs to the norm closed convex hull of

$$\frac{g |W|^{-1/p} (1_W)_x}{||g|W|^{-1/p} (1_W)_x||_{L^p(G)}} * \frac{g' |W|^{-1/p'} (1_W)_x}{||g'|W|^{-1/p'} (1_W)_x||_{L^{p'}(G)}} = k * \check{k'}$$

where $x \in G$, and

$$k = \frac{g_{-x} |W|^{-1/p} \mathbf{1}_{W}}{||g_{-x}|W|^{-1/p} \mathbf{1}_{W}||_{L^{p}(G)}}, \qquad k' = \frac{g'_{x} |W|^{-1/p'} \mathbf{1}_{W}}{||g'_{x}|W|^{-1/p'} \mathbf{1}_{W}||_{L^{p'}(G)}}.$$

b) Let $(f_{\alpha})_{\alpha \in A} \in \mathscr{S}_{p}(G)$ be such that $f_{\alpha} \to \hat{m}$, $\sigma(A_{p}^{**}(G), CV_{p}(G))$. Let W be chosen as in lemma 2.1. By lemmas 2.1 and 2.2 (a) $(f_{\alpha}\phi_{W}) * P_{F} \in \mathscr{S}_{p}(G)$. Obviously

$$(f_{\alpha}\varphi_{W}) * P_{F} \xrightarrow[\alpha \in \mathcal{A}]{} \hat{m} * P_{F}, \quad \sigma(A_{p}^{**}(G), CV_{p}(G)). \qquad \Box$$

The proof of lemma 2.2 b is much simpler for p = 2: let $(f_{\alpha})_{\alpha \in A}$ be a net as in lemma 1.5 b. Then $\hat{f}_{\alpha} \ge 0$ hence $\hat{f}_{\alpha} \hat{P}_F \ge 0$, $||f_{\alpha} * P_F||_{A_2(G)} = f_{\alpha} * P_F(0)$; moreover $f_{\alpha} * P_F(0) = f_{\alpha}(0)P_F(0) = 1$ as soon as the $x_i + W(x_i \in F)$ are disjoint and f_{α} is supported on W.

Lemma 2.2 will be the main ingredient in the definition of the mappings $A_{\hat{m}}$ in part 4. It is also an ingredient in the proof of proposition 2.3 below, and it will be revisited in the proof of lemma 2.10 below. Proposition 2.3 is a generalization of [W1] theorem 9 (ii). We keep some arguments of his proof but his crucial use of properties of almost periodic functions is replaced by lemma 2.2.

PROPOSITION 2.3. – Let G be a lea group, $G \to H$, $1 \le p \le 2$. Let us assume that $S \in CV_p(G)$ is H-p-ergodic at every $x \ne 0$, $x \in G$. Then for every $\varepsilon > 0$ there exists $\varphi \in \mathscr{S}_p(H)$ such that for every finite set $F \subset G$

$$\left\|\sum_{\substack{x_i\neq 0\\P_F(x_i)\neq 0}} P_F(x_i)\varphi(x_i) M_p^H(S_{x_i}) \delta_{x_i}\right\|_{CV_p(G)} \leq \varepsilon.$$

Let us write it in another way: let \hat{m} be a *H*-mean on $CV_p(G)$. Let

$$\varphi'' = \sum_{x_i \neq 0} P_F(x_i) \hat{m}_{x_i} = \hat{m} * (P_F - 1_{\{0\}}) \in A_p^{**}(G)$$

Then $\varphi''(\varphi S)$ defined as an element of $CV_p(G)$ as in part 1 (description of K_s) satisfies

$$\varphi''(\varphi S) = \sum_{x_i \neq 0} P_F(x_i)\varphi(x_i)M_p^H(S_{x_i})\delta_{x_i}.$$

Proposition 2.3 does not imply that S is *H*-p-ergodic at 0 in general. But if G is not discrete and if we apply it for $G = G_d$ and H = G we get that for every $\varepsilon > 0$ there exists $\varphi \in \mathscr{S}_p(G)$ such that

$$\forall F \text{ finite } F \subset G \| P_F(\varphi S - \langle S, 1_{\{0\}} \rangle \delta_0) \|_{CV_p(G_d)} \leq \varepsilon$$

hence

$$\|\varphi S - \langle S, 1_{\{0\}} \rangle \, \delta_0 \|_{CV_p(G_d)} \leq \varepsilon$$

which means by lemma 1.8 that $S \in CV_p(G_d)$ is G-p-ergodic at 0. For p = 2 this was noticed in [Gl].

Thus Proposition 2.3 easily implies the following corollary whose proof is the same as in [GI] Corollary 2, where p = 2:

COROLLARY 2.4. – Let G be a lea group, $1 \le p \le 2$. Let $E \subset G$ be closed and scattered. Then every $S \in CV_p(E_d) \subset CV_p(G_d)$ is G-totally p-ergodic.

Proof. – Let $N = \{x \in G | S \text{ is not } G\text{-}p\text{-}\text{ergodic at } x\}$. By lemma 1.8 $N \subset E$ because E is closed in G. Let \overline{N} be the closure of N in E. If N is not empty there exists $x \in \overline{N}$ which is an isolated point of \overline{N} hence $x \in N$. But there exists $\varphi \in \mathscr{S}_p(G)$ such that the support of $\varphi_x S$ meets \overline{N} only at $\{x\}$. By Proposition 2.3 and the remark above $\varphi_x S$ is G-p-ergodic at x hence so is S and this is a contradiction.

Proof of proposition 2.3. – For every $\varepsilon > 0$ we choose $W(0) \subset H$ as in lemma 1.6 and $\varphi = \varphi_{W'} \in \mathscr{S}_p(H)$ such that W' is an open neighborhood of $\{0\}$ in H and $W' - W' \subset W$. For every finite set $F \subset G$, every H-mean \hat{m} on $CV_p(G)$ and every $g \in \mathscr{S}_p(G)$ lemma 1.6 and lemma 2.2 (b) imply

$$\langle g \varphi S, \sum_{P_F(x_i) \neq 0} P_F(x_i) \hat{m}_{x_i} \rangle \in M_p^H(S) + D_{\varepsilon}.$$

On the other hand

$$\langle g \varphi S, \sum_{P_F(x_i) \neq 0} P_F(x_i) \hat{m}_{x_i} \rangle = \langle S, \hat{m} \rangle + \sum_{P_F(x_i) \neq 0 \atop x_i \neq 0} P_F(x_i) g(x_i) \varphi(x_i) \langle S, \hat{m}_{x_i} \rangle.$$

MEANS ON $CV_p(G)$

Hence for every $g \in \mathcal{G}_p(G)$, as S is H-p-ergodic at every $x \neq 0$

$$M_p^H(S) + \left\langle \sum_{\substack{P_F(x_i) \neq 0 \\ x_i \neq 0}} P_F(x_i) \varphi(x_i) M_p^H(S_{x_i}) \delta_{x_i}, g \right\rangle \subset M_p^H(S) + D_{\varepsilon}.$$

Hence

$$\sup_{g \in \mathscr{S}_p(G)} |\langle \sum_{\substack{P_F(x_i) \neq 0 \\ x_i \neq 0}} P_F(x_i) \varphi(x_i) M_p^H(S_{x_i}) \delta_{x_i} g \rangle| \leq \varepsilon$$

which implies by (1)

$$\left\|\sum_{\substack{P_F(x_i)\neq 0\\x_i\neq 0}} P_F(x_i)\varphi(x_i)M_p^H(S_{x_i})\delta_{x_i}\right\|_{C^{V_p(G)}} \leq e\varepsilon.$$

In order to prove our generalization of Loomis theorem (theorem 2.8 below) we now state the obvious generalization of a part of the original proof.

DEFINITION 2.5. – Let G be a lea group, and $1 \le p \le 2$. An element $S \in CV_p(G)$ if p-almost periodic if $S \in \ell^{-1}(G)^{||\cdot||} CV_p(G)$ i.e. if S lies in the norm closure in $CV_p(G)$ of finitely supported measures. S is said to be p-almost periodic at $x \in G$ if there exists $f \in A_2(G)$ such that $f(x) \neq 0$ and fS is p-almost periodic.

Equivalent definitions of *p*-almost periodic elements of $CV_p(G)$ are given in theorem 4.8 below.

