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MEANS ON C^(G)-SUBSPACES
OF CVp(G) WITH RNP

AND SCHUR PROPERTY

by Fran9oise LUST-PIQUARD

Introduction.

Let G be a lea group and 1 ̂  p ^ 2. We generalize to the space
CVp(G) of bounded convolution operators: LP(G) -> L^G) (Kp<2)
some results which are obvious for p = 1 and were obtained for p = 2
by L. H. Loomis, G. S. Woodward, P. Glowacki and the author. We
also generalize some results of N. Lohoue on convolution operators.
Our motivation was a question raised by E. Granirer: is there a
generalization of Loomis theorem [Loo] for convolution operators ? A
positive answer is given in theorem 2.8 : Let E c G be compact and
scattered. Then CVp(E), the space of convolution operators on LP(G)
which are supported on E, is the norm closure of finitely supported
measures on E , and this space has Radon-Nikodym property. We also
prove (theorem 2.14) that under the same assumptions CVp(E) has the
Schur property.

The natural predual of CVp(G) is Ap(G), which by C. Herz
fundamental result is an algebra for pointwise multiplication and has
some properties similar to those of A^G) (we recall that A^(G) is
isometric to L^G) and CV^G) is isometric to L00^)). But the proofs
of Loomis theorem for p = 2 actually use the fact that every ^eG
defines an isometric multiplier : CV^G) -^ CV^G) and that if S c= CV^G)
has a compact support

\\S\\CV,(G)=^P.\<S,^\
X 6 G

where G is a group (the dual group of G).
Key-words : Invariant means - Convolution operators - Schur property - Radon-

Nikodym property.
A.M.S. classification : 43A07 - 43A22 - 43A26 - 46D22.
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One of the ingredients in this paper is to provide CVp(G) with an
equivalent norm such that

\\\S\\\p= sup |<^,/>|.
feyp(G)

where ^%(G) is a semi-group of functions of Ap(G). This is done by
using numerical ranges. We can thus adapt to CVp(G) a theory of
means which is the usual one on CV^G) or rather on L°°(G)[Gr], and
which fits Eberlein's theory ([Ebl] Part. I). Topological means on CVp(G)
were already defined in [G]. This is done in part 1 where we also give
notation, definitions and recall the properties of CVp(G) and Ap(G)
that we need.

In part 2 we prove our main results theorems 2.8 and 2.14. The
crucial lemma 2.2 allows to adapt the techniques of [Loo] [Wl] [W2]
[L-P1] [L-P2] [Gl]. In part 3 we show how theorems 2.8 and 2.14 also
imply results on some CTp(A) where A is discrete. The main result is
theorem 3.3, which is a generalization of a result of [L-P1] and [L-P3].

In part 3, 4 we give some transfer theorems between CVp(G) and
CVp(Gd) {Go is G provided with the discrete topology) and we prove
an Eberlein decomposition (theorem 4.2) for elements of CVp(G) which
are totally topologically p-ergodic (see definition 1.7) and we precise it
for (weak) p-almost periodic elements of CVp(G) (see definition 4.5).
This generalizes results of [Eb2] [W2] [L-P2] [Gra] [Lohl].

We take this opportunity to thank Ed. Granirer for nice and useful
discussions.

1. Notation, definitions, states and means on CVp(G).

We consider Banach spaces over the field C of complex numbers.
We denote by X* the dual space of a Banach space X.

For s > 0 Z)g is the open disc in C centered at {0} with radius e.

G denotes a lea group, G^ is the same group provided with the
discrete topology, G is the dual group o f G .

For 1 ̂  p < oo 1^(6') is the space of equivalence classes of
p-integrable functions with respect to the Haar measure on G; L°°(G')

is the dual space of L^G). For l^p^l p ' is defined by -+—=1-
P P '
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the duality between LP(G) and Z^((?) is defined by

O^)- f f(x)g(x)dx.
JG

Co(G) is the space of continuous functions on G which tends to 0 at
infinity. M(G) is the space of bounded Borel measures on G, i.e. the
dual space of Co(G'). For 1 < p ^ 2 CVp(G) denotes the space of
bounded convolution operators: LF(G) -> Z^(G'), i.e. operators which
commute with translation by elements of G', provided with the operator
norm. We recall that CTi(G') = M(G) and CV^G) is the space of
Fourier transforms of the functions in L°°(G).

CVp(G) is also the space of bounded convolution operators:
LP'(G) -> Z^(G') (1 <p<2) hence, by Riesz interpolation theorem, identity
is continuous with norm 1

CVp^G) -. CVp^G), 1 ̂  p,^ p,^ 2.

For 1 ̂  p ^ oo and feL^G) we denote f(x) = f(-x).

For 1 < p ^ 2 ^4p(G') denotes the space of functions f on G which
can be represented as

f = ^ Un * Vn
n^l

where ^ l l^l lL^col l^I lL^^) < + oo and the norm of / is the infimum
n^-l

of these sums over all such representations of/ .

Hence A^(G) is the space of Fourier transforms of the elements of
L\G).

For p = 1 we replace LP'(G) by Co(G') in the definition above,
hence A^G) = Co (G).

The duality between CVp(G) and Ap(G) is defined by

<5,î > == <^),^>.

CVp(G) is clearly the dual space of Ap(G). In particular

A^(G) ^- A^(G), l ^ p ^ p ^ l .

As functions which are continuous on G with a compact support are
dense in LP^G) (l^p^2) Ap^G) is dense in Ap^G), hence identity:
CVp^G) -> CVp^G) is one to one.
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For xeG and feL^G) (l^p< oo) or ^(G) (l<p^2) we denote
by /„ the translate of / by x i.e. f^(f) = f(t-x).¥or S e CVp(G)(l^p^2)
the translate ̂  is defined by S^(f) = (5'C/U for feL^G). Translation
in A^(G) is defined by duality, i.e. <5',FJ == <5^,F> for
FeA^*(G)\ when restricted to Ap(G) this definition coincides with the
first one. The support of S e CVp(G) is the (closed) set of x ' s e G such
that for every neighborhood V(x) there exists f e Ap(G) such that / is
supported on V(x) and <5',/> + 0.

Let E c: G be a closed subset; we denote by CVp(E) the closed
subspace of CVp(G) whose elements are supported on a subset of E.
We denote by ^(E)^ % the closed subspace of CVp(E) c= CVp(G)
spanned by measures whose support is finite and lies in E . We denote
by CVp(Ed) the closed subspace of CVp(Ga} whose elements are
supported on a subset of£\ We recall Herz's fundamental results
([P] proposition 10.2, 19.8): Ap(G) is a Banach algebra for pointwise
multiplication (l^p^2). Let Bp(G) denote the algebra of pointwise
multipliers of Ap(G). Then for / e Ap{G)

\\f\\Ap(G)= 11/1^(0).

More generally let H be a lea group such that G^ is a subgroup of
H^, the embedding G -> H is continuous and G is dense in H (hence
H continuously embeds in G the Bohr compactification of G i.e. the
dual group of G^). Then ([Ey] theoreme 1, [Lohl] chap. IV, theoreme I V.I,
p.108)

^feBp(H), \\f\\B?(G)= II/HB^).

In the sequel we will write only G -> H and this will mean that the
above assumptions on G and H are satisfied. Actually we will only use
the particular cases G -> G, Ga -> G, G -> G.

Let (p e Bp(G); we will consider the pointwise multiplication operator
associated to (p and the adjoint operators

Ap(G) -^ Ap(G)

f -> <P/
CVp(G) ^ CVp(G)

n>s <- s
Ay(G)^ Ay(G)

F ̂  (p77.
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Let E c G be a closed subset; Ip(E) is the closed ideal of functions
of Ap(G) which are zero on E. We denote the quotient algebra

A (f^\

^ by Ap(E). We recall that every x e G is a set of synthesis for
^ p ^ )
Ap(G) ([HI] theoremB, [P] proposition 19.19) which means that if
fe Ap(G) and /(x) == 0, / is the norm limit of a sequence of functions
in Ap(G) which are zero on a neighborhood of x mG.

Let W c: G be a set of positive finite Haar measure. We denote

<Pw = W1 l w * l ^ .

\\^W\\A,(G) = 1 = (P(0)(l^<2).

The group G satisfies Folner-condition ([Gre] theorem 3.6.2): for
every s > 0 and every compact K cz G there is a compact set
W = W(K) <= G with finite positive Haar measure such that

Vxe^, ——\W^W\ ^8 .

Hence
(l^L l^vxe^ ,n^-n^ ^ £ p -l^l^ ^nLp(G)

By [H2] 9. lemma 5, the family (^ww^K is an approximate identity for
Ap{G) i.e. for every e > 0 and / e Ap(G) there exists a compact set
K c: G such that \\f~ f^w(K)\\A G) ^ £ - Obviously every (p^jc) has a
compact support.

If G is provided with its discrete topology and if F c: G is a finite
set (i.e. F is a compact set in G^) we denote Pp = F|~1 1^*1^
(convolution is taken in Go) instead of (p^. Let ^ be the net of finite

^
subsets of G. For every xeG PpW ——> 1 •

We recall that a Banach space X has the Schur property if every
sequence (Xn)n^i in X such that x^ -^ 0 a(X,X*) is norm convergent.
A Banach space X has the Radon-Nikodym property (RNP in short) if
every bounded linear operator T: L^O 1] -^ X is representable i.e. there
exists a bounded strongly measurable function F: [0 l]->Xs.t.

VcpeL^O I], T((p)= f F(Oq)(QA.
J[0 1]
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We recall that if every separable subspace of X has RNP so has X
and that every separable dual space has RNP.

States on CVp(G).