LEMMA 2.6. – Let G be a lca group, $G \rightarrow H$, $1 \leq p \leq 2$.

a) If $S \in CV_p(G)$ is p-almost periodic, S is totally H-p-ergodic and for every $\varepsilon > 0$ there exists a finite set $F \subset G$ such that for every H-mean \hat{m}

 $||S - (\hat{m} * P_F)S||_{CV_p(G)} \leq \varepsilon \quad \text{and} \quad S - (\hat{m} * P_F)S \in \overline{\ell^{1}(G)} \quad {}^{CV_p(G)}.$

b) If $S \in CV_p(G)$ has a compact support K and is p-almost periodic at every point of K, S is p-almost periodic.

c) If $S \in CV_p(G)$ has a compact support K, such that $0 \in K$, is p-almost periodic at every $x \in K$, $x \neq 0$, and topologically p-ergodic at 0, S is p-almost periodic.

Proof. – a) $(\hat{m} * P_F)S$ is defined as in part 1 (see also proposition 2.3) as a finitely supported measure. Moreover for every $S' \in CV_p(G)$

$$\|(\hat{m} * P_F)S'\|_{CV_n(G)} \leq \|S'\|_{CV_n(G)}$$

by definition and lemma 2.2. Both assertions of (a) are obvious if S is a finitely supported measure and verified by norm density if $S \in \overline{\ell^{(1)}(G)} \quad cv_{p^{(G)}}$. (These facts will be used again in lemma 3.2 and theorem 4.1.)

The proof of b) is analogue to [Loo] theorem 1: there exist $(f_j)_{1 \le j \le n} \in A_2(G)$ such that $f_j S$ is p-almost periodic and $\sum_{1 \le j \le n} f_j > 0$ on K, there exists $f \in A_2(G)$ such that $f\left(\sum_{1 \le j \le n} f_j\right) = 1$ in a neighborhood of K hence $S = \sum_{1 \le j \le n} ff_j S$ is p-almost periodic.

c) Every ψS defined as in lemma 1.8 (iii) satisfies the assumptions of (b), hence ψS is *p*-almost periodic and so is S by lemma 1.8.

We now prove a generalization of [Loo] theorem 2.3, but with a different proof : it will be a consequence of proposition 2.3.

PROPOSITION 2.7. – Let G be a lea group, $1 \le p \le 2$. Let $S \in CV_p(G)$ with a compact support K such that $0 \in K$. If S is p-almost periodic at every $x \in k$ except $\{0\}$ then S is p-almost periodic.

Proof. – By lemma 2.6 it is enough to show that S is topologically p-ergodic at $\{0\}$. S verifies the assumptions of Proposition 2.3 for H = G. For every $\varepsilon > 0$ we choose $\varphi \in \mathscr{S}_p(G)$ as in proposition 2.3 and we choose $f, g \in \mathscr{S}_p(G)$ such that

diam
$$M_p(S) - \varepsilon = \text{diam } M_p(\varphi S) - \varepsilon = |\langle \varphi S, f - g \rangle|$$

As $\{0\}$ is a set of synthesis for $A_p(G)$ our assumption on S implies that $(f-g)\varphi S$ is p-almost periodic at every $x \in G$ hence p-almost periodic by lemma 2.6 b). By lemma 2.6 a), for every $\varepsilon > 0$ there exists a finite set $F \subset G$ such that for any mean \hat{m} on $CV_p(G)$

$$\|(f-g)\varphi S - (\hat{m} * P_F)(f-g)\varphi S\|_{\mathcal{L}^{1}(G)}\| \|_{CV_{p}(G)} \leq \varepsilon.$$

Let $W \subset G$ be a compact set such that

$$\|(f-g)-(f-g)\varphi_W\|_{A_p(G)} \leq \varepsilon \|S\|_{CV_p(G)}^{-1}.$$

Hence by our choice of φ

$$\begin{aligned} |\langle \varphi S, f - g \rangle| &\leq \varepsilon + |\langle (f - g)\varphi S, \varphi_W \rangle| \leq 2\varepsilon + |\langle (\hat{m} * P_F)(f - g)\varphi S, \varphi_W \rangle| \\ &= 2\varepsilon + |\langle (\hat{m} * (P_F - \mathbf{1}_{\{0\}}))\varphi S, \varphi_W(f - g) \rangle| \leq 4\varepsilon \,. \end{aligned}$$

Hence diam $M_p(S) \leq 5\varepsilon$ and S is topologically p-ergodic at $\{0\}$.

THEOREM 2.8. – Let G be a lca group, $1 \le p \le 2$.

a) Let $E \subset G$ be compact and scattered. Then $CV_p(E) = \ell^1(E)^{\| \|_{CV_p(G)}}$ and $CV_p(E)$ has Radon-Nikodym property.

b) If $E \subset G$ is compact and not scattered $CV_p(E)$ does not have Radon-Nikodym property nor Schur property.

Theorem 2.8 is obvious for p = 1. For p = 2 theorem 2.8 (a) is Loomis theorem [Loo].

Proof. – a) Proposition 2.7 implies that every $S \in CV_p(E)$ is *p*-almost periodic at every $x \in G$ exactly as in [Loo] proof of theorem 4, or as in the proof of corollary 2.4 above. Lemma 2.6 finishes the proof of the first assertion. Every separable subspace of $CV_p(E)$ is a subspace of $CV_p(E')$ where E' is a separable closed subset of E. Hence E' is compact and countable. By the first assertion $CV_p(E')$ is separable, and it is a dual space. Hence $CV_p(E')$ and $CV_p(E)$ have RNP.

b) The proof is the same as for p = 2 [L-P1] proposition 3: By [V] chap. 4.3, E has a closed perfect subset E' such that

$$M(E') = CV_2(E') = CV_p(E')$$

and M(E') does not have RNP nor the Schur property.

Theorem 2.8 (a) implies the following corollary exactly as Loomis theorem implies [Gl] Proposition 4 :

COROLLARY 2.9. – Let G be a lea group and let $F \subset G$ be closed and scattered. Then every $S \in CV_p(E)(1 \le p \le 2)$ is totally topologically p-ergodic.

Proof. — We prove that S is topologically p-ergodic at $\{0\}$. Let $f \in \mathcal{S}_p(G)$ with a compact support. The support of fS is compact and scattered hence by theorem 2.8 (a) and lemma 2.6 fS is topologically p-ergodic at $\{0\}$ hence so is S.

 \square

Our aim now is to prove (theorem 2.14 below) that under the assumptions of theorem 2.8 (a) $CV_p(E)$ has the Schur property. Exactly as in the case p = 2 [L-P1] theorem 1, we begin with the case where E is a convergent sequence. The following lemma is crucial. It is a generalization of [W1], proof of theorem 9 (ii), and the proof uses the same ideas as lemma 2.2, proposition 2.3 above.

LEMMA 2.10. – Let G be a lea group and $E = (e_k)_{k \ge 1} \subset G$ be a sequence such that $e_k \to O(k \to +\infty)$ and $e_k \neq O(k \ge 1)$. Let $1 \le p \le 2$.

a) For every $N \ge 1$ and $\varepsilon > 0$ there exists $W_{N,\varepsilon}$ a neighborhood of $\{0\}$ in G such that for every $f, g \in \mathcal{S}_p(G)$ there exists $h \in \mathcal{S}_p(G)$ such that

(i)
$$\|g-h\|_{A_p(E_N)} \leq 2\varepsilon$$

(ii)
$$\|f-g\|_{A_n(\bar{W}_N,\varepsilon)} \leq 2\varepsilon$$

where $E_N = \{e_1, ..., e_N\}$.

b) Let 0 be an open subset of the compact metric topological space $\mathscr{S}_p^{00}(G)$ provided with $\sigma(A_p^{**}(G), CV_p(E))$. There exists W a neighborhood of $\{0\}$ in G such that for every $S \in CV_p(E)$ which is supported on W and every topological mean \hat{m} on $CV_p(G)$

(iii) $\sup_{f \in \mathscr{S}_{p}(G)} |\langle S - \langle S, \hat{m} \rangle \delta_{0}, f \rangle| \leq 2 \sup_{h \in 0} |\langle S - \langle S, \hat{m} \rangle \delta_{0}, h \rangle|,$

(iv) $||S - \langle S, \hat{m} \rangle \delta_0||_{CV_{p(G)}} \leq 2e \operatorname{diam} \{\langle S, 0 \rangle \}.$

Proof. - a) Let $(g_i)_{i \in I_{N,\varepsilon}}$ be a finite family in $\mathscr{S}_p(G)$ such that (v) $\forall g \in \mathscr{S}_p(G), \exists i \in I_{N,\varepsilon}, ||g-g_i||_{A_p(E_N)} \leq \varepsilon.$

As $\{0\}$ is a set of synthesis for $A_p(G)$ there exists $V_{N,\varepsilon}$ a neighborhood of $\{0\}$ in G such that

(vi)
$$\forall i \in I_{N,\varepsilon}, ||g_i - 1||_{A_p(\bar{V}_{N,\varepsilon})} \leq \varepsilon$$
,

where $\overline{V}_{N,\varepsilon}$ is the closure of $V_{N,\varepsilon}$ in G.

There exists a finite set $F_{N,\varepsilon} \subset G$ such that

(vii)
$$\|1-P_{F_{N,\varepsilon}}\|_{A_2(E_N)\leq \sum_{k=1}^N} |1-P_{F_{N,\varepsilon}}(e_k)| \leq \varepsilon.$$

There exists $V'_{N,\varepsilon}$ a neighborhood of $\{0\}$ in G such that $V'_{N,\varepsilon} - V'_{N,\varepsilon} \subset V_{N,\varepsilon}$, and the $x_i + V'_{N,\varepsilon} - V'_{N,\varepsilon}(x_i \in F_{N,\varepsilon} \cup \{F_{N,\varepsilon} - F_{N,\varepsilon}\})$ are

pairwise disjoint. There exists $W_{N,\varepsilon}$ a neighborhood of $\{0\}$ in G such that

(viii) $\|1 - \varphi_{V_{N,\varepsilon}'}\|_{A_p(\bar{W}_{N,\varepsilon})} \leq \varepsilon.$

For every $f \in \mathscr{S}_p(G)$ $(\varphi_{V_{N,\varepsilon}} f) * P_{F_{N,\varepsilon}} \in \mathscr{S}_p(G)$ by lemmas 2.1, 2.2 (a). Hence by (vii)

(ix) $\forall i \in I_{N,\varepsilon}((\varphi_{V_{N,\varepsilon}}f) * P_{F_{N,\varepsilon}})g_i \in \mathscr{S}_p(G).$ (x) $||g_i - (\varphi_{V_{N,\varepsilon}}f * P_{F_{N,\varepsilon}})g_i||_{A_p(E_N)} = ||g_i\sum_{k=1}^k (1 - P_{F_{N,\varepsilon}}(e_k))||_{A_p(E_N)} \leq \varepsilon.$

For every $g \in \mathscr{S}_p(G)$ we choose $i_0 \in I_{N,\varepsilon}$ such that $||g - g_{i_0}||_{A_p(E_N)} \leq \varepsilon$. Let $h = ((\varphi_{V'_{N,\varepsilon}}f) * P_{F_{N,\varepsilon}})g_{i_0}$.

Then $h \in \mathscr{S}_p(G)$ by (ix) and satisfies (i) by our choice of g_{i_0} and (x). Moreover by our choice of $V'_{N,\varepsilon}$, (viii) and (vi)

$$\|f - h\|_{A_p(\bar{w}_{N,E})} \leq \|f - \varphi_{V_{N,E}}'f\|_{A_p(\bar{w}_{N,E})} + \|(\varphi_{V_{N,E}}'f) * P_{F_{N,E}} - h\|_{A_p(\bar{w}_{N,E})} \leq 2\varepsilon$$

which proves (ii).

b) Let 0 be as in the statement. By theorem 2.8 (a) there exist $h_0 \in \mathscr{S}_p(G)$, N and $0 < \varepsilon < (6e)^{-1}$ such that

$$0 \supset \{h \in \mathscr{S}_p^{00}(G) | \forall 1 \leq k \leq N \quad |h(e_k) - h_0(e_k)| < 2\varepsilon \}.$$

Let $W = W_{N,\varepsilon}$ be chosen as in (a). Let $S \in CV_p(E)$ which is supported on W and let $f \in \mathcal{S}_p(G)$ be such that

(xi)
$$(1-\varepsilon) \sup_{f' \in \mathscr{G}_p(G)} |\langle S - \langle S, \hat{m} \rangle \delta_0, f' \rangle| \leq |\langle S - \langle S, \hat{m} \rangle \delta_0, f \rangle|.$$

Let us define h as in (a) for this f and $g = h_0$. By (i) $h \in 0$ and (ii), (xi) imply (iii) via (1).

We now prove (iv): let $P_{F_{N,E}}$ be defined as in (a) and let

$$h' = (\hat{m} * P_{F_{N_F}})h_0.$$

By lemma 2.2 (b) $h' \in \mathscr{S}_p^{00}(G)$; for $k \ge 1 \langle \delta_{e_k}, h' \rangle = P_{F_{N,\varepsilon}}(e_k)h_0(e_k)$ hence $h' \in 0$ by (vii). By (ii) and our choice of W

(xii)
$$|\langle S - \langle S, \hat{m} \rangle \delta_0, f \rangle| = |\langle S, f \rangle - \langle S, \hat{m} \rangle| = |\langle S, f \rangle - \langle S, h' \rangle|$$

 $\leq 2\varepsilon ||S - \langle S, \hat{m} \rangle \delta_0||_{CV_n(G)} + |\langle S, h \rangle - \langle S, h' \rangle|$

Hence (xi) and (xii) imply (iv) via (1).

PROPOSITION 2.11. – Let G be a lea group and $E \subset G$ be a compact countable set with only one cluster point. Then $CV_p(E)$ $(1 \leq p \leq 2)$ has the Schur property.

Proof. – We assume that $E = (e_k)_{k \ge 1}$ as in lemma 2.10. Let $(S_n)_{n \ge 1}$ be a sequence in $CV_p(E)$ such that $S_n \to 0$ $\sigma(CV_p(E), A_p^{**}(G))$. By theorem 2.8 (a) and by eventually extracting a subsequence we may assume that there exists a sequence $(S'_n)_{n \ge 1}$ of measures whose finite support lies in $E \setminus \{0\}$, such that $||S_n - S'_n||_{CV_p(E)} \le 2^{-n}(n \ge 1)$ and the S'_n are supported on disjoint blocks $\{e_{k_n}, e_{k_n+1}, \ldots, e_{k_{n+1}-1}\}$ where $(k_n)_{n \ge 1}$ is a strictly increasing sequence of positive integers. In order to prove the claim we assume that

$$\exists \delta > 0, \quad \forall n \ge 1, \quad \|S'_n\|_{CV_p(G)} > \delta$$

and we will show that this is impossible.

Let $C = \sup \|S_n\|_{CV_n(G)}$; we may assume that $\|S'_n\|_{CV_n(G)} \leq 2C$. Let

 $\varepsilon = \delta(8eC)^{-1}$. We define a subsequence $(S'_{n(j)})_{j \ge 1}$ and a decreasing sequence $(0_j)_{j \ge 1}$ in $\mathscr{S}_p^{00}(G)$ in the following way: $0_1 = \mathscr{S}_p^{00}(G)$; assume that 0_j and $S'_{n(j-1)}$ have been defined; by lemma 2.10 define a neighborhood W_j of $\{0\}$ in E such that assertion (iii) is satisfied for 0_j and ε ; choose n(j) > n(j-1) such that $S'_{n(j)}$ is supported on W_j , and 0_{j+1} such that

$$|0_{j+1} = \{h \in 0_j | |\langle S_{n(j)}, h \rangle| \ge \sup_{h' \in 0_j} \langle S'_{n(j)}, h' \rangle |-\varepsilon||S'_{n(j)}||\}.$$

Take h_j in the closure of 0_j for $\sigma(A_p^{**}(G), CV_p(E))$ such that

$$|\langle S'_{n(j)}, h_j \rangle| = \sup_{h' \in 0_j} |\langle S'_{n(j)}, h'_j \rangle|, \quad j \ge 1.$$

Let $h_0 \in \mathscr{S}_p^{00}(G)$ be a cluster point of $(h_i)_{i \ge 1}$ for $\sigma(\mathscr{S}_p^{00}(G), CV_p(E))$.

Then

$$\forall j \ge 1, \quad |\langle S'_{n(j)}, h_0 \rangle| \ge \frac{1}{2} \sup_{f \in \mathscr{S}_p^{(0)}(G)} |\langle S'_{n(j)}, f \rangle| - 2\varepsilon C \ge \delta/4e$$

by (1). Hence $(S'_{n(j)})_{j \ge 1}$ does not converge weakly to zero, which is a contradiction.

This proof is similar to [L-P1] lemma 2. It is sufficient in order to prove theorem 2.14 below. But proposition 2.11 can be improved as follows :

DEFINITION 2.12. – A Banach space X has the strong Schur property if there exists C > 0 such that for every $0 < \delta < 2$ and every sequence $(x_n)_{n\geq 1}$ in X such that

- (i) $||x_n|| \leq 1 \ (n \geq 1)$
- (ii) $||x_n x_k|| \ge \delta \quad (n \neq k)$

there exists a subsequence $(x_{n_k})_{k\geq 1}$ such that

(iii)
$$\forall \alpha_1, \ldots, \alpha_N \in \mathbb{C}$$
, $\left\| \sum_{k=1}^N \alpha_k x x_{n_k} \right\| \ge \delta C \sum_{k=1}^N |\alpha_k|$.