CVp(G)(l^p^2) is a convolution algebra with unit 80.

Following the theory of numerical ranges [BD], we denote by ^(G)
the following set of states on CVp(G):

y?(G) = {/6^(G)||[/|L=1==/(0)}.
Let

^p(G) = {feAp(G)\f=g*{i,\\g\\^G)=\\h\\Lpf(G)= \g(x)h(x)dx=l}.

Obviously Kp c: .9%.

LEMMA 1.1. - (i) ^p(G) is the norm closure of the convex hull of
^p(G).

(ii) ^°(G) = {FeA^(G)\ \\F\\^= 1=<^, 5o>}.

Proof. — Let us denote the last set by 0>p.

Obviously 2p is norm closed and convex, and
/ ^ < _ — Q? ^ (y00 (^,
^0 '^p (— y p c= ^ p cz -^p'

By [BD] chap. 1, § 2, definition 1 and chap. 3, §9, theorems:

WeC^(G), Co{<^,/>}^ = KW}^ c= C.
As

Co {<*V> }fenp ^ {<5,/>}^. = {<^,F>}^oo C: {<5,F>}^.^ ( - \^9 j /J /e^ l\^?^ / S F e y y v- l\'J»-( //Fe^.,

these sets are the same and Hahn-Banach theorem implies (i) and(ii).
D

By the fundamental theorem on numerical ranges [BD] chap. 1, §4,
theorem 1,

\\S\\cvp(G)^ sup <5,F>1 ^^ll^lic^G)
F G Qip

hence by lemma 1.1

(1) ^SeCVp(G)\\S\\cv,G^ sup |<5,/>| ^ ^-1 \\S\\cy^.
p feyp(G) p
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As we are investigating geometric properties of subspaces of CVp(G)
we can as well provide CVp(G) with the equivalent n^orm

sup |<5',/>|. The set y^G) is the set of functions in the unit sphere
/ e yp(G) r

of A^G) such that/ ^ 0 on G. Hence ^(G')(l^p<2) will replace
the face of positive elements in the unit sphere of L\G).

Remark 1.2. - Let us mention ([BD] chap. 6, § 31, theorem 1) that
the mappings

s -> «*V»
CVp(G) ^ C(^) or CVp(G) -. C(̂ °)

are isometries of CVp(G) provided with its new norm into a closed
subspace of the continuous functions on ^p or y°p° provided with the
(Ap(G)**,CVp(G)) topology. y°p° is compact for this topology and the
closure of ^. Every F€A^(G) can be written as

F = ociFi - o^Fa + ^3^3 - ^4^4
4

where F,€^°((5), a, ^ 0 ( l^f^4) and ^ a, ^ ^/2sup <5,F>| where
the supremum is taken on

{SeCVp(G)\\/feyp(G) |<^,/>|^1}. D

As Ap(G) is an algebra for pointwise multiplication ^p(G') is an
abelian semi-group. Multiplication by / e ̂ p(G) is continuous on ^p(G)
provided with a(^(G)**, C^(G)), i.e. ^(G) is a semi-topological
semi-group. In this setting the measures a5o(a e C) are constant functions
on y?(G) and if SeCVp(G), fey?(G)fS is the translate of S
(considered as a function on ^((r)) by /. The set [fS}f,y^ is the
orbit of 5' under the action of ^p^G). We denote by Ks its ^pointwise
closure (for pointwise convergence on ^(G1)); by remark 1.2 Ks can
be also identified with the closure of [fS}^y^ for a(CVp(G),Ap(G)).
yp(G) is convex (as a subset of functions on G') and 5' defines an
affine function on y?(G).

Means on CVp(G).

DEFINITION 1.3. - Let G be a lea group and let G -> H . Let l^p^2.
A H-mean on CVp(G) is an element me^^(G) such that

V(pe^,(77), (pm == m.
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This definition is consistent because y?{H) c= Bp(G). The set of
J^-means is compact for a(Ap(G)**, CVp(G)).

If AT = G a ^-mean is called a topological mean [Gra].

If H = G a ^f-mean is called a mean. If p = 2 means and topological
means on CV^G) are Fourier transforms of usual means and topological
means on L^(G). If G is discrete the only topological mean on CVp(G)
is l;o!(l^j?^2). If p = 1 and G is any lea group the only mean on
CV,(G) = M(G) isLo}.

LEMMA 1.4. - Let G be a lea group, G -> H , 1 ̂  p ^ 2.
(i) L^ m be a H-mean. Let ^ e B p ( H ) be such that

W\Bp(H) = 1 = (p(0). 77i6?n (pm = m.
(ii) ^4 topological mean on CVp(G) is a H-mean.

Proof. - (i) Let (po e ̂ p(^). By definition (poW = m hence
(pcpom = cpm. As (p(po e ̂ ,C?f) (pcpom = m.

(ii) Let m be a topological mean and (pG^(^). As (pe^(G)
(pm = m by (i). D

This proof is similar to [Gre] proposition 2.1.3.

LEMMA 1.5. - Let G be a lea group, G -> H , 1 ̂  p ^ 2.
(i) I^r (^x)aeA ^ ^ basis of open neighborhoods of {0} in H . Let

C/a)aeA be a net in y p(G) such that /a is supported on Wy_ for every
a. Then every cluster point of (/JxeA for a(A^(G), CVp{G)) is a H-
mean.

(ii) Conversely let m be a H-mean on CVp(G). There exists a net
(/JaeA in ^(G) such that (a): / ,-^m, a(A^(G),CVp(G)); (b)for
every open neighborhood W of {0} in H there exists oco e A such that for
every a > (Xo fy, is supported on W n G.

Proof. - (i) Let Fey°p°(G) be a cluster point of (/JaeA. Let
(p6^p(7^). As {0} is a set of synthesis for Ap(H), for every s > 0
there exists (pg such that | | (p—(pe l lA ( H ) ^ s and (p = 1 in a neighborhood
W of {0} in H . As soon as w[ c: ^(pj, = /, hence (p,F = F and
l|(pF-(peF||Ap*(G) ^ H(p-<Pel lBp(G) ^ s- This implies F = (pF.

(ii) Let m be a 7^-mean on CVp{G). For every neighborhood W of
{0} in H let W be a neighborhood of {0} in H such that W - W c= W.



MEANS ON CTp(G') 977

As (p^/ is a multiplier of ^p(G) m = (p^/m lies in {^(^n/^^nG')}00.
Hence

meH^^n/^^nG)}00

w

where W runs through a basis of neighborhoods of {0} in H , and this
proves the claim. D

Let G be a lea group and G -> H . For 1 ^ p < 2 and 5'e CTp(6')
let us define

^?(5') = K^m^m is a ^-mean on CVp{G)}.

If H = G we will write M^S) = Mp(S).

M^S) is a compact subset of C and M^(S) =) M^S) ( l^p^2).

If (pe^(<7) M^((p5) = MjfCS).

LEMMA 1.6. — Let G be a lea r̂oMp <2nrf G -> H. Let
S 6 CVp(G) (l^p^2). TTî n ^or ^u^r^ s > 0 ^r^ exists an open
neighborhood W(0) in H such that M^(S) c: K^.Ol/e^G'), / is
supported on Wr\G} c= M (̂5') + A.

Proof. — The left inclusion is obvious by lemma 1.5 (ii). If the
right one does not hold there exists s > 0 such that for every W(0) in
H there exists f(w)^ ^p^G), supported on W(Q) such that
rf«5',/(^)),M^(5')) ^ s. By lemma 1.5 (i) any cluster point of (f^w))
for a(^4^*(G'), CVp(G)) (when M^runs through a basis of neighborhoods
of {0} in H) is a ^f-mean m, and the distance from <5',m> to M^(S)
would be greater than £, which is a contradiction.

DEFINITION 1.7. - Let G be a lea group, G -> H , l ^ p ^ 2 . An
element S e CVp(G) is H-p-ergodic at 0 if M^(S) is a point. S is
H-p-ergodic at x e G if S^ is H-p-ergodic at 0 and S is H-p-totally
ergodic if it is H-p-ergodic at every point x e G. If H = G we say that
S is topologically p-ergodic at x instead of G-p-ergodic at x.

This definition is apparently weaker than [Ebl] definition 3.1. Hence
our next lemma is stronger than [Ebl] theorem 3.1 applied to this
setting.

For p = 2 it was proved in [Wl] corollary 3, under the assumption
that S is uniformly continuous and in full generality in [L-P2] proposi-
tion 1.
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LEMMA 1.8. - Let G be a lea group, G -> H , l ^ p ^ 2 . The
following assertions on S e CVp(G) are equivalent :

(i) 5" is H-p-ergodic at 0.
(ii) There exists MeC such that

V s > 0 , 3(pe^(^), ||(p^-M8o||c^(G)^£.

(iii) There exists M eC such that for every £ > 0 there exists
\|/ e Ap(H) \vhose support is disjoint from {0} and

||^-M8o-v|^||c^(G)^£.

Proof. - (iii) -> (i) by lemma 1.5 (ii), and M^(S) = {M}.

(i) ==> (ii): let us put {M} = M^(S) hence M^(S-MSo) = {0}. For
every e > 0 we choose W as in lemma 1.6. Hence if W — W c= W
and W is an open neighborhood of {0} in H

V/e^(G), |<5-M8o,/(p^>| ^ e

which implies by (1)
\\^>w,S-M8o\\cvp(G) ̂  ee

(ii) => (iii) For every s > 0 let (p be as in (ii). As {0} is a set of
synthesis for Ap(H) there exists ^eAp(H) such that ||cp-(pJ|A (H) ^ s
and (pg = 1 in a neighborhood of {0} in H. For \|̂  = 1 — (pe

||^-M8o-v|/^||cv,(G) == l|(P^-M8o||cy,(G) ^ £ + £|I^ICV,(G). DjgYl-r/ n Tt.— - - - u n ^r^^u/ -~ - - 1 1 — 1 1 ^VpV

DEFINITION 1.9. - Let G be a lea group, 1 ̂  p ^ 2. UCp{G) is
the closed subspace of CVp(G) spanned by compactly supported elements.