PROPOSITION 2.13. – Let G be a lea group and $E \subset G$ be a compact countable set with only one cluster point. Then $CV_p(E)$ $(1 \le p \le 2)$ has the strong Schur property.

Proof. – By (1) we can consider $CV_p(E)$ as a closed subspace of the continuous functions on the compact space $\mathscr{S}_p^{00}(G)$ provided with the $\sigma(A_p^{**}(G), CV_p(E))$ topology. As $CV_p(E)$ is separable by theorem 2.8 (a) this topology is metrizable. Proposition 2.13 is thus implied by theorem B of [S], if we replace lemma 1 of [S] by lemma 2.10 (b).

We do not know whether $CV_p(E)$ still has the strong Schur property when E is compact countable with an infinite number of cluster points.

THEOREM 2.14. – Let G be a lca group, let $E \subset G$ be compact and scattered. Then $CV_p(E)$ $(1 \leq p \leq 2)$ has the Schur property.

Proof. – As we deal with sequences of elements in $CV_p(E)$ theorem 2.8 (a) shows that we actually work in $CV_p(E_1)$ where $E_1 \subset E$ is compact and countable. We can now use the proof of [L-P1] theorem 1, writing $(CV_p(E_1))$ instead of (PM(E)). The proof uses transfinite induction and deduces the general case from the particular case where E_1 has only one cluster point i.e. from proposition 2.11. \Box

3. A consequence of theorems 2.8 and 2.14.

Let G be a lea group, $1 \le p \le 2$.

We denote by $X_p(G)$ the closed subspace of $CV_p(G_d)$ of those elements which are totally G-p-ergodic, and by $Y_p(G)$ the closed subspace of $CV_p(G)$ of those elements which are totally topologically p-ergodic. We first show the existence of bounded linear mappings $B_{\omega}: CV_p(G_d) \to CV_p(G) \ (1 \le p \le 2)$ which are identity on finitely supported measures on G. They were already defined in [L-P2] for p = 2.

THEOREM 3.1. – Let G be a lca group, $1 \leq p \leq 2$. Let $(P_F)_{F \in \mathscr{F}}$ be an approximate identity in $A_2(G_d)$. Let ω be a cluster point of $(P_F)_{F \in \mathscr{F}}$ for $\sigma(A_2^{**}(G_d), CV_2(G_d))$. Let us define $B_{\omega} : CV_p(G_d) \to CV_p(G)$ by

 $\forall f \in A_p(G), \ \forall S \in CV_p(G_d), \ \langle B_{\omega}(S), f \rangle = \langle fS, \omega \rangle.$

This mapping has the following properties :

(i) $||B_{\omega}||_{CV_p(G_d) \to CV_p(G)} \leq 1$.

(ii) B_{ω} restricted to finitely supported measures is identity.

(iii) B_{ω} commutes with multiplication by elements of $B_{\mu}(G)$.

(iv) If $\Lambda \subset G$ and $\overline{\Lambda}$ is the closure of Λ in G, B_{ω} maps $CV_p(\Lambda_d)$ into $CV_p(\overline{\Lambda})$.

(v) B_{ω} is one to one on $X_p(G)$ and sends $X_p(G)$ into $Y_p(G)$.

Proof. – (i) By definition $\omega \in \mathscr{S}_2^{00}(G_d) \subset \mathscr{S}_p^{00}(G_d)$. By [Ey] theorem 1 $A_p(G)$ is a subspace of $B_p(G_d)$ hence $\langle fS, \omega \rangle$ is well defined and

 $|\langle fS, \omega \rangle| \leq ||fS||_{CV_n(G_d)} \leq ||S|| \, ||f||_{A_n(G)}.$

(ii) As $P_F(x) \to 1(F \in \mathscr{F})$ for every $x \in G$,

 $\langle f \delta_x, \omega \rangle = f(x) = \langle \delta_x, f \rangle$

for every $f \in A_p(G)$ hence $B_{\omega}(\delta_x) = \delta_x$.

(iii) By [Ey] theorem 1 $B_p(G)$ is a subspace of $B_p(G_d)$ hence (iii) holds by the definition of B_{ω} .

(iv) is obvious from the definitions.

(v) Let $S \subset CV_p(G_d)$, $S \neq 0$. Hence there exists $x_0 \in G$ such that $\langle S, 1_{|x_0|} \rangle \neq 0$. If moreovoer $S \in X_p(G)$, $M_p^G(S_x) = \langle S, 1_{|x|} \rangle$ for every $x \in G$. By Lemma 1.8 for every $\varepsilon > 0$ and $x \in G$ there exists $\varphi \in \mathscr{S}_p(G)$ such that $\|\varphi_x S - \langle S, 1_{|x|} \rangle \delta_x\|_{CV_p(G_d)} \leq \varepsilon$. By (i), (ii), (iii) $\|\langle \varphi_x B_\omega(S) - \langle S, 1_{|x|} \rangle \delta_x\|_{CV_p(G)} \leq \varepsilon$ which implies by lemma 1.8 again that $B_\omega(S) \in Y_p(G)$ and that $\varphi_{x_0} B_\omega(S)$ is not zero for a suitable φ . \Box

The following lemma is proved in [Loh1] chap. 2, theorem 1.1, proprosition 3.2.0. Actually a more general result is proved there and we recall a short proof for this particular case.

LEMMA 3.2. – Let G be a lca group, $1 \le p \le 2$. Let μ be a finitely supported measure on G. Then $\|\mu\|_{CV_p(G)} = \|\mu\|_{CV_p(G_d)}$.

Proof. – The inequality $\|\mu\|_{CV_p(G_d)} \leq \|\mu\|_{CV_p(G)}$ is proved by a computation similar to the proof of lemma 2.1: Let k, k' be finitely supported functions in the unit sphere of $L^p(G_d)$ and $L^{p'}(G_d)$ respectively. Let W be an open neighborhood of $\{0\}$ in G such that the $x_i + W - W$ are pairwise disjoint for x_i lying in the union of the supports of k, k', μ . Hence

(i)
$$\langle \mu, k * \check{k}' \rangle = \langle \mu, (k * \check{k}') * \varphi_W \rangle$$

(ii) $(k * \check{k}') * \varphi_W = \left(|\check{W}|^{-1/p} \sum_{k(x_i) \neq 0} k(x_i)(1_W)_{x_i} \right) \\ * \left(|W|^{-1/p} \sum_{k'(x_j) \neq 0} \check{k}'(x_j)(\check{1}_W)_{x_j} \right)$
(iii) $1 = \left\| |W|^{-1/p} \sum_{k(x_i) \neq 0} k(x_i)(1_W)_{x_i} \right\|_{L^p(G)}$
 $= \left\| |W|^{-1/p'} \sum_{k'(x_j) \neq 0} \check{k}'(x_j)(\check{1}_W)_{x_j} \right\|_{L^{p'}(G)}$

hence $(\check{k} * \check{k}') * \varphi_W$ belongs to the unit ball of $A_p(G)$.

The converse inequality $\|\mu\|_{CV_p(G)} \leq \|\mu\|_{CV_p(G_d)}$ comes from theorem 3.1 (i) and (ii).

We can now prove a consequence of theorem 2.8 and 2.14; for p = 2 it was proved in [L-P1] theorem 3 and partly in [L-P3] theorem 2.2, by two different methods.

THEOREM 3.3. – Let G be a discrete abelian group and $\Lambda \subset G$. We assume that there exists a lea group H such that $G \to H$ (as it was defined in part 1) and the closure $\overline{\Lambda}$ of Λ in H is compact and scattered. Then $CV_p(\Lambda)$ is the norm closure in $CV_p(G)$ of finitely supported measures on Λ ; it has the Radon-Nikodym and the Schur property.

We give a first proof which is similar to [L-P1] proposition 2, theorem 3, but simpler, owing to corollary 2.4.