Obviously UCp(G) is the norm closure in CVp(G) of

[fS\f^Ap{G\SECVp{G)].

It is a norm closed unitary subalgebra of CVp(G) ([Gra], proposition 12).
UC^(G) is the space of Fourier transforms of uniformly continuous
functions on G. Bp(G) can be identified with a subspace of UCp(G)*
in the following way: let ((po^aeA6^^) be an approximate identity
for Ap(G) and FeBp{G). For every S eCVp(G) and f e Ap(G)

</̂ ,F(p,> = <SJF^ -. <5,/̂ >
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hence the net (F(pJ^A which is bounded in Ap(G) (hence in
UC^(G)) converges for or(^(G)*, £/C^(G)), its limit can be identified
withF.

LEMMA 1.10. - Let G be a lea group, G -^ H , 1 ^ p ^ 2.
(i) L^ m be a H-mean on CVp(G). For every (p e ̂ (G) (pm f5 a

topological mean.
(ii) ^ topological mean is uniquely determined by its restriction to

UCp(G).
(iii) Let S e UCp(G). Then M^S) = Mp(S).

Proof. - Let K cz G be a compact set. The topologies on A: induced
by G and 77 are the same. For every neighborhood V of {0} in G there
exists a neighborhood ^ of {0} in H such that V r\ K =) F^n A:.

(i) Let (/J^e^(G'), /^ -^ m as in lemma 1.5 (ii). Hence if
(pe^(G) (p/,-^(pm, a(^*(G),C^((7)) and if cp has a compact
support K the above remark and lemma 1.5 (i) imply that (pm is a
topological mean. Every (pe^(G) is the norm limit in Ap(G) of
((pj^ie^^) where q^ has a compact support (n^l) . Hence
(p/,m(d) and (pm are topological means.

(ii) Let m be a topological mean on CVp(G). Then

V5eC^(G), V(pe^(G), <^,m> == <^(pm> = <(p^m>

hence if m and m' are topological means which coincide on UCp(G)
they coincide on CVp(G).

(iii) Let us first assume that S has a compact support and let
K c: G be a compact set whose interior contains the support of S . Let
(p6^(6'). As {0} is a set of synthesis for Ap(G), for every £ > 0
there exists (pg such that ||(P-(PJ|^(G) ^ s and (p, = 1 in a neighborhood
of {0} in G which we denote by V. Let W c: 77 be such that
^nA:c= ]^nA:. Hence for every f E Ap(G) which is supported on
W(\ - (p)/ e I^(A:) and <5',(1 - (p,)/> = 0. For every ^-mean m lemma 1.5
(ii) now implies <5',m> == <5',(p,m> hence <5',m> == <5',(pm> . The same
is true if S is a norm limit of S^s with compact supports. By (i) (pm
is a topological mean, hence Mp(S) = M^(S).

Lemma 1.10 (iii) generalizes the fact that there is no need to
distinguish means and topological means on uniformly continuous
functions of G ([Gre], lemma 2.2.2).
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Thpugh we won't use the next results in the next parts of this paper
we think they are worth being noticed.

LHMMA 1.11. - Let G be a lea group, G -> H , 1 ̂  p ^ 2. Let
- (^p)peB be a basis of neighborhoods of {0} in H and S e CVp(G). The
f^llowng assertions are equivalent :

(i) 5' is H-p-ergodic.
(ii) For every net (/a)aeA m yp(G) such that for every V^ there

exists a(P) such that f^ is supported on Fp for every a > a((3), the net
^<5',/,J)^A converges.

n(iii) For every net (/a)aeA ^ in (ii) C/a5')aeA is norm converging in
CV^(G).

Proof. - (i)=>(ii): by lemma 1.5 (i) every cluster point of (/JaeA
for a(A^(G),CVp(G)) is a 7^-mean.

<ii) ==><iii)"f if;(/a)a6A is a net as in (ii) such that (/o^)aeA is not a
Cauchy filter for the norm there exists e > 0 such that for every ae^4
there exist a" > a' > a and

\\f^S-f^S\\cv,(G)>^,

hence by (1) there exists ^e^(G') such that

l</o^a>-</Aa>l ^^ - 1 .

The net ^),ec defined by, h^= f^g. h^^f^g, i.e. C=(^,{1,2})
.satisfies the assumptions of (ii),,.yet ((S,h^\^c does not converge.

(iii) ==> (i): let(/^^ be a net as in (ii). The norm limit of (/a'S')aeA
must be M8o where MeC might depend on (/a)aeA- Hence M5o
belongs to the norm closure of e9^(G')5. Let m be a topological mean
on CVp(G). Then <5',m> = <M§o,m> = M hence M does not depend
on the net (/JoceA- Ii1 particular for every net (/a)oceA ^ in (ii)

fJS -^ M5o, cr(C^(G), Ay(G))
h^nce

f^ -^ M5o, crO/C^G), ^C^(G)).
As the constant functipn 1 belongs to Bp(G) hence to UC^(G)

<^/a>-</^!> - M.

By lemma 1.5 (ii) this implies <5',m> =^ M for every 7^-mean m on
CV,(G). ' D
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Lemma 1.11 generalizes [L-P2], theorem 1.

Actually (/a)aeA m lemma 1.11 can be taken in y<z(G); hence i f >

S e CVp(G) is ^f-p-ergodic there is a scalar multiple of 80 in the norm
closure of ^,(G)S in CVp(G).

Let SeCVp(G). We recall that Ks is the closure of the convex set
^p(G)S for or(C^(Cr),^(G)). Ks is compact for this topology. For
every FeBp(G) such that \\F\\B^G) = ^(0) = 1^ belongs to Ks as a
limit of (cpo^^eA where ((pJoceA ^ ^p(^) is an approximate identity
for Ap(G). Bus this does not give the whole of Ks in general (especially
if G is compact). Let (p"e^(G)00. We"define ^" S as an element of
CVp(G) as follows : let(<pJ^A be a bounded net in ^p(G') converging
to (p" for a(^*(G'),CFp(G')); ^ " S is the limit of ((p^eA tor
a(C^(G),^(C7)). Clearly

. Ks-ws\^"eyopQ(G)}
and actually we only have to consider the restriction of (p^s to UCp(G).
If G is discrete UCp(G) is the norm closure in CVp(G) of finitely
supported measures. In this case UCp(GY = Bp(G) b^ [Loh3, chap. IV,
theorem 1, p. 79, [H2], theorem 2, [P], proposition 19.11.

We now consider the following questions: when is a J^-mean
constant on A^s? when is it a Baire — 1 function on Ks (provided with
its a(CVp(G),Ap(6)) topology)?

LEMMA 1.12. - Let G be a lea group, G -> H , 1 ̂  p ^ 2. Let
SeCVp(G). Let m be a H-mean ^hich^is constant on Ks. Then m
coincide on Ks with a topological mean and S is topologically p-ergodic.

Proof. - By assumption for every <e^°(G) ((p^m) = M. For
every (p e ^p^G) (p(p"5' e ̂ 5 hence

^"^(pm) = ((pcp'^.m) = M

and (pm is a topological mean by lemma 1.10.

Let C/a)cxeA be a net in ^p((?) converging to m for
a{Ar(G\CVp(G))'.

Vcp-e^^G)00, <y ,̂<> = <(p^,/,> ^ <(p^,m> = M^\M6,^"}.

By Remark 1.2 4t implies that MSo belongs to the weak closure of
^p(G)S, hence to the norm closure of yp(G}S which Implies the claim
by lemma 1.5.
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LEMMA 1.13. - Let G be a lea group, G -> H, l ^ p ^ 2 . Let
SeCVp(G). The following assertions are equivalent:

(i) S is H-p-ergodic
(ii) every H-mean on CVp{G) is constant on Ks
(iii) all H-means on CVp(G) are constant and equal on Kg.
If H = G these assertions are equivalent to
(iv) there exists a topological mean which is constant on Ks-

Proof. — (i) => (ii): By lemma 1.8 there exists MeC such that for
every £ > 0 there exists ^e^p^fl) with [|v|/5'—M5oll ^ s hence for
every J7-mean m and (p' e y°p\G)

<(p"5',m> = ^"S,m) and ||\|/cp"5'-M5ol| ^ £

which implies <(p"5',m> = M.

(ii) ==> (iii) by lemma 1.12.

(iii) ==> (i): we saw that S e Ks hence the claim is obvious.

If H = G (iii) ==> (iv) is obvious and (iv) ==> (i) by lemma 1.12. D
SeCVp(G) may be topologically p-ergodic without Ks being the

norm closure of ^p(G)S: for example if G is discrete, if S does not
belong to the norm closure of finitely supported measures, S belongs
to Ks and not to UCp(G) hence not to ^(G)^"", though 5' is
topologically p-ergodic.

LEMMA 1.14. - Let G be a lea group, G -> H , 1 ̂  p ^ 2. Let
SeCVp(G). Then y?(H)S is dense in Ks for o(CVp(G\Ap(G)).

Proof. - As ^p(H) lies in Bp(G) we saw that ^pWS lies in Ks.