Proof. – By assumption G is a closed subgroup of H_d hence by [H1] theorem A, $CV_p(G)$ is a closed subspace of $CV_p(H_d)$ and $CV_p(\Lambda)$ is a closed subspace of $CV_p((\bar{\Lambda})_d) \subset CV_p(H_d)$. By theorem 3.1 (iv) and theorem 2.8, $B_\omega: CV_p((\bar{\Lambda})_d) \to \overline{\ell'(\bar{\Lambda})}^{\oplus \oplus cv_p(H)}$. By lemma 3.2 there exists an isometry which we denote by $A: \overline{\ell^1(\bar{\Lambda})}^{\oplus \oplus cv_p(H)} \to \overline{\ell^1(\bar{\Lambda})}^{\oplus \oplus cv_p(H_d)}$ which is identity when restricted to finitely supported measures. By corollary 2.4 $CV_p((\bar{\Lambda})_d)$ lies in $X_p(H)$, hence with the notations of the proof of theorem 3.1 (v) for every $S \subset CV_p((\bar{\Lambda})_d)$ and $x \in G$

$$\begin{split} |\langle A \circ B_{\omega}(S), 1_{\langle x \rangle} \rangle - \langle S, 1_{\langle x \rangle} \rangle| &= |\langle \varphi_{x} A \circ B_{\omega}(S), 1_{\langle x \rangle} \rangle - \langle S, 1_{\langle x \rangle} \rangle \\ &\leq ||A|| ||\varphi_{x} B_{\omega}(S) - \langle S, 1_{\langle x \rangle} \rangle \delta_{x}||_{CV_{\omega}(H)} \leq \varepsilon \end{split}$$

which implies that $A \circ B_{\omega}$ is identity on $CV_p((\bar{\Lambda})_d)$. This proves that $CV_p((\bar{\Lambda})_d) = \overline{\ell^{1}(\bar{\Lambda})}^{\|\|CV_p(H_d)\|}$; as $\|B_{\omega}\| \leq 1$ this proves also that B_{ω} is an isometry: $CV_p((\bar{\Lambda})_d) \to CV_p(\bar{\Lambda})$. Hence theorem 2.8 and 2.14 imply that $CV_p((\bar{\Lambda})_d)$ and its subspace $CV_p(\Lambda)$ have RNP and the Schur property.

Alternatively theorem 3.3 has another proof which is similar to [L-P3] theorem 2.2: We keep the previous notations. By lemma 3.2 the spaces $\overline{\ell^1(\bar{\Lambda})_d}^{||||| + CV_p(H_d)}$ and $\overline{\ell^1(\bar{\Lambda})}^{||||| + CV_p(H)}$ are isometric, hence by theorem 2.8 and 2.14 the first one has RNP and the Schur property. It remains to prove that this space is the same as $CV_p((\bar{\Lambda})_d)$ which is a consequence of the following lemma, a generalization of [L-P3] theorem 2.1 :

LEMMA 3.4. – Let G be a discrete abelian group, $\Lambda \subset G$, $1 \leq p \leq 2$. Then $\overline{\ell^1(\Lambda)}$ $(CV_p(G))$ has RNP iff it coincides with $CV_p(\Lambda)$.

Proof. – Let $S \ CV_p(\Lambda)$. It defines a bounded multiplier: $A_2(G) \to CV_p(\Lambda), f \to fS$. As functions with finite support are dense in $A_2(G)$ the range of this multiplier lies in $\overline{\ell^{1}(\Lambda)}^{\parallel \parallel CV_p(\Lambda)}$. If this space has RNP there exists a bounded strongly measurable function F: $\hat{G} \to \overline{\ell^{1}(\Lambda)}^{-CV_p(G)}$ such that

$$\forall f \in A_2(G), \quad fS = \int_{\hat{G}} \hat{f}(\gamma) F(\gamma) \, d\gamma$$

In particular for every $\gamma' \in \hat{G}$

$$\int_{\hat{G}} \hat{f}(\gamma) \hat{S}(\gamma' - \gamma) \, d\gamma = f S(\gamma') = \int_{\hat{G}} \hat{f}(\gamma) \widehat{F(\gamma)}(\gamma') \, d\gamma$$

hence for almost all $\gamma \in \hat{G}$, $\widehat{F(\gamma)}(\gamma') = (\gamma S)(\gamma')$ and $F(\gamma) = \gamma S$. In particular $S \in \ell^{-1}(\Lambda)^{|| \cdot ||_{CV_p(G)}}$.

Conversely if $\ell^1(\Lambda)^{\|\|CV_p(G)\|} = CV_p(\Lambda)$ the same equality is true for every countable subset $\Lambda' \subset \Lambda$: hence $CV_p(\Lambda')$ is a separable dual and ℓ

has RNP. This implies that every separable subspace of $CV_p(\Lambda)$ (which is a subspace of a $CV_p(\Lambda')$ where Λ' is countable) has RNP, hence $CV_p(\Lambda)$ has RNP.

DEFINITION 3.5. – Let G be a discrete group, $\Lambda \subset G$, $1 \leq p \leq 2$. If $\overline{\ell^1(\Lambda)}^{\perp \parallel_{CV_p(G)}} = CV_p(\Lambda)$ we call Λ a p-Rosenthal set.

Obviously every Λ is a 1-Rosenthal set and a 2-Rosenthal set is usually called a Rosenthal set. Theorem 3.3 gives examples of sets Λ which are *p*-Rosenthal for every $1 \le p \le 2$. We do not know whether « Λ is *p*-Rosenthal » implies « Λ is *q*-Rosenthal » for 1 < q < p, but we have the following result :

LEMMA 3.6. – Let G be a countable discrete abelian group and $\Lambda \subset G$. Let $1 < q < p \leq 2$. Let Λ be a p-Rosenthal set.

a) Every bounded sequence in $A_p(\Lambda)$ has a weak Cauchy subsequence.

b) If $\overline{\ell^1(\Lambda)}^{\parallel \parallel_{CV_p(G)}}$ is weakly complete Λ is q-Rosenthal.

Proof. – a) By assumption $CV_p(\Lambda)$ is a separable dual. Hence its predual $A_p(\Lambda)$ has no ℓ^1 -sequence. Rosenthal's theorem [R] implies the claim.

b) Let $(P_{F_n})_{n \ge 1}$ be an approximate identity in $A_2(G)$. By (a) the sequence $(R(P_{F_n}))_{n \ge 1}$ of restrictions to Λ has a weak-Cauchy subsequence in $A_p(\Lambda)$. As identity: $CV_q(\Lambda) \to CV_p(\Lambda)$ is continuous, so is: $A_p(\Lambda) \to A_q(\Lambda)$. Hence $(R(P_{F_n}))_{n \ge 1}$ has a weak Cauchy subsequence in $A_q(\Lambda)$. For every $S \in CV_q(\Lambda)$, $n \ge 1$, $P_{F_n}S = R(P_{F_n})S \in \overline{\ell^{-1}(\Lambda)} \cup CV_q(G)$ and $P_{F_n}S \to S$, $\sigma(CV_q(\Lambda), A_q(\Lambda))$. It also has a weak Cauchy subsequence in $\overline{\ell^{-1}(\Lambda)} \cup CV_q(G)$ hence it converges weakly to S and S lies in $\overline{\ell^{-1}(\Lambda)} \cup CV_p(G)$.

If $\Lambda \subset G$ is a Sidon set identity is continuous (by definition):

$$\ell^{1}(\Lambda) \rightarrow CV_{p}(\Lambda) \rightarrow CV_{2}(\Lambda) \rightarrow \ell^{1}(\Lambda).$$

If $\Lambda_2 \subset G_1$ and $\Lambda_2 \subset G_2$ are two Sidon sets we have

$$\ell^{1}(\Lambda_{1} \times \Lambda_{2}) \to CV_{p}(\Lambda_{1} \times \Lambda_{2}) \to CV_{2}(\Lambda_{1} \times \Lambda_{2}) = \ell^{1} \hat{\otimes} \ell^{1}.$$

Is $\Lambda_1 \times \Lambda_2$ a *p*-Rosenthal set for $1 ? (This is true if <math>\Lambda_1$ and Λ_2 satisfy the assumptions of theorem 3.3 because $\Lambda_1 \times \Lambda_2$ also satisfy them.) We can also define *p*-Riesz sets as follows :

DEFINITION 3.7. – Let G be a discrete abelian group and $\Lambda \subset G$. $1 . <math>\Lambda$ is a p-Riesz set if every $f \in B_p(G)$ which is supported on Λ lies in $A_p(G)$.

A 2-Riesz set is usually called a Riesz set. We do not define 1-Riesz sets because $A_1(G) = C_0(G)$, $B_1(G) = \ell^{\infty}(G)$ hence no infinite set is 1-Riesz. In order to generalize results on Riesz sets for p-Riesz sets $(1 it is necessary to know whether <math>A_p(G)$ is weakly complete or not when G is discrete, which the author does not know.

(This is true if G is compact by [L-P4] theorem 4.)

If there exists $f \in B_2(G)$ which is supported on Λ and such that $f \notin C_0(G)$ Λ is not a *p*-Riesz set for any 1 because*f* $is not in <math>A_p(G)$. This is the case if Λ contains the spectrum of a Riesz product.