By [Lohl], chap. II, theorem 1.2 or [Loh2], theorem 1, if Te CVp(G)
has a compact support it determines Te CVp(H) such that
'^i lcV./G) == II T\\CVp(H) ^d

VFe A,(H), < r,F> = lim <F7,(p,>
a

where ((pa)aeA ls an approximate identity (in ^(G)) for Ap(G).

Hence there is a canonical isometry from UCp(G) to a closed unitary
subalgebra Ep of UCp(H) c: CVp(H).
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Every (p e ̂ (G') defines a state on UCp(G) hence it can be identified
with the restriction to Ep of an element $ e y°p°(H). Hence there exists
a net ((pp)peB in ^p^H) such that

V/€^(G), <(p^,/> = </^,(pp> -^ <7^> = <(p^,/>

which proves the claim.

Lohoue's theorem is obvious if p = 2 and easy if G is discrete (see
lemma 13.2 below).

Lemma 1.14 implies that a J^-mean which is continuous on Ks is
constant on Ks.

PROPOSITION 1.15. - Let G be a metric lea group, G -> H , 1 ^ p ^ 2.
Let SeCVp(G) and let m be a H-mean on CVp(G). If <5',m> t Mp(S)
m is not a Baire 1-function on Kg.

Proof. - If m is a Baire 1-function on Ks there is an open set
0 c: Ks such that

diam{<0,m>} ^ J^«^,m>,M^)).

As yp(G)S and ^pWS are dense in Ks by definition and lemma 1.14
there exist \|/ e ̂ p(G') and (p e ̂ (Ar) such that

diam{<0,m>} ^ |<\|/^m>-<(p5',m>[ = |<\)/5',m>-<5',m>|.

By lemma 1.10 \|/m is a topological mean, hence

|<v)/^m>-<5,m>| ^ rf«5,m>,M^(5))

which is a contradiction.

If G is discrete every SeCVp(G) has a countable support hence 7^5
is metrizable and the conclusion of proposition 1.15 holds true :

If m is a H-mesin and if <5',m> ^ <5',l;o!> m is not a Baire
1-function on Ks.

For general lea group G we do not know if there exist T-f-means
on CVp(G) which are Baire 1-functions on Ks without being constant
onKs.
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2. Some subspaces of CVp(G) with Radon-Nikodym
and Schur property.

A generalization of Loonris theorem.

We first prove a lemma (lemma 2.2 (b) below) which will be a key
for this paper. It is obvious when p = 2 and is implicitly used in [Wl],
[W2] for p == 2, in [Lohl] for 1 ̂  p ^ 2. Neither in [WI] nor in [Loh]
its whole strengh is used.

LEMMA 2.1. - Let G be a lea group, G - > H , l < ^ p ^ 2 . L e t F ^ G
be a finite set. There exists a neighborhood W of {0} in H such that,
for every (k,k') e Kp(G) supported on W x W, {k * fc') * P^ ^5 in ^p(G),
w/i(?n? ( k * k ' ) ^ Pp is defined by

( k ^ k ' ) ^ P ^ ^ ^(xj(fc^)^
P^Oc^O

Proo/. - We choose W a neighborhood of {0} in H such that the
sets x, + ^ (x,€F) are pairwise disjoint. Let (fe,fe') e ̂ (G) be supported
on W x W. Hence

(i) 1 =\\F\-^ Y k^
1 1 LP(G)

\F\-^' ^ k^
LP\G)

(ii) 1^ (l^-^ Z fe.,)J ^ (^))
\ \ X; 6 F / \ XjG F /

(iii) |F|-{ ^ fe,,)J ^ (K')\
\x ,eF / \a;,6F /

^r'ZKfe*^,- ̂ = ( fe* fc ' ' ) * ^
ff'y c' •'

(iv) (fe * fe^) * P^(0) = k * ̂ (0) = 1.

LEMMA 2.2. - Let G be a lea group, G - ^ H , 1 ̂  p ^ 2. a) L^
^ ^ a neighborhood of {0} in J7.

For every /e^(G) (p^y/ ^5 in the norm closed convex hull of

{k^k'.\(k,k')enp{G\(k,k'} is supported on W^ W}.

b) Let F c= G be a finite set and m be a H-mean on CVp{G). Then
m ^ P p lies in ^°(G), \vhere m * Pp is defined by

m ^ P p = ^ PF(X^.
-PF^^^O
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Proof. - a) The claim is proved for fe^p(G) as soon as it is
proved for / = g * g ' where ( g , g ' ) E K p ( G ) owing to lemma 1.1.

By the proof of [Ey] theorem 1, { g ^ g ' } ^ w belongs to the norm
closed convex hull of

g\ ̂ 1-^(1^ g ' | W\-^\\^
* —————-r——————— = k * k

ll^l^l-l/"(1^11..c.) 11^ ^-^(l^ll^)

where x e G, and

k = ^w\~llpl- k- = S'xW\-^^
11^-jyr^U^) ll^l^r^UL^G/

b) Let (A)aeAe^((7) be such that / , -^m, a(A^(G),CVp(G)).
Let ^ be chosen as in lemma 2.1. By lemmas 2.1 and 2.2 (a)
(/aq)iv)*^e^((7). Obviously

(/a(p^) * ^F ̂  m^ P^, o(^^(<7),C^((7). a

The proaf of lemma 2.2 b is much simpler for p = 2: let(/J^
be a net as in lemma 1.5 b. Then f^^Q hence /^^O,
ll/a * ̂ HA^G) = /a * ̂ (0); moreover /, » P^(0) == /,(0)P^(0) = 1 as
soon as the x, + W^x^e F) are disjoint and /„ is supported on W'.

Lemma 2.2 will be the main ingredient in the definition of the
mappings A^ in part 4. It is also an ingredient in the proof of
proposition 2.3 below, and it will be revisited in the proof of lemma 2.10
below. Proposition 2.3 is a generalization of [Wl] theorem 9 (ii). We
keep some arguments of his proof but his crucial use of properties of
almost periodic functions is replaced by lemma 2.2.

PROPOSITION 2.3. - Let G be a lea group, G -> H , 1 ̂  p ^ 2. Let
us assume that S e CVp(G) is H-p-ergodic at every x + 0, x e G . Then
for every s > 0 there exists (p e ^p^H) such that for every finite set
F c: G

^ ^(x,)(p(xOM^.)8^. ^e .
x^O CVp(G)

P^(x;)^0

Let us write it m another way : let m be a ^f-mean on CVp(G). Let

¥" = E Pp^m^ = m^(PF-l^)eA^(G).
x^O
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Then (p"((p5) defined as an element of CVp(G) as in part 1 (description
of Ks) satisfies

^"W= ^ P^(x,)cp(x,)M^.)5^..
x^O

Proposition 2.3 does not imply that S is J^-p-ergodic at 0 in general.
But if G is not discrete and if we apply it for G = G^ and H = G we
get that for every e > 0 there exists (p £ ^ p(G} such that

VF finite F c G ||P^(p^-<5,l;o;>5o)||c^(G,) ^ s
hence

||(p5' - ^Lo;) &Q\\CVp(Gd) ^ £

which means by lemma 1.8 that S e CVp(Ga) is G-p-ergodic at 0. For
p = 2 this was noticed in [Gl].

Thus Proposition 2.3 easily implies the following corollary whose
proof is the same as in [Gl] Corollary 2, where p = 2 :

COROLLARY 2.4. - Z^r G be a lea ^roi<p, 1 ^ p ^ 2. Z^r E cz G
be closed and scattered. Then every S e CVp(Ea) c: CVp(Ga) is G-totally
p-ergodic.

Proof. - Let N = [xeG\S is not G-j?-ergodic at x}. By lemma 1.8
N c=. E because E is closed in G. Let JV be the closure of N in E . If
TV is not empty there exists x e N which is an isolated point of N
hence x e N . But there exists (p6^p(G') such that the support of (p^5
meets N only at {x}. By Proposition 2.3 and the remark above (p^ is
G-p-ergodic at x hence so is S and this is a contradiction.

Proo/ o/ proposition 2.3. — For every £ > 0 we choose W(Q} <= ^
as in lemma 1.6 and (p = (p^/e ̂ (JT) such that W is an open
neighborhood of {0} in H and W — We: W. For every finite set
Fc= G, every TZ-mean m on CVp(G) and every ^£^(G) lemma 1.6
and lemma 2.2 (b) imply

< ,̂ ^ PF(̂ .)m .̂> E M )̂ + D,.
Pp(Xi)^0

On the other hand

<^(p5, ^ P^)m^> = <^,m> + ^ ^(^0^^.)(p(^,)<^^,>.
P^(x,)^0 P^(x;-)^0
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Hence for every go^^G), as S is ^-p-ergodic at every x ^ 0

M^S) + < ^ ^(x,)(p(x,)M^(^X,^> c= M^) + A.
Pp(x^)^Q

x^O

Hence
sup < ^ ^(x,)(p(x,)M^.)5^> | ^ s

^e,^(G) P^Oc^O

x^O

which implies by (1)

^ (̂̂ (p(x,)M .̂)8,, ^(G) ̂ s. D
Ppix^^O

x^O

In order to prove our generalization of Loomis theorem (theorem 2.8
betow) we now state the obvious generalization of a part of the original
proof.

DEFINITION 2.5. — Let G be a lea group, and 1 ^ p ^ 2. An element
SeCVp(G) if p-almost periodic if S e ^(G1)11 '^(G) i^e. if S lies in the
norm closure in CVp(G) of finitely supported measures. S is said to be
p-almost periodic at xeG if there exists f e A^(G) such that f(x) ^ 0
and fS is p'almost periodic.

Equivalent definitions of p-almost periodic elements of CVp(G) are
given in theorem 4.8 below.

LEMMA 2.6. - Let G be a lea group, G - ^ H , ! ^ ? ^ ! .

a) If S e CVp(G) is p-almost periodic, S is totally H-p-ergodic and
for every s > 0 there exists a finite set F c: G such that for every
H-mean m

\\S-(m^PF)S\\cvp(G) ^ e and 5' - (m * Pp)Se ^(G) CV?(G) .

b) If S e CVp(G) has a compact support K and is p-almost periodic
at every point of K, S is p-almost periodic.

c) If S e CVp{G) has a compact support K, such that Q e K , is
p-almost periodic at every x e K , x ^ 0, and topologically p-ergodic at
0, 5" is p-almost periodic.
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Proof. - a) (m * Pp)S is defined as in part 1 (see also proposition 2.3)
as a finitely supported measure. Moreover for every S ' e CVp(G)

l|(m * PF)S''II eVp(G) ^ \\'^'\\cVp(G)

by definition and lemma 2.2. Both assertions of (a) are obvious if S is
a finitely supported measure and verified by norm density if
Se^\G) c v p ( G ) , (These facts will be used again in kmma3.2 and
theorem 4.1.)

The proof of b) is analogue to [Loo] theorem 1 : there exist
(fj)i<^j^n e ^2(G) such that fjS is p-almost periodic and ^ fj > 0 on

K, there exists f e A^(G) such that /( ^ fj) = 1 in a neighborhood
M^j'^n /

of K hence S = ^ ffjS is p-almost periodic.
l^j^n,

c) Every ^fS defined as in lemma 1.8 (iii) satisfies the assumptions
of (b), hence ^S is p-almost periodic and so is 5' by lemma 1.8. D

We now prove a generalization of [Loo] theorem 2.3, but wiith a
different proof: it will be a consequence of proposition 2.3..

PROPOSITION 2.7. - Let G be a lea group, 1 ^ p ^ 2. Let S (E CVp(G)
mth a compact support K such that 0e K. If S is p-almost periodic at
every x e k except {0} then S is p-almost periodic.

Proof. — By lemma 2.6 it is enough to show that S is topologically
p-ergodic at {0}. S verifies the assumptions of Proposition 2.3 for
H = G. For every 8 > 0 we choose (pe^^G') as in proposition 2.3
and we choose /, ge^(G) such that

dmmMp(S) - e = diam Mp(^)S) - s = \^SJ-g)\.

As {0} is a set of synthesis for Ap(G) our assumption on 5' implies
that (f~g)^S is p-almost periodic at every x e G hence p-almost periodic
by lemma 2.6 b). By lemma 2.6 a), for every & > 0 there exists a finite
set F cz G such that for any mean m on CVp(G)

||(/-^)(p5-(m*^)(/-^(p5||7T^II llcy,(G) ^ S.

Let W cz G be a compact set such that

\\(f-g)-(f-g)^W\\Ap(G) ̂  £||511c^(G).
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Hence by our choice of (p

|<q)^/-^>| ^ 8+ <(/-^)(p5,(p^>| ^ 2e+ <(m*^)(/-^)(p^(p^>|

= 28 + <(m* (PF-LO}))<P^<M/-<?)> ^ 4s.

Hence diam Mp(S) ^ 5s and 5' is topologically p-ergodic at{0}.

THEOREM 2.8. — Let G be a lea group, 1 ̂  p ^ 2.

__a)^ Z^t E cz G be compact and scattered. Then CVp(E) ==
^(EY^Vp(G) ^rf CF^(£') has Radon'Nikodym property.

b) If E <^ G is compact and not scattered CVp(E) does not have
Radon-Nikodym property nor Schur property.

Theorem 2.8 is obvious for p = 1. For p == 2 theorem 2.8 (a) is
Loomis theorem [Loo].

Proof. — a) Proposition 2.7 implies that every S e CVp(E) is p-
almost periodic at every xeG exactly as in [Loo] proof of theorem 4,
or as in the proof of corollary 2.4 above. Lemma 2.6 finishes the proof
of the first assertion. Every separable subspace of CVp(E) is a subspace
of CVp(E') where E ' is a separable closed subset of E . Hence E ' is
compact and countable. By the first assertion CVp(E') is separable, and
it is a dual space. Hence CVp(E') and CVp(E) have RNP.

b) The proof is the same as for p = 2 [L-P1] proposition 3 : By [V]
chap. 4.3, E has a closed perfect subset E ' such that

M(E') = CV^E') = CVp{E')

and M(E') does not have RNP nor the Schur property. D

Theorem 2.8 (a) implies the following corollary exactly as Loomis
theorem implies [Gl] Proposition 4 :

COROLLARY 2.9. — Let G be a lea group and let F c: G be closed
and scattered. Then every S e CVp (E)(l ̂ p^ 2) is totally topologically
p-ergodic.

Proof. — We prove that S is topologically p-ergodic at {0}. Let
/ e ^p(G) with a compact support. The support of fS is compact and
scattered hence by theorem 2.8 (a) and lemma 2.6 fS is topologically
p-ergodic at {0} hence so is S .
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Our aim now is to prove (theorem 2.14 below) that under the
assumptions of theorem 2.8 (a) CVp(E) has the Schur property. Exactly
as in the case p = 2 [L-P1] theorem 1, we begin with the case where E
is a convergent sequence. The following lemma is crucial. It is a
generalization of [Wl], proof of theorem 9 (ii), and the proof uses the
same ideas as lemma 2.2, proposition 2.3 above.

LEMMA 2.10. - Let G be a lea group and E = (^)^i <= G be a
sequence such that e^ -> 0(k-^+oo) and e^ ^ O(fe^l) . Let 1 ̂  p ^ 2.

a) For every N ^ 1 and 8 > 0 there exists W^ a neighborhood of
{0} in G such that for every f, ge^p^G) there exists heyp(G) such
that

(i) \\g-h\\Ap(E^^2e
(ii) \\f-g\\Ap,w^ ^ 2e

where E^ = [e^ . . . , e^}.

b) Let 0 be an open subset of the compact metric topological space
y°p°(G) provided with ^(A^(G\CVp(E)). There exists W a neighborhood
of {0} in G such that for every S e CVp(E) which is supported on W
and every topological mean m on CVp(G)

(iii) sup |<5-<5,w>§o,/>| ^ 2sup |<^-<5,m>6o,A> ,
fe.yp(G) heO

(iv) \\S-(S,m)oQ\\cvp^ ^ 2(?diam{<5,0>}.

Proof. - a) Let (^)iej^ be a finite family in c9%(6') such that
(v) V^e^(G), 3fe7^, \\g-gi\\Ap^ ^ s.

As {0} is a set of synthesis for Ap(G) there exists V^e a neighborhood
of {0} in G such that

(vi) Vie 7^, ll^-HlA^^s,

where P^e is the closure of F^g in G.

There exists a finite set F^ ̂  c G such that

(vii) III-^JIA^)^|I-P^(^)I^£.
A = l

There exists V'^ a neighborhood of {0} in G such that
^N,E - y'N,e CL YN,^ and the x, + F^g - V^^EF^ u {^g-F^g}) are
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pairwise disjoint. There exists W^e a neighborhood of {0} in G such
that

(viii) l|l-(py;JlAp(i^) ^ s.

For every /e^(G) ((p^J) * P^e y^G) by lemmas 2.1, 2.2 (a).
Hence by (vii)

(ix) Vf e /^(((p^J) * P^)gi e ̂ (G).
A:

(X) \\gi-(H>V^f^PF^)gi\\ApW = \\gi S (I-^(^))!IA^) ^ 6.,̂.7 ^^F^^i\\A^E^ - \\^i Z,
A=l

For every ge^^C) we choose foe /^s such that II^-^HA^) ^ s.
Let h= (((p<J)*^,)^-o.

Then he^(G) by (ix) and satisfies (i) by our choice of g^ and
(x). Moreover by our choice of F^g, (viii) and (vi)

\\f~WAp(W^^\\f-n>y^f\\^^ + \\^V^f)*PF^-h\\A,(W^ ^ 28

which proves (ii).

b) Let 0 be as in the statement. By theorem 2.8 (a) there exist
/io6^(G), N and 0 < e < (6e)~1 such that

0 ^ {hey°,\G)m^k^N \h(e,)-h,(e,)\ <2e}.

Let W= W^^ be chosen as in (a). Let SeCVp(E) which is supported
on W and let / E ^p(G) be such that

(xi) (1-s) sup |<^-<5,m>5o,r>| ^ |<5-<5,m>5o,/> .
f eyp(G)

Let us define h as in (a) for this / and g = ho. By (i) h e 0 and (ii),
(xi) imply (iii) via (1).

We now prove (iv): let Pp^ ^ be defined as in (a) and let

h' == (m* PF^)ho.

By lemma 2.2 (b) h' e ̂ °(G); for k ^ 1 <8^/> = Pp^(e,)h,(e,) hence
h ' e O by (vii). By (ii) and our choice of W

(xii) <^-<^,m>5o,/> = |<^/>-<5,m>| = \(SJ^-W)\
^ 2£||^-<5,m>5ollcv,(G) + KW-WO.

Hence (xi) and (xii) imply (iv) via (1).
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PROPOSITION 2.11. - Let G be a lea group and E c: G be a compact
countable set mth only one cluster point. Then CVp(E) ( l^p^2) has
the Sehur property.