4. Transfer theorems.

We have already proved one transfer theorem, namely theorem 3.1. We now prove a «converse» one, by defining mappings $A_{\dot{m}}: CV_p(G) \to CV_p(G_d)$. Actually all these mappings will coincide on $\ell^{-1}(G)^{||\,||_{CV_p(G)}}$ and their common restriction is the mapping A which we already used in the proof of theorem 3.3. Mappings A and B_{ω} were already used implicitly in [Loh1], [Loh2]. For $p = 2 A_{\dot{m}}$ was defined in [W2], p. 104 and [W1], p. 292, on $UC_2(G)$ and it was defined in full generality in [L-P2]. The proof below is different.

THEOREM 4.1. – Let G be a lca group, $1 \le p \le 2$. Let $(P_F)_{F \in \mathcal{F}}$ be an approximate identity in $A_2(G_d)$. Let \hat{m} be a topological mean on $CV_p(G)$. The linear mapping $A_{\hat{m}}: CV_p(G) \to CV_p(G_d)$ is defined by

$$\forall S \in CV_p(G), \ \forall f \in A_p(G_d), \ \langle A_{\hat{m}}(S), f \rangle = \lim_{\mathcal{F}} \langle (\hat{m} * P_F)S, f \rangle$$

 $A_{\hat{m}}$ has the following properties :

- (i) $||A_{\hat{m}}||_{CV_{n}(G) \to CV_{n}(G_{d})} \leq 1.$
- (ii) $A_{\hat{m}}$ restricted to finitely supported measures on G is identity.
- (iii) $A_{\hat{m}}$ commutes with multiplication by functions of $B_p(G)$.
- (iv) If $E \subset G$ is a closed subset

$$A_{\hat{m}} : CV_p(E) \rightarrow CV_p(E_d).$$

(v) $A_{\hat{m}}$ maps $Y_p(G)$ into $X_p(G)$.

Proof. – We first explain the definition of $A_{\hat{m}}$. $(\hat{m} * P_F)S$ is defined as in proposition 2.3, lemma 2.6 and part 1 by

(vi)
$$\forall f \in A_p(G),$$

 $\langle (\hat{m} * P_F)S, f \rangle = \langle fS, \hat{m} * P_F \rangle = \sum_{P_F(x_i) \neq 0} P_F(x_i) \langle S, \hat{m}_{x_i} \rangle \langle \delta_{x_i}, f \rangle.$

It is a finitely supported measure on G. By lemmas 2.2 and 3.2

(vii) $||S||_{CV_p(G)} \ge ||(\hat{m} * P_F)S||_{CV_p(G)} = ||(\hat{m} * P_F)S||_{CV_p(G_d)}.$

Let $f \in A_p(G_d)$ with a finite support. Then

(viii)
$$\langle (\hat{m} * P_F)S, f \rangle$$

= $\sum_{f(x_i) \neq 0} P_F(x_i) f(x_i) \langle S, \hat{m}_{x_i} \rangle \not \Rightarrow \sum_{f(x_i) \neq 0} f(x_i) \langle S, \hat{m}_{x_i} \rangle$.

Hence $(\hat{m} * P_F)S = \sum_{P_F(x_i) \neq 0} P_F(x_i) \langle S, \hat{m}_{x_i} \rangle \delta_{x_i} (F \in \mathscr{F})$ is a bounded net in $CV_p(G_d)$ which converges for $\sigma(CV_p(G_d), A_p(G_d))$ to a limit which we denote by $A_{\hat{m}}(S)$. $A_{\hat{m}}$ is clearly a linear mapping.

(i) is implied by (vii) and (viii); (ii) is implied by (viii) because $\langle \mu, \hat{m}_{x_i} \rangle = \mu(x_i)$ if μ is finitely supported.

(iii) Let $F \in B_p(G)$ and $\varphi \in \mathcal{S}_p(G)$. For every $x \in G$, $\varphi_x F \in A_p(G)$. As x is a point of synthesis for $A_p(G)$ lemma 1.5 (b) implies $\langle \varphi_x FS, \hat{m}_x \rangle = F(x) \langle S, \hat{m}_x \rangle$. As $\langle \varphi_x FS, \hat{m}_x \rangle = \langle FS, \hat{m}_x \rangle$ (viii) implies (iii).

(iv) By lemma 1.5 (b) $\langle S, \hat{m}_x \rangle = 0$ if x lies outside the support of S. Hence (viii) implies (iv).

(v) If we write $M_p(S_x)$ instead of $\langle S, 1_{\{x\}} \rangle$ the proof of (v) is similar to the proof of (v) in theorem 3.1.

Let us notice however that $A_{\hat{m}}$ is not one to one on $Y_p(G)$: e.g. if $\mu \in M(G)$ is a diffuse measure $A_{\hat{m}}(\mu) = 0$. This will be precised in theorem 4.2 below.

Theorem 4.2 provides an Eberlein *p*-decomposition for elements of $Y_p(G)$.

THEOREM 4.2. – Let G be a lea group, $1 \le p \le 2$. Let \hat{m} be any topological mean on $CV_p(G)$, let $A_{\hat{m}}$ and B be as in theorems 3.1, 4.1.

a) $A_{\hat{m}} \circ B_{\omega}$ is identity on $X_p(G)$; B_{ω} is an isometry on $X_p(G)$, $A_{\hat{m}}$ is an isometry on $B_{\omega}(X_p(G))$.

b) For every $S \in Y_p(G)$, $S = B_\omega \circ A_m(S) + S'_\omega$ where

$$B_{\omega} \circ A_{\hat{m}}(S) \in Y_p(G)$$

and does not depend on \hat{m} , and $A_{\hat{m}}(S'_{\omega}) = 0$.

c) If \hat{m} is a topological mean on $CV_2(G)$, $X_p(G)$ and $Y_p(G)$ can be replaced by $X_2(G) \cap CV_p(G_d)$ and $Y_2(G) \cap CV_p(G)$ in the assertions above.

For p = 2 this result was partly proved in [W2] corollary 2, and proved in [L-P2] theorem 7.

Proof. – a) Let $S \in X_p(G)$. By the proof of theorem 3.1 (v), for every $\varepsilon > 0$ and $x \in G$ there exists $\varphi \in \mathscr{S}_p(G)$ such that

$$\|\varphi_{x}B_{\omega}(S)-\langle S,1_{\{x\}}\rangle \delta_{x}\|_{CV_{n}(G)} \leq \varepsilon$$

hence by theorem 4.1

$$\|\varphi_{x}A_{\hat{m}}\circ B_{\omega}(S)-\langle S,1_{\{x\}}\rangle\,\delta_{x}\|_{CV_{n}(G_{d})}\leqslant\varepsilon$$

hence

$$\forall x \in G, \quad \langle A_{\hat{m}} \circ B_{\omega}(S), 1_{\{x\}} \rangle = \langle S, 1_{\{x\}} \rangle.$$

As $||B_{\omega}||$, $||A_{\hat{m}}|| \leq 1$ the rest of the claim is now obvious.

b) Let $S \in Y_p(G)$. By theorems 4.1 (v) and 3.1 (v) $A_{\hat{m}}(S) \in X_p(G)$ and $B_{\omega} \circ A_{\hat{m}}(S) \in Y_p(G)$. By (a) $(A_{\hat{m}} \circ B_{\omega}) \circ A_{\hat{m}}(S) = A_{\hat{m}}(S)$ hence $S - B_{\omega} \circ A_{\hat{m}}(S) \in \ker A_{\hat{m}}$. On the other hand all $A_{\hat{m}}$ coïncide on $Y_p(G)$ for topological means \hat{m} on $CV_p(G)$.

c) By (a) $A_{m} \circ B_{\omega}$ is identity on $X_{2}(G)$ hence on $X_{2}(G) \cap CV_{p}(G_{d})$. The rest of the proof is similar to the proof of (a), (b).

Theorem 4.2 (c) implies [Loh1] chap. 2, corollaire de la proposition III. 2.0, p. 56, where $\overline{\ell^1(G)}^{\| \|_{CV_2(G)}} \cap CV_p(G)$ is shown to be isometric to $\overline{\ell^1(G)}^{\| \|_{CV_2(G_d)}} \cap CV_q(G_d)$. We do not know whether $X_2(G) \cap CV_p(G_d)$ is strictly larger than $X_p(G)$ or not (and the same question for $Y_2(G) \cap CV_p(G)$ and $Y_p(G)$). However let $1 \leq q < p$ and let $S \in CV_p(G_d)$. Lemma 1.8 and the interpolation inequality $\left(\frac{1}{p} = \frac{\theta}{q} + \frac{1-\theta}{2}\right)$

$$||S||_{CV_{p}(G_{d})} \leq ||S||_{CV_{q}(G_{d})}^{\theta} ||S||^{1-\theta} CV_{2}(G_{d})$$

imply that if $S \in X_2(G)$ then $S \in X_p(G)$. In the same way $CV_q(G) \cap Y_2(G) \subset Y_p(G)$. The following result is a generalization of [G1] theorem 4, where p = 2.