Proof. - We assume that E = (e^^i as in lemma 2.10. Let (Sn)n^i
be a sequence in CVp(E) such that 5^ -^ 0 a(C^(^),y4^*(G)). By
theorem 2.8 (a) and by eventually extracting a subsequence we may
assume that there, exists a sequence (S'n)n^i of measures whose finite
support lies in -E\{Q}, such that \\Sn-S'^\cvp(E) ^ 2 - n(n^l) and the
5^ are supported on disjoint blocks {^,^+15 • • • ^k + -1} where
(^z)^i -is a strictly increasing sequence of positive integers. In order to
prove the claim we assume that

35 > 0, V n ^ 1, ||̂ || CV?(G)> 8 •

^and we will show that this is impossible.

Let C = sup ||5'J| cvp(G)'-> we may assume that \\S'n\\cv (G) ^ 2C. Let

s=§(8^C) - - l . We define a subsequence (5'^))^i and a decreasing
sequence (O^)^i in ^^(G) in the following way: Oi = y°p°(G); assume
that 0^ and S^j-^ have been defined; by lemma 2.10 define a
neighborhood Wj of {0} in £' such that assertion (iii) is satisfied for Oj
and s; choose n(j) > n(j—l) such that S^j) is supported on W^ and

•Oj-i such that

,0,̂  = {h£0,| <^,),h>|^ sup <^),^>|-s||^)l|}.
/!' e 0^

Take./i^in the closure of 0, for a(A^(G\CVp(E)) such that

|<^(,),A,>| = sup |<^o-),^> , 7 ^ 1 .
/z / e Oj

Let /io6^°(G') be a cluster point of (^)^i for a{y^(G\CVp(E)).

Then

V; ^ 1, <5^,A>1 ^ ^ sup K^),/>| - 2eC ^ 8/4^
^/e^^G)

by(l) . Hence (S^u))j^i does not converge weakly to zero, which is a
contradiction. D

This proof is similar to [L-P1] lemma 2. It is sufficient in order to
prove theorem 2.14 below. But proposition 2.11 can be improved as
follows :
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DEFINITION 2.12. — A Banach space X has the strong Schur property
if there exists C > 0 such that for every 0 < 5 < 2 and every sequence
(xn)n^l ^n X ^ch that

(i) ||xJ ^ 1 (n^l)
(ii) ||x,-x,|| ^ 8 (n^k)

there exists a subsequence (x^ )/^i such that
N N

(iii) Voci, . . . , o^eC, ^ o^x x^ ^ 8 C ^ | a ^ | .
A = I A = I

PROPOSITION 2.13. — Let G be a lea ^rm^ and E cz G be a compact '
countable set mth only one cluster point. Then CVp(E) (1^^^2) has
the strong Schur property.

Proof. — By (1) we can consider CVp(E) as a closed subspace of
the continuous functions on the compact space y°p°(G) provided with
the a(A^(G\CVp(E)) topology. As C\p(E) is separable by
theorem 2.8 (a) this topology is metrizable. Proposition 2 .13 i s thus
implied by theorem B of [S], if we replace lemma 1 of [S] by
lemma 2.10 (b).

We do not know whether CVp(E) still has the strong Schur property
when E is compact countable with an infinite number of cluster points.

THEOREM 2.14. — Let G be a lea group, let E a G be compact and
scattered. Then CVp(E) (l^p^2) has the Schur property.

Proof. — As we deal with sequences of elements in C¥p(E)
theorem 2.8 (a) shows that we actually work in CVp(£'i) where £\ c= E
is compact and countable. We can now use the proof of [L-P1]
theorem 1, writing « CVp(£'i)» instead of « PM (E)». The proof uses
transfinite induction and deduces the general case from the particular
case where E^ has only one cluster point i.e. from proposition 2.11. D

3. A consequence of theorems 2.8 and 2.14.

Let G be a lea group, 1 ̂  p < 2.

We denote by Xp(G) the closed subspace of CVp(Gd) of those elements
which are totally G-p-ergodic, and by Yp(G) the closed subspace of
CVp(G) of those elements which are totally topologically p-ergodic.
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We first show the existence of bounded linear mappings
B,, : CVp(Ga) -> CVp{G) (1 ̂ p^2) which are identity on finitely supported
measures on G. They were already defined in [L-P2] for p = 2.

THEOREM 3.1. - Let G be a lea group, 1 ^ p < 2. Let (Pp^e.^ be
an approximate identity in A^G^). Let co be a cluster point of (Pp^e.^
for o(A^(G^Cy^Ga)). Let us define B^ : CVp(Ga) -^ CVp(G) by

V/e^(G), V5eC^(G,), <^(5),/> = </5,co>.

This mapping has the following properties :

W \\^w\\CVp(G^)-^CVp(G) ^ 1 •

(ii) By, restricted to finitely supported measures is identity.

-(in) BQ commutes with multiplication by elements of Bp(G).

(iv) If A c: G and A is the closure of A in G, B^ maps CVp(\d)
into CVp(A).

(v) B^ is one to one on Xp(G) and sends Xp{G) into Yp(G).

Proof. - (i) By definition co e ^^{G^ c= ^7(0^). By [Ey] theorem 1
Ap(G) is a subspace of Bp(Gd) hence </5',co> is well defined and

|</5,co>| ^ \\fS\\cv^) ̂  \\S\\ \\f\\ApW

(ii) As Ppix) -> l(Fe^) for every x e G ,

</5, ,co>=/(x)= <6,,/>

for every f e Ap(G) hence B^(5^) = 8^.

(iii) By [Ey] theorem 1 Bp(G) is a subspace of Bp(Ga) hence (iii)
holds by the definition of B^.

(iv) is obvious from the definitions.

(v) Let S c: CVp(Ga), S ^ 0. Hence there exists XQ^G such that
( ^ L ^ ^ O . If moreovoer SeXp(G), M^(^) = <5',l^i> for every
x e G . By Lemma 1.8 for every 8 > 0 and x e G there exists (p e ^\(G)
such that ||(p^-<^l,,;>8,||c^(^) ^ s. By (i), (ii), (iii)

<(pA(5')—<5',l^;>5^||cv (G) ^ e which implies by lemma 1.8 again that
B,,(S) e Yp(G) and that (p^^(5') is not zero for a suitable (p. D

The following lemma is proved in [Lohl] chap. 2, theorem 1.1,
proprosition 3.2.0. Actually a more general result is proved there and
we recall a short proof for this particular case.
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LEMMA 3.2. — Z^r G be a lea group, 1 ^ p ^ 2. Z^r }i 5^ a finitely
supported measure on G. Then \W\CV?(G) == ll^llc^(Grf).

Proof. — The inequality IICVp((;rf) ^ l l H l l c ^ ( G ) is proved by a
computation similar to the proof of lemma 2.1: L e t k , k ' be finitely
supported functions in the unit sphere of LP(Gd) and L^ (G^) respectively.
Let W be an open neighborhood of {0} in G such that the x^ + W — W
are pairwise disjoint for x, lying in the union of the supports of
f e , k ' , a. Hence

(i) <a,fe * /O == <u,(7c * ̂ /) * (p^>

(ii) ( fe*^) *(p^ =(1^1-^ ^ fe(x0(l^)
\ k(Xi)^0 )

* ( \ w \ - l l p s fe'ooxU.,)
\ A-'^^^O /k'(Xj)itQ

(iii) l - \ \ \ W \ - 1 " ' ^ fe(^)(l^,)|^(G)
A(X,)^0

-Up'
E ^(^)(1^, L^(G)

^(xp^O

w\

hence (^*^ ' )*(p^ belongs to the unit ball of Ap(G).

The converse inequality | |u | lcv (G) ^ l l n l l c v (G^) comes from
theorem 3.1 (i) and (ii). D

We can now prove a consequence of theorem 2.8 and 2.14; for
p = 2 it was proved in [L-P1] theorem 3 and partly in [L-P3] theorem 2.2,
by two different methods.

THEOREM 3.3. — Let G be a discrete abelian group and A c: G. We
assume that there exists a lea group H such that G -> H {as it was
defined in part 1) and the closure A of A. in H is compact and scattered.
Then CVp(A) is the norm closure in CVp(G) of finitely supported measures
on A ; it has the Radon'Nikodym and the Schur property.

We give a first proof which is similar to [L-P1] proposition 2,
theorem 3, but simpler, owing to corollary 2.4.

Proof. — By assumption G is a closed subgroup of H^ hence by
[HI] theorem A, CVp(G) is a closed subspace of CVp(H^ and CVp(A)
is a closed subspace of CVp((A)ci) <= CVp(Ha). By theorem 3.1 (iv) and
theorem 2.8, B^: CVp((A)a) -^ ^'(A)111^^). By lemma 3.2 there exists
an isometry which we denote by A: ^(A)""^^) -. ̂ (A)'' ̂ VpW^
which is identity when restricted to finitely supported measures.
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By corollary 2.4 CVp((A)a) lies in Xp(H), hence with the notations
of the proof of theorem 3.1 (v) for every 5' c CVp((A)d) and x e G

i<^o^(5), l^>-<^l^>| = <(p^o^(^),l^>-<5,l^>

^ Mil ||(pA(5)-<^l.^.> 5,|| cvpw ^ s

which implies that AoB^ is identity on CFp((A)d). This proves that
CF,,((A)d) = ^(A)111^^); as 11^,11 < 1 this proves also that B^ is an
isometry : CVp((A)^ -^ CVp(A). Hence theorem 2.8 and 2.14 imply that
CVp((A)d) and its subspace CVp(\) have RNP and the Schur
property. D

Alternatively theorem 3.3 has another proof which is similar to
[L-PJj theorem 2.2 : We keep the previous notations. By lemma 3.2 the
spaces ^(A)rf) i^^) and ^(A)""^^) are isometric, hence by
theorem 2.8 and 2.14 the first one has RNP and the Schur property.
It remains to prove that this space is the same as CVp{(\)d) which is
a consequence of the following lemma, a generalization of [L-P3]
theorem 2.1 :

LEMMA 3.4. ~ Let G be a discrete abelian group, A c : G , l ^ p ^ 2 .
Then ^(A) -cvp(G) has RNP iff it coincides with CVp(\).

Proof. - Let S CVp(\). It defines a bounded multiplier:
A^(G) --> CTp(A), f-^fS. As functions with finite support are
dense in A^(G) the range of this multiplier lies in ^(A)" "cvp(A). if this
space has RNP there exists a bounded strongly measurable function F ' .
G->^\A) <^<G) such that

V/e^(G), fS= f /(y)F(y)rfy.
JG

In particular for every Y e G

( f(j)S(Y-y)dy = fS(Y) - f f(j)F^)(Y)dy
JG JG

hence for almost all yeG^^Ky') = (jS)(Y) and F ( j ) = y S , In
particular 5' e ̂ ^A)" II^(G) .

Conversely if ^"(A)" '^(G) = CTp(A) the same equality is true for
every countable subset A7 c: A: hence CT^A7) is a separable dual and
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has RNP. This implies that every separable subspace of CVp(A) (which
is a subspace of a CVp(A.') where A' is countable) has RNP, hence
CVp(A) has RNP.

DEFINITION 3.5. - Let G be a discrete group, A c= G, 1 ̂  p ^ 2.
^^(A)111^^) = CT^(A) w£? ca« A a p-Rosenthal set.

Obviously every A is a 1-Rosentbal set and a 2-Rosenthal set is
usually called a Rosenthal set. Theorem 3.3 gives examples of sets A
which are p-Rosenthal for every 1 ^ p ^ 2. We do not know whether
« A is p-Rosenthal » implies « A is ^-Rosenthal » for 1 < q < p, but
we have the following result:

LEMMA 3.6. — Let G be a countable discrete abelian group and
A cG. Let 1 < q < p ^ 2. Let A be a p-Rosenthal set.

a) Every bounded sequence in Ap(A) has a weak Cauchy subsequence.

b) If ^l(\Y^cvp^ is weakly complete A is q-Rosenthal.

Proof. — a) By assumption CTp(A) is a separable dual. Hence its
predual Ap(A) has no ^-sequence. RosenthaFs theorem [R] implies the
claim.

b) Let ( P p ) n ^ i be an approximate identity in A^(G). By (a) the
sequence (R(Pp ))^i of restrictions to A has a weak-Cauchy subsequence
in Ap(A). As identity: CFg(A) -> CVp(A) is continuous, so is:
Ap(A) -> Ag(A). Hence (R{PF ))n^i has a weak Cauchy subsequence in
A,(A). For every Se CT,(A), n ̂  1 ,P^S = R(PF^)S e7\A) ^V^G) and
Pp S -> S , a(CVy(A),Aq(A)). It also has a weak Cauchy subsequence

in ^(A)" ^CV^G) hence it converges weakly to 5' and 5' lies in
^(A)II^(G). D

If A c G is a Sidon set identity is continuous (by definition):

^(A) ^ CVp(A) -. C¥,W -^ ^{\).

If AZ c GI and Aa c: (72 are two Sidon sets we have

^(AiXA^ ^ CF^A^xA^) -^ d^xA,)^1®^1.

Is Ai x Aa a p-Rosenthal set for 1 < p < 2 ? (This is true if Ai and
Aa satisfy the assumptions of theorem 3.3 because Ai x Ag also satisfy
them.) We can also define p-Riesz sets as follows :
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DEFINITION 3.7. — Let G be a discrete abelian group and A c: G,
1 < p ^ 2. A is a p-Riesz set if every f e Bp(G) which is supported on
A lies in Ap(G).

A 2-Riesz set is usually called a Riesz set. We do not define
1-Riesz sets because A^(G) === C'o(G'), B\(G) == 1^(0) hence no infinite
set is 1-Riesz. In order to generalize results on Riesz sets for p-Riesz
sets ( l<p<2) it is necessary to know whether Ap(G) is weakly complete
or not when G is discrete, which the author does not know.

(This is true if G is compact by [L-P4] theorem 4.)

If there exists / e B^{G) which is supported on A and such that
f ̂  Co(G) A is not a p-Riesz set for any 1 < p ^ 2 because / is not
in Ap(G). This is the case if A contains the spectrum of a Riesz
product.

4. Transfer theorems.

We have already proved one transfer theorem, namely theorem 3.1.
We now prove a «converse» one, by defining mappings
Am '. CVp(G) -> CVp(Gd). Actually all these mappings will coincide on
^i( (7) i ' i i cvp(G) and their common restriction is the mapping A which we
already used in the proof of theorem 3.3. Mappings A and B^ were
already used implicitly in [Lohl], [Loh2]. For p = 1 Am was defined in
[W2], p. 104 and [Wl], p. 292, on UC^G) and it was defined in full
generality in [L-P2]. The proof below is different.

THEOREM 4.1. - Let G be a lea group, 1 ̂  p ^ 2. Let {Pp)Fe^ be
an approximate identity in A^(Ga). Let m be a topological mean on
CVp(G). The linear mapping A^\ CVp(G) -> CVp(Ga) is defined by

^S e CVp(G), V/ e Ap(G,), <^(5),/> = lim <(m * Pp)Sjy
•^

Am has the following properties :
0) \\Am\\CVp(G)^CVp(Gd) ^ L

(ii) Am restricted to finitely supported measures on G is identity.
(iii) Am commutes with multiplication by functions of Bp(G).
(iv) If E c: G is a closed subset

Am :CVp(E) -. CVp(E,Y

(v) Am maps Yp(G) into Xp(G).
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Proof. — We first explain the definition of Am' (m^ P^tS is defined
as in proposition 2.3, lemma 2.6 and part 1 by

(vi) V/e^(G),
<(m * P,)SJY = </5,m * P^ = ^ P^(x,) <^><5^/> .

PF(XI)^O

It is a finitely supported measure on G. By lemmas 2.2 and 3.2

(vii) \\S\\cvp(G) ^ I I (m * 7Y)5||cy^) = l l (m * P^||c^,).

Let feAp(Gd) with a finite support. Then

(viii) <(m*P^V>

= Z Pr^f^i) <S^m^ ^ /(x,)<5,m^.>.
f(Xi)^0 f(x{)^0

Hence (m * P^ == ^ P^(x,) <5',m^>S^ (Fe ^r) is a bounded net
PF(X()^O

in CTp(Gd) which converges for a(CVp(Gd\Ap(Gd)) to a limit which
we denote by A^(S). A^i is clearly a linear mapping.

(i) is implied by (vii) and (viii); (ii) is implied by (viii) because
<^,w^.> = P(X() if u is finitely supported.

(iii) Let FeBp(G) and (pG^(G'). For every x e G , ^ ) ^ F e Ap(G).
As x is a point of synthesis for Ap(G) lemma 1.5 (b) implies
<(p^,m,> = F(x) <5,m,> . As <(p,F^m,> = <F^,m,> (viii)
implies (iii).

(iv) By lemma 1.5 (b) <5',m^> = 0 if x lies outside the support of
5'. Hence (viii) implies (iv).

(v) If we write Mp(S^) instead of ^l;^) the proof of (v) is similar
to the proof of (v) in theorem 3.1. D

Let us notice however that Am is not one to one on Yp(G): e.g. if
UeM(G) is a diffuse measure ^^(p) = 0. This will be precised in
theorem 4.2 below.

Theorem 4.2 provides an Eberlein p-decomposition for elements of
Yp(G).

THEOREM 4.2. - Let G be a lea group, 1 < p < 2. Let m be any
topological mean on CVp(G), let A^ and B be as in theorems 3.1, 4.1.

a) A^oB^ is identity on Xp(G); B^ is an isometry on Xp(G), A^ is
an isometry on B^(Xp(G)).
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b) For every Se Yp{G), S = B^oA^(S) + ̂  w/^

5, o A^(S) G ^(G)

an^ does not depend on m, and A^(S^) = 0.

c) If m is a topological mean on CV^G), Xp(G) and Yp(G) can be
replaced by X^(G) n CVp(Ga) and Y,(G) n CVp(G) in the assertions
above.

For p = 2 this result was partly proved in [W2] corollary 2, and
proved in [L-P2] theorem 7.

Proof. - a) Let S e Xp(G). By the proof of theorem 3.1 (v), for
every c > 0 and x e G there exists (p e ^p(G) such that

||(pA(5)-<5,l;,,>8j|e,y^) ^ £

hence by theorem 4.1

||<PAO ̂ (^)-<^1^> 8,||.c^(G,) ^ C

hence
Vx e G, <^ o ̂ (^),1^> = <^1^> .

As I I ^ H , 11^4^11 ^ 1 the rest of the claim is now obvious.

b) Let S e Yp(G). By theorems 4.1 (v) and 3.1 (v) A^S)eXp(G) and
B, o A^(S) e Y,(G). By (a) (A^ o B^) o A^S) = A^(S) hence
5' - ^o^^(5')eker^^. On the other hand all A^ coincide on Yp(G)
for topological means m on CVp(G).

c) By (a) A^oB^ is identity on X^(G) hence on X^G) n CVp(Gd).
The rest of the proof is similar to the proof of (a), (b). D

Theorem 4.2 (c) implies [Lohl] chap. 2, corollaire de la pro-
position III. 2.0, p. 56, where ^(G)" n^0) n CVp(G) is shown to be iso-
metric to ^(G)'^2(^)0 CF^Gd). We do not know whether
X^G) r\CVp{Gd) is strictly larger than Xp(G) or not (and the same
question for Y^G) n CVp{G) and Yp(G)). However let l ^ q < p
and let SeCVp(Gd). Lemma 1.8 and the interpolation inequality

1 = 9 1 - 6

^ ^ 2 ,

l^lic^^^ll^li^^ll^H^CV^^
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imply that if S eX^G) then. SeXp(G). In the same way
CVq(G)r\ Y^(G)cz Yp(G). The following result is a generalization of
[©1] theorem 4^ where p ^ 2.