THEOREM 4.3. – Let G be a lca group, let $E \subset G$ be closed and scattered. Let $1 \leq p \leq 2$. Then $CV_p(E)$ and $CV_p(E_d)$ are isometric.

Proof. – By corollary 2.4, $CV_p(E)$ is a closed subspace of $X_p(G)$. By theorem 4.2 (a) (b) B_{ω} is an isometry: $CV_p(E_d) \rightarrow CV_p(E)$ and $A_{\hat{m}}$ is an isometry: $CV_p(E) \rightarrow CV_p(E_d)$ if $CV_p(E) \subset B_{\omega}(X_p(G))$ hence if $A_{\hat{m}}$ is one to one on $CV_p(E)$. Let now $S \in CV_p(E)$, $S \neq 0$. Hence the support E' of S is a closed non empty subset of E. As E is scattered let x be an isolated point of E'. Let V be a neighborhood of x in Gsuch that $V \cap E' = \{x\}$. By assumption there exists $\varphi_V \in A_p(G)$ which is supported on V and such that $\langle S, \varphi_V \rangle$ is not zero. The support of $\varphi_V S$ is $\{x\}$ hence $\varphi_V S = \langle S, \varphi_V \rangle \delta_x$ and $A_m(\varphi_V S)$ is not zero. By theorem 4.1 (iii) $A_m(\varphi_V S) = \varphi_V A_m(S)$ which proves the claim.

Alternatively we could have used Glowacki's result (whose proof is the same as above, for p=2) and theorem 4.2 (c).

Theorem 3.3 is an obvious consequence of theorems 4.3, 2.8, 2.14. But we prefered to give a direct simpler proof.

Our next aim is to precise the Eberlein decomposition of $S \in CV_p(G)$ when S is p-weak almost periodic. We first establish a general lemma :

LEMMA 4.4. – Let G be a lea group and $1 \le p \le 2$. $CV_p(G)$ is isometric to the space of multipliers : $A_p(G) \to CV_2(G)$ and to the space of multipliers : $A_2(G) \to CV_p(G)$ provided with operator norm.

Proof. - (i) For every $f \in A_p(G)$, $g \in A_2(G)$, $S \in CV_p(G)$

$$\langle fS,g \rangle \neq \langle gS,f \rangle = \langle S,gf \rangle$$

hence

$$\|S\|_{A_p \to CV_2} = \|S\|_{A_2 \to CV_p} \leq \|S\|_{A_p \to CV_p} \leq \|S\|_{CV_p}.$$

(ii) Conversely let S be a multiplier: $A_2(G) \to CV_p(G)$. Let $(\varphi_{\alpha})_{\alpha \in A}$ be an approximate identity with compact support in $\mathscr{S}_2(G)$. Hence $\|S(\varphi_{\alpha})\|_{CV_p(G)} \leq \|S\|_{A_2 \to CV_p}$. For every $f \in A_p(G)$ with a compact support K there exists $g_K \in A_2(G)$ such that $g_K = 1$ on K. Hence as $\|\varphi_{\alpha}g_K - g_K\|_{A_2(G)} \stackrel{\alpha}{\to} 0$

$$\langle S(\varphi_{\alpha}), f \rangle = \langle S(\varphi_{\alpha}), g_{\kappa} f \rangle = \langle S(\varphi_{\alpha} g_{\kappa}), f \rangle \rightarrow \langle S(g_{\kappa}), f \rangle.$$

It implies that $(S(\varphi_{\alpha}))_{\alpha \in A}$ converges for $\sigma(CV_p(G), A_p(G))$; let $s \in CV_p(G)$, $s \parallel_{CV_p(G)} \leq \|S\|_{A_2 \to CV_p}$ be the limit. In particular for f as above $\langle S(g_K), f \rangle = \langle g_K s, f \rangle$. We now verify that hs = S(h) in $CV_p(G)$ when $h \in A_2(G)$. It is sufficient to prove it when h has a compact support K. Then for every $f \in A_p(G)$, as $g_K h = h$

$$\langle hs - S(h), f \rangle = \langle g_{K}s - S(g_{K}), hf \rangle = 0$$

It implies the above claim hence $||S||_{A_2 \to CV_p} \leq ||s||_{CV_p(G)}$.

The assertion of the lemma is now obvious.

Let us recall the definition of p-WAP(G), the weak p-almost periodic elements of $CV_p(G)$:

 \square

DEFINITION 4.5 [Gra]. – Let G be a lea group, $1 \le p \le 2$. p-WAP(G) is the subspace of $CV_p(G)$ of elements S which define weakly compact multipliers : $A_p(G) \to CV_p(G)$.

Let $S \in CV_p(G)$. By remark 1.2 it is easy to see that $S \in p$ -WAP(G) iff $\{fS\}_{f \in \mathscr{S}_p(G)}$ is relatively compact for $\sigma(CV_p(G), A_p^{**}(G))$ hence iff $\{fS\}_{f \in \mathscr{S}_p(G)}$ is relatively weakly compact in $C(\mathscr{S}_p(G))$, which means by [BJM] chapter 3, definition 8.1, that S is a weak almost periodic function on the semi-group $\mathscr{S}_p(G)$.

In the same way S is a compact multiplier: $A_p(G) \rightarrow CV_p(G)$ iff S is an almost periodic function on the semi-group $\mathscr{S}_p(G)$ [BJM] 3, definition 9.1.

By [Gra], proposition 9, p-WAP(G) is a closed subspace of $Y_p(G)$.

By [Gra] proposition 7, M(G) is a subspace of p-WAP(G).

Assertion (c) \Leftrightarrow (d) in the next theorem is Eberlein's decomposition of WAP function on \hat{G} [Eb2] when p = 2. (b) \Leftrightarrow (d) is a particular case of [BJM] chapter 3, corollary 16.14.

THEOREM 4.6. – Let G be a lea group, $G \to H$, $1 \le p \le 2$. Let $S \in CV_p(G)$. The following assertions are equivalent:

a) $S \in p$ -WAP(G).

b) $\mathscr{G}_{p}(G)S$ is relatively weakly compact in $CV_{p}(G)$.

c) $\mathscr{S}_p(H)S$ is relatively weakly compact in $CV_p(G)$.

d) $S = B_{\omega} \circ A_{\hat{m}}(S) + S'$ where \hat{m} is a topological mean on $CV_p(G)$, \underline{B}_{ω} , $A_{\hat{m}}$ are defined as in theorems 3.1, 4.1, $B_{\omega} \circ A_{\hat{m}}(S)$ belongs to $\overline{\ell^{1}(G)^{\parallel \parallel CV_p(G)}}$ and does not depend on ω nor on \hat{m} , $S' \in p$ -WAP(G) and $A_{\hat{m}}(S') = 0$.

Proof. - (a) \Rightarrow (b) is obvious.

(a) \leftarrow (b) is easy by remark 1.2 as we already told above.

(b) \Rightarrow (c): When we studied K_s in part 1 we saw that $\mathscr{S}_p(H)S$ lies in K_s .

If (b) holds K_s is the norm closure of $\mathscr{S}_p(G)S$ and K_s is weakly compact in $CV_p(G)$.

(c) \Rightarrow (b): By lemma 1.14, $\mathscr{S}_p(H)S$ is dense in K_S for $\sigma(CV_p(G), A_p(G))$.

If (c) holds K_s is the norm closure of $\mathscr{G}_p(H)S$ and K_s is weakly compact.

(b) \Rightarrow (d): the assumption implies that $S \in Y_p(G)$ hence theorem 4.2 (b) holds. We claim that $A_{\hat{m}}(S)$ lies in $\overline{\ell^1(G)} \models ev_p(G_d)$: by definition and lemma 2.2 { $(\hat{m} * P_F)S|F \subset G, F$ finite} lies in K_S and in $\overline{\ell^1(G)} \models ev_p(G)$ (see the proof of theorem 4.1 (a)). By assumption it is relatively weakly compact in $CV_p(G)$ hence in $\overline{\ell^1(G)} \models ev_p(G)$ hence in $\overline{\ell^1(G)} \models ev_p(G_d)$ by lemma 3.2. The definition of $A_{\hat{m}}$ (see the proof of theorem 4.1) now proves the claim. As B_{ω} is identity on $\ell^1(G)$

$$B_{\omega} \circ A_{\hat{m}}(S) \in \overline{\ell^{1}(G)}^{\parallel \parallel_{CV_{p}(G)}},$$

it does not depend on ω , nor on \hat{m} by theorem 4.2 (b), it lies obviously in p-WAP(G).

 $d \Rightarrow a$ is obvious.

Motivated by lemma 4.4 and a result of Lohoué on compact multipliers: $A_p(G) \to CV_p(G)$ [Loh1] chap. 2, theorem III.1, p. 50, we also consider elements of $CV_p(G)$ which are weakly compact multipliers: $A_2(G) \to CV_p(G)$. We do not know if they are weakly compact multipliers: $A_p(G) \to CV_p(G)$, but they have analogous properties. In particular they lie in $Y_p(G)$: let W be a decreasing basis of neighborhoods of $\{0\}$ in G. If $S \in CV_p(G)$ and if $\mathscr{S}_2(G)S$ is relatively weakly compact in $CV_p(G)$ ($\varphi_W S$)_{$W \in W$} has a weak cluster point which must be a scalar multiple of δ_0 and which belongs to the norm closure of $\mathscr{S}_2(G)S$. Lemma 1.8 finishes the proof.

THEOREM 4.7. – Theorem 4.6 holds true if we replace $\mathscr{G}_p(G)$ by $\mathscr{G}_2(G)$ and p-WAP(G) by the set of weakly compact multipliers: $A_2(G) \to CV_p(G)$.

Proof. – By lemma 4.4 such a multiplier is given by an element $S \in CV_p(G)$. The proof then follows the same lines as the proof of theorem 4.6. It is even simpler: for example lemma 1.14 is obvious for p = 2, it implies that $\mathscr{S}_2(H)S$ and $\mathscr{S}_2(G)S$ have the same closure for $\sigma(CV_p(G), A_p(G))$. If \hat{m} is a topological mean on $CV_2(G)$ and if $\mathscr{S}_2(G)S$ is relatively weakly compact in $CV_p(G)(\hat{m}*P_F)S$ lies in the norm closure of $\mathscr{S}_2(G)S$ hence $A_{\hat{m}}(S) \in \overline{\ell^{1}(G)}^{\oplus \oplus CV_p(G_d)}$ by the same proof as in theorem 4.6. As $S \in Y_p(G) A_{\hat{m}}(S)$ does not depend on \hat{m} when \hat{m} is a topological mean on $CV_p(G)$. □

Theorem 4.7 implies the following improvement of [Loh1] chap. 2, theorem III.1 :

THEOREM 4.8. – Let G be a leagroup, $G \to H$, $1 \leq p \leq 2$, let $S \in CV_p(G)$.

The following assertions are equivalent :

(a) $S \in \overline{\ell^1(G)}^{\parallel \parallel_{CV_p(G)}}$.

(b) S is a compact multiplier : $A_p(G) \to CV_p(G)$.

(c) $\mathscr{S}_p(G)S$ is relatively compact in $CV_p(G)$.

(d) $\mathscr{G}_2(G)S$ is relatively compact in $CV_p(G)$.

(e) $\mathscr{G}_2(H)S$ is relatively compact in $CV_p(G)$.

(f) $\mathscr{S}_2(G)S$ is relatively weakly compact in $CV_p(G)$ and relatively compact in $CV_2(G)$.

Proof. - (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (f) are obvious.

(e) \Leftrightarrow (d) by the proof of theorem 4.7.

(f) \Rightarrow (a): By theorem 4.7

 $S = B_{\omega} \circ A_{\hat{m}}(S) + S'$ and $B_{\omega} \circ A_{\hat{m}}(S) \in \overline{\ell^{1}(G)}^{\| \cdot \|_{CV_{p}(G)}}$.

We only have to prove that S' = 0 in $CV_p(G)$ or that S' = 0 in $CV_2(G)$. We know that $A_m(S') = 0$ and that $\mathscr{S}_2(\overline{G})S'$ is relatively compact in $CV_2(G)$ because $\mathscr{S}_2(\overline{G})S'$ is $\sigma(CV_2(G), A_2(G))$ dense in the $\sigma(CV_2(G), A_2(G))$ closure of $\mathscr{S}_2(G)S'$. Hence \hat{S}' is an almost periodic function on \hat{G} in the usual sense and $\langle \chi S', m \rangle = 0$ for every character χ on \hat{G} and every mean m on $L^{\infty}(\hat{G})$. Hence S' = 0 by classical results.

BIBLIOGRAPHY

- [BJM] J. F. BERGLUND, H. D. JUNGHENN and P. MILNES, Compact right topological semi-groups and generalization of almost periodicity, Lecture Notes in Maths., n° 663, 1978, Springer-Verlag.
- [BD] F. F. BONSALL and J. DUNCAN, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Notes series, 2 (1971) and 10 (1973).
- [Eb1] W. F. EBERLEIN, Abstract ergodic theorems and weak almost periodic functions, Trans. of the AMS, vol. 67 (1949), 217-240.
- [Eb2] W. F. EBERLEIN, The point spectrum of weakly almost periodic functions, Mich. Math. J., vol. 3 (1955), 137-139.
- [Ey] P. EYMARD, Algèbres A_p et convoluteurs de L^p , Séminaire Bourbaki, exposé 367, nov. 1969, pp. 1-18.
- [GI] P. GLOWACKI, A note on functions with scattered spectra on lca groups, Studia Math., vol. 70 (1981), 147-152.
- [Gra] E. GRANIRER, On some spaces of linear functionals on the algebras $A_p(G)$ for locally compact groups, Colloquium Math., vol. LII (1987), 119-132.
- [Gre] F. P. GREENLEAF, Invariant means on topological groups, Van Nostrand, 1969.
- [H1] C. HERZ, Harmonic synthesis for subgroups, Annales de l'Institut Fourier, vol. 23-3 (1973), 91-123.
- [H2] C. HERZ, Une généralisation de la notion de transformée de Fourier Stieltjes, Annales de l'Institut Fourier, vol. 24-3 (1974), 145-157.
- [Loh1] N. LOHOUÉ, Algèbres $A_p(G)$ et convoluteurs de $L^p(G)$, Thèse Université Paris-Sud-Orsay (1971).
- [Loh2] N. LOHOUÉ, Approximation et transfert d'opérateurs de convolution, Annales de l'Institut Fourier, vol. 26-4 (1976), 133-150.
- [Loo] L. H. LOOMIS, The spectral characterization of a class of almost periodic functions, Annals of Math., vol. 72, n° 2 (1960), 362-368.
- [L-P1] F. LUST-PIQUARD, L'espace des fonctions presque périodiques dont le spectre est contenu dans un ensemble compact dénombrable a la propriété de Schur, Colloquium Math., vol. XLI (1979), 273-284.
- [L-P2] F. LUST-PIQUARD, Éléments ergodiques et totalement ergodiques dans $L^{\infty}(\Gamma)$, Studia Math., vol. LXIX (1981), 191-225.
- [L-P3] F. LUST-PIQUARD, Propriétés géométriques des sous-espaces invariants par translation de C(G) et $L^{1}(G)$. Séminaire sur la géométrie des espaces de Banach, École Polytechnique (1977-1978), exposé 26.
- [L-P4] F. LUST-PIQUARD, Produits tensoriels projectifs d'espaces de Banach faiblement séquentiellement complets, Colloquium Math., vol. 36 (1976), 255-267.

- [P] J. P. PIER, Amenable locally compact groups, Wiley Interscience, 1984.
- [R] H. P. ROSENTHAL, A characterization of Banach spaces containing ℓ^1 , Proc. Nat. Acad. Sci. USA, vol. 71 (1974), 2411-2413.
- [S] W. SCHACHERMAYER, Some translation invariant subspaces of C(G) which have the strong Schur property, Groupe de travail sur les espaces invariants par translation, Publications mathématiques d'Orsay, n° 89-02 (1989).
- [V] N. Th. VAROPOULOS, Tensor algebras and harmonic analysis, Acta Math., vol. 119 (1967), 51-112.
- [W1] G. S. WOODWARD, Invariant means and ergodic sets in Fourier analysis, Pacific J. of Maths, vol. 54-2 (1974), 281-299.
- [W2] G. S. WOODWARD, The generalized almost periodic part of an ergodic function, Studia Math., vol. 50 (1974), 103-116.

Manuscrit reçu le 22 février 1989.

Françoise LUST-PIQUARD, Université de Paris-Sud Mathématiques Bâtiment 425 91405 Orsay Cedex.