THEOREM 4:3. - Let G be a lea. group, let E c G be closed and
scattered.. Let 1 ̂  p ^ 2. Then CV,(£) and CV^E,) are isometric.

Proof. - By corollary 2.4, GVp(£) i&.a closed subspace of J^G).
By theorem 4.2 (a),(b) B^ is an isometry: C^(^) -^ C^,(^) and ^
is an isometi-y : CV^E) -^ CV,{E,): if eV,(E) c= ^(A,(G)) hence if
^ is one to one on CV^E). Let now S^Cy,(E), S ^ Q . Hence the
support E ' of 5' is a closed non empty subset of " E . . As £' is scattered
let x be an isolate^ point of E ' . iLet F be: ^ neighborhood of x in G
such that V c\E' == {x}. By assumption thew exists (p^e^^(G) which
is supported on V wd such that <5',(p^> is not zero. The support of
(pv^ m {x) hence (p^ ^ <5^> 8^ and ^((pyS) is not zero. By
theoremi 4J (iii)< A^yS)^ qr^^P^ whi<A< {TOW? the claim..

Alternatively we could hwe ^sed Glow^ki's result (whose proof
fe t^ same as above, fbi: p^ 2)\ atstdi tteo^»A2'(c). D

Theorem 3.3 is an olmouj& consequence of theorems 4.3, 2.8, 2.14.
But we prefered to give a dir^t sim.pler proof:

Our next aim, is; to precise fc Ebertein decompodtion of 5' e C¥p(6)
when 5' is p-weak ^most perfodfic. We first establish a general lemma :

LEMMA 4.4. - Let G be a lea group md 1 ̂  p ^ 2. CVp(G) is
isometric to the s^oee of m^iptiers : A,(G) ̂  C¥,(G) and to the space
a/multipliers : A^G),-^ CVy{G) promde<t with orator norm.

Proof. - (i) Fw ev^y feA^G), geA,(G], SeCVp(G)

<fs.g) - <^v> - < ,̂̂ >
hence

IISllA^cv, == \\S\\^cv, ̂  \\Sh^cv, ̂ Wcy^

(ii) Conversely tet S be a multiplier: A^G) -^ CV,(G). Let (^\^
be w approximate identity with compact support in ^(G). Hence
\\S(^)\\cvp(G) ^ IISIJAg-.c^. For every feAp(G) with a compact support
K there exists ^eA^G) such that ^ = 1 on K. Hence as
ll^a^-^||A,(G)^G

<5((p,),/> - <5((pJ,̂ /> - <^((p^),/> -. <5<^),/>.
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It implies that (5'((pJ)^ converges for a{CVp(G),Ap{G)) ; let s £ CVp(G),
• s l i cvp(G) ^ l|5'||A^cvp be the limit. In particular for / as above

<S(gK)J> = <gKsJ>. We now verify that hs = S(h) in CVp(G) when
heA^(G). It is sufficient to prove it when h has a compact support^.
Then for every feAp(G), as gj^h = h

(hs-S(h)J) = <gKS-S(g^hfy = 0.

It implies the above claim hence ||5'||A -^cv ^ \\s\\cv ( G ) -

The assertion of the lemma is now obvious. D

Let us recall the definition of p-WAP(G'), the weak p-almost periodic
elements of CVp(G):

DEFINITION 4.5 [Gra]. - Let G be a lea group, l ^ p ^ 2 .
p-WAP(G') 15 the subspace of CVp(G) of elements S which define weakly
compact multipliers : Ap(G) -> CVp(G).

Let S e C V p ( G ) . By remark 1.2 it is easy to see that 5'6p-WAP(G')
iff {fS}fe.yp(G) is relatively compact for a(CVp(G\A^{G)) hence iff
{fS}fe.yp(G) is relatively weakly compact in C(^(G')), which means
by [BJM] chapters, definition 8.1, that 5' is a weak almost periodic
function on the semi-group c9%(G').

In the same way S is a compact multiplier: Ap(G) -> CVp(G) iff S
is an almost periodic function on the semi-group ^p(G) [BJM] 3,
definition 9.1.

By [Gra], proposition 9, p-WAP(G') is a closed subspace of Yp(G).

By [Gra] proposition 7, M(G) is a subspace of p-WAP(G').

Assertion (c) o (d) in the next theorem is Eberlein's decomposition
of WAP function on G [Eb2] when p = 2. (b) <=> (d) is a particular
case of [BJM] chapters, corollary 16.14.

THEOREM 4.6. - Let G be a lea group, G -> H, 1 ^ p ^ 2. Let
SeCVp{G). The following assertions are equivalent:

a) 5' ep-WAP(G').

b) y?(G)S is relatively weakly compact in CVp(G).
c) yp(H)S is relatively weakly compact in CVp(G).
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d) S = 2?^0y4^(5') + 5" ^vhere m is a topological mean on CVp(G),
J?(o, A^ are defined as in theorems 3.1, 4.1, B^oA^(S) belongs to
^i((7)inic^(G) a^ does not depend on co nor on m, 5" e p-WAP(G) anri
A^S')==0.

Proof. — (a) => (b) is obvious.
(a) <= (b) is easy by remark 1.2 as we already told above.
(b) => (c): When we studied Ks in part 1 we saw that y^H)S lies

in Ks.

If (b) holds Ks is the norm closure of ^p(G)S and Ks is weakly
compact in CVp(G).

(c)=>(b): By lemma 1.14, ^p(H)S is dense in Ks for
a(CVp(G\Ap(G)).

If (c) holds 7^5 is the norm closure of ^p(H)S and Ks is weakly
compact.

(b) ==> (d) : the assumption implies that S e Yp(G) hence theorem 4.2 (b)
holds. We claim that A^(S) lies in ^(Cr)" "^p(^>: by definition and
lemma 2.2 {(m*P^)5'|Fc G, F finite} lies in Ks and in ^(G) ^p(G)
(see the proof of theorem 4.1 (a)). By assumption it is relatively weakly
compact in CVp(G) hence in ^(Cr)" II^(G) hence in ^(C^ ^p^) by
lemma 3.2. The definition of A^ (see the proof of theorem 4.1) now
proves the claim. As B^ is identity on ^1(G)

B^oA^S)e^(GY^G^

it does not depend on co, nor on m by theorem 4.2 (b), it lies obviously
in p-WAP(G).

d ==> a is obvious. D

Motivated by lemma 4.4 and a result of Lohoue on compact
multipliers: Ap(G) -> CVp(G) [Lohl] chap. 2, theorem III.l, p. 50, we
also consider elements of CVp(G) which are weakly compact multipliers :
A^(G) -> CVp(G). We do not know if they are weakly compact
multipliers: Ap(G) -> CVp(G), but they have analogous properties. In
particular they lie in Yp(G): let Wbe a decreasing basis of neighborhoods
of {0} in G. If SE CVp(G) and if y^{G)S is relatively weakly compact
in CVp{G) (^wS)wew has a weak cluster point which must be a scalar
multiple of 80 and which belongs to the norm closure of y^(G)S.
Lemma 1.8 finishes the proof.
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THEOREM 4.7. — Theorem 4.6 holds tn^ if we replace yp(G) by
•y^G) and p-WAP(G) by the set of weakly compact multipliers :
A,(G)^GVp(GY

Proof. - By lemma 4.4 such a multiplier is given by an element
SeCVp(G). The proof then follows the same lines as the proof of
theorem 4.6. It is even simpler: for example lemma 1.14 is obvious for
p = 2, it implies that y^(H)S and y^{G)S have the same closure for
^s(CVp(G\Ap(G}). If m is a topological mean on CV^(G) and if
y<,{G)S is relatively weakly compact in CVp(G) (m ^ P p ) S lies in the
norm closure of y^(G)S hence A^(S) e^G)"'1^^) by the same proof
as in theorem 4.6. As Se Yp(G) Am(S) does not depend on m when m
is a topological mean on CVp(G). D

Theorem 4.7 implies the following improvement of [Lohl] chap. 2,
theorem III.l :

THEOREM 4.8. - Let G be a lea group, G—>H, l ^ p ^ 2 , let
S^CVp(G).

The following assertions are equivalent :
,(a) Se^(GY^Vp(Gy,
(b) 5' is a compact multiplier : Ap(G) -> CVp(G).
(c) yp(G)S is relatively compact in CVp(G).
(d) y^G)S is relatively compact in CVp(G).
(e) y^WS is relatively compact in CVp(G).
(f) y^(G)S is relatively weakly compact in CVp[G) and relatively

compact in CV^(G).

Proof. - (a) => (b) => (c) =•> (d) => (0 are obvious.
(e) o (d) by the proof of theorem 4.7.
(f) => (a): By theorem 4.7

S = B ^ o A ^ S ) ^ S ' and B^o A^(S) e ^(G)" II^(G).

We only have to prove that S ' = 0 in CVp(G) or that 5" = 0 in
CV^G). We know that A^(S') = 0 and that y^(G)S' is relatively
compact in CV^G) because y^(G)S' is ^(CV^(G\A<,(G)) dense in the
^(CV^(G\A^(G)) closure of c9%(G')5". Hence S ' is an almost periodic
function on G in the usual sense and <^5",m> = 0 for every character
/ on G and every mean m on L^(G). Hence S ' = 0 by classical
results. D
